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Abstract
Surrogate models have been used to emulate mathematical simulators of phys-
ical or biological processes for computational efficiency. High-speed simulation
is crucial for conducting uncertainty quantification (UQ) when the simulation
must repeat over many randomly sampled input points (aka the Monte Carlo
method). A simulator can be so computationally intensive that UQ is only fea-
sible with a surrogate model. Recently, deep neural network (DNN) surrogate
models have gained popularity for their state-of-the-art emulation accuracy.
However, it is well-known that DNN is prone to severe errors when input data
are perturbed in particular ways, the very phenomenonwhich has inspired great
interest in adversarial training. In the case of surrogate models, the concern is
less about a deliberate attack exploiting the vulnerability of a DNN but more of
the high sensitivity of its accuracy to input directions, an issue largely ignored by
researchers using emulation models. In this paper, we show the severity of this
issue through empirical studies and hypothesis testing. Furthermore, we adopt
methods in adversarial training to enhance the robustness of DNN surrogate
models. Experiments demonstrate that our approaches significantly improve the
robustness of the surrogate models without compromising emulation accuracy.
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1 INTRODUCTION

In science and engineering, many computational models
with high complexity have been used to simulate physical
or biological processes, perform forecasting, and help with
decision-making. Examples include global climate models
developed in earth system science to predict future climate
[27, 30], infectious disease models, for example, stochas-
tic HIV simulator for studying the effects of partnership
concurrency on HIV transmission [1], and stochastic and
high-dimensional simulators of physics systems based on
stochastic partial differential equation (SPDE) [20, 32].

The accuracy of a simulator is measured by how well it
reproduces empirical data, and the simulation result often
comes with an assessment of uncertainty. Frequently in
practice, the input to the simulator containsmany parame-
ters, which are not given precisely. The randomness in the
input causes variation in the output. It is thus desirable to
quantify the amount of output uncertainty, for example,
by providing a prediction interval (PI), and even more
comprehensively, to specify a probability density function
(PDF) for the output.

The most straightforward approach to quantifying
uncertainty is to perform Monte Carlo (MC) simulations
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[24]. Specifically, random samples of the input parameters
are drawn from the vicinity of a given configuration, and
simulation is repeated at each input sample. The collec-
tion of simulation results is used for uncertainty analysis,
for example, estimating the distribution of the output.
The sample size needed for MC to converge can be large,
while each round of simulation is often computationally
costly. The compounding effect of the two factors may
make the MC simulation computationally infeasible. To
overcome this hurdle, researchers often adopt a surrogate
model, which emulates the original simulator but gener-
ates results much faster. In the literature, several different
types of surrogate models have been proposed, including
Gaussian Process (GP) [5, 6], Polynomial Chaos Expan-
sion (PCE) [25, 33, 34], and Deep Neural Network (DNN)
[13, 20, 32, 38]. Among those models, DNN is attract-
ing growing attention for several reasons. First, DNN
can effectively handle the high dimensional input usu-
ally encountered in modern applications. Second, DNN
often yields state-of-the-art accuracy in terms of approx-
imating the simulators. At last, with the rapid advance of
computer hardware and optimization techniques, such
as Adam [18], the time to train a DNN has been reduced
significantly.

It is known in image analysis and computer vision that
perturbation on the data along some directions can quickly
flip the classification by a DNN, even when the human
eye cannot notice any change [16]. This issue has inspired
research on the topic of attacks and defenses for DNN
[36, 37], for example, to mention just a few, Generative
Adversarial Network (GAN) [3, 11, 15] and Adversarial
Autoencoder (AAE) [2, 14, 21].

Does the high sensitivity of DNN to small input
changes in some directions significantly impact the uncer-
tainty quantification (UQ) of the predictions of surrogate
models? After all, inputs to surrogate models are different
from images. In this paper, we answer this question by
comparing density functions and by hypothesis testing.We
also explore whether typical MC simulations are adequate
for detecting directional sensitivity. Our study confirms
the concern that the emulation error of DNN can increase
sharply at a slight change in input depending on the direc-
tion of the change and to further complicate the issue,
such errors are not easy to unveil through standard MC
sampling. These findings call the attention of researchers
using surrogate models to an overlooked yet important
issue and shed light on the best practice for emulating
simulators. Furthermore, we propose a computationally
efficient adversarial training method and demonstrate
that a DNN trained by this method achieves much better
consistency in performance without losing average accu-
racy. Because the newmethod employs a revised objective
function applicable to any DNN architecture, it can serve

as a general framework for developing robust surrogate
models.

We refer to the survey [29] for a thorough review
of adversarial learning. Based on the information avail-
able to the adversary, adversarial attacks fall into three
types: white-box, gray-box, and black-box attacks [29]. In
white-box attacks, the adversary has full access to the tar-
get model, for example, model architecture, the training
algorithm, and the gradients of the prediction function.
Such attacks often achieve remarkable degradation in per-
formance [7]. In gray-box attacks, an extra training process
is evoked, during which the target model is accessible.
After that training step, the adversary generates adversar-
ial exampleswithout querying the targetmodel [35]. In the
most challenging case of black-box attacks, without any
knowledge about the targetmodel, the adversary only uses
information about the settings or past inputs to identify the
vulnerability [8]. On the other hand, we can also catego-
rize adversarial attacks into targeted versus non-targeted
attacks [29]. Targeted attacks attempt tomislead themodel
to a particular wrong label or direction, while non-targeted
attacks aim at causing incorrect prediction.

The rest of the paper is organized as follows: In
Section 2, we present an approach to improving the robust-
ness of the DNN surrogate model using adversarial learn-
ing. In Section 3, we describe the study on the sensitivity of
the DNN surrogate model to perturbation directions and
provide experimental results on the performance of our
proposedmethod in terms of both prediction accuracy and
UQ. Finally, we conclude in Section 4.

2 ENHANCE DNN SURROGATE
MODELS BY ADVERSARIAL
TRAINING

Consider a computational model, referred to as a simula-
tor, that characterizes a natural process.We generally view
the model as a function F ∶ 𝒳 → 𝒴 , where the input x ∈
𝒳 can contain a variety of quantities, for example, mate-
rial properties, boundary conditions, and initial condi-
tions. The function F is usually so complex that it requires
numerical solutions for sophisticated mathematical sys-
tems, for example, PDEs. We call the calculation of F(x)
querying the simulator. Given the distribution of input x,
in UQ, we aim at obtaining some statistics about the out-
put F(x), such asmeanE[F(x)] and varianceVar[F(x)], or a
more comprehensive description, such as the PDF of F(x).
As discussed previously, it is computationally intensive or
even infeasible to conduct MC simulations via the original
simulator. A fast surrogate model, denoted by ̂F, is used to
approximate F. The performance of the surrogate model is
measured by the closeness of its solution to the simulator’s,
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which we call emulation accuracy. We will study the per-
formance of DNN as a surrogate model, in particular, the
directional sensitivity of the emulation accuracy.

2.1 Identify adversarial directions

Since our purpose is to build a robust DNN surrogate
model that can avoid drastic accuracy losswith a small per-
turbation in the input, in the terminology of adversarial
learning, the “attacks” belong to thewhite-box type, that is,
themodel is always available when generating a perturbed
input. We face the case of non-targeted white-box attacks
in a figurative sense. Let ̂F be the trained DNN prediction
function and x be the input. Finding the most vulnerable
perturbation that changes the prediction is equivalent to
generating an adversarial example x′ = x + 𝛿 by adding a
perturbation 𝛿 optimized by the following problem:

argmin
𝛿

{||𝛿|| ∶ ̂F(x + 𝛿) ≠ ̂F(x)}. (1)

There are several approaches to the above optimiza-
tion problem, the most popular being Fast Gradient Sign
Method (FGSM) [16]. FGSM calculates the gradient of
the loss function J with respect to the DNN and creates
adversarial examples using the following equation:

x′ = x + 𝜀 ⋅ sign [∇xJ(𝜃, x, y)] , (2)

where 𝜀 is the magnitude of the perturbation, 𝜃 contains
model parameters, and y is the true output. FGSM has sev-
eral variants, for example, the Target Class Method and
the Basic Iterative Method [19]. However, Cheng et al. [9]
argue that the sign alone may not produce perturbations
most effectively. The reason is that the sign only spec-
ifies gradients in terms of {0, 1,−1} and a perturbation
generated based on the sign can differ considerably from
the gradient (the fastest-changing direction). Hence they
proposed the Fast Gradient Non-sign Method (FGNM):

x′ = x + 𝜀 ⋅
||sign [∇xJ(𝜃, x, y)] ||

||∇xJ(𝜃, x, y)||
⋅ ∇xJ(𝜃, x, y), (3)

where the perturbation has the same norm as FGSM but
follows exactly the direction of the gradient. In our exper-
iments, we use both FGSM and FGNM to generate adver-
sarial samples for the DNN surrogate model and evaluate
accuracy on these samples. For commonly used DNN sur-
rogate models, we find that both methods generate adver-
sarial samples with a strong effect on model accuracy.
Details are in Section 3. Even though DNN surrogate mod-
els perform well on average with randomly drawn input

samples, they are susceptible to small changes in some
directions.

2.2 Adversarial training

To enhance robustness against adversarial samples, a
widely used approach is to add adversarial examples into
the training data, known as adversarial training [31]. The
addition of adversarial samples is either literal [19] or indi-
rectly done by training with a modified loss function [16].
We adopt the second approach because it is time consum-
ing to generate the adversarial samples—we must query
the original simulator with perturbed x′ to obtain the out-
put y. In particular, we propose the following adversarial
loss function:

̃J(𝜃, x, y) = 𝛼J(𝜃, x, y) + (1 − 𝛼)J(𝜃, x + 𝛿(x), y), (4)

where 𝛿(x) is the perturbation generated by the white-box
adversarial attack methods FGSM or FGNM, 𝛼 is the
weight of the original loss (we set it to 0.8 in our experi-
ments). The second term in the adversarial loss function
imposes smoothness on the DNN. The rationale for (4) is
that with a small amount of perturbation, the new out-
put F(x + 𝛿(x)) should not move far away from the orig-
inal output y, providing protection for the model under
adversarial attacks. We explicitly show the dependence of
𝛿(x) on x to emphasize that it is not a single direction.
Instead, 𝛿(x) is set along the most sensitive direction at
every x. In other words, the use of 𝛿(x) in (4) does not
imply we seek robustness only along one direction given
by 𝛿(x). Also note that since 𝛿(x) depends on the gradi-
ent of the trained DNN, it is updated iteratively as part of
the optimization. Consequently, 𝛿(x) computed from the
final DNN based on the loss (4) is different from 𝛿(x) based
on the DNN without adversarial training. To evaluate the
robustness of the final DNN, we will use the most sensi-
tive perturbation directions of this DNN in addition to the
most sensitive directions of the DNN without adversarial
training.

3 EXPERIMENTS

In this section, we use hypothesis testing to verify that
the DNN surrogate models trained with the original loss
are susceptible to changes in certain directions. More-
over, we demonstrate that the DNN surrogate models
trained with the modified loss can yield higher accu-
racy on both the original test data and the adversarially
perturbed data.
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3.1 Problem setting

We consider the benchmark elliptic partial differential
equations (PDEs) on the 2-d unit square domain in
Equation (5), which is called the Mindlin–Reissner (RM)
plate model [23, 28]. We follow the parameter settings in
Luo and Kareem [20]. Let Ω be a smooth domain, C a
positive definite tensor, and 𝜀 a linear green strain ten-
sor. Use 𝜽 =

[
𝜃x, 𝜃y

]
to record the rotations of the surface

and𝜔 to specify the transverse displacement in z-direction.
Parameter 𝛾 is the scaled shear stresses; f is the applied
scaled transversal load; and 𝜆 = E𝜅

2(1+v)
is the shear mod-

ulus, where E is Young’s modulus, v = 0.3 is the Poisson
ratio, and 𝜅 = 5

6
is the shear correction factor. In short,

Equation (5) is a systemof second order PDEs that describe
a clamped plate bent by a transverse force.

− divC𝜀(𝜽) − 𝛾 = 0 in Ω
− div𝛾 = f in Ω (5)

− 𝜆t−2(∇𝜔 − 𝜃) = 𝛾 in Ω
𝜽 = 0, 𝜔 = 0 in 𝜕Ω

Here the unknown input is the material field, that is,
Young’s modulus E ∈ R

64×64, which is modeled as a log
normal random field:

logE(s) ∼ GP
(
m(s), k

(
s, s′

))
,

wherem(s) and k
(
s, s′

)
are the mean and covariance func-

tions of the GP. Based on the settings of Luo and Kareem
[20], the mean function is zero and the exponential kernel
is adopted as the covariance function:

k
(
s, s′

)
= 𝜎

2 exp

(

−
(
s − s′

)2

2l2

)

,

where the correlation length l = 0.5. In this paper, we
study two datasets generated from the Mindlin–Reissner
(RM) platemodel, where the inputs are both Young’smod-
ulus E and the outputs are two different fields: displace-
ment field D ∈ R

64×64 and stress field S ∈ R
64×64×3. The

displacement field dataset is denoted by D, and the stress
field dataset is S. The PDE simulator is solved by the finite
element method (FEM) [17].

For each dataset, we generate 2024 samples in total
and put aside 1000 samples for testing. Following Luo and
Kareem [20], forD, we use a surrogate DNN, specifically a
convolutional neural network (CNN) containing 21 layers,
while for S, we use a 25-layer CNN. The prediction task
for both datasets is regression, so the mean squared error
(MSE) is used as the loss J. L2 penalty,Mini-batch [10], and
Adam optimizer [18] are used for training.

3.2 Performance in regression

We now evaluate the regression performance of DNN sur-
rogate models trained respectively with the original loss
and the adversarial loss on the above two datasets. Denote
the DNN surrogate model trained with the original loss
(including L2 penalty) J(𝜃, x, y) + 𝜆||𝜃||22 by DNNori, while
the one with the adversarial loss ̃J(𝜃, x, y) + 𝜆||𝜃||22 by
DNNadv. We remind that the perturbation used in ̃J is
generated by FGNM (Equation (3)) with 𝜀 = 0.1. On each
dataset, the two models are evaluated on three types of
test data:

1 Original test data denoted by Dtest and Stest.
2 Test data perturbed using the adversarial directions of
DNNori, denoted by DPori and SPori.

3 Test data perturbed using the adversarial directions of
DNNadv, denoted by DPadv and SPadv.

The adversarial directions of any trained DNN are
computed by FGNM and FGSM (Equation (2)), and the
amount of perturbation is specified by 𝜀. Althoughwe only
present results at 𝜀 = 0.1, we also experimented with dif-
ferent values of 𝜀, for example, 0.01 and 1, and obtained
similar results. For any perturbed input point, we com-
pute the corresponding “ground-truth” output using the
PDE simulator (Equation (5)). Table 1 shows the regres-
sion results in terms of MSE. We can see that the accu-
racy of DNNori is highly sensitive to the perturbation
direction. When we use the adversarial direction com-
puted by FGNM for both datasets, compared with the
non-perturbed data, the MSE of DNNori increases by
nearly one order of magnitude or more. When FGSM is
used to generate the adversarial directions, the increase

TABLE 1 Regression performance in MSE achieved by
DNNori and DNNadv on datasetsD and S

FGNM-DPori FGNM-DPadv

Dtest (FGSM-DPori) (FGSM-DPadv)

DNNori 112.125 1806.347 104.831

(1012.510) (112.322)

DNNadv 110.107 101.083 115.275

(101.404) (127.438)

FGNM-SPori FGNM-SPadv

Stest (FGSM-SPori) (FGSM-SPadv)

DNNori 855.567 7812.958 844.360

(4372.825) (899.756)

DNNadv 728.513 835.686 803.132

(825.421) (855.130)
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in MSE is not as dramatic as with FGNM, but still more
than five times that of the original data. However, if the
perturbation is not targeted at the adversarial directions of
DNNori, specifically, if the adversarial directions ofDNNadv
are used instead, the accuracy of DNNori is close to that
obtained on the original data. In contrast, the accuracy
of DNNadv is much more stable across the original data,
data perturbed in its adversarial directions, or the adver-
sarial directions of DNNori. For both datasets, the worst
MSE of DNNadv occurs with perturbation in the adversar-
ial direction computed by FGSM, but the increase in MSE
compared with that of the original data is below 18%. It is
also interesting that the MSE values achieved by DNNadv
for both original datasets are lower than those by DNNori,

indicating that with much-enhanced robustness, the aver-
age accuracy of DNNadv is not compromised but improved.

The squared errors (SE) on the original test data and the
test data perturbed byFGNMare visualized in the heatmap
plots in Figure 1. The horizontal and vertical axes of the
plots correspond to the two dominant coordinates com-
puted by linear discriminant analysis (LDA) dimension
reduction [4]. To apply LDA, we divide the samples into
three classes according to their SE values. The SE values
are indicated by color. We see that for both datasets, com-
pared with the performance on the original data, DNNori
yields much higher SE on the data perturbed in the adver-
sarial direction calculated from the network itself. For
the data perturbed in the adversarial direction calculated

F IGURE 1 SE
heatmap plots obtained by
DNNori and DNNadv on
datasetD and S. The
horizontal and vertical
coordinates are determined
by LDA-based dimension
reduction. Plots (A)-(F) are
forD and (G)-(L) are for S.
(A) and (G): DNNori on the
original test data. (B) and (H):
DNNori on test data perturbed
by FGNM based on DNNori.
(C) and (I): DNNori on test
data perturbed by FGNM
based on DNNadv. (D) and (J):
DNNadv on the original test
data. (E) and (K): DNNadv on
test data perturbed by FGNM
based on DNNori. (F) and (L):
DNNadv on test data
perturbed by FGNM based on
DNNadv.
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300 ZHANG and LI

fromDNNadv, DNNori performs similarly as with the origi-
nal data. In contrast, DNNadv achieves consistent accuracy
on all the test data, regardless of whether the data are
perturbed or in which direction they are perturbed.

3.3 Effects of adversarial directions

To demonstrate that the accuracy of DNNori is highly sen-
sitive to perturbation directions but standardMC sampling
can hardly detect such sensitivity, we conduct the follow-
ing experiment. We randomly draw 50 sample points from
the 1000 test data. For each point, we generate 100 ran-
domly perturbed points by adding Gaussian noise with
a mean of 0 and the same norm as the FGNM pertur-
bation. The Gaussian noise ensures that the perturbation
direction is uniformly random across all possible direc-
tions. For every perturbed data point, we compute the
SE achieved by DNNori and then fit a 1-D density plot of
log(SE) using the results for the 5000 points. Specifically,
the kernel density estimation (KDE) [12, 26] is used. We
obtain results at three levels of 𝜀 for datasets D and S,
respectively. The perturbed versions of the datasetD at 𝜀 =
𝜀i (0.01,0.1,1) are denoted by D

𝜀=𝜀i , and similar notations
are used for those of S. Denote by frand

(
⋅|D

𝜀=𝜀i
)
the fitted

density based on randomly perturbed D
𝜀=𝜀i . Likewise, we

have frand
(
⋅|S

𝜀=𝜀i
)
. For comparison, we also fit two density

functions for log(SE ) based on the 50 samples perturbed at
the same 𝜀 in the adversarial directions given respectively
by FGNM and FGSM. Denote these density functions by
fFGNM

(
⋅|D

𝜀=𝜀i
)
and fFGSM

(
⋅|D

𝜀=𝜀i
)
.

Figure 2 shows the fitted density functions for
every D

𝜀=𝜀i and S
𝜀=𝜀i . We see that fFGNM (⋅|D

𝜀=0.01) and
fFGSM (⋅|D

𝜀=0.01) overlap substantially with frand (⋅|D𝜀=0.01)
although the average log(SE ) for either of the former
two densities is higher than that of the latter (similar
results for S

𝜀=0.01). At larger values of 𝜀, that is, 0.1 or
1, fFGNM

(
⋅|D

𝜀=𝜀i
)
and fFGSM

(
⋅|D

𝜀=𝜀i
)
locate mostly to the

right of frand
(
⋅|D

𝜀=𝜀i
)
. The average of log(SE ) is signifi-

cantly larger than the maximum value obtained from the
samples perturbed in a randomdirection. This observation
shows that evaluations based on the standardMC samples
can grossly underestimate the error of the surrogate model
in some directions. Techniques in adversarial learning are
crucial for revealing this issue.

Next, we conduct hypothesis testing to investigate
whether the performance of DNNori is significantly worse
in the adversarial directions compared with a random
direction. We generate another test dataset by adding
Gaussian noise (zero mean and the same norm as the

F IGURE 2 Density plots of log(SE ) obtained by DNNori using MC samples generated by perturbing 50 sample points. The value of 𝜀
determines the amount of perturbation. In each plot, the red and green lines correspond to the fitted density functions based on the 50
random samples perturbed in the adversarial directions given by FGNM and FGSM, respectively, while the blue line corresponds to the
density based on the 50 samples perturbed in 100 randomly directions. (A–C): DatasetD, 𝜀 = 0.01,0.1,1. (D–F): Dataset S, 𝜀 = 0.01,0.1,1.

 19321872, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sam

.11610 by Pennsylvania State U
niversity, W

iley O
nline Library on [01/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



ZHANG and LI 301

TABLE 2 p-values of hypothesis testing on different
magnitude of the perturbation.

D𝜺=0.01 D𝜺=0.1 D𝜺=1 S𝜺=0.01 S𝜺=0.1 S𝜺=1

DNNori 0.000 0.000 0.000 0.000 0.000 0.000

DNNadv 0.152 0.000 0.000 0.107 0.353 1.000

FGNM perturbation) to the 1000 test points. We calcu-
late the MSE obtained by DNNori on these randomly per-
turbed data and compare the result with that obtained
from data perturbed in the adversarial directions. We
apply FGNM instead of FGSM to determine the adver-
sarial directions because the former has induced more
increase in MSE according to Table 1. Without making
parametric assumptions about the distributions of MSE,
we use the Mann–Whitney U test [22] (a non-parametric
rank test) to test whether DNNori performs equally well
on the randomly perturbed data and the data perturbed
in adversarial directions. The alternative hypothesis is that
DNNori yields a higher MSE on data perturbed in the
adversarial directions. We perform the test on perturbed
data generated at 𝜀 = 0.01,0.1,1 respectively. From Table 2,
we see that all the six tests on DNNori yield p-values
lower than 0.001. Thus, at a significance level of 0.05,
the null hypothesis of every test is rejected. We conclude
that DNNori yields significantly worse MSE for data per-
turbed in the adversarial directions than data perturbed in
random directions.

We conduct the same hypothesis tests on DNNadv to
see whether its accuracy changes significantly depending
on the direction of perturbation. The adversarial direc-
tions are generated by FGSM instead of FGNM because
the former results in a higher MSE for DNNadv according
to Table 1. Table 2 shows that for dataset D, we cannot
reject the null hypothesis at the significance level 𝛼 = 0.05
when 𝜀 = 0.01. But there is a significant difference when
𝜀 is larger. For dataset S, all three tests have p-values
greater than 0.05, which indicates that the MSE achieved
by DNNadv has no significant difference between adversar-
ial directions and randomly selected directions. Compared
with DNNori, DNNadv is more robust to perturbation in
adversarial directions.

3.4 Performance in uncertainty
quantification

Depending on the application, wemay be interested in dif-
ferent kinds of UQ. We consider two practices here. First,
treating the input as random variables, we regard the out-
put variables as random. Statistics of each output variable,
often, its first and second-order moments are computed.

These statistics inform us of the expected value and the
expected amount of variation at the output when the input
is sampled from a given distribution.We anticipate that an
accurate surrogate model will produce similar UQ statis-
tics as the original simulator. We hereby calculate the first
and second-order moments of each output variable using
the PDE simulator, DNNori, and DNNadv. For both D and
S, the two surrogate models are evaluated on three types
of test data (𝜀 is set to 0.1):

1 Original test data denoted by Dtest and Stest.
2 Test data perturbed using random directions, denoted
by DPrand and SPrand.

3 Test data perturbed using the adversarial directions
of the corresponding model, denoted by DPfg and
SPfg. Specifically, for DNNori, FGNM is used to decide
the adversarial direction, and for DNNadv, FGSM is
used. For clarity of the presentation, we only report
results obtained by FGNM perturbation for DNNori
because the experiments show that the drop in accu-
racy by FGSM perturbation is less severe. For DNNadv,
the opposite is true—FGSM perturbation causes more
degradation in accuracy. Since we are examining the
robustness of these networks, we present the results for
the case of the stronger adversarial effect.

As the output for the two datasets is either a 2D or
3D array, we obtain an array of the first- or second-order
moments for any model. Denote the array of a moment

TABLE 3 Uncertainty Quantification by the first and
second-order moment of every output variable. Relative errors
(REs) are listed to measure the difference between a surrogate
model and the simulator.

Dtest DPrand DPfg

1st Moment 1st Moment 1st Moment

(2ndMoment) (2ndMoment) (2nd Moment)

DNNori 0.001 0.001 0.004

(0.001) (0.001) (0.007)

DNNadv 0.000 0.000 0.000

(0.001) (0.001) (0.001)

Stest SPrand SPfg

1st Moment 1st Moment 1st Moment

(2ndMoment) (2ndMoment) (2nd Moment)

DNNori 0.001 0.001 0.009

(0.001) (0.001) (0.009)

DNNadv 0.001 0.001 0.001

(0.001) (0.001) (0.001)
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302 ZHANG and LI

F IGURE 3 Density
plots of SE between the
outputs of the original data
and perturbed data obtained
from two datasetsD and S.
In each plot, the blue line
shows the density of SE
when the simulator is used,
while the red line shows the
density when DNNori or
DNNadv is used. The mean
SE of each distribution is
given in the plots. These plots
are obtained by different
choices of datasets, ways of
perturbing the input, and the
surrogate model used. Plots
in the left column (A, C, E,
G) are forD and those in the
right column (B, D, F, H) are
for S. (A) and (B): Data
perturbed in random
directions, comparison
between the simulator and
DNNori. (C) and (D): Data
perturbed in the adversarial
directions, comparison
between the simulator and
DNNori. (E) and (F): Data
perturbed in random
directions, comparison
between the simulator and
DNNadv. (G) and (H): Data
perturbed in the adversarial
directions, comparison
between the simulator and
DNNadv.

obtained by the simulator bymsim and that by a DNN sur-
rogate model by mDNN. The overall disparity in the first-
or second-ordermoment between the surrogatemodel and

the simulator is measured by the relative error (RE):

 = ||mDNN −msim||F∕||msim||F ,
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where || ⋅ ||F denotes the Frobenius norm. Results are
provided in Table 3. We see that DNNadv outperforms
DNNori, as shown by smaller RE values across all datasets.
Moreover, for data perturbed in the adversarial direc-
tions, the RE obtained by DNNori increases sharply
while that by DNNadv stays the same as with randomly
perturbed data.

Secondly, we consider the uncertainty caused by
imprecise input. A natural question is how much the out-
put would change when the input deviates from the truth
to a certain extent. To estimate the variation, outputs at
perturbed inputs are computed by the simulator. The SE
between the outputs with or without input perturbation is
then calculated. We can also fit a density for the SE values
based on many perturbed inputs. For the sake of UQ, we
would like to have a surrogatemodel that generates similar
distributions of SE. For both datasetsD and S, we evaluate
DNNori and DNNadv by calculating SE values in two cases
(𝜀 is set to 0.1):

1 Between the outputs of any original input and a ran-
domly perturbed input.

2 Between the outputs of any original input and its per-
turbation in the adversarial direction.

Figure 3 shows comparisons of the distributions of SE
between each surrogate model and the simulator. We see
that regardless of whether the direction of perturbation is
random or adversarial, the distributions of SE differ signif-
icantly between DNNori and the simulator, while DNNadv
has yielded more similar density functions as the simu-
lator. For DNNori versus the simulator, even the support
ranges of the distributions barely overlap. For D, DNNadv
yields distributions similar in both shape and the range of
support to those by the simulator. In summary, for both
tasks of UQ, DNNadv outperforms DNNori.

4 CONCLUSIONS

In this paper, we raise awareness of a significant draw-
back of DNN surrogate models—the emulation accuracy
can drop significantly when the input is perturbed slightly
in a direction determined by the gradient of the network.
This trait of DNNs has motivated active research on adver-
sarial training but has not attracted due attention from
researchers using surrogate models. We demonstrate the
severity of this problem using hypothesis testing. We also
show that this problem is not easily detectable based on
standard MC sampling. By exploiting techniques in adver-
sarial training, we have developed an approach to improve
the robustness of DNN surrogate models. Experiments
show that the DNNs trained by the new method perform

substantially better with adversarial samples in terms of
both emulation accuracy and UQ. Furthermore, the new
method achieves slightly better average emulation accu-
racy.
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