
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 506–556. DOI:10.46586/tches.v2022.i1.506-556

ModuloNET: Neural Networks Meet Modular
Arithmetic for Efficient Hardware Masking
Anuj Dubey1, Afzal Ahmad2, Muhammad Adeel Pasha3, Rosario

Cammarota4 and Aydin Aysu1

1 North Carolina State University, Raleigh, US, {aanujdu,aaysu}@ncsu.edu
2 The Hong Kong University of Science and Technology, Hong Kong,

afzal.ahmad@connect.ust.hk
3 Lahore University of Management Sciences, Lahore, Pakistan, adeel.pasha@lums.edu.pk

4 Intel Labs, San Diego, US rosario.cammarota@intel.com

Abstract. Intellectual Property (IP) thefts of trained machine learning (ML) models
through side-channel attacks on inference engines are becoming a major threat. Indeed,
several recent works have shown reverse engineering of the model internals using such
attacks, but the research on building defenses is largely unexplored. There is a critical
need to efficiently and securely transform those defenses from cryptography such as
masking to ML frameworks. Existing works, however, revealed that a straightforward
adaptation of such defenses either provides partial security or leads to high area
overheads. To address those limitations, this work proposes a fundamentally new
direction to construct neural networks that are inherently more compatible with
masking. The key idea is to use modular arithmetic in neural networks and then
efficiently realize masking, in either Boolean or arithmetic fashion, depending on the
type of neural network layers. We demonstrate our approach on the edge-computing
friendly binarized neural networks (BNN) and show how to modify the training and
inference of such a network to work with modular arithmetic without sacrificing
accuracy. We then design novel masking gadgets using Domain-Oriented Masking
(DOM) to efficiently mask the unique operations of ML such as the activation function
and the output layer classification, and we prove their security in the glitch-extended
probing model. Finally, we implement fully masked neural networks on an FPGA,
quantify that they can achieve a similar latency while reducing the FF and LUT costs
over the state-of-the-art protected implementations by 34.2% and 42.6%, respectively,
and demonstrate their first-order side-channel security with up to 1M traces.
Keywords: Neural networks · Side-channel attacks · Hardware Masking

1 Introduction
Illicit extraction of proprietary machine learning (ML) models has become a serious concern
in the ever-growing ML industry. Model owners can host a trained ML model either on a
cloud server or on an edge device and provide a publicly accessible interface for predictions.
Since designing and training an ML model is an expensive process, the trained model has
a monetary value associated with it. It has been reported that a single trained ML model
can cost as much as $10M [Mag20]. Therefore, the model owner typically charges the users
to use the model or purchase the device with the trained model [Sec20]. In both cases, the
ML model carries a business value and should be kept confidential from the users.

Recent advances in ML algorithms and the semiconductor industry have enabled
efficient deployment of ML models with reasonably high accuracy on resource-constrained
edge devices. Edge-based inference obviates constant communication with the cloud,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.506-556
mailto:aanujdu@ncsu.edu, aaysu@ncsu.edu
mailto:afzal.ahmad@connect.ust.hk
mailto:adeel.pasha@lums.edu.pk
mailto:rosario.cammarota@intel.com
http://creativecommons.org/licenses/by/4.0/

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 507

thus improving the inference latency and ensuring data privacy [ZCL+19]. Indeed, the
number of edge-based artificial intelligence (AI) chips is expected to be doubled by 2024
[Ins20]. Despite these advantages, it becomes harder to ensure the confidentiality of the
deployed model on the edge because the device operates in an environment where physical
side-channels attacks like power/electromagnetic (EM) become more applicable.

Physical side-channel attacks are effective and hard to mitigate, primarily because
they are based on the device’s intrinsic properties, like the data-dependent CMOS power
consumption [KJJ99]. Such attacks have been extensively studied over the last two
decades in the context of cryptographic implementations [KJJ99, CEvMS15, KGB+18].
Correspondingly, the research on mitigating such attacks has also matured significantly,
starting from the empirically secure primitives [AG01, TKL04] earlier to the provably secure
primitives at present [ISW03, NRR06, GMK16, GM18, GIB18]. We envision a similar trend
for the side-channel research on ML accelerators. Several recent works already demonstrate
successful power/EM side-channel attacks on software and hardware implementations of
an ML model [BBJP19, YKO+20, WLL+18, YMY+20, MBC21, JYI+20, TSSL20]. There
have also been a few proposals on building side-channel defenses against such attacks using
the well-known hiding and masking techniques [DCA20b, DCA20a].

The differences between ML and cryptographic algorithms cause challenges when adapt-
ing side-channel defenses towards ML. A major problem is due to the integer arithmetic
used in neural network computations vs. modular arithmetic in cryptography. Integer
arithmetic impedes the direct application of arithmetic masking in the neural network com-
putations due to the leakage of the sign bit [DCA20b]. Prior work investigated this problem
and proposed hiding the sign bit leakage through differential circuit styles [DCA20b]. An-
other work addressed it by decomposing the computations at the bit-level and applying
Boolean masking on each operation [DCA20a]. While hiding requires precise control of
the back-end flow (and still has some disputed claims [ISU18]), gate-level Boolean masking
does not have this drawback but incurs significant overheads.

Motivation and Novelty. Both prior works approach the problem by changing defenses
to fit the ML algorithm. By contrast, we explore the alternative—changing the ML
frameworks to ease the defense’s implementation. Specifically, we reformulate the neural
network inference with modular arithmetic (rather than integer arithmetic) and design
the building blocks for ML to work with modular arithmetic while preserving the model’s
accuracy. We call this neural network ModuloNET. We then apply efficient masking
styles for different parts of ModuloNET and develop masked components unique for ML
topologies. The results show that our solution combines the best of both worlds: it is
significantly more secure against first-order attacks than the defense with hiding [DCA20b]
and considerably less costly than the only-Boolean masked solution [DCA20a].

Contributions. A summary of our contributions and key results are as follows.

• We address the fundamental incompatibility of neural networks to cryptographic
defenses by proposing an alternative way to construct inference that works on modular
arithmetic with negligible accuracy loss: less than 0.5% for binarized multi-layer
perceptron (MLP) on MNIST, and less than 1% for convolutional neural network
(ConvNet) on CIFAR-10 and CIFAR-100 datasets. We identify the challenges of
using modular arithmetic in activation, batch normalization (BN) and output layers,
and propose a novel layer architecture to address them.

• We implement a parameterized fully-masked inference hardware in which the number
of nodes within each layer can be tuned. We opportunistically apply suitable masking
styles whenever they become efficient—arithmetic masking for fully connected layers
and Boolean masking for activation layers, comparisons, and multiplexers. We

508 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

implement a novel and efficient masked thresholder design to securely evaluate the
activation function. We also design a novel masked comparator to securely perform
masked output layer computations. We implement secure Boolean-to-arithmetic and
arithmetic-to-Boolean conversion circuits to switch between different masking styles.
We also implement a binarized ConvNet design and show how to mask the (linear)
convolution and (non-linear) maxpool operations. This demonstrates the scalability
of our proposed techniques to more advanced architectures. The implementation
results for the MLP design show that the proposed solution occupies 34.2% and
42.6% fewer LUTs and FFs while achieving virtually the same latency1 compared to
the Boolean-only masked solution [DCA20a].

• We perform leakage evaluation tests of our neural network hardware implementation
using the widely accepted TVLA methodology [GGJR11] on an FPGA with power
measurements. We first evaluate the security of each masked primitive as a standalone
unit and then evaluate the fully masked implementation using those primitives. We
demonstrate a first-order security with 1M traces each in fixed and random datasets,
both for the individual masked components as well as the fully composed design.

• We define the side-channel security for the ML-specific primitives using the glitch-
extended probing model [RBN+15] in which the power and EM side-channel attacks
become equivalent. We prove the security of the proposed masked gadgets for
ML-specific operations like the activation function and output layer in this model.

Organization. Section 2 outlines our threat model. Section 3 presents relevant back-
ground information regarding our notation, hardware masking, and neural networks.
Section 4 describes the proposed layer architecture and the software implementation of
ModuloNET. Sections 5 and 6 discuss the hardware design of the baseline MLP and
masked MLP. Section 7 discusses the design of the baseline and masked ConvNet designs.
Section 8 presents the security proofs for the masked gadgets. Section 9 presents our
proposed ML model accuracy, hardware implementation results, and leakage evaluation
results. Section 10 discusses extensions and future applications of this work and Section 11
concludes the paper.

2 Threat Model
We follow the threat model adopted in prior side-channel works on ML model steal-
ing [DCA20b, YKO+20]. Here, we summarize and highlight the key aspects. The neural
network model is trained offline, and the trained model parameters are securely stored in
the accelerator before deployment. The device is then deployed in an untrusted environment
where it performs inferences. The attacker can obtain power/EM traces from the device
while running inference, either via direct access or remotely [ZS18, SGMT18, WLL+18].
We assume a chosen-plaintext attack model where the attacker sends the inputs to the
device for classification and can capture multiple traces corresponding to different inputs.
The adversary then executes a power/EM-based side-channel attack with the captured
traces [KJJ99, BCO04, CRR03]. Furthermore, we present our security proofs in Section 8
using glitch-extended probes first introduced by Reparaz et al. [RBN+15].

Following earlier works on model extraction [JSMA19, DCA20b, JCB+20], we assume
that the hyperparameters of the model like the types/number of neural network layers are
either public or obtained by another attack [PMG+17, YMY+20]. Thus, the adversary
tries to extract the model parameters, not hyperparameters in our threat model. Also, the
number of parameters is in billions while the number of hyperparameters is in hundreds

1Refer to Table 2.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 509

making parameters much more critical, hence lucrative in an ML IP. In fact, even if the
adversary has access to the hyperparameters, it might still not be able to train the model
without investing in the training data set, which is usually not free, or in the compute
resources such as a GPU farm. Our work provides confidentiality for the parameters. Hence,
the proposed defense’s goal is to ensure that no information about parameters is leaked
during any intermediate computation through a first-order power/EM-based side-channel
attack. Therefore, the proposed masking scheme masks all intermediate computations
and not just, say, the first and last layer. Although this may be another viable option (as
in masking the first and last round of AES [SP06]) to reduce masking overheads, recent
works have shown that deeper computations can be targeted with ever-evolving attacks
[BBH+19].

We analyze binarized neural networks (BNNs) [CB16]. Following prior works on
protecting ML hardware [DCA20b, DCA20a], our hardware implementation is constant-
time/flow, making it immune to other side-channel attacks such as timing or the access-
pattern based [HZS18]. Our design stores all the parameters of the model in the on-chip
FPGA block RAMs. Therefore, the hardware implementation is also immune to any
memory-based side-channel attacks. We exclude invasive attacks like voltage/EM fault-
injection attacks in our threat model [BJH+21, TG20]. We also exclude template/profiled
attacks for this work.

3 Background

In this section, we establish the notation that we utilize throughout the paper for ease of
understanding. We also introduce the basics of neural networks, BNNs, and hardware mask-
ing. These fundamentals would serve as the groundwork for the reader in understanding
our proposed methods in future sections.

3.1 Notation

We denote vectors x with lowercase bold, individual elements of the vectors with italicized
subscripts xi, matrices X with uppercase, bold roman letters, and matrix elements xi,j at
position i, j, where i and j correspond to the row and column also with italicized subscripts.
Every scalar x is non-binary unless explicitly stated as x ∈ GF (2). We use bracketed
subscript x[i] to index the ith bit of a scalar x, bar on the top x to represent a bit-wise
inverse, superscript xi to refer to the ith share of a masked variable x, calligraphic fonts O
to denote sets, and typewriter font F(.) to denote functions. We use braces in superscript
w
{k}
i,j to index the variables in different layers of the neural network.
We denote a multiplexer function in hardware design sections as MUX(.), which is defined

as follows.

MUX(a, b; s) =
{
a, s = 0
b, s = 1

Modulo operation x mod K is defined as x mod K , x−K
⌊
x
K

⌋
∈ [0,K). We always

use the letter K to denote the modulus. We define DOM(.) (a type of masked AND
gate) as DOM(a1, a0, b1, b0, r) = (c1, c0) where

⊕
i c
i = a · b,

⊕
i a
i = a, and

⊕
i b
i = b.

ai, bi, r ∈ GF (2)∀i and r is a fresh and uniformly sampled bit. The ⊕ and · symbols
represent the bitwise exclusive-OR and AND operations, respectively.

510 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 1: The design of a first-order pipelined DOM-indep multiplier [GMK16]. The
components in black and blue belong to domains 0 and 1 respectively. The red colored
components represent the cross-domain terms. (a), (b), and (c) refer to the calculation,
resharing, and compression steps, respectively.

3.2 Hardware Masking for Side-Channel Security
Basics of Masking. Masking is a side-channel countermeasure that splits the secret
variable into multiple, statistically independent shares and transforms the original function
to work on these shares independently. In a d-th order masking scheme, the secret x is
commonly split into d + 1 shares x0, x1, · · ·xd such that x =

⊕
i x

i, 0 ≤ i < d + 1, and⊕
is an addition in the field. The d shares x0 · · ·xd−1 can be sampled uniformly and

the (d + 1)th share can be created as x ⊕ (
⊕

i x
i), 0 ≤ i < d. This type of masking

is typically called arithmetic masking for non-binary numbers. In GF(2), the additions
become exclusive-OR and masking is commonly called Boolean masking. It is efficient
to use arithmetic masking to mask arithmetic operations and Boolean masking to mask
Boolean operations. Prior work on multiplicative masking of AES demonstrates the
efficiency of such implementations [DRB18].

The most critical requirement for a masking scheme is to always keep the shares
separated during computations. This is hard to achieve in practice due to glitches that can
temporarily recombine the shares and leak the secret [MPO05]. Glitches can be reduced
by inserting registers on data paths involving multiple shares [AGM+09]. Threshold
Implementation (TI) is a theoretical solution to address the issue of glitches by enforcing the
(non-completeness) property that none of the intermediate computations (a.k.a., component
functions) involve manipulating all the shares of a secret simultaneously [NRR06]. A dth

order TI typically requires td + 1 shares, where t and d are the algebraic degree of the
function and the protection order, respectively. Some follow-up works tried to provide
security in the presence of glitches using only d+ 1 shares [DRB+16, GMK16].

Domain Oriented Masking. Figure 1 shows a first-order secure DOM-indep multiplier,
which assumes the inputs to be independent [GMK16]. The key idea behind DOM is to
ensure that in a dth order masked circuit that is split into d + 1 independent circuits,
each circuit only processes at most one share per secret variable. Each share index is
associated with a so-called domain. A circuit that only receives one share per secret
variable cannot leak the secret because every secret share is independent of the secret
variable. A cross-domain term introduced due to a non-linear function can potentially leak
the secret. Linear functions are affine, thus easy to mask without additional randomness.
Figure 1 shows the three steps of a DOM-indep computation. The calculation step (a)
computes all the partial products, the resharing step (b) integrates the cross-domain terms
into the primary domains by remasking with a random bit r, and finally, the compression
step (c) combines the terms into two output shares to prevent the otherwise unnecessary

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 511

increase in the number of domains. A register at the end of resharing step prevents any
glitches to propagate to the compression step. We choose DOM instead of TI for this work
because it provides security in presence of glitches using only uses d+1 shares and because
of its widespread adoption in recent masking literature [FBR+21, ABP+18]. We discuss
some more optimized alternatives in Section 10.

Theoretical Attack Models. The early research on hardware masking was missing a
theoretical framework to model a side-channel adversary capabilities and the properties
of the target platform. Thus, it was difficult to provide concrete security guarantees for
a newly proposed masking scheme. Ishai et al. provided for the first time a theoretical
framework to evaluate side-channel countermeasures, which is better known as the t-probing
model [ISW03]. In this model, the adversary can observe the values of at most t wires in
the masked circuit; the circuit is said to be secure if and only if the value on each of the t
wires can be simulated using only randomness.

The t-probing model is a good starting point but it does not model the physical faults in
hardware like glitches, transitions and coupling, which can potentially lead to side-channel
leakages [MPO05]. Hence, the t-probing model was extended to the robust-probing model
by Faust et al. [FGP+18], which also models physical faults in hardware. One of the key
ideas in the robust-probing model was to use the so-called glitch-extended probes first
introduced by Reparaz et al. [RBN+15]. These probes leak the value of not only the
probed wire but all the wires in the fan-in until the last synchronisation point.

3.3 Neural Networks
Neural networks are a class of ML algorithms used for predictive modeling of data that
have recently gained popularity due to their ease of use and effectiveness. They model an
unknown function by analyzing a set of known data points (called the training dataset)
and make predictions on new data (called the test dataset) using the modeled function.

A neural network consists of multiple neurons organized in layers working in a feed-
forward fashion where one layer takes inputs from the previous layer, applies a series of
operations, and feeds the outputs to the next layer. The fundamental unit of a neural
network is called neuron. A network in which each neuron in a layer is connected to all
the neurons in the next layer is often called a multi-layer perceptron (MLP). The layers
in an MLP are intuitively termed as fully-connected (or dense) layers. Neurons multiply
their inputs with layer weights and pass the sum to an activation function. Each incoming
connection of a neuron has a weight value associated with it. The neuron performs a
weighted summation of the inputs and computes the probability using a non-linear function
like sigmoid, rectifier linear unit (ReLU), etc. Operations of all neurons within each layer
can be condensed using matrix representation as

y = σ(x ·W + b),

where x, W, and b are input feature, layer weight and bias tensors, respectively. Feature
vector, x = {xm}, for m ∈ N ∩ [1,M], denotes the representations input to a layer, where
M is the size of feature vector. Weight matrix, W = {wm,n}, and bias vector, b = {bn},
for n ∈ N ∩ [1, N], represent the learned parameters of the layer, where N is the number
of nodes in the layer. The connection weight matrix, W, is calibrated during the training
phase by feeding inputs and their corresponding labels, also known as ground truth data,
to the network and using a method called backpropagation to iteratively revise the weights
such that the network starts predicting the correct labels [Lin76]. Thus, the weights are
crucial in deciding the model accuracy and hence the most lucrative target in an ML model
extraction, which should be protected against side-channel attacks. Similar to weights,
other parameters, like bias vectors, b, and Batch-normalization (BN) [IS15] parameters

512 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

are also computed during training and stored offline for inference. BN is applied to the
output of neurons of the layers of the neural network as a form of normalization of layer
outputs. µ,σ are the mean and standard deviation of the neuron outputs and γ, β are
learnable parameters and are used to shift the mean and standard deviation, respectively.
BN parameters are less critical compared to weights of a neural network but they may
also be kept confidential.

Given the fact that the layers of neural networks are stacked together with the outputs
of one layer being used as the inputs of the next layer, the distribution input to each layer
may change with each successive layer, causing the learning algorithm to continuously
chase a moving target. Batch-normalization (BN) is a form of standardization used to
homogenize the distribution fed to each layer. BN significantly reduces the training time
and stabilizes the training by normalizing inputs to each layer [IS15]. Given its wide
ranging benefits from allowing training deeper networks to accelerated training, BN is one
of the core fundamental operations utilized in neural networks.

Convolutional Neural Networks Fully-connected (FC) layers have several limitations
that hamper the scalability and computational efficiency. First, the number of parameters
keep increasing with the number of input features, which is a problem if the dataset has
a lot of features (e.g., high-resolution images). Second, connecting all the previous layer
neurons to the next layers neurons may lead to overfitting of data because every pixel
acts as an input feature to every neuron of the next layer. Furthermore, fully-connected
layers do not exploit spatial correlation between pixels of input images since each pixel
is connected to every other pixel in the image with equal importance. A convolutional
(conv) layer addresses these problems by processing smaller regions of the image called
the receptive fields to compute the output features [FMI83, LHBB99]. It preserves the
spatial relations between different parts of an input image and summarizes the features
in a concise manner owing to the small receptive fields. It exploits the fact that each
pixel and its neighborhood are semantically linked and meaningful. Furthermore, it also
promotes translational invariance: the same object can appear anywhere within the image.
The number of parameters in a conv layer does not increase with increasing input features,
and unlike FC layers, only a subset of input features contribute to an output feature.

Every conv layer has a set of tensors called kernels that it uses to perform an inner
product with the shifting receptive fields in the input image. The inner product operation is
commonly called convolution. If we denote the input and output tensors of the convolution
layer as X and Y, respectively, then the element at position (p, q, r) in Y is computed as

Yp,q,r =
nh∑
i=1

nv∑
j=1

ni∑
k=1

Xp+i,q+j,k ×Ki,j,k,r,

where nh, nv, and ni are the width, height, and depth of the kernel respectively. ConvNets
are commonly seen in computer-vision applications. The kernels are learned through
training and thus, should remain confidential.

Conv layers are usually followed by a pooling layer that aims to downsample the output
retaining only important features. This helps to regularize the data and prevent positional
dependence of the detection, i.e., the network detecting a certain feature only if it is
present at a specific location. Two common ways to pool the data are either selecting
the maximum (a.k.a, maxpool), or computing the average (a.k.a. avgpool). We choose to
implement maxpool for our work because it is hardware-friendly for BNNs [UFG+17].

ConvNets gained popularity after AlexNet [KSH17], a deep ConvNet that demonstrated
remarkable results on the ImageNet dataset, the largest computer-vision benchmark, at
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [RDS+15]. Since
then, ConvNets are considered the de-facto set of algorithms for visual perception tasks

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 513

and are extensively utilized in a huge number of applications including self-driving vehicles,
autonomous robots, and unmanned aerial vehicles (UAVs).

Binarized Neural Networks. The weights and activations in a typical neural network are
32/64-bit floating-point (FP) numbers with high storage and computational needs. Thus,
such networks are not suitable for resource-constrained edge devices with low-power and
storage requirements. To reduce the memory footprint and computation costs, quantized
neural networks with low-precision parameters have been proposed [HCS+17].

BNNs [CB16] use binary weights and activations, and are a natural progression in
extreme quantization to reduce the compute and memory footprints of deep neural networks
(DNNs). They utilize bit-wise arithmetic operations such as XNOR-POPCOUNT (XP),
which are extremely efficient compared to matrix multiply-accumulate operations in high-
precision DNNs. XP on a BNN layer l = [a0, a1, · · · aN−1] with binary features ai is defined
as

XP(l) = 2×
N−1∑
i=0

(wi⊕ai)−N,

where × and ⊕ are multiplication and XNOR operations, respectively.
Prior works have demonstrated the computational efficiency of XNOR-POPCOUNT

based arithmetic operations in DNNs. For instance, a GPU kernel exploiting the XNOR-
POPCOUNT operations can achieve 23× faster matrix multiplication compared to a naive
baseline implementation [CB16]. The designed kernel is 3.4× faster than cuBLAS and the
MLP runs 7× faster using the XNOR-POPCOUNT kernel compared to the baseline. Big
companies like Xilinx, Intel, and Apple are investing heavily in BNNs due to these advan-
tages [UFG+17, KCS+20, Tec20]. Owing to their low memory footprint and lightweight
nature of operations, BNNs are considered attractive for edge applications such as FPGA-
accelerators [FZS+19], cryptographic neural network inference systems [LWYY20], and for
designing low-bitwidth ConvNets [ZWN+16], among many other applications.

Despite their low-bitwidth operations, the accuracy obtained by BNNs is comparable
to that obtained by full-precision neural networks. For instance, [ZWN+16] found the
accuracy loss of a BNN-ConvNet with 1-bit weights and activations to be less than 0.5%
compared to a full-precision ConvNet with seven convolutional layers and one dense layer,
evaluated on the Google Street View House Number (SVHN) dataset. Similarly, [LZP17]
achieved less than 5% accuracy loss on the ImageNet dataset [DDS+09], a challenging
dataset notorious for its complexity in the computer vision community, using a ResNet-like
network built entirely using binary convolution blocks, compared to a full precision network.

BNNs apply constraints on both weights and activations such that each element of
these matrices is either +1 or −1, during both training and at run-time. This is achieved
by applying a binarization function, either deterministic or stochastic, to both weights and
activations before they are utilized in linear layer arithmetic. In this work, we utilize the
deterministic binarization function, sgn(x), to facilitate our discussions due to its simplicity
of implementation in hardware and comparable accuracy to its stochastic counterpart.
Following equation describes the deterministic binarization function.

sgn(x) =
{

1, if x ≥ 0
−1, otherwise

(1)

While forward pass uses binarized weights and activations, the gradients computed
during training are real-valued to allow Stochastic Gradient Descent (SGD) to calibrate
the weights in small, iterative steps. Gradient Descent algorithm tries to find the minimum
of the loss function using its gradient. The algorithm starts at an arbitrary point of the

514 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

. .
 .

. .
 .

Linear Layer

Flatten

BN

. .
 .

. .
 .

BIN

Dense Layer

Predictions
Labels

Repeat for
l layers

0
1
2
3
4
5
6
7
8
9

Figure 2: Baseline BNN-MLP dense layer architecture. Note that the last layer does not
use the activation function to generate continuous score values.

objective function and computes its gradient with respect to each feature. The parameter
value is updated in small steps according to the calculated gradient values at each step,
leading to zero gradient. SGD is utilized to reduce the computations that baseline gradient
descent needs for calculating the derivatives. The baseline gradient descent algorithm
needs to compute the derivatives with respect to each feature for all data points. For large
datasets, this is infeasible and makes the gradient descent algorithm too slow. Hence, SGD
solves this problem by randomly picking only one data-point from the dataset to compute
the gradients, therefore ‘stochastic’. Although this significantly reduces the total number
of computations to reach the minima, the path taken to reach this minima becomes more
noisy due to the random data-points. But this does not matter as long as the algorithm
does converge to the minima in lesser training time.

While the binarized activation function sgn(x) is simple to implement, its gradient
is zero for almost all values of x. Hence, the loss function gradient with respect to the
activation function output will be zero, and the network will not learn. To counter this
issue, Bengio et al. proposed a straight-through estimator for propagating gradients
through the neurons [BLC13] as

gx = gq1|x|≤1,

where gx = ∂L
∂x denotes the gradient of loss function with respect to x. A straight-through

estimator sets the input gradients equal to the output gradients, discounting the slope of the
sgn(x) activation function altogether [CB16]. Simultaneously, it constrains the real-valued
weights to [−1,+1] after each weight update during training since large magnitudes of
weight values significantly worsen the performance. High-granularity input features are
needed in the first layer in order for the network to be able to distinguish between them.
Hence 8-bit input features are utilized for the first layer, while the rest of the layers use
binarized features.

Baseline BNNs with deterministic activation function achieve 99.04% and 88.60%
accuracy on MNIST and CIFAR-10, respectively. In comparison, [BIL+15] achieved
98.65% accuracy on the MNIST dataset using both binary weights and activations during

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 515

training. Using only binary weights and full precision activations, [CBD15] achieved an
improvement of only 1.5% accuracy on CIFAR10 and reduction of 0.33% on MNIST. These
examples demonstrate the comparable accuracy of BNNs despite their significantly lower
memory and compute footprints compared to higher precision networks. Figure 2 shows
the dense layer architecture of a baseline BNN-MLP. The architecture is similar to that of
a generic MLP where a linear layer is followed by normalization followed by an activation
function. However, BNN dense layers utilize binary x and W and an sgn(.) activation
function.

The Sign Bit Leakage Problem in Masked BNNs. Regular BNNs with integer ad-
ditions leak via the sign bit in arithmetic masking because the output sharings are
non-uniform [DCA20b]. The discussed vulnerability does not happen in modular arith-
metic as there is no sign bit; the modulo operation wraps around the result if it is out of
bounds. We propose a radically different approach at the algorithmic level that changes the
arithmetic of neural networks from integer to modular and defines the inference operations
with the new arithmetic from the ground up.

4 ModuloNET: Binary Networks with Modular Arithmetic
The sign-bit leakage problem has motivated us to explore neural network inference in
modular arithmetic. Thus, we develop a neural network architecture in which all the
integer additions are replaced with modular additions (mod K). To our best knowledge, this
is the first paper that utilizes modular arithmetic directly during neural network inference2.

4.1 BNNs and Modular Arithmetic: Challenges
BNN inference has four major issues when layer arithmetic is moved to modular arithmetic.

1. Modulo operation entails loss of information and sudden changes in representations
due to overflows.

2. Baseline binary activation function, sgn(·), no longer stays feasible. For feature
vector x where x = {xm} for m ∈ N ∩ [1,M], and M is the size of input vector, if
xm lies in a mod K, then

sgn(xm) = sgn(K) ∀ m ∈ N ∩ [1,M] (2)

Hence, activations of all layers are tied to a constant, sgn(K).

3. Application of BN becomes challenging. Modulo operation shifts the negative
activations to the positive side (see Figure 3). Thus, BN cannot normalize the mean
and standard deviation of the activations to a Gaussian distribution centered around
zero anymore.

4. Modulo folding causes negative output scores of the last layer to wrap around. This
results in wrong predictions to have high confidence scores (see Figure 3 (c)-(d)).

We analyze these issues and propose modifications to the baseline binary dense layer
architecture that allow successfully operating with modular arithmetic in inference.

In supervised representation learning with regular arithmetic, the network automatically
discovers its internal features during the training process. The operations of the neural

2Homomorphic encryption too uses modular arithmetic but does not directly apply such computations;
instead it converts regular operations to homomorphic ones—Section 10 elaborates on the similarities and
differences of our approach compared to the homomorphic encryption.

516 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

network are unconstrained in terms of representation range. However, constraining the
inputs of the activation function in a feed-forward network to a modular domain during
inference reduces the accuracy of the network since the modulo operation results in loss of
information as highlighted in challenge 1. Figure 3 (a) shows the histogram distribution of
output features, g(y), of the third layer of a baseline binarized MLP trained for MNIST.
Figure 3 (b) shows the histogram distribution of output features of the same layer when
the output of the dense layer is restricted to mod K where K = 4096. Intuitively, reducing
this representation space increases the information loss due to overflows and underflows of
the feature representations with modular arithmetic.

Furthermore, in an unsigned finite domain K > 0, the network loses the capacity
to represent negative activations, which are fundamental to the functionality of BNNs,
highlighted in challenge 2. Equation (2) illustrates that the usual activation function
sgn(.) cannot work with mod K and requires modifications. Applying the constraint
of modular arithmetic also reduces the effectiveness of BN (challenge 3) since modular
arithmetic causes sudden changes in values for some activations, while leaving others
completely unchanged, and BN operation does not accommodate these anomalies.

In the last layer, the negative scores output from the network wrap around because they
underflow the representation range as identified in challenge 4 and illustrated in Figure 3
(c) and (d). This results in wrong predictions with high confidence because baseline neural
networks use higher scores to represent high confidence predictions. Plot (c) shows the
final layer output of a baseline BNN trained on MNIST. Value bins with high positive
values represent correct classifications with high confidence, while those with high negative
scores represent the wrong classifications with high confidence. Plot (d) shows the final
layer output after applying mod 4096: high confidence wrong classifications are folded over
and incorrectly classified by the network as correct with high confidence.

4.2 Proposed Layer Architecture
We propose modifications to the baseline dense layer architecture, whose output empirically
follows the output of dense layers in baseline BNNs, however, for offline inference, the
layer operations are constrained to modular arithmetic. To achieve this, BN can be
fused into the preceding linear layer using a simple composition [YN17]. But to maintain
binary XNOR-based multiplications between the feature vector x and weight matrix W,
and integer additions of bias vector b, the proposed architecture needs to ensure that
the re-parametrization of learned parameters does not lead to non-binary weights and
non-integer biases. Specifically, for the linear operation y = x ·W + b, the layer needs to
ensure that W and b tensors maintain their data-types (i.e., binary and integer) during
the re-parametrization to allow efficient hardware implementation and masking.

Baseline BNNs use integer biases in their linear layer but since we re-parametrize the
layer to fuse the BN operation, the bias values are modified with the BN parameters. We
use vanilla BN: g(y) = γ y−µ√

σ2+ε + β in our experiments which generates floating point
results during training. µ, σ, γ, β, are the mean, standard deviation, scale, and shift
parameter vectors of the BN operation, respectively, ε is a small constant to prevent division
by zero, and y is the linear layer output vector. We can absorb these learned parameters
offline to obtain a more concise and linear, multiply-accumulate based BN operation as
g(y) = ψy+φ where ψ = γ√

σ2+ε and φ = β−ψµ are the absorbed BN parameter vectors,
computed offline after training. We propose a mod K-aware binary activation function
based on the shape of the feature map distribution input to the function:

BIN(z) = −sgn
(
z − K

2

)
(3)

This activation function shifts the activation decision boundary from z = 0 in vanilla

518 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

and ensures that the modulo operation is lossless. It can effectively reconstruct the
unmodulated input ψnyn + φn after batch-normalization that allows it to later undo the
modulo folding. Thus, although modulo operation causes loss of information in general,
original signal can be reconstructed with high probability if K is chosen to be large such
that the operation does not cause values to scramble after folding. Formal proof is given
as follows.

Lemma 1. n-th signal element, ψnyn+φn, can be reconstructed from (ψnyn+φn) mod K ∀ n ∈
N ∩ [1, N] with high probability conditioned on occurrence

On ,

{
ψnyn + φn ∈

[
−K2 ,

K

2

)}
(6)

Proof. Let zn = (ψnyn + φn) mod K. Also let

z̃n =
(
zn + K

2

)
mod K − K

2 (7)

As probability Pr(On)→ 1, it can be seen from (7) that z̃n → ψnyn+φn, which corresponds
to approximate regeneration of the original signal element. Furthermore, from Equation (6),
Pr(On) = Pr(|ψnyn + φn| ≤ K

2). Considering the case of totally lossless modulo folding
of the n-th signal element, i.e., Pr(On) = 1, this is only possible if |ψnyn + φn| ≤ K

2 .
Extending this to lossless regeneration of all N signal elements, that is

Pr(O1) = 1, P r(O2) = 1, ..., P r(ON) = 1 (8)

We know that if Pr(Oi) = 1 for i = n which produces max(|z̃n| : n ∈ N ∩ [1, N]), then in
order for Equation (8) to be true, the following must hold

max (|ψnyn + φn| : n ∈ N ∩ [1, N]) ≤ K

2

This is the same result as Equation (5) which corresponds to lossless modulo folding
of the signal. Hence, original signal elements, ψnyn + φn, can be unwrapped from the
modulo-folded signal elements, zn, using Equation (7), under the condition that K is
selected using Equation (5).

Hence, under the constraint enforced by Equation (5) and for the case of BIN(g) = +1,
we can rewrite Equation (4) as ψnyn + φn ≥ 0. We modify the training process to apply
the constraint Clip(γ) to be between 0 and +∞. This enforces the ψ > 0 constraint on
Equation (4) and results in

yn ≥ −
φn
ψn

M∑
i=1

xiwi,n + bn ≥ −
φn
ψn

M∑
i=1

xiwi,n + bn + φn
ψn
≥ 0

A similar analysis can be done for BIN(z) = −1 to show that when the activation output
is −1, then,

∑M
i=1 xiwi,n + bn + φn

ψn
< 0. Hence, for the case of BIN(z) = +1, the value∑M

i=1 xiwi,n + bn + φn

ψn
≥ 0, and less than 0 otherwise. In mod K, the activation function

gets the composition BN(Linear(.)) as an input, given by
(
x ·W + b + φ

ψ

)
mod K.

520 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Algorithm 1 Output Layer Functionality in ModuloNET
1: procedure Classify(z, N, label)

input: z = z0, z1, z2, ..., zN−1 N = num classes
output: predicted label
2: label_local← −1
3: label_global← −1
4: local_max← −1
5: global_max← −1
6: for i = 0 · · ·N − 1 do
7: if (zi > local_max) then
8: if zi < K

2 then
9: local_max← zi

10: label_local← i

11: if (zi > global_max) then
12: global_max← zi

13: label_global← i

14: if local_max 6= −1 then
15: return label_local
16: else
17: return label_global

parameters such as those in φ, allowing the network to perform just as well as without
this constraint.

4.4 Tuning First and Last Layers
Baseline BNN uses non-binary feature map inputs because a higher granularity of input
feature map data is crucial for the network to learn appropriate representations. It also
normalizes the 8-bit unsigned input pixels to floating point values in the range [−1,+1].
However, our proposed architecture with modular arithmetic casts the 8-bit unsigned
integers to a signed representation in the range [−128, 127]. Furthermore, it utilizes a
larger K for the first layer since non-binary feature map inputs increase the size required
to ensure lossless modulo folding.

Given the fact that the modulo operation makes the domain unsigned for K > 0, the
output of the final layer has to be processed differently than the conventional max(scores)
approach to map the scores to the correct labels. Figure 3 (c) and (d) show that under
the constraint K ≥ 2 max(|ψnyn + φn| : n ∈ N ∩ [1, N]), all activations that would be less
than 0 in an infinite domain BNN reside between K

2 and K in the mod K domain due to
folding. Hence, to recover the correct score output of the final layer, the network utilizes
a more complex logic to find the score-to-output mapping. Our output layer algorithm
to find the correct class, given the last layer node scores, is given in Algorithm 1. This
algorithm finds the maximum score below the K

2 threshold, called local_max, and the
global maximum score, called global_max. Label corresponding to local_max is returned
if this max exists, otherwise, the global label is returned.

4.5 Choice of modulo K
As detailed in Section 4.2, ModuloNET dense layer architecture depends on careful selection
of an additional hyper-parameter, the value of modulo K. The constraint on K dictated
by Equation (5) is needed to ensure lossless folding of modulo since if K is chosen to be too
small, modulo folding would cause values to scramble leading to loss of data. The value of
K is dependent on the size of data input to the layers of the neural network. BNNs utilize
binary values of activations and weights in all layer computations, with the exception of

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 521

35.86

5.49

1.5 1.25 1.23 1.23 1.23 1.23 1.24

0

5

10

15

20

25

30

35

40

2^13 2^13.5 2^14 2^14.5 2^15 2^15.5 2^16 2^16.5 2^17

Te
st

 E
rr

or
 o

n
M

N
IS

T
(%

)

modulo K

Figure 5: Error rate of MLP-MNIST vs value of modulo K used in the network. Each point
represents one test configuration using the specified K in all layers (Decimal exponents are
shown only for highlighting the error trend in software implementation, actual hardware
implementation only uses integer exponents).

the first layer. The exception comes from the fact that the learned weights need to encode
high bit-width information in at least the first layer in order for the network to learn the
fine-grained pixel information [CB16]. Hence, a larger K is required for the first layer.
Since our goal is to design a hardware block which is reusable for all the layers of the
neural network, we select the same K value for all layers. Furthermore, since K denotes
the data representation bit-width, we select K to be an exponent of 2. Figure. 5 shows the
variation of error rate of ModuloNET with values of K on the MNIST dataset. The error
rate becomes roughly asymptotic around K = 214, while achieving the lowest error rate
at K = 215. Hence, we utilize K = 215 in our hardware design as 15-bits are required to
achieve the minimum error rate. The results in Figure. 5 are intuitive: lower the mod K,
higher the likelihood of modulo folding causing values to scramble; the folding no longer
stays lossless.

4.6 Extension to ConvNets
ConvNet layers utilize similar operations as those in MLP, with the added maxpool
operation in some of the layers. While maxpool appears between the convolutional (conv)
layer and the BN operation, to facilitate the fusion of BN into the conv layer biases, BN
operation should directly follow the conv layer. We note that maxpool(BN(.)) composition
is permutation-invariant. Hence, pooling operation commutes with BN under the constraint
γ > 0. Note from Section. 4.2 that we apply this constraint anyways using Clip(γ,0,+∞)
for fusion of BN, and that it does not impact the network accuracy due to the freedom of
calibration of the rest of the BN parameters. Hence, the network swaps the positions of
BN and maxpool to allow BN to appear after conv. Sub-sampling using maxpool before
applying BN is beneficial for faster training, however, the fusion of BN into the preceding
conv layer keeps the inference complexity unaffected.

We also move the maxpool operation after the binarized activation function to maintain
consistency with the layer structure used in our MLP. In our network, maxpool is applied
to binary pooling windows, returning +1 if any element of the window is +1 and generating

522 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 6: Hardware design of unmasked ModuloNET inference. The design accumulates
the partial products in each cycle. It stores the inverted MSBs of the complete summation
as the activations. For the output layer, it directly feeds the final summations to the
output layer logic that computes the inferred label and its confidence score.

−1 if all components are −1. The re-parametrization of bias vector for fusion of BN is
similar to that in the MLP, i.e., bnew = round(b + φ

ψ).

5 Baseline Hardware Design of ModuloNET
To obtain baseline hardware for our side-channel and overhead comparisons, we first design
and implement an unmasked design of ModuloNET inference. It is an area-optimized,
sequentialized hardware design for the MLP that performs one summation per cycle3.
This allows the design to fit in our target FPGA and a direct comparison with earlier
work [DCA20a]. The design has a throughput of 1 addition per cycle. For the following
discussions, we denote the number of input pixels, hidden layer nodes, output layer nodes,
and the modulus with L, M , N , and K, respectively. The design is parameterized for these
values. The weights and activations are binary (i.e., -1 and +1 are represented as 0 and 1
respectively) and the bias value per node has a precision of log2K bits. K = 215 = 32768
achieves the lowest error rate for our datasets. Thus, unless otherwise stated, all the
weighted summations are performed in modulo 32768 and we omit the ‘mod 32768’ term.

5.1 Weighted Summations and XNOR-POPCOUNT
Figure 6 shows the hardware implementation of the weighted summations and XNOR-
POPCOUNT. The image pixels and network parameters are loaded into a block RAM
at the start of each inference. The hardware reads out the ith input pixel pi and the
weight w{0}i,j that corresponds to the connection between the ith input pixel and jth hidden
layer node (see Figure 4) from the respective block RAMs. It uses a multiplexer with
binarized weight w{0}i,j as its select line, and the pixel pi and its 2’s complement (−pi) as its
data lines for the multiplication. It feeds the product to an accumulator. To perform the
additions in mod K, we restrict the width of the accumulator data path to log2K bits. The
hardware feeds the sum of L partial products and bias{0}j to the activation function after
L+ 1 cycles and saves the activation function outputs into layer BRAMs. For subsequent
layer computations, the hardware reads the activation values a{k}i and weights w{k}i,j from
the kth layer and weight block RAMs and feeds them to the XNOR-POPCOUNT (XP)
function defined in Section 3.3. XNOR is directly implemented on hardware using XNOR
gates. To implement POPCOUNT, the hardware uses a left-shift operator to perform the

3One neuron computation with L input connections and a bias finishes in L + 1 cycles.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 523

Figure 7: Hardware design of the unmasked output layer. zi represents confidence score
of the ith node in the output layer.

multiplication by 2 and then adds −M along with bias{k}j in the last cycle of weighted
summation for the jth hidden layer node.

5.2 Activation Function
The activation function in ModuloNET is given in Equation (3). To implement it on
hardware, we reformulate the function −sgn(x− K

2), where x represents the weighted sum,
to a comparison of x with K

2 . The hardware checks the MSB4 of x to compare it with K
2 .

The final output is the inverse of MSB because of the negative sign in Equation (3).

5.3 Output Layer Max Function
Algorithm 1 presents the method to compute the final classification result and Figure 7
shows its hardware implementation. The hardware sequentially feeds each of the N
confidence scores (zi) to the output layer logic. The entire computation of the output layer
happens in two phases corresponding to the local_max and global_max computations.
First phase has three steps: (1) feed zi to a comparator if it is below K

2 , else feed a 0,
(2) compare zi with the value in local_max register 5, and (3) update the local_max
register with zi and the local_index register with i if the comparator returns 1. Next, we
sequentially describe the baseline hardware implementation of each step.

1. The hardware should return zi if it is less than K
2 (or equivalently if the MSB is

equal to 0) and 0 if it is greater than K
2 (or equivalently if the MSB is equal to 1).

Thus, the function thresh(.) can be expressed as an AND of zi and inverted MSB.

thresh(zi) = [z[14], z[13], · · · , z[0]]� [z[14], z[14], · · · , z[14]],

where � is an element-wise AND operation. The design only requires log2K − 1
number of AND gates for this function because the MSB of the output is always 0.

2. The hardware feeds the thresholded confidence scores to a log2K-bit comparator,
which compares them with the stored value in local_max register.

3. The design uses comparator output as a select for the multiplexer that either selects
the value in local_max or zi to update the local_max register. The local_index
register is also accordingly updated.

4For any n-bit number, the MSB reveals if the number is greater or less than 2n−1; K = 2n.
5Both local_max and global_max registers are initialized to zero at the start of the computation.

524 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 8: Hardware design of the fully masked ModuloNET inference showing various
top-level masked components. The weights w{k}i,j and bias{k}j are read from the respective
block RAMs. Figure is not to scale.

In the second phase, the hardware directly computes the max of N confidence scores zi
without thresholding. Thus, it directly executes the second and third steps to update the
global_max and global_index registers. The hardware reuses the comparator for both
phases by multiplexing the input of the comparator to either select thresh(zi) or zi based
on the active phase of max computation handled by the control bit P2.

6 Fully Masked Hardware Design of ModuloNET
Figure 8 presents the overall hardware design of the first-order masked ModuloNET
inference. The design follows the approach of the unmasked case where the hardware is
sequentialized but it processes two shares in parallel. We suitably choose the masking
style to be either Boolean or arithmetic based on the nature of operation to be masked for
efficiency. We apply DOM with registered outputs for Boolean masking. Next, we describe
the masking of all the major operations of the neural network.

6.1 Arithmetic Masking of Weighted Summations
Figure 8 shows the implementation of masked weighted summations using arithmetic
masking because it is an arithmetic operation. The hardware reads pi from the image
BRAM, pads it to log2K-bits, and splits it into two arithmetic shares pi− ri and ri, where
ri is a log2K-bit fresh random mask. Next, the hardware directly and independently
computes the weighted summation on the two arithmetic shares. Finally, the hardware
adds bias{0}j to one of the shares and sends both the shares to the masked activation
function. The secret weights w{k}i,j remain hidden throughout the computation because the
hardware combines it with randomized arithmetic shares before starting the computations.

Note that the secret in our model are the weights but we propose to mask the input
pixels instead of masking the weights 6. Applying Boolean masking on the binary weights
leads to more area overheads because the primary operation of weighted summation is
arithmetic. In terms of security, since the adversary does not know the actual input (pi−ri)

6The process of randomizing the input is commonly known as Blinding–the inputs are unchanged but
split into two shares. It preserves the functionality—still performs the same classification task.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 525

Figure 9: Hardware design of the masked activation function. A logarithmic carry chain
propagates the carry using generate and propagate functions. AND gates are replaced
with DOM-indep AND labeled as ‘D’; we omit the masks in the figure to avoid clutter.

that gets multiplied by the secret (wi,j), it cannot create a hypothesis on the intermediate
computations for a first-order side-channel attack.

6.2 Masked Activation Function
The activation function receives two arithmetic shares in the masked design and needs to
compute if their sum is greater than or less than K

2 , which depends on the MSB of the
sum. Therefore, the hardware only needs to compute the MSB of the final summation in a
masked fashion. A prior work solves this problem by implementing a masked LUT-based
ripple carry chain to produce the two Boolean shares of the MSB [DCA20b]. However,
such a design is good for applications where the security requirements are low; glitches can
happen inside the LUTs and eventually reveal the secret [MPO05]. Prior literature suggests
a number of alternatives such as Threshold Implementation [NRR06], DOM [GMK16],
a synchronized variant of the Trichina’s AND gate [DCA20a], etc., to perform masked
operations with reduced glitches. We choose DOM for our design because it has low area
and randomness requirements and provides a reasonable security against glitches7.

Figure 9 shows our proposed novel design of the masked activation function using
DOM-indep AND gates for 8-bit operands8. We specifically use the DOM-indep multiplier
instead of DOM-dep because we guarantee independent input sharings: the hardware
creates fresh Boolean shares for the arithmetic share bits. The hardware needs to create
Boolean shares of the input bits (of arithmetic shares) explicitly before feeding them into
the masked AND gates because the logic to compute the carry is completely exposed in
a gate-level masked design. The Share Creation block creates two Boolean shares for
every bit of each arithmetic share.

Instead of adopting a linear ripple-carry design [DCA20b], we implement the carry chain
of a Kogge-Stone adder [KS73] because it has a logarithmic latency. We only implement
the data paths in the carry chain that are necessary to compute the MSB. We replace the
AND gates in the logic with DOM-indep AND gates to mask the design; XORs being linear
can directly process the two share domains independently. Level-0 of the tree produces the
Boolean shares of carry-generate (g) and carry-propagate (p) terms. Following equations
present the masked versions of g and p.

(g1
i , g

0
i) = DOM(a1

[i], a
0
[i], b

1
[i], b

0
[i], ra)

7We discuss some alternative primitives in Section 10.
8We show an illustration with 8-bits but the actual design has log2K-bit operands.

526 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 10: Design of our proposed circuit to process the binary Boolean shares (x0, x1) to
produce a such that

⊕
i x

i = a+ x1. The circuit concatenates the Boolean shares with 14
random bits and feeds them to a pipelined version of Golic’s Boolean to arithmetic circuit.

(p1
i , p

0
i) = (a1

[i] ⊕ b
1
[i], a

0
[i] ⊕ b

0
[i])

The subsequent levels process the group generate (si:k, sk−1:j) and group propagate
(ti:k, tk−1:j) terms to produce the group generate (si:j) and group propagate (ti:j) for
the next level. For any level l > 0, the relation between i and k can be generalized to
i = k+2l−1−1. For level-1, i = k and si:i = gi and ti:i = pi. Following equations illustrate
the masking of the group generate and group propagate terms.

(u1, u0) = DOM(t1i:k, t0i:k, s1
k−1:j , s

0
k−1:j , rb)

(s1
i:j , s

0
i:j) = (u1 ⊕ s1

i:k, u
0 ⊕ s0

i:k), (t1i:j , t0i:j) = DOM(t1i:k, t0i:k, t1k−1:j , t
0
k−1:j , rc) (9)

6.3 Boolean to Arithmetic Conversion
Prior literature shows that care should be taken while converting Boolean shares to
arithmetic shares because the process of conversion might leak the original secret [Gou01].
Given the Boolean shares of a secret variable x as x0 and x1 such that

⊕
i x

i = x, the
conversion aims to find an element a such that x0 ⊕ x1 = a+ x1, where + is an addition
mod K. We need to design a conversion circuit to convert the 1-bit Boolean shares of the
activation to log2K-bit arithmetic shares.

Figure 10 shows the proposed Boolean to arithmetic conversion circuit. Most prior
works on share conversion in hardware assume the same field for inputs and outputs and
try to reuse the existing randomness in the Boolean shares [Gol07, MTMM07a]. However,
our design does not have log2K bits in the Boolean shares. Thus, it first converts the
1-bit Boolean shares x0, x1 to log2K-bit Boolean shares by concatenating each share with
log2K − 1 fresh random bits. Next, it uses the circuit proposed by Golic to perform a
secure Boolean to arithmetic share conversion [Gol07], with full pipelining to resist glitches.
Following equations describe how each bit a[i] of the arithmetic shares is produced by
processing the bits of the Boolean shares yj[i], where 0 ≤ i ≤ 14 and j ∈ (0, 1).

a[0] = y0
[0] (10)

a[1] = MUX(y0
[1], y

0
[1] ⊕ y

1
[0], a[0]) (11)

a[i] = MUX(y0
[i−1] ⊕ y

0
[i], y

0
[i] ⊕ y

1
[i−1], a[i−1]) (12)

The hardware feeds the produced arithmetic shares to the accumulator to process the
next layer.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 527

Figure 11: Hardware design of the fully masked output layer. Figure is not to scale.

6.4 Masked Output Layer

In the masked design, the output layer receives the arithmetic shares (z0
i , z

1
i) of the

confidence scores from the two adders and generates the Boolean shared inference result.
Section 5.3 describes the three main operations in the output layer for the unmasked
design viz. AND, comparison and multiplexer.

Since all the output layer operations like AND, comparison and multiplexing are bit-
wise manipulations, we apply Boolean masking to the complete output layer for efficiency.
Therefore, the hardware first converts the arithmetic shares to Boolean shares and stores
them in a Block RAM. Next, it performs all the operations of the baseline output layer
described in Section 5.3 in a masked fashion. Figure 11 shows the hardware design of
the fully masked output layer in terms of the four building blocks viz. arithmetic to
Boolean converter (A2B), masked thresholder (THRESH), masked multiplexer (MUX) and
masked comparator (COMP). We discuss the details of these components next.

The Design of Arithmetic to Boolean Share Converter. We again refer to the work
by Golic to implement the arithmetic to Boolean share conversion [Gol07]. The work
shows that the Boolean equations are symmetric for share conversion—Equations (10),
(11), and (12) can be directly used to generate the arithmetic shares by simply swapping
the Boolean share bits with the arithmetic share bits. Likewise, the hardware design of
the arithmetic to Boolean converter is similar to the design of the Pipelined Golic’s B2A
block shown in Figure 10. However, the hardware feeds arithmetic shares (z0

i , z
1
i) to this

block as Figure 11 shows. The generated Boolean shares (x0
i , x

1
i) are stored in two separate

Block RAMs to be processed in the later steps of the max computation.

The Design of Masked Threshold. The hardware needs to securely threshold Boolean
shares (x0

i , x
1
i) based on whether x0

i ⊕x1
i is greater or less than K

2 . As mentioned in Section
5.3, this operation can be simplified to an AND operation of the confidence score with
its inverted MSB. Similar to the masked activation function, we replace the regular AND
gates with masked AND gates in the design that takes in x0

i , x
1
i , the Boolean shares of the

inverted MSB (i.e., one Boolean share inverted) and random mask r1. Since the MSB of
the output of THRESH is always zero, the hardware uses a random Boolean sharing of zero
for it. Finally, the Boolean shared and thresholded confidence scores are sent to a masked
comparator for the next step after registering the outputs.

528 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 12: Hardware design of the masked comparator. The circles and squares on the
right represent DOM-indep AND gate and a register. The green circles denote completed
partial products of Equation 13 which are fed to the OR Tree for final evaluation of C.

The Design of Boolean Masked Comparator. We first describe a gate-level hardware
design of comparator circuit and then explain its masking9. The Boolean function C(.) of
an n-bit comparator is given in Equation (13).

C(a, b) = E[n−1]|P[n−1] ·E[n−2]|P[n−1] ·P[n−2] ·E[n−3]| · · · |P[n−1] ·P[n−2] · · · P[2] ·P[1] ·E[0], (13)

where Ei = a[i] · b[i] and Pi = a[i]⊕b[i] ∀i ∈ [0, n) represent the bit-wise comparison and
equality check, respectively. The expression is amenable to a parallel-prefix computation.

Figure 12 shows the hardware design of a 7-bit comparator as an example. The hardware
computes the final comparison in a parallel-prefix fashion by splitting the products with
more terms (e.g., P6 · P5 · · · P0) into multiple products with lesser terms (P6 · P5, P4 · P3,
and P2 · P1) and evaluating them in parallel. Subsequently, the hardware combines the
partially computed products to fully compute all the product terms in Equation (13) and
produce the final comparison result by ‘ORing’ them. We design its masked version by
replacing the regular AND gates with DOM-indep multipliers having registered outputs.

We emphasize that the term ‘comparison’ in our work refers to comparing two variable
numbers and returning whether one is greater than the other or not. Other works have
also proposed designs for masked comparison, but in those works the term ‘comparison’
means an equality check [OSPG18]. Furthermore, the operation of thresholding is also a
comparison and some works propose its masking [RRd+16], but thresholding compares a
variable number to a fixed constant.

The Design of Boolean Masked Multiplexer. Finally, the hardware implements the
logic to update the masked max and index registers based on the (Boolean) masked
comparator result using a masked multiplexer. From Equation (14), a multiplexer consists
of 2 AND and 1 OR operation; the OR can also be written in terms of AND.

MUX(a, b, s) = (a · s) · (b · s) (14)

where a, b, s ∈ GF (2) are the two data lines and the select line, respectively. To implement
the masked version, we simply replace all the regular AND gates with masked AND gates.
The masked index computations are performed accordingly.

9The gate-level design is not needed for the baseline unmasked design, which uses the default imple-
mentation of a comparator by the synthesis tool for the target FPGA. However, masked design needs to
define this in Boolean gates and use their secure versions.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 529

Figure 13: Hardware design of the unprotected binarized ConvNet.

7 Hardware Design of ConvNet
We also implement a ConvNet hardware design to explore the masking of additional
operations like convolution and maxpool and quantify the area overheads. Similar to the
MLP design, we first implement a sequentialized unprotected ConvNet design and then
implement its masked version. We choose a network architecture with 1 conv layer, 1
maxpool layer, 2 FC layers, and an output layer.

We have several reasons for choosing the smaller parameters compared to the original
software implementation, which is listed in Section 9.1. First, our goal is to quantify the
area overheads of masking; in an area-optimized design, any additional number of layers or
node per layer will mostly increase the latency of the design, not the area because most of
the design components are reused. Second, a lower latency design reduces the side-channel
evaluation time. Third, the complete design will not fit the FPGA that we use. The
software results show that our techniques are not limited by the ConvNet hyperparameters
and can indeed provide a classification accuracy as good as the baseline. In this section,
we demonstrate the techniques to mask the operations in a ConvNet that can be adopted
and deployed in any ConvNet with a totally different set of hyperparameters. We discuss
the impact of hyperparameters in Section 10.

Unprotected ConvNet Design. Figure 13 shows the hardware design of the unprotected
ConvNet. Compared to the baseline MLP design, there are two important differences due
to the two new convolution and maxpool operations. First, the ConvNet design requires
special read logic for the image pixels and kernel elements: the controller assumes the
linearly stored image pixels to be laid out as a 2D matrix, sequentially selects sub-matrices
(called convolution windows) within the 2D matrix and generates addresses corresponding
to the pixels in the sub-matrix. Second, the design requires logic to perform maxpool
operation on the output of the convolutional layer: similar to the convolution operation,
the controller needs to generate addresses for maxpool window elements and then select
the maximum element in the window. In a BNN, maxpool is equivalent to OR operation
and we also use this optimization in our design [UFG+17].

We reuse the weighted summation block of the MLP design to perform convolutions
since convolution is also a weighted summation. Using the special read logic, the hardware
reads out the pixels pi,j from the Image BRAM (one pixel at a time / clock cycle) and
kernel weights ki,j from the kernal BRAM, multiplies them using the multiplexer and feeds
the result to the accumulator. At the end of each convolution window, the hardware stores
the inverted MSB of the weighted summation as the activated convolution result in output
feature map (OFM) BRAM.

After finishing all the convolutions, the hardware initiates the maxpool operation. A

530 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 14: Hardware design of masked ConvNet.

special read logic reads out the elements of the OFM based on the maxpool window selected
and feeds them to the maxpool logic. We implement maxpool as an OR accumulator: a
register that is initialized to zero keeps storing the OR result of itself with a new input
every cycle. The controller resets the register at the start of every maxpool window.
Finally, the Maxpooled BRAM (MP BRAM) stores the results.

Since the network only has FC layers after maxpool, the flow is similar to MLP.
The hardware processes the maxpooled results sequentially to compute the nodes of the
first hidden layer. Finally the hardware computes the output layer confidence scores by
processing the activations of the first hidden layer and produces the inference result.

Masked ConvNet Design. In addition to the MLP operations, the ConvNet design has
two new operations: convolution and maxpool. The additional control circuits do not pose
any security issues in the design because their operation is independent of the values of
the secret parameters. However, the convolution and the maxpool operations’ datapath
need masking.

Figure 14 shows the hardware design of the masked ConvNet. Since convolution is
essentially a weighted summation, we use arithmetic masking of the input pixels like we did
in the MLP case. The design performs parallel convolutions of the masked inputs pi,j − ri,j
and ri,j with the secret kernels weights in two independent datapaths. At the completion
of each convolution, the hardware feeds the two arithmetic shares of the convolution
result to the masked activation function that we reuse from the MLP design. Finally, the
OFM BRAM stores the Boolean shares of the activated convolution result. Maintaining a
Boolean sharing assists in masking of the maxpool operation that we discuss next.

Maxpool is an OR operation that can be masked using a masked AND gate, which
requires the inputs as Boolean shares. Since the activation function already produces
Boolean shares of activation, the hardware does not need a share conversion between
convolution and maxpool. The hardware directly reads the Boolean shares from OFM
BRAM using the special read logic control and feeds the inputs to the masked AND
gate—DOM-indep AND gate in this case. The accumulator stores the output of the
masked AND gate and drives the second input of the masked AND gate with the updated
result.

However, due to the additional 1-cycle latency of the DOM-indep AND gate, the result
from the accumulator only becomes available after 2 cycles for every input. This reduces
the original throughput of the design to half, which is not acceptable. We solve this
problem by taking inspiration from another prior work on masking of BNNs [DCA20a].
We observe that the maxpool computation of each window is independent of each other.
Therefore, we modify the hardware to start the computation of the next maxpool window

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 531

while the previous result is in-flight. The optimization requires an additional accumulator
register to keep track of each maxpool window that it processes concurrently. The hardware
stores the Boolean shares of the maxpooled result in Masked Maxpooled BRAM.

The remaining network only consists of FC layers (including the flattened maxpooled
outputs that constitute the first FC layer) and works in a similar fashion as the masked
MLP design. The masked activation function directly feeds the layer BRAMs of the
remaining layers. Finally, we reuse the masked output layer of the MLP in the ConvNet
design to produce the masked inference result of the neural network.

8 Security Analysis of the Masked Gadgets
We present the security analysis of our proposed masked hardware gadgets in this section.
We first define the two commonly used adversary models in literature viz. t-probing security
and glitch-extended t-probing security.

Definition 1. t-probing security [ISW03] A gadget G is t-probing secure, iff any arbitrary
combination of every t-tuple wires in the gadget is independent of any sensitive variable.

Definition 2. Glitch-extended t-probing security [RBN+15, FGP+18] A gadget G is glitch-
extended t-probing secure, iff any arbitrary combination of every t-tuple wires in the gadget
and the wires in their fan-in until the last registered point is independent of any sensitive
variable.

Since the focus of this work is to mask ML-specific operations, we prove the first-order
security of the ML-specific gadgets in the glitch-extended probing model [RBN+15] and
provide 1-probing-secure implementations for other gadgets like B2A and A2B. Our B2A and
A2B implementations can be replaced with the respective glitch-extended versions from the
literature for a stronger security guarantee. For the proofs in the glitch-extended probing
model, O denotes observation set–the set of all the intermediate nets observable by the
adversary. We occasionally use a subscript to distinguish between two sets corresponding
to different probe positions. A can place at most 1 probe in the gadget since since we
claim first-order security.

We start with proving the glitch-extended probing security of the masked weighted
summation gadget that uses arithmetic masking, which is followed by the proofs of other
masked gadgets in the design, like the masked activation function, the Boolean-to-arithmetic
and arithmetic-to-Boolean converters, masked comparator and the masked multiplexer.

8.1 Weighted Summations:
Figure 15 shows the isolated masked weighted summation gadget G1. The circuit computes
the summation over masked weighted input pixels during the input layer computations and
over masked weighted activation values during the hidden layer computations. Thus, in
the input layer, the two inputs to the circuit are the two arithmetic shares (pi − ri) · w{0}i,j
and ri · w{0}i,j of the partial product pi · w{0}i,j . In the hidden layer, the gadget inputs are
arithmetic shares b0 and b1 of the product ai ·w{k}i,j of activation value ai with the respective
weight w{k}i,j of the kth layer. We aim to protect the weights w{k}i,j in this gadget.

Theorem 1. G1 is glitch-extended t-probing secure given the secret variables as w{k}i,j .

Proof. (Sketch) The gadget is internally split in two independent datapaths D1 and D2
corresponding to the two share domains. The hardware registers the arithmetic shares
before feeding them to G1.

532 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 15: Circuit design of the masked gadgets G1 and a portion of G2. Registers at the
end of each sub block guarantee composability of the DOM gadget.

1. During the input layer computations, the input to D1 can either be (pi − ri) mod K
or (−pi + ri) mod K, depending on whether w{0}i,j is 1 or 0, respectively. Here,
pi ∈ ZK and is known to A; ri ∈ ZK is a fresh and uniformly sampled random
number; K is the modulus. Thus, for both possible values of w{0}i,j the input to D1
is always a fresh and uniformly distributed random number. Since the inputs to the
gadget are registered, the observation set variables are confined to the intermediate
nets inside G1. Therefore, any arbitrary function of the intermediate nets in D1 will
produce only random outputs independent of w{0}i,j .

2. During input layer computations, the input to D2 can either be ri mod K or
−ri mod K. Both these values are also fresh and uniformly sampled random
numbers. Thus, any arbitrary function of the intermediate nets will also produce
outputs independent of w{0}i,j .

3. For the hidden layer computations, the inputs to D1 and D2 are the registered
outputs b0 and b1 from the Boolean-to-arithmetic converter. We prove in Section 8.3
that the outputs from the Boolean-to-arithmetic unit are also fresh and uniformly
distributed random numbers. Thus, using a similar analysis as that for the input
layer, any arbitrary function of the intermediate nets produced during the hidden
layer computations in either D1 and D2 are independent of w{k}i,j .

Important Notes. We assume that the encoder circuit that generates the shares of
pi ·w{0}i,j by loading pi, ri and w{0}i,j cannot be probed by A. Such assumptions on the encoder
are common in prior works on provably-secure hardware masking [ISW03]. Furthermore,
although the weights are unmasked in the gadget, that is only an issue with template
attacks, not DPA.

8.2 Masked Activation Function:
We refer to this function as gadget G2. Figure 9 shows the abstract-level diagram of the
full design and Figure 15 shows a detailed circuit of a small portion of the design that
processes the bits a0, a1, b0, and b1 until level-1 of the tree. It takes as input 15-bit
arithmetic shares S0, S1 of the actual weighted summation S and produces Boolean shares

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 533

of the activation value. Thus, in G2, the secret is S and we need to ensure glitch-extended
probing security with respect to S. We use the DOM-indep AND gate primitive in the
design and register its outputs. Registering the outputs of the compression step allows
for its secure composition in the glitch-extended probing model [FGP+18]. To give an
intuition behind this claim, the isolated inner-product term is no longer observable with a
glitch-extended probe at the gate output—the observation set consists of only an XOR
sum of the inner-product term and the refreshed cross-product, which refreshes the entire
sum.

Theorem 2. G2 is glitch-extended probing secure given S as the secret.

Proof. (Sketch) A can either probe one of the outputs of the Share Creation block
(Case-I), or the output from one of the tree nodes (Case-II).

• Case-I: The outputs of the Share Creation block are registered. If A probes the
input to the ith register, the observation set O[i] = {a[i], r[i]}. a[i] is the ith bit of the
15-bit arithmetic share of S, which is independent of S[i]. r[i] is the output of the
PRNG which is also independent of S. Thus, any arbitrary function of the elements
of O[i] will also produce an output independent of S[i].

• Case-II: Figure 15 shows two types of nodes: the generate and propagate units in
the stage-1, and the group generate and group propagate units in further stages.

1. Generate and propagate nodes (level-0): gi is defined as the tuple consisting of
the two outputs from the DOM-indep AND gate. The outputs of a DOM-indep
AND gate are independent of its inputs and the computation is secure in the
presence of glitches10. Thus, the secrets a[i] and b[i], and consequently S[i] are
not revealed using glitch-extended probes at any point in the gi computation.
Since every gi is computed the same way and uses a fresh random share, we
prove by induction that every gi computation is secure in the presence of
glitch-extended probes.
The pi tuple is equal to the XOR sum of the respective domain terms, i.e.,
(p1
i , p

0
i) = (a1

[i] ⊕ b
1
[i], a

0
[i] ⊕ b

0
[i]). Probing either share p0

[i] or p1
[i] of pi generates

the observation sets {a0
[i], b

0
[i]} and {a1

[i], b
1
[i]}, respectively. Since both sets only

contain terms from the same domain, any arbitrary function of these terms
will generate an independent output from the unshared secrets a[i] and b[i]. G2
registers p0

i , p
1
i to restrict the propagation of glitches to the next stage.

2. Group generate and group propagate nodes (level-i>0): Probes on inputs only
reveal one share of either gi or pi, which are independent of the secrets as
already discussed for level-0.
For level-1 in Figure 9, the input group generate terms si:k, sk−1:j and group
propagate terms ti:k, tk−1:j are simply the generate gi and propagate pi outputs
from level-0, with k = i and j = k − 1. For instance, if i = 1, s1:1 = g1,
t1:1 = p1, s0:0 = g0, and t0:0 = p0. Using this information in Equation (9),
(s1

1:0, s
0
1:0) = (u1 ⊕ g1

1 , u
0 ⊕ g0

1). Probing either share of s1:0 only reveals the
same domain shares of u and g1. Both shares of u and g1 are direct registered
outputs from DOM-indep AND gate, which implies that they are computed
securely and are independent of the unshared inputs. Thus, computation of s1:0
is also secure and does not reveal any part of the secret S.
The group propagate tuple (t11:0, t

0
1:0) is produced directly as an output of a

DOM-indep AND gate with tuples (t11:1, t
0
1:1) and (t10:0, t

0
0:0) as inputs. Thus, the

10i.e., any arbitrary function of variables in all possible observation sets in the gadget outputs a variable
independent of any of the secrets.

534 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

computation of t1:0 also does not reveal the secret S in the presence of glitches
due to the security of the DOM-indep AND gate with registered outputs.
Every level has a distinct number of group generate and group propagate nodes,
but processes the outputs from the previous level exactly like level-2. Every level
also feeds a fresh and random mask to the DOM-indep AND gates. Also, since
the hardware registers the output of DOM gates, chaining them do not lead to
any composability flaws. Thus, we prove by induction that all the intermediate
computations in the remaining levels do not reveal the original secret S in the
glitch-extended probing model.

8.3 Boolean-to-arithmetic conversion
The inputs to this gadget G3 are 1-bit Boolean shares (x0, x1) of the activation value x
and output is a 15-bit value a such that a+ x1 = x0 ⊕ x1. We provide the probing security
guarantee that none of the intermediate nets leak the value of the original secret x in the
process of generating a.

Theorem 3. All the intermediate nets in G3 are independent of x.

Proof. (Sketch) The gadget pads the inputs before feeding them to the Pipelined Golic’s
B2A block (see Figure 10). We first prove that the padding is secure and then prove the
security of the B2A circuit.

1. Padding. The gadget pads both x0 and x1 with a 14-bit fresh and uniformly sampled
r to produce y0 = r||x0 and y1 = r||x1; the operator || denotes concatenation. The
LSB yi[0] = r[0]||xi. Both xi and r[0] are independent of x and so is the net r[0]||xi.
Therefore, the all the intermediate nets in this operation are independent of the
secret x.
For the other bits, yi[j] = r[j] where j > 1 and i ∈ {0, 1}. Since r[j] is a fresh
and uniformly sampled random bit, all the nets for the rest of the bits are also
independent of x.

2. Pipelined Golic’s B2A circuit. The analysis of padding step proves that all the inputs
to this circuit are independent of x, so we exclude the input probes in this analysis.
We start our analysis from the LSB of a, i.e., stage-0. a[0] = y0

[0], and since y0
[0] is

independent of x, a[0] is independent of x.
In stage-1, the XOR output is y0

[1]⊕ y
1
[0]. Since y0

[1] and y1
[0] are the Boolean shares of

y[1] and y[0], respectively, their XOR sum will yield another uniform random value
because the two bits y[1] and y[0] are independent of each other.11.
The output of the multiplexer in stage-1 is (a[0] · (y0

[1] ⊕ y
1
[0])) | (a′[0] · y

0
[1]). All the

variables in this equation are uniformly distributed random numbers. Thus, the
probability distribution of the multiplexer output is also independent of x.
From stage-2 onwards, yi[j], with i ∈ {(0, 1}, and 0 < j < 15, is a fresh and uniform
random number. The other input to the stage is the output a[j] from the previous
stage. We proved in the analysis of stage-1 that a[1] is independent of x. Thus, from
stage-2 onwards all the intermediates nets are independent of the secret x.

11We need to be careful here. If the two variables were Boolean shares of the same bit of y, then A can
easily recreate the secret by the shares, even though they’re independent of each other.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 535

8.4 Masked Output Layer
Arithmetic to Boolean Conversion. The inputs to this gadget G4 are 15-bit arithmetic
shares of the output layer confidence scores z0 and z1. Thus, there is no need for random
padding like the Boolean-to-arithmetic share conversion. The circuit only consists of the
Pipelined Golic’s B2A block from Figure 10. This block receives arithmetic shares of the
output layer confidence scores. Therefore, each bit of the input is independent of the
unshared confidence score bits. We have already proved that the intermediate nets in the
Pipelined Golic’s B2A circuit are independent of the unshared inputs in stages 0 and 1.
Thus, in the following proof, we directly start from stage-2.

Theorem 4. All the intermediate nets in G4 are independent of z.

Proof. We call the inputs to the Pipelined Golic’s B2A block as z0 and z1 in this proof,
instead of y0 and y1 in Figure 10 because the circuit is the same but in this case the
hardware drives arithmetic shares (z0, z1) instead of Boolean shares (y0, y1).

We first analyse the XOR output of z0
[2] and z1

[1] in stage-2. Since z0
[2] and z1

[1] are
Boolean shares of z[1] and z[2], respectively, their XOR sum is independent of both z[1]
and z[2].

Next we analyse the XOR output of z0
[1] and z0

[2]. Since z0
[1], z

0
[2] are Boolean shares of

z[1] and z[2], respectively, their XOR sum is independent of both z[1] and z[2].
Next we analyse the output of the multiplexer in stage-2, which is either z0

[1] ⊕ z
0
[2] or

z0
[2] ⊕ z

1
[1]. We have already proved that the XOR outputs of stage-2 are independent of

the secret z and uniformly distributed random numbers. Thus, the multiplexer output is
also independent of the secret z.

All the subsequent stages have the same construction. The inputs for every stage
i are z0

[i−1], z0
[i], z1

[i−1], and a[i−1]. Thus, by induction, the intermediate nets of all the
subsequent stages are independent of the unshared input z.

Masked Threshold. Section 6.4 describes that the masked threshold block is 14 parallel
instantiations of a DOM-indep AND gate with registered outputs and a random sharing of
zero. Faust et al. already showed the DOM-indep AND gate with registered outputs to be
secure in the glitch-extended probing model. Thus, the masked threshold gadget is also
secure in the same model and we skip the security proof for this gadget.

Masked Comparator. The masked comparator gadget G5 takes as input two 15-bit
Boolean shares (a0, a1) and (b0, b1) of the operands a and b to be compared and a 15-bit
fresh and random mask r2. The secrets in this case are the unshared operands a and b,
and the gadget needs to ensure that none of the intermediate nets directly depend on
either a or b. Figure 12 shows that G5 is a tree structure purely composed of DOM-indep
AND gates with registered outputs at each node. Referring to the work by Faust et al.
again, we can directly say that G5 is also secure in the glitch-extended probing model.

Masked Multiplexer The inputs to the masked multiplexer gadget G6 are the Boolean
shares (a0, a1), (b0, b1), and (s0, s1) of the unshared data and select inputs a, b, and s,
respectively. The secrets are the unshared data and select inputs. Thus, the gadget needs
to ensure that all the intermediate nets are independent of a, b, and s. As discussed
in Section 6.4, the masked multiplexer is a trivial and small gadget with 3 AND gates
connected in succession replaced by the masked AND counterparts. Since the masked
primitive is secure in the glitch-extended probing model, G6 is also secure.

536 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

0.990

0.985

0.980

0.975

0.970

Ac
cu

ra
cy

 (%
) 0.90

0.80

0.85

0.75

0.70

0.65
100k 200k 300k 400k 500k

Ac
cu

ra
cy

 (%
)

Training Step Training Step

20k 40k 60k 80k

(a) (b)

- ModuloNet MLP - Baseline BNN MLP - ModuloNet ConvNet - Baseline BNN ConvNet

Figure 16: Test accuracy comparison of BNN with baseline vs. ModuloNET for (a)
MLP-MNIST, and (b) ConvNet-CIFAR10 datasets. Vertical axis shows the accuracy in %
while the horizontal axis displays the steps.

8.5 Proofs for ConvNet Gadgets
The ConvNet uses G1 to mask the convolutions and DOM-indep AND gate to mask the
maxpool operation. We already prove that these gadgets are secure in the presence of
glitch-extended probes. The rest of the hardware in masked ConvNet simply reuse the
masked activation function and the masked output layer blocks of MLP. We already provide
a security proof of the masked activation function and the components of the masked
output layer. Therefore, we do not have any additional gadgets in the ConvNet design
that require proof.

9 ModuloNET Results and Comparison
In this section, we present the accuracy results of the software implementation with
modular arithmetic, the FPGA implementation results of the proposed masked hardware
design, and our side-channel evaluations.

9.1 Software Accuracy Results
Evaluation Setup. Our MLP consists of 4 dense layers of 4096 nodes each, while the
ConvNet consists of 6 conv layers with number of channels [128, 128, 256, 256, 512, 512],
and 3 dense layers with 1024 nodes each, similar to the baseline BNN architecture [CB16].
We utilized square-hinge loss with exponential learning rate decay, minimized using
the Adam Optimizer for both networks. We utilized a single c240g5 compute node
on CloudLab [DRM+19]—integrated with an NVIDIA Tesla P100 GPU—to run our
benchmarks. We also use Weights and Biases (W&B) [Bie20] to log, track, and visualize
our experiments.

Accuracy Results. Figures 16 (a) and (b) show accuracy comparison plots with and
without modular arithmetic for MLP-MNIST and ConvNet-CIFAR10, respectively. Our
ConvNet implementation demonstrates more uncertainty during the early stages of training
but becomes comparable when the network stabilizes. This is because the BN effect is
more pronounced for deeper architectures which are more difficult to train [IS15]. Thus,
the ConvNet experiences additional challenges compared to MLP (6 layers of ConvNet vs 4
layers of MLP, more complex dataset CIFAR10 vs MNIST). Using modular arithmetic has
marginal impact on the accuracy—ModuloNET achieves accuracy of 98.77% and 87.83%
on MNIST and CIFAR10, worse than the baseline BNNs by 0.27% and 0.77%, respectively.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 537

Table 1: Accuracy Comparison of ModuloNET against BNNs, Full-precision and state-of-
the-art networks.

Work MLP-MNIST ConvNet-CIFAR10
Full-Precision, State-of-the-Art (With augmentation / other auxiliary features)

APAC [SNY15] 99.74% 89.67%
EffNet-L2+SAM [FKMN20] - 99.70%

Full-Precision, Standard Networks (Without bells-and-whistles)
Maxout+Dropout [GWFM+13] 99.06% 88.32%

Binary Precision of Weights+Activations
BNNs [CB16] 99.04% 88.60%
ModuloNet 98.77% 87.83%

We also present our results for the CIFAR100 dataset in Figure 21. Such trade offs between
accuracy and efficiency are common in quantized ML literature [Guo18].

Table 1 shows accuracy comparison between ModuloNet with BNNs, standard networks
without any bells-and-whistles, and the state-of-the-art networks with auxiliary features.
Maxout Networks [GWFM+13] proposed a maxout pooling operation alongside the well
known dropout regularization to leverage approximate model averaging. The best accuracy
without any data-augmentation is reported to be 99.06% and 88.32% on MNIST and
CIFAR10, respectively.

In state-of-the-art networks that utilize several auxiliary elements in their networks,
Sharpness-aware minimization (SAM) [FKMN20] explores minimization of both loss value
and sharpness as optimization objectives. Combined with the network architecture of
EfficientNet [TL19], SAM is able to achieve test accuracy of 99.70% on CIFAR10 dataset.
APAC [SNY15] proposed a decision-rule for augmented data learning aiming at improving
the robustness against intra-class variation during training. The proposed method resulted
in accuracy of 99.74% on the MNIST dataset.

Full-precision networks can achieve better performance than binary-precision networks
given their better representational capacity. Furthermore, complex network architectures,
data augmentation, skip connects, improved loss functions and other auxiliary features are
also frequently utilized to improve accuracy. These improvements are tangential to our
discussion and can potentially be employed on top of ModuloNet to boost the accuracy.

9.2 Comparison of Masking Overheads
Table 2 presents the area costs of the ModuloNET MLP and ConvNet designs. We
compare the area overheads of ModuloNET MLP with the current state-of-the-art12 that
used purely Boolean masking [DCA20a], and also with the baseline unmasked design;
there is no prior work on masking a ConvNet. We design the MLP hardware with 3
hidden layers and L=784, M=1024, and N=10 to closely compare with the state-of-the-art
design [DCA20a] that had L=784, M=1010, and N=10. All the MLP designs achieve
virtually the same13 latency of approximately 2.9 million cycles. By utilizing modular
computations and arithmetic masking, we significantly reduce the LUT and FF overheads
from 5.4× and 6.8× in the prior solution [DCA20a] to 3× and 4.5×, respectively.

We emphasize that the reductions in the area of ModuloNET are largely due to the use
of arithmetic masking. We quantify this by calculating the cost of masking an N-bit adder
using Boolean vs arithmetic masking. From BoMaNet [DCA20a], the approximate area
cost of a 15-bit Boolean masked adder14 is 716 LUTs and 788 FFs, plus it requires 45 fresh

12Note we are only comparing hardware that claim first-order side-channel resilience with masking.
13The masked components add some additional cycles but the percentage increase is minimal due to the

already high latency of the sequentialized design.
14BoMaNet used a 20-bit adder but we use 15 bits in our calculations for a fair comparison.

538 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Table 2: Area and Performance Comparison of ModuloNET Designs
MLP Designs LUT FF Latency PRNGs4 (L,M,N)
Baseline-MLP 1 1833 1125 2913294 0 (784,1024,10)

BoMaNET 2[DCA20a] 9833 7624 2938286 73 (784,1010,10)
ModuloNET-MLP 2 5635 5009 2914134 96 (784,1024,10)

ConvNet Designs LUT FF Latency PRNGs4 (L,P,Q,M,N)3

Baseline-ConvNet 1 3517 1223 160986 0 (256,4,2,1024,10)
ModuloNET-ConvNet 2 6583 5070 161847 96 (256,4,2,1024,10)

1 unmasked; 2 masked; 3 P and Q denote the kernel and maxpool sizes, respectively;
4 number of bits/cycle.

masks per cycle. However, in our design, the masking only requires an additional adder
(5-10 LUTs) to process the second arithmetic share and 3× lesser randomness —15 masks
per cycle. Therefore, we expect a theoretical reduction of 3× in overheads of ModuloNET
compared to that of BoMaNet [DCA20a]. However, in practice, we only see a reduction
of 1.8× and 1.5× because of additional components like share conversion circuits, and
Boolean masked activation function and output layer, and additional PRNGs.

The masking overheads for the ConvNet shows an interesting trend. The number of
LUTs in the baseline ConvNet is 1.9× more than that in the baseline MLP design. This
is primarily due to the additional special read logic for the convolution and maxpool
operations. However, since most of the masked components are reused from the MLP
design in implementing the masked ConvNet, the total area cost for both the masked
designs become comparable. Thus, when we compare the costlier baseline ConvNet design
with the masked ConvNet design, the LUT overhead is only 1.8×. In summary, the LUT
overhead is smaller because the ratio of control is more in ConvNet due to control logic for
convolution and maxpool.

To quantify how our designs scale for more complicated networks, we have also syn-
thesized our masked MLP hardware for hyperparameters of 256, 512, 1k, 2k, and 4k
nodes per hidden layer for a larger FPGA 15. Figure 17 shows the variation. The
LUT, and FF costs scales linearly with the increase in this hyperparameter and the
latency varies non-linearly because in our sequentialized design, it is roughly equal to
(L+ 1)×M + 2×M(M + 1) + (M + 1)×N 16. Note that having more/deeper hidden
layers do not affect the area-cost but increases the latency linearly.

9.3 Side-Channel Results
Measurement Setup and Network Configuration. We use Xilinx ISE 14.7 for synthesis
and bitstream generation and utilize the DONT_TOUCH attribute to ensure that the
design is synthesized the way it is coded, without optimizations, for security. We use the
Sakura-G board as our side-channel analysis platform that hosts a Xilinx Spartan-6 FPGA
(Device: XC6SLX75, Package: CSG484, Speed:-2) to execute the hardware implementation
to be evaluated and has a designated SMA port that provides the power drop across a
shunt resistor of 1Ω on the main supply line. We use Picoscope 3206D as the oscilloscope
to acquire the voltage drop. We set a very low design frequency of 1.5 MHz to reduce
information loss due to aliasing between clock cycles. We set the oscilloscope sampling
frequency to 125 MHz i.e., the setup captures 83 points per clock cycle. This is a typical
setup used for leakage evaluation in prior works on masking [RSM20].

The low operating frequency increases the execution time and slows down the acquisition
15Note that our designs LUT and FF are moderate hence they fit into relatively small FPGAs. But

even with a binarized network, the on-chip BRAM for storing the weights becomes the bottleneck as the
designs scale.

16This is true even for the unprotected design.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 539

Figure 17: The variation of the number of LUTs, FFs and inference latency with the
number of increasing nodes in the hidden layer for the MLP hardware design.

process. The network with 784 input nodes, 3 hidden layers with 1024 nodes and 10 output
layer nodes requires roughly 785×1024+1025×3×1024+1025×10=2.9M clock cycles or
1.9 seconds to finish a single inference. Acquiring and evaluating traces at the order of
millions for such a network configuration with our high-precision sampling is impractical17.
Thus, we set our parameterized hardware to 64 nodes in the hidden layers to accelerate the
process. Due to the repetitive nature of neural network computations and the sequentialized
hardware that computes one node at a time, we argue this configuration to be the canonical
example of larger networks with more nodes18.

Leakage Evaluation of the Masked Design. We adopt the widely-used Test Vector
Leakage Assessment (TVLA) methodology to perform the masked design’s leakage eval-
uation [GGJR11]. We do not claim that TVLA is the best methodology for all possible
cases [Sta18] but that it is a common technique used in TCHES works to evaluate the
security of masking schemes [DAN+18, SEL21, SBM21]. TVLA uses the Welch’s t-test to
detect the presence of side-channel leakage. Welch’s t-test is used in statistics to test the
hypothesis that two populations have similar means. The test computes a t-score that is
given by the following equation:

t = µ1 − µ0√
s2

0
n2

0
+ s2

1
n2

1

,

where s0, s1, n0, n1 are the variances and the sizes of datasets, respectively. A high t-score
results in the rejection of the null-hypothesis that states that the two populations are drawn
from the same distribution. A t-score crossing the threshold of ±4.5 implies rejection
of the null-hypothesis with a confidence of 99.99%, and is the accepted threshold to
experimentally detect the presence of side-channel leakage.

We choose the univariate non-specific fixed vs. random t-tests because it is independent
of the underlying DUT implementation. In this test, the setup captures two sets of power
traces: one in which the input is constant for all executions and one in which it varies
per execution. The setup then computes the t-scores over these two sets. A high t-score
implies that there is a side-channel leakage in the implementation because the power trace

17We lowered frequency for sound leakage evaluation, which increases test time—this is a standard SCA
evaluation practice [DAN+18, OSPG18]. Real-world ML accelerators operating at higher frequencies have
been attacked [BBJP19, MBC21].

18This is, for e.g., practically equivalent to designing a fully masked round-serial AES engine and running
it for 10 rounds vs. 12 rounds.

540 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 18: All the plots show TVLA results with PRNGs disabled on the left and
PRNGs enabled on the right. The dotted lines signify the TVLA threshold of ±4.5 which
statistically implies a 99.99% confidence. Plots (a)-(e) show results for the individual
components of the neural network viz. masked activation function, Boolean-to arithmetic
converter, arithmetic-to Boolean converter, masked comparator, and masked multiplexer
in the same order. The plots (a)-(e) are shown on a common time axis for visual aid;
the execution times are different across every component. Plot (f) shows the results for
the hidden and output layer computations. We only present the t-scores for hidden and
output layer computations because during input layer computations we cannot evaluate a
potential leakage directly due to input correlations: the hardware loads and masks the
input pixels on-the-fly throughout the processing of the input layer. Therefore, we create
another design which buffers all the masked input pixels and the corresponding masks
instead of generating them on-the-fly. The hardware directly reads the input pixels only
once during the creation of the arithmetic shares. Figure 18 (g) shows the results for this
experiment. In all the plots we observe t-scores higher than the threshold for the unmasked
design and t-scores within the threshold for the masked equivalents which demonstrates a
significant decrease in the side-channel leakage.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 541

Figure 19: TVLA results of the masked MLP hardware with 10M traces (right). This is
evaluated for a small window randomly selected from the overall inference window. The
results show that even with an increased number of measurements there is no first-order
leakage . The figure on the left is the plot with PRNGs switched off for the same window.

corresponding to a specific input (or fixed dataset) is distinguishable from the general
population of power traces (or random dataset). We conduct TVLA for two setups. First,
we perform TVLA on the design with disabled PRNGs that has all the fresh masks driven
to 0, which is equivalent to an unmasked design. Second, we conduct TVLA on the
(equivalently) masked design with enabled PRNGs. Our setup acquires 2M traces, 1M
traces each for the fixed and random datasets. Note that this is a typical amount of
measurements for designs with long execution times; some recent papers even evaluated
using fewer measurements [Sug18, OSPG18].

Figure 18 shows the TVLA results of our experiments. We first evaluate the security
of the individual components as a standalone unit. Plots (a)-(e) show the TVLA results
for the individual components (respectively for masked activation function, Boolean-to-
arithmetic converter, arithmetic-to-Boolean converter, masked comparator, and masked
multiplexer), plot (f) shows it for the full design except the input layer, and plot (g) shows
this for the input layer only. The results confirm our security claims as the unmasked
versions show statistically significant leakages and the masked designs do not.

To further validate the security of our design, we conducted an evaluation of the masked
MLP hardware with 10M traces for a small window randomly selected from the overall
inference window. Figure 19 shows the the result of this experiment. The t-scores still
remain within the threshold of ±4.5 demonstrating the empirical security of our masked
design. Note that these experiments are carried out in a low-noise side-channel evaluation
platform. Thus, in an actual accelerator the number of traces to break the masking scheme
will be significantly higher that 10M due to more noise.

Figure 20 presents our side-channel evaluation results for the binarized ConvNet
design. We only capture time samples during convolutional and maxpool operations in this
evaluation. The power trace clearly shows the high activity convolution layer computation
followed by a low activity OR-based maxpool operation and the start of FC layer activity
towards the end. The design with PRNGs disabled clearly leaks with t-scores crossing the
±4.5 threshold throughout the inference. By contrast, the t-scores never cross the threshold
when the PRNGs are enabled effectively masking the design. Thus, we demonstrate the
first-order side-channel security of the masked binarized ConvNet.

542 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 20: TVLA results of the masked ConvNet hardware with 1M traces. When the
PRNGs are off (i.e., the design is effectively unprotected), the design has significant
side-channel leakage as expected. However, when the PRNG is on (i.e., the design is
masked), there is no first-order leakage, i.e., empirical results match our theoretical proofs
of security.

10 Discussions

In this section, we discuss some potential refinements in masking, limitations of the leakage
evaluation and the proposed learning scheme, and orthogonal works.

Empirical vs. Provably-Secure Masking. We aim at both theoretical and empirical
security in our design to make model extraction as hard as theoretical attacks. We
do realize the importance of security notions and proofs. Various security models have
been proposed to formally evaluate a masked gadget in an ideal setting [ISW03], or real
setting [PR13]. Some newer models have also been proposed specifically to model glitches
and transitions on hardware [FGP+18, CS21]. Others construct notions that help to prove
secure composition of the masked gadgets like NI, SNI, and PINI [BBD+16, CS20]. We
provide a theoretical security analysis in the robust-probing model for this work. Future
works can certainly explore further on optimizing the gadgets while still maintaining
composability guarantees. Alternatively, we can use automated tools to this end [KSM20],
but as noted in a recently published work [SBM21], no tool can verify the security of a
full cipher and thus, we need to rely on the empirical analysis along with the theoretical
guarantees that the tools may provide.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 543

TVLA vs Other Methods. In addition to the TVLA, there are several alternatives to
evaluate the side-channel leakage in a proposed implementation [KJJ99, BCO04, CRR03,
GBTP08, HGD+11]. These typically need the implementation/algorithm knowledge to
make hypothesis and construct a power model or require re-configuring secret information
and building a power profile of the target device. We choose TVLA, which does not have
these limitations. However, we are aware of the TVLA’s drawbacks due to its simple
moment-based analysis that can lead to false-negative and -positives [Sta18]. Welch’s
t-test can be complemented with the χ2 test to capture information lying in multiple
moments [MRSS18]. But the χ2 test is mostly used for validating higher-order masking
schemes or threshold implementations, hence, we consider it out of scope for this work.

Masking Enhancements and Limitations. Our proposal to use modular arithmetic for
neural networks has already caused significant reductions over the state-of-the-art, but
there is certainly scope for improvement. Advanced schemes such as GLM, UMA, etc.
can be used to further reduce the latency and randomness of the masked gadgets [GIB18,
GM18, RSM20]. Optimized share conversion circuits can also be incorporated to reduce the
area costs [MTMM07b, Deb12]. The current design uses Boolean masking in the output
layer, but it would be interesting to explore ways to perform operations like comparisons
only with arithmetic shares. A recent work on secure multiparty computation explores
something similar [MRVW21].

Recent work demonstrated how first-order secure implementations on an FPGA can
become vulnerable under high temperature, high voltage, and high clock frequency due
to coupling effects [DEM18]. Levi et al. [LBS19] further demonstrated how the couplings
can be externally amplified to break the assumptions of provable security. Morover, most
of the proposed schemes suffer from local or global compositional flaws [MMSS19] when
extended to higher-order. Higher-order masking with related challenges and attacks that
manipulate the setup is out of scope, i.e., we exclusively focus on first-order masking as
in prior recent works [RSM20, SBM21]. More maturity is needed on these aspects for
cryptography use cases before investigating and transitioning them to the ML world. To
that end, we expect main challenges to be building efficient and secure maxpool, ReLU,
and output layer comparator masked gadgets by borrowing/augmenting the lessons learned
from extending masked gadgets from first-order to higher-order [MMSS19].

Drawbacks of Proposed Layer Architecture. Our approach relies on lossless modulo
folding. In principle, the modulo operation entails the loss of information but unfolding
and regenerating the original samples is possible under the condition that the modulo
is performed using a large enough K (Using Equation (5)) such that modulo does not
scramble the samples. This has two major disadvantages:

1. The selection of K is dependent on the input data distribution. While K can
be selected using the training/validation data, its applicability to the test split is
dependent on how similar the test split is to the train/validation split.

2. Smaller K translates to lower probability Pr(On) which leads to degradation in
accuracy since the network starts to lose its representation capacity. In our experi-
ments, we utilized modulo to effectively shift the representation rage of data from(
−K2 ,

K
2
)
to (0,K). This allows us to circumvent the sign leakage problem while

maintaining accuracy. Future works could explore contracting the representation
range by reducing K and encoding the ‘number of wraparounds’, b xK c, within the
network, allowing compressed propagation of information.

Analogy with Fully-Homomorphic Encryption Schemes. By definition, all homomorphic
encryption (HE) schemes work with modular arithmetic; our novelty is to perform such

544 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

computations directly on the plaintext for the ‘full inference’. Bourse et al. [BMMP18]
published a work on using HE for discretized neural networks (DiNN)–networks with
discrete weights and sign-function as the activation function. Our advantage over prior
works using HE is to evaluate the full function (including output layer which is excluded
in DiNN, and without input discretization), supporting a more diverse set of operations
e.g., batch normalization and output-max operation, and supporting more diverse layers
such as convolutional and maxpool.

Scalability with Other Datasets and Network Sizes. Our software and hardware tech-
niques are not fundamentally limited by the complexity of the datasets being used, or the
network size. In the context of ML security/privacy research, MNIST and CIFAR10 are
the two de facto standards in major security and ML conferences like ICML, USENIX,
CCS, and CRYPTO to demonstrate the proof of concept [DGBL+16, JVC18, MR18,
RSC+19, CJM20]. Our masked NNs do support these two datasets. Any new dataset will
naturally have a Gaussian distribution and require a re-tuning of the modulus value via
the techniques described in Section 4 . The modulus value decides the size of the field and
thus, the randomness requirements to mask the weighted summations or convolutions.

Increasing the number of FC or convolutional layers, or the number of nodes per layer
does not affect the masking-related overheads in our hardware architecture because the
design reuses the masked components. The area will certainly increase with the increasing
network size as evidenced by our experiments because of increased storage elements and
additional counter bits in the controller to account for the additional nodes or layers.
Interestingly, as the networks become more complicated, the bottleneck of the design seems
to move towards on-chip memory storage (rather than datapath size). Therefore, if there is
insufficient on-chip memory to store all network parameters unlike our case, the challenge
is likely to be on the data movement, e.g., moving data from external memory to FPGA
fabric with high-throughput DDRs. Our hardware designs can be parallelized/replicated
as black-box instances to match the throughput of the data movement.

Side-Channel Attacks versus Theoretical Model Extraction. Orthogonal to the side-
channel attacks, there has also been work on model stealing by theoretically analyzing
the predictions of the model over chosen inputs [JCB+20, CJM20, TZJ+16]. The attacks
typically perform black-box queries to the model to create a surrogate model with high
fidelity and/or high accuracy. The state-of-the-art theoretical attack needs at least 221.5

queries to extract the parameters from a three-layer neural network with 784, 128, and
10 nodes in each layer and do not yet extend to more complicated networks. In contrast,
the side-channel attacks on neural networks can extract the parameters with only 40k
queries for a much larger 4-layer neural network [DCA20b]. Our analysis validates the
side-channel security with about 220 queries/side-channel tests, raising the difficulty of
breaking to the level of mathematical cryptanalysis.

Protecting the Embedded ML Applications A lot of neural network development is also
done at the software level and deployed on microcontroller-based targets, which is are prime
targets for side-channel attacks. A potential solution is to employ software masking for C-
based implementations like the AES-based works [MOPT12, ABP12, BRB+11, BDM+20,
SSB+21]. For higher-level language(e.g., Python), one can first convert it to C (e.g.,
via Cython19) and then apply such defenses. Additionally, one must be careful about
the unintended interactions in the microarchitecture leaking the secrets as discussed in
ROSITA [SSB+21], FENL [GMPP20], and other research works.

19https://cython.org/

https://cython.org/

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 545

11 Conclusion and Future Work
ML algorithms provide a new avenue for side-channel analysis research. While the majority
of the existing work focuses on potential attacks, the defenses are largely overlooked. This
paper reveals that the opportunities in building efficient masking schemes do not only
lay in tuning the application of masking but further in tweaking the target algorithm
itself—unlike in cryptographic standards, ML has this flexibility. The results quantify that
such an algorithm/hardware co-design with side-channel security in mind can significantly
reduce the area cost with a marginal effect on accuracy.

This paper aims to build efficient masking schemes and to both empirically validate
their security with practical side-channel tests and theoretically validate with proofs. Our
defense is the most efficient one known to date among comparable solutions. However,
both the proposed attacks and the defenses can be extended, e.g., to higher-order masking,
provably-secure masking, and attacks that can make such proofs obsolete. Even today,
extending masking and related attacks are subjects undergoing intense study after decades
of evaluation of such attacks and defenses on the well-established cryptographic standards.
There are many ways to construct neural networks, just like there are many ways to
construct cryptosystems. Our goal in this paper is not to mask all possible network
configurations but to investigate secure masking optimizations in-depth for one particular
network style. As we demonstrated in this work, doing so for a particular configuration
is quite challenging and involved. Nevertheless, we also present our results on masking
ConvNets and its associated challenges. Future works can explore the masking of other
types of networks like the recurrent NNs, networks with optimizations such as skip-connects,
or even other types of classifiers such as decision trees, support vector machines, etc.

12 Acknowledgements
This project is supported in parts by NSF under Grants No. 1943245 and SRC GRC
Task 2908.001. This work was also partially funded by Lahore University of Management
Sciences (LUMS) through Grant-ID FIF-569. The authors are grateful for this support.
We thank the CHES reviewers and our shepherd Dr. Lauren De Meyer for their valuable
feedback that greatly improved the quality of our manuscript. We also thank Dr. Vikram
Suresh, Dr. Sohrab Aftabjahani, Dr. Avinash Varna, Dr. Raghavan Kumar, and Dr.
Amitabh Das for their expert guidance throughout the project. We are grateful to the
Cloudlab [DRM+19] team for compute support and to the W&B [Bie20] team for logging
and visualisation support.

References
[ABP12] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing

methodology to automate power analysis countermeasures. In Proceedings
of the 49th Annual Design Automation Conference, pages 77–82, 2012.

[ABP+18] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and Vincent
Rijmen. Rhythmic keccak: SCA security and low latency in HW. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):269–290, 2018.

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of DES
and AES, secure against some attacks. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, CHES 2001, volume 2162 of LNCS, pages 309–318.
Springer, Heidelberg, May 2001.

546 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

[AGM+09] Monjur Alam, Santosh Ghosh, MJ Mohan, Debdeep Mukhopadhyay, Di-
panwita Roy Chowdhury, and IS Gupta. Effect of glitches against masked
AES S-Box implementation and countermeasure. IET Information Security,
3(1):34–44, 2009.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BBH+19] Shivam Bhasin, Jakub Breier, Xiaolu Hou, Dirmanto Jap, Romain Poussier,
and Siang Meng Sim. SITM: See-in-the-middle side-channel assisted middle
round differential cryptanalysis on spn block ciphers. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(1):95–122, Nov. 2019.

[BBJP19] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
reverse engineering of neural network architectures through electromagnetic
side channel. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, pages 515–532. USENIX Association, 2019.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Marc Joye and Jean-Jacques Quisquater,
editors, CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Heidelberg,
August 2004.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-
secure masked bitsliced implementations. In Eurocrypt 2020-39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, volume 12107, pages 311–341. Springer, 2020.

[Bie20] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software
available from wandb.com.

[BIL+15] Carlo Baldassi, A. Ingrosso, Carlo Lucibello, Luca Saglietti, and R. Zecchina.
Subdominant dense clusters allow for simple learning and high computational
performance in neural networks with discrete synapses. Physical review
letters, 115 12:128101, 2015.

[BJH+21] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang Liu.
Sniff: Reverse engineering of neural networks with fault attacks. IEEE
Transactions on Reliability, 2021.

[BLC13] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gra-
dients through stochastic neurons for conditional computation. ArXiv,
abs/1308.3432, 2013.

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier.
Fast homomorphic evaluation of deep discretized neural networks. In Annual
International Cryptology Conference, pages 483–512. Springer, 2018.

[BRB+11] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Stan-
daert, and Paolo Ienne. A first step towards automatic application of
power analysis countermeasures. In 2011 48th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 230–235. IEEE, 2011.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 547

[CB16] Matthieu Courbariaux and Y. Bengio. Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -1. ArXiv,
abs/1602.02830, 2016.

[CBD15] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, page 3123–3131, Cambridge, MA,
USA, 2015. MIT Press.

[CEvMS15] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Differential power analysis of a McEliece cryptosystem. In Tal Malkin,
Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis,
editors, ACNS 15, volume 9092 of LNCS, pages 538–556. Springer, Heidelberg,
June 2015.

[CJM20] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic ex-
traction of neural network models. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture
Notes in Computer Science, pages 189–218. Springer, 2020.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES 2002,
volume 2523 of LNCS, pages 13–28. Springer, Heidelberg, August 2003.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe
than sorry. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(2):136–158, Feb. 2021.

[DAN+18] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. M&M: Masks and macs against physical attacks.
IACR TCHES, 2019(1):25–50, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/7333.

[DCA20a] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Bomanet: Boolean
masking of an entire neural network. In IEEE/ACM International Conference
On Computer Aided Design, ICCAD 2020, San Diego, CA, USA, November
2-5, 2020, pages 51:1–51:9. IEEE, 2020.

[DCA20b] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The first
hardware inference engine aiming power side-channel protection. In 2020
IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2020, San Jose, CA, USA, December 7-11, 2020, pages 197–208.
IEEE, 2020.

[DDS+09] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

https://tches.iacr.org/index.php/TCHES/article/view/7333
https://tches.iacr.org/index.php/TCHES/article/view/7333

548 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, Heidelberg, September 2012.

[DEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking,
revisited. IACR TCHES, 2018(2):123–148, 2018. https://tches.iacr.
org/index.php/TCHES/article/view/877.

[DGBL+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 201–210. JMLR.org, 2016.

[DRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume
9813 of LNCS, pages 194–212. Springer, Heidelberg, August 2016.

[DRB18] Lauren De Meyer, Oscar Reparaz, and Begül Bilgin. Multiplicative masking
for AES in hardware. IACR TCHES, 2018(3):431–468, 2018. https://
tches.iacr.org/index.php/TCHES/article/view/7282.

[DRM+19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip
Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh
Mishra. The design and operation of CloudLab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1–14, July 2019.

[FBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
IACR Cryptol. ePrint Arch., 2021:479, 2021.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FKMN20] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur.
Sharpness-aware minimization for efficiently improving generalization. arXiv
preprint arXiv:2010.01412, 2020.

[FMI83] Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A
neural network model for a mechanism of visual pattern recognition. IEEE
transactions on systems, man, and cybernetics, (5):826–834, 1983.

[FZS+19] Cheng Fu, Shilin Zhu, Hao Su, Ching-En Lee, and Jishen Zhao. Towards
fast and energy-efficient binarized neural network inference on fpga. In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’19, page 306, New York, NY, USA, 2019.
Association for Computing Machinery.

https://tches.iacr.org/index.php/TCHES/article/view/877
https://tches.iacr.org/index.php/TCHES/article/view/877
https://tches.iacr.org/index.php/TCHES/article/view/7282
https://tches.iacr.org/index.php/TCHES/article/view/7282

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 549

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors,
CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, Heidelberg,
August 2008.

[GGJR11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. 2011. http://csrc.
nist.gov/news_events/non-invasive-attack-testing-workshop/
papers/08_Goodwill.pdf.

[GIB18] Hannes Gross, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR TCHES, 2018(2):1–21, 2018. https://tches.
iacr.org/index.php/TCHES/article/view/871.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. Journal of
Cryptographic Engineering, 8(2):109–124, June 2018.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceed-
ings of the ACM Workshop on Theory of Implementation Security, TIS@CCS
2016 Vienna, Austria, October, 2016, page 3. ACM, 2016.

[GMPP20] Si Gao, Ben Marshall, Dan Page, and Thinh Hung Pham. FENL: an ISE
to mitigate analogue micro-architectural leakage. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):73–98, 2020.

[Gol07] Jovan Dj Golic. Techniques for Random Masking in Hardware. IEEE
Transactions on Circuits and Systems I: Regular Papers, 54(2):291–300,
2007.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic
masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
CHES 2001, volume 2162 of LNCS, pages 3–15. Springer, Heidelberg, May
2001.

[Guo18] Yunhui Guo. A survey on methods and theories of quantized neural networks.
arXiv preprint arXiv:1808.04752, 2018.

[GWFM+13] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and
Yoshua Bengio. Maxout networks. In International conference on machine
learning, pages 1319–1327. PMLR, 2013.

[HCS+17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks with
low precision weights and activations. The Journal of Machine Learning
Research, 18(1):6869–6898, 2017.

[HGD+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first
study. Journal of Cryptographic Engineering, 1(4):293–302, December 2011.

[HZS18] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. Reverse engineering convolu-
tional neural networks through side-channel information leaks. In Proceedings
of the 55th Annual Design Automation Conference, DAC 2018, San Francisco,
CA, USA, June 24-29, 2018, pages 4:1–4:6. ACM, 2018.

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
https://tches.iacr.org/index.php/TCHES/article/view/871
https://tches.iacr.org/index.php/TCHES/article/view/871

550 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

[Ins20] Deloitte Insights. Bringing AI to the device: Edge AI chips come
into their own, 2020. https://www2.deloitte.com/us/en/insights/
industry/technology/technology-media-and-telecom-predictions/
2020/ai-chips.html.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. PMLR, 2015.

[ISU18] Vincent Immler, Robert Specht, and Florian Unterstein. Your rails cannot
hide from localized EM: how dual-rail logic fails on FPGAs - extended
version. Journal of Cryptographic Engineering, 8(2):125–139, June 2018.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[JCB+20] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. High accuracy and high fidelity extraction of neural
networks. In 29th {USENIX} Security Symposium ({USENIX} Security 20),
2020.

[JSMA19] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. PRADA:
protecting against DNN model stealing attacks. In IEEE European Sym-
posium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June
17-19, 2019, pages 512–527. IEEE, 2019.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network infer-
ence. In 27th {USENIX} Security Symposium ({USENIX} Security 18),
pages 1651–1669, 2018.

[JYI+20] Dirmanto Jap, Ville Yli-Mäyry, Akira Ito, Rei Ueno, Shivam Bhasin, and
Naofumi Homma. Practical side-channel based model extraction attack on
tree-based machine learning algorithm. In Jianying Zhou, Mauro Conti,
Chuadhry Mujeeb Ahmed, Man Ho Au, Lejla Batina, Zhou Li, Jingqiang
Lin, Eleonora Losiouk, Bo Luo, Suryadipta Majumdar, Weizhi Meng, Martín
Ochoa, Stjepan Picek, Georgios Portokalidis, Cong Wang, and Kehuan
Zhang, editors, Applied Cryptography and Network Security Workshops -
ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud S&P,
SCI, SecMT, and SiMLA, Rome, Italy, October 19-22, 2020, Proceedings,
volume 12418 of Lecture Notes in Computer Science, pages 93–105. Springer,
2020.

[KCS+20] Phil C Knag, Gregory K Chen, H Ekin Sumbul, Raghavan Kumar, Mark A
Anders, Himanshu Kaul, Steven K Hsu, Amit Agarwal, Monodeep Kar,
Seongjong Kim, et al. A 617 tops/w all digital binary neural network
accelerator in 10nm finfet cmos. In 2020 IEEE Symposium on VLSI Circuits,
pages 1–2. IEEE, 2020.

[KGB+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and
Johannes Buchmann. Differential power analysis of XMSS and SPHINCS. In
Junfeng Fan and Benedikt Gierlichs, editors, COSADE 2018, volume 10815
of LNCS, pages 168–188. Springer, Heidelberg, April 2018.

https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html
https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html
https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 551

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[KS73] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE Trans. Computers,
22(8):786–793, 1973.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
May 2017.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer,
2020.

[LBS19] Itamar Levi, Davide Bellizia, and François-Xavier Standaert. Reducing a
masked implementation’s effective security order with setup manipulations.
IACR TCHES, 2019(2):293–317, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/7393.

[LHBB99] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object
recognition with gradient-based learning. In David A. Forsyth, Joseph L.
Mundy, Vito Di Gesù, and Roberto Cipolla, editors, Shape, Contour and
Grouping in Computer Vision, volume 1681 of Lecture Notes in Computer
Science, page 319. Springer, 1999.

[Lin76] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error.
BIT Numerical Mathematics, 16(2):146–160, 1976.

[LWYY20] Xiaoning Liu, Bang Wu, Xingliang Yuan, and Xun Yi. Leia: A lightweight
cryptographic neural network inference system at the edge. Cryptology ePrint
Archive, Report 2020/463, 2020. https://eprint.iacr.org/2020/463.

[LZP17] Xiaofan Lin, Cong Zhao, andWei Pan. Towards accurate binary convolutional
neural network. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 345–353. Curran Associates, Inc., 2017.

[Mag20] Analytics India Magazine. Why deep learning is a costly affair, 2020. https:
//analyticsindiamag.com/deep-learning-costs-cloud-compute/.

[MBC21] Saurav Maji, Utsav Banerjee, and Anantha P. Chandrakasan. Leaky nets: Re-
covering embedded neural network models and inputs through simple power
and timing side-channels - attacks and defenses. CoRR, abs/2103.14739,
2021.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-resistant masking revisited. IACR TCHES, 2019(2):256–292,
2019. https://tches.iacr.org/index.php/TCHES/article/view/7392.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 58–75. Springer, 2012.

https://tches.iacr.org/index.php/TCHES/article/view/7393
https://tches.iacr.org/index.php/TCHES/article/view/7393
https://eprint.iacr.org/2020/463
https://analyticsindiamag.com/deep-learning-costs-cloud-compute/
https://analyticsindiamag.com/deep-learning-costs-cloud-compute/
https://tches.iacr.org/index.php/TCHES/article/view/7392

552 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In Josyula R. Rao and
Berk Sunar, editors, CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, Heidelberg, August / September 2005.

[MR18] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework
for machine learning. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 35–52. ACM, 2018.

[MRSS18] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Stan-
daert. Leakage detection with the χ2-test. IACR TCHES, 2018(1):209–237,
2018. https://tches.iacr.org/index.php/TCHES/article/view/838.

[MRVW21] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh.
Rabbit: Efficient comparison for secure multi-party computation. IACR
Cryptol. ePrint Arch., 2021:119, 2021.

[MTMM07a] Robert McEvoy, Michael Tunstall, Colin C Murphy, and William P Marnane.
Differential power analysis of hmac based on sha-2, and countermeasures. In
International Workshop on Information Security Applications, pages 317–332.
Springer, 2007.

[MTMM07b] Robert P. McEvoy, Michael Tunstall, Colin C. Murphy, and William P.
Marnane. Differential power analysis of HMAC based on sha-2, and coun-
termeasures. In Sehun Kim, Moti Yung, and Hyung-Woo Lee, editors,
Information Security Applications, 8th International Workshop, WISA 2007,
Jeju Island, Korea, August 27-29, 2007, Revised Selected Papers, volume
4867 of Lecture Notes in Computer Science, pages 317–332. Springer, 2007.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, ICICS 06, volume 4307 of LNCS, pages
529–545. Springer, Heidelberg, December 2006.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR
TCHES, 2018(1):142–174, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/836.

[PMG+17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer
and communications security, pages 506–519, 2017.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer,
Heidelberg, May 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 764–783. Springer, 2015.

https://tches.iacr.org/index.php/TCHES/article/view/838
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 553

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[RRd+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren,
and Ingrid Verbauwhede. Masking ring-LWE. Journal of Cryptographic
Engineering, 6(2):139–153, June 2016.

[RSC+19] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E.
Lauter, and Farinaz Koushanfar. XONN: xnor-based oblivious deep neural
network inference. In Nadia Heninger and Patrick Traynor, editors, 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019, pages 1501–1518. USENIX Association, 2019.

[RSM20] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes: Nullifying fresh randomness. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(1):305–342, Dec. 2020.

[SBM21] Aein Rezaei Shahmirzadi, Dusan Bozilov, and Amir Moradi. New first-order
secure AES performance records. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(2):304–327, 2021.

[Sec20] Security.org. The Best Indoor Cameras for Artificial Intelli-
gence, 2020. https://www.security.org/security-cameras/best/
artificial-intelligence.

[SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box
masking scheme resisting computational and algebraic attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(2):61–105, 2021.

[SGMT18] Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B Tahoori.
An inside job: Remote power analysis attacks on fpgas. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1111–1116. IEEE, 2018.

[SNY15] Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi. Apac: Augmented pattern
classification with neural networks. arXiv preprint arXiv:1505.03229, 2015.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225.
Springer, Heidelberg, February 2006.

[SSB+21] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimination
of power-analysis leakage in ciphers. In 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, virtually, February 21-25, 2021.
The Internet Society, 2021.

[Sta18] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel se-
curity evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference,
CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised Selected
Papers, volume 11389 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2018.

https://www.security.org/security-cameras/best/artificial-intelligence
https://www.security.org/security-cameras/best/artificial-intelligence

554 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

[Sug18] Takeshi Sugawara. 3-share threshold implementation of AES s-box without
fresh randomness. IACR TCHES, 2019(1):123–145, 2018. https://tches.
iacr.org/index.php/TCHES/article/view/7336.

[Tec20] Techcrunch. Apple buys edge-based ai startup xnor.ai for a
reported $200m, 2020. https://techcrunch.com/2020/01/15/
apple-buys-edge-based-ai-startup-xnor-ai-for-a-reported-200m/.

[TG20] Shahin Tajik and Fatemeh Ganji. Artificial neural networks and fault
injection attacks. arXiv preprint arXiv:2008.07072, 2020.

[TKL04] Elena Trichina, Tymur Korkishko, and Kyung Hee Lee. Small size, low
power, side channel-immune aes coprocessor: design and synthesis results. In
International Conference on Advanced Encryption Standard, pages 113–127.
Springer, 2004.

[TL19] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine
Learning, pages 6105–6114. PMLR, 2019.

[TSSL20] Go Takatoi, Takeshi Sugawara, Kazuo Sakiyama, and Yang Li. Simple elec-
tromagnetic analysis against activation functions of deep neural networks. In
Jianying Zhou, Mauro Conti, Chuadhry Mujeeb Ahmed, Man Ho Au, Lejla
Batina, Zhou Li, Jingqiang Lin, Eleonora Losiouk, Bo Luo, Suryadipta Ma-
jumdar, Weizhi Meng, Martín Ochoa, Stjepan Picek, Georgios Portokalidis,
Cong Wang, and Kehuan Zhang, editors, Applied Cryptography and Network
Security Workshops - ACNS 2020 Satellite Workshops, AIBlock, AIHWS,
AIoTS, Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy, October 19-22,
2020, Proceedings, volume 12418 of Lecture Notes in Computer Science,
pages 181–197. Springer, 2020.

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In 25th
{USENIX} Security Symposium ({USENIX} Security 16), pages 601–618,
2016.

[UFG+17] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A framework for
fast, scalable binarized neural network inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 65–74, 2017.

[WLL+18] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what
you see: Power side-channel attack on convolutional neural network acceler-
ators. In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 393–406, 2018.

[YKO+20] Kota Yoshida, Takaya Kubota, Shunsuke Okura, Mitsuru Shiozaki, and
Takeshi Fujino. Model reverse-engineering attack using correlation power
analysis against systolic array based neural network accelerator. In 2020
IEEE International Symposium on Circuits and Systems (ISCAS), pages
1–5. IEEE, 2020.

[YMY+20] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin.
DeepEM: Deep neural networks model recovery through EM side-channel
information leakage. In 2020 IEEE International Symposium on Hardware

https://tches.iacr.org/index.php/TCHES/article/view/7336
https://tches.iacr.org/index.php/TCHES/article/view/7336
https://techcrunch.com/2020/01/15/apple-buys-edge-based-ai-startup-xnor-ai-for-a-reported-200m/
https://techcrunch.com/2020/01/15/apple-buys-edge-based-ai-startup-xnor-ai-for-a-reported-200m/

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota and Aydin
Aysu 555

Oriented Security and Trust, HOST 2020, San Jose, CA, USA, December
7-11, 2020, pages 209–218. IEEE, 2020.

[YN17] H. Yonekawa and H. Nakahara. On-chip memory based binarized convolu-
tional deep neural network applying batch normalization free technique on
an fpga. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 98–105, 2017.

[ZCL+19] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[ZS18] Mark Zhao and G Edward Suh. FPGA-based remote power side-channel
attacks. In 2018 IEEE Symposium on Security and Privacy (SP), pages
229–244. IEEE, 2018.

[ZWN+16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng
Zou. Dorefa-net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

556 ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Masking

Figure 21: Test accuracy comparison of ConvNet with baseline vs. ModuloNET for the
CIFAR100 dataset. The top-1 accuracy for ModuloNET only drop by 0.88% compared to
that of the baseline.

	Introduction
	Threat Model
	Background
	Notation
	Hardware Masking for Side-Channel Security
	Neural Networks

	ModuloNET: Binary Networks with Modular Arithmetic
	BNNs and Modular Arithmetic: Challenges
	Proposed Layer Architecture
	A Note on Enforcement of Constraints
	Tuning First and Last Layers
	Choice of modulo K
	Extension to ConvNets

	Baseline Hardware Design of ModuloNET
	Weighted Summations and XNOR-POPCOUNT
	Activation Function
	Output Layer Max Function

	Fully Masked Hardware Design of ModuloNET
	Arithmetic Masking of Weighted Summations
	Masked Activation Function
	Boolean to Arithmetic Conversion
	Masked Output Layer

	Hardware Design of ConvNet
	Security Analysis of the Masked Gadgets
	Weighted Summations:
	Masked Activation Function:
	Boolean-to-arithmetic conversion
	Masked Output Layer
	Proofs for ConvNet Gadgets

	ModuloNET Results and Comparison
	Software Accuracy Results
	Comparison of Masking Overheads
	Side-Channel Results

	Discussions
	Conclusion and Future Work
	Acknowledgements

