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Robust Max Entrywise Error Bounds for Tensor

Estimation From Sparse Observations via

Similarity-Based Collaborative Filtering
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AbstractÐ Consider the task of estimating a 3-order n×n×n

tensor from noisy observations of randomly chosen entries in
the sparse regime. We introduce a similarity based collaborative
filtering algorithm for estimating a tensor from sparse observa-
tions and argue that it achieves sample complexity that nearly
matches the conjectured computationally efficient lower bound
on the sample complexity for the setting of low-rank tensors.
Our algorithm uses the matrix obtained from the flattened tensor
to compute similarity, and estimates the tensor entries using a
nearest neighbor estimator. We prove that the algorithm recovers
a finite rank tensor with maximum entry-wise error (MEE) and
mean-squared-error (MSE) decaying to 0 as long as each entry

is observed independently with probability p = Ω(n−3/2+κ)
for any arbitrarily small κ > 0. More generally, we establish
robustness of the estimator, showing that when arbitrary noise
bounded by ε ≥ 0 is added to each observation, the estimation
error with respect to MEE and MSE degrades by poly(ε).
Consequently, even if the tensor may not have finite rank but can
be approximated within ε ≥ 0 by a finite rank tensor, then the
estimation error converges to poly(ε). Our analysis sheds insight
into the conjectured sample complexity lower bound, showing
that it matches the connectivity threshold of the graph used by
our algorithm for estimating similarity between coordinates.

Index TermsÐ Sparse observations, tensor estimation, max
entrywise error bounds, low rank models, latent variable models,
collaborative filtering, nearest neighbor estimator.

I. INTRODUCTION

T
ENSOR estimation involves the task of predicting under-

lying structure in a high-dimensional tensor structured

dataset given only a sparse subset of observations. We call

this ªtensor estimationº rather than the conventional ªtensor

completionº as the goal is not only to fill missing entries

but also to estimate entries whose noisy observations are
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available. Whereas matrices represent data associated to two

modes, rows and columns, tensors represent data associated

to general d modes. For example, a datapoint collected from

a user-product interaction an e-commerce platform may be

associated to a user, product, and date/time, which could be

represented in a 3-order tensor where the three modes would

correspond to users, products, and date/time. Image data is

also naturally represented in a 3-order tensor format, with

two modes representing the location of the pixel, and the

third mode representing the RGB color components. Video

data furthermore introduces a fourth mode indexing the time.

Dynamic network data can also be represented in a tensor with

one mode indexing the time and the other two modes indexing

the nodes in the network.

There are many applications in which the dataset inherently

has a lot of noise or is very sparsely observed. For example,

e-commerce data is typically very sparse as the typical number

of products a user interacts with is very small relative to the

entire product catalog; furthermore the timepoints at which

the user interacts with the platform may be sparse. When

the dataset can be represented as a matrix, equivalent to a

2-order tensor, there has been a significant amount of research

in designing practical algorithms and studying statistical limits

for matrix estimation, a critical step in data pre-processing.

Under conditions on uniform sampling and incoherence, the

minimum sample complexity for estimation has been tightly

characterized and achieved by simple algorithms. It is a

natural and relevant question then to consider whether the

techniques developed can extend to higher order tensors as

well.

The previous literature has primarily focused on attaining

consistency with respect to the mean squared error (MSE).

Unfortunately as this is aggregated over the error in the full

tensor, it does not translate to consistent bounds on entrywise

error, as the error on a single entry could be very large despite

the MSE being small due to averaging over many entries.

However, entrywise bounds are important in practice as the

results of tensor estimation are often used subsequently for

decisions that involve comparisons between the estimates of

individual entries.

In this work we focus on attaining consistent max entry-

wise error bounds by extending similarity based collaborative

filtering algorithms to tensor estimation. Similarity based

collaborative filtering is widely used in industry due to its

simplicity, interpretability, and amenability to distributed and

parallelized implementations. In the analysis of our proposed
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algorithm we show that it achieves a sample complexity that

nearly matches a conjectured lower bound for computationally

efficient algorithms. Perhaps most notably, our theoretical

guarantees provide high probability bounds on the maximum

entrywise error of the estimate, which is significantly stronger

than the typical mean squared error style bounds found in the

literature for other algorithms. We also provide error bounds

under arbitrary bounded noise, which has implications towards

approximately low rank settings.

A. Related Literature

Algorithms for analyzing sparse low rank matrices (equiv-

alent to 2-order tensors) where the observations are sampled

uniformly randomly have been well-studied. The algorithms

consist of spectral decomposition or matrix factorization [1],

[2], [3], nuclear norm minimization [4], [5], [6], [7], [8],

[9], gradient descent [1], [2], [10], [11], [12], alternating

minimization [13], [14], and nearest neighbor style collabo-

rative filtering [15], [16], [17], [18], [19]. These algorithms

have been shown to be provably consistent as long as the

number of observations is Ω(rn poly(log n)) for the noiseless

setting where r is the rank and n is the number of rows

and columns [1], [4]; similar results have been attained under

additive Gaussian noise [2], [5] and generic bounded noise [3],

[18]. Lower bounds show that Ω(rn) samples are necessary

for consistent estimation, and Ω(rn log(n)) samples are nec-

essary for exact recovery [5], [6], implying that the proposed

algorithms are nearly sample efficient order-wise up to the

information theoretic lower bounds.

There are results extending matrix estimation algorithms

to higher order tensor estimation, assuming the tensor is

low rank and that observations are sampled uniformly at

random. The earliest approaches simply flatten or unfold

the tensor to a matrix and subsequently apply matrix esti-

mation algorithms [20], [21], [22], [23]. A d-order tensor

where each dimension is length n would be unfolded to

a n⌊d/2⌋ × n⌈d/2⌉ matrix, resulting in a sample complexity

of O(n⌈d/2⌉ poly(log n)), significantly larger than the natural

statistical lower bound that is linear with n due to the model

being parameterized by linear in n latent variables. When d is

odd, for example d = 3 the sample complexity for this naive

approach scales as O(n2 poly(log n)).
Subsequent works have improved upon this sample com-

plexity, requiring only Ω(n3/2 poly(log n)) observed entries

for a 3-order tensor [24], [25], [26], [27], [28], [29], [30], [31].

References [24] and [25] analyzes the alternating minimization

algorithm for exact recovery of the tensor given noiseless

observations and finite rank r = Θ(1). References [27]

and [28] use the sum of squares (SOS) method, and [29]

introduces a spectral method. Both of these latter algorithms

can handle noisy observations and overcomplete tensors where

the rank is larger than the dimension. References [30] and

[31] furthermore characterize the minimax optimal rate for

the MSE and achieve it using spectral initialization followed

by power iteration. For a general d-order tensor these results

translate into a sample complexity scaling as O(nd/2), improv-

ing upon O(n⌈d/2⌉. Reference [32] prove that tensor nuclear

norm minimization can recover the underlying low-rank d-

order tensor with O(n3/2 poly(log n)) samples in the noiseless

setting; however, the algorithm is not efficiently computable

as computing tensor nuclear norm is NP-hard [33].

Reference [27] conjecture that any polynomial time esti-

mator for a 3-order tensor must require Ω(n3/2) samples,

based on a reduction between tensor estimation for a rank-1

tensor to the random 3-XOR distinguishability problem. They

argue that if using the sum of squares hierarchy to construct

relaxations for tensor rank, any result that achieves a con-

sistent estimator with fewer than n3/2 samples will violate

a conjectured hardness of random 3-XOR distinguishability.

Information theoretic bounds imply that one needs at least

Ω(drn) observations to recover a d-order rank r tensor, con-

sistent with the degrees of freedom or number of parameters

in the model. Interestingly, this implies a conjectured gap

between the computational and statistically achievable sample

complexities, highlighting how tensor estimation is distinctly

more difficult than matrix estimation.

The majority of the results in tensor estimation provide

bounds on the mean squared error, which aggregates errors

across entries. In contrast our results will also provide bounds

on the maximum entrywise error. There has been recent

interest on developing matrix estimation methods that pro-

vide max entrywise bounds using a leave one out analysis,

cf. [34], [35], [36], [37], [38], [39]. Subseqeuntly [40], [41]

extended the leave one out analysis to the tensor setting to

obtain entrywise error bounds for a gradient descent algorithm

with spectral initialization. The analysis and algorithm in our

paper is significantly different than their work, as it results

from showing high probability guarantees on the similarity

computation, which is akin to a spectral algorithm, followed

by a nearest neighbor analysis. Our results suggests that a

combination of spectral analysis and nearest neighbor smooth-

ing can achieve entrywise consistent estimates without further

gradient descent refinements. As nearest neighbor methods are

still widely used in industry, understanding their theoretical

performance is of interest.

B. Contribution

Our results answer the following unresolved questions in

the literature.

1. Is there a computationally efficient estimator that can

provide a consistent estimation of low-rank tensor with

respect to maximum entry-wise error (MEE) with min-

imal sample complexity of Ω(n
3
2 ) in the presence of

noise?

2. Is there an extension of matrix estimation collaborative

filtering algorithm for the setting of tensor estimation

that can provide consistent estimation with such minimal

sample complexity?

3. Can the estimator be robust to adversarial bounded noise

in the observations?

To begin with, we propose an algorithm for a symmetric

3-order tensor estimation which generalizes a nearest neighbor

collaborative filtering algorithm for sparse matrix estimation

introduced in [18]. Naïvely applying the matrix estimation
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algorithm in [18] to the n× n2 matrix obtained by unfolding

the 3-order tensor would require Ω(n2) samples, far more than

the desired sample complexity of Ω(n
3
2 ). However, we argue

that such a matrix obtained from the unfolded tensor can be

used, after non-trivial modification, to compute the similarities

between rows accurately using Ω(n
3
2+κ) samples for any

positive κ > 0. After computing these similarities we can

achieve consistent estimation via a nearest neighbor estimator

by additionally using the tensor structure.

Specifically, we establish that the mean squared error (MSE)

in the estimation converges to 0 as long as Ω(n3/2+κ) random

samples are observed for any κ > 0 for tensor with rank

r = Θ(1). We further establish a stronger guarantee that the

maximum entry-wise error (MEE) converge to 0 with high

probability with similar sample complexity of Ω(n3/2+κ).
Thus, this simple iterative collaborative filtering algorithm

nearly achieves the conjectured computational sample com-

plexity lower bound of Ω(n3/2) for tensor estimation. While

we present the results for symmetric tensors, our method and

analysis can extend to asymmetric tensors, which we discuss

in Section V-D.

Beyond low-rank tensors, our results hold for tensors with

potentially countably infinite rank as long as they can be well

approximated by a low-rank tensor. Specifically, if the tensor

can be approximated with ε ≥ 0 with respect to max-norm by

a rank r = Θ(1) tensor, then the MSE converges to poly(ε)
and MEE converges to poly(ε) with high probability as long

as Ω(n3/2+κ) random samples are observed for any κ > 0.

This follows as a consequence of the robustness property of

the algorithm that we establish: if arbitrary noise bounded by

ε ≥ 0 is added to each observation, then the estimation error

with respect to MEE and MSE degrades by poly(ε).
To establish our results, the key analytic tool is utilizing

certain concentration properties of a bilinear form arising from

the local neighborhood expansion of any given coordinate for

an asymmetric matrix with dimensions n×n2. This generalizes

the analysis of a similar property for symmetric matrices in

the prior work of [18]. Specifically, establishing the desired

concentration requires handling dependencies arising in the

local neighborhood expansion of the 3-order tensor that was

absent in the matrix setting considered in [18]. Subsequently,

we require a novel analytic method compared to the prior

work. In particular we believe that the proof techniques in

Lemma 7.7 may be useful to other settings in which one

may desire a tighter concentration on sums of sparse random

variables. As a consequence, we also establish performance

guarantees for matrix estimation for asymmetric matrices

having dimensions of different order, generalizing beyond

of [18].

The algorithm and analysis also sheds insight on the con-

jectured lower bound for 3-order tensor. In particular, the

threshold of n3/2 is precisely the density of observations

needed for the connectivity in the associated graph that is

utilized to calculate similarities. If the graph is disconnected,

the similarities can not be computed, while if the graph is

connected, we are able to show that similarity calculations

yield an excellent estimator. Understanding this relationship

further remains an interesting open research direction.

A benefit of our algorithm is that it can be implemented

in a parallelized manner where the similarities between pair

of indices are computed in parallel. This lends itself to a

distributed, scalable implementation. A naive bound on the

computational complexity of our algorithm for 3-order tensor

is at most pn6. As discussed in Section V-D, with use of

approximate nearest neighbors, these can be further improved

and made truly implementable.1

II. PRELIMINARIES

Tensor estimation from sparse observations hinges on an

assumption that the true model exhibits low dimensional struc-

ture despite the high dimensional representation. However,

there is not a unique definition of rank in the tensor setting,

as natural generalizations of matrix rank lead to different

quantities when extended to higher order tensors. We will

focus on two commonly used definitions of tensor rank, the

CP rank and the Tucker or multilinear rank.

For a d-order tensor F ∈ R
nd , we can decompose F into a

sum of rank-1 tensors. For example if d = 3, then

F =

r
∑

k=1

uk ⊗ vk ⊗ wk,

where {uk, vk, wk}k∈[r] is a collection of length n vectors.

The CP-rank is the minimum number r such that F can be

written as a sum of r rank-1 tensors, which we refer to as

a CP-decomposition. The CP-rank may in fact be larger than

the dimension n, and furthermore the latent vectors need not

be orthogonal as is the case in the matrix setting.

An alternate notion of tensor rank is defined according to

the dimension of subspaces corresponding to each mode. Let

F(y) denote the unfolded tensor along the y-th mode, which

is a matrix of dimension n × nd−1. Let columns of F(y)

be referred to as mode y fibers of tensor F as depicted in

Figure 1. The Tucker rank, or multilinear rank, is a vector

(r1, r2, . . . rd) such that for each mode ℓ ∈ [d], rℓ is the

dimension of the column space of F(y). The Tucker rank is

also the minimal values of (r1, r2, . . . rd) such that the tensor

F can be decomposed according to a multilinear multiplication

of a core tensor Λ ∈ R
r1×r2×...rd with latent factor matrices

Q1 . . . Qd for Qℓ ∈ R
nℓ×rℓ , denoted as

F = (Q1 ⊗ · · ·Qd) · (Λ)

:=
∑

k∈[r1]×[r2]···×[rd]

Λ(k)Q1(·, k1)⊗Q2(·, k2) · · ·⊗Qd(·, kd),

(II.1)

1A weaker abbreviated version of this result appeared in [42] without any
proofs or discussion. Since the preliminary results, the convergence rates of the
error have improved, and we have new results showing a perturbation analysis
under arbitrary bounded noise, which extends our results to the approximately
low rank setting. We also present a modification of the algorithm that
significantly improves the overall computational complexity of the algorithm.
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Fig. 1. Depicting an unfolding of a 3rd order tensor along mode 1. The columns of the resulting matrix are referred to as the mode-1 fibers of the tensor.

Fig. 2. (Left) The tensor CP-rank admits a decomposition corresponding to the sum of r rank-1 tensors. (Right) The Tucker rank or multilinear rank
(r1, r2, . . . rd) admits a decomposition corresponding to a multilinear multiplication of a core tensor of dimensions (r1, r2, . . . rd) with latent factor matrices
associated to each mode.

and depicted in Figure 2. The higher order SVD (HOSVD)

specifies a unique Tucker decomposition in which the factor

matrices Q1 . . . Qd are orthonormal and correspond to the left

singular vectors of the unfolded tensor along each mode [43].

If the CP-rank is r, the Tucker-rank is bounded above by

(r, r, . . . r) by constructing a superdiagonal core tensor. If the

Tucker rank is (r1, r2, . . . rd), the CP-rank is bounded by the

number of nonzero entries in the core tensor, which is at

most r1r2 · · · rd/(maxℓ rℓ) [43]. While the latent factors of

the HOSVD are orthogonal, the latent factors corresponding

to the minimal CP-decomposition may not be orthogonal. For

simplicity of presentation, we will consider a limited setting

where there exists a decomposition of the tensor into the sum

of orthogonal rank-1 tensors. This is equivalent to enforcing

that the core tensor Λ associated to the Tucker decomposition

is superdiagonal, or equivalently enforcing that the latent fac-

tors in the minimal CP-decomposition are orthogonal. There

does not always exist such an orthogonal CP-decomposition,

however this class still includes all rank 1 tensors which

encompasses the class of instances used to construct the

hardness conjecture in [27]. Our results also extend beyond

to general tensors as well, though the presentation is simpler

in the orthogonal setting.

III. PROBLEM STATEMENT AND MODEL

Consider an n × n × n symmetric tensor F generated as

follows: For each u ∈ [n], sample θu ∼ U [0, 1] independently.

Let the true underlying tensor F be described by a Lipschitz

function f evaluated over the latent variables, F (u, v, w) =
f(θu, θv, θw) for u, v, w ∈ [n]. Without loss of generality,

we shall assume that supu,v,w∈[0,1] |f(θu, θv, θw)| ≤ 1. For

example, if the coordinates of one mode of the tensor represent

users or products in an e-commerce platform, one can view

the latent variables associated to a coordinate as the unknown

ªtypeº of the user/product, which can be thought of as sampled

i.i.d. from an underlying population distribution. The latent

function f would then describe the expected observed inter-

action between units of type θu, θv , and θw.

Let M denote the observed symmetric data tensor, and let

Ω ⊆ [n]3 denote the set of observed indices. Due to the

symmetry, it is sufficient to restrict the index set to triplets

(u, v, w) such that u ≤ v ≤ w, as the datapoint is identical

for all other permutations of the same triplet. The datapoint

at each of these distinct triplets {(u, v, w) : u ≤ v ≤ w} is

observed independently with probability p ∈ (0, 1], where we

assume the observation is corrupted by mean zero independent

additive noise terms. For (u, v, w) ∈ Ω,

M(u, v, w) = F (u, v, w) + ϵuvw, (III.1)

and for (u, v, w) /∈ Ω, M(u, v, w) = ⋆.2 We shall assume

that |M(u, v, w)| ≤ 1 with probability 1. We allow ϵuvw
to have different distributions for different distinct triplets

(u, v, w) as long as it is uniformly bounded so as to satisfy

the boundedness constraints on |M(u, v, w)| and |F (u, v, w)|.
When the observations M(u, v, w) are binary, this model is

equivalent to the 3-uniform simple lipschitz hypergraphon

in [44], which states a generative model for hypergraphs

where the hyperedges consist of size 3 vertex sets. In this

setting, F (u, v, w) ∈ [0, 1] would represent the probability of

observing the hyperedge (u, v, w), and M(u, v, w) ∈ {0, 1}
would indicate the presence of the hyperedge (u, v, w). The

noise term ϵuvw is clearly bounded since the observations

are binary. For any application in which the observations

M(u, v, w) are bounded, then F (u, v, w) = E[M(u, v, w)]
would also be bounded, such that the boundedness on the

noise ϵuvw would be reasonable. However, for applications

in which M(u, v, w) may not be bounded, or the almost sure

bound is very large, we can extend our analysis to allow for

sub-Gaussian noise ϵuvw rather than uniformly bounded noise,

which is further discussed in section VI.

The goal is to recover the underlying tensor F from the

incomplete noisy observation M so that the mean squared

error (MSE) is small, where MSE for an estimate F̂ is defined

as

MSE(F̂ ) := E

[

1
n3

∑

(u,v,w)∈[n]3(F̂ (u, v, w)−F (u, v, w))2
]

.

(III.2)

2The notation of ⋆ is used to denote the missing observation. When
convenient, we shall replace ⋆ by 0 for the purpose of computation.
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We will also be interested in the maximum entry-wise error

(MEE) defined as

∥F − F̂∥max := max
(u,v,w)∈[n]3

|F̂ (u, v, w) − F (u, v, w)|.

(III.3)

A. Finite Spectrum

Consider the setting where the function f has finite spec-

trum. That is,

f(u, v, w) =
∑r
k=1 λkqk(θu)qk(θv)qk(θw),

where r = Θ(1) and qk(.) denotes the orthonormal ℓ2 eigen-

functions, satisfying
∫ 1

0
qk(θ)

2dθ = 1 and
∫ 1

0
qk(θ)qh(θ)dθ =

0 for k ̸= h. Assume that the eigenfunctions are bounded, i.e.

|qk(θ)| ≤ B for all k ∈ [r].
Let Λ denote the diagonal r × r matrix where Λkk = λk.

Let Q denote the r × n matrix where Qka = qk(θa). Let Q
denote the r ×

(

n
2

)

matrix where Qkb = qk(θb1)qk(θb2) for

some b ∈
(

n
2

)

that represents the pair of vertices (b1, b2) for

b1 < b2. The finite spectrum assumption for f implies that the

sampled tensor F is such that,

F =
∑r
k=1 λk(Q

T ek) ⊗ (QT ek) ⊗ (QT ek).

That is, F has CP-rank at most r. In above and in the

remainder of the paper, ek denotes a vector with all 0s but

kth entry being 1 of appropriate dimension (here it is r).

B. Approximately Finite Spectrum

In general, f may not have finite spectrum, e.g. a generic

analytic function f . For such a setting, we shall consider f
with approximately finite spectrum. Specifically, a function f :
[0, 1]3 → R, it is said to have ε-approximate finite spectrum

with rank r for ε ≥ 0 if there exists a symmetric function

fr : [0, 1]3 → R such that

sup
θu,θv,θw∈[0,1]

|f(θu, θv, θw) − fr(θu, θv, θw)| ≤ ε

Fr(u, v, w) = fr(θu, θv, θw) =
∑r
k=1 λkqk(θu)qk(θv)qk(θw),

(III.4)

where r = Θ(1) and qk(.) denotes the orthonormal ℓ2 eigen-

functions as before. That is, they satisfy
∫ 1

0
qk(θ)

2dθ = 1,
∫ 1

0
qk(θ)qh(θ)dθ = 0 for k ̸= h and |qk(θ)| ≤ B for all

k ∈ [r].
The above describe property of f implies that the sam-

pled tensor F is has ε-approximate rank r such that Fr =
∑r
k=1 λk(Q

T ek) ⊗ (QT ek) ⊗ (QT ek) and

∥F − Fr∥max ≤ ε.

C. Extensions Beyond Orthogonal CP-Rank

The orthogonality conditions on our latent variable decom-

position imply that the tensor F can be written as a sum of

r rank-1 tensors, where the latent factors are approximately

orthogonal. Alternately, this would suggest a Tucker decompo-

sition of the tensor where the core tensor is superdiagonal. Not

all tensors admit an orthogonal CP-rank decomposition, but

this assumption has also been used in the literature as in [24].

This assumption of the existence of an orthogonal CP-rank

decomposition can be relaxed as the main property that our

algorithm and analysis use is the orthogonal decomposition

of the unfolded tensors along each mode. Our algorithm

and analysis will still extend to tensors with Tucker rank

bounded by (r, r, r). For a general (r, r, r) Tucker rank tensor,

we would instead carry out the analysis with respect to the

latent orthogonal factors corresponding to the SVD of the

unfolded tensor into a matrix, and the algorithm would use the

same procedure to estimate similarities along each of the three

modes separately. The presentation is stated for the orthogonal

symmetric setting for simplicity.

D. Comparision of Assumptions With Literature

In the decomposition of the model f when it has finite

spectrum, we assume that the functions qk are orthonormal.

This induces a decomposition of tensor F in terms of Q ∈
R
r×n with respect to the sampled latent features θ ∼ U [0, 1].

The rank r of the underlying decomposition is assumed to be

Θ(1). We compare and contrast these with those assumed in

the tensor estimation literature.

Most literature on tensor estimation do not impose a distri-

bution on the underlying latent variables, but instead assume

deterministic ‘incoherence’ style conditions on the latent sin-

gular vectors associated to the underlying tensor decomposi-

tion. This plays a similar role to our combined assumption of

qk being orthonormal and the latent variables sampled from

a uniform distribution so that the mass in the singular vector

matrix is roughly uniformly spread. For example, the notion of

incoherence used in [27] imposes that the entries of the latent

factors are bounded by a constant when the norm of the latent

factor vectors scales as Θ(
√
n). As θu ∼ U [0, 1], it holds that

the latent factor vector (qk(θ1), qk(θ2), . . . qk(θn)) will have

norm scaling as
√
n. Due to the boundedness assumption that

|qk(θ)| ≤ B, our model will satisfy incoherence as defined

in [27]. Some of the literature on tensor estimation allows for

overcomplete tensors, i.e. r > n. While our finite spectrum

setup requires r = Θ(1), the approximately finite spectrum

can allow for potentially countably infinite spectrum but with

sharply decaying spectrum so that it has ε-approximate rank

being r = Θ(1).
In order to establish our result for the approximately finite

spectrum setting, we perform a perturbation analysis wherein

each observed entry is perturbed arbitrarily bounded by ε

in magnitude: we shall establish that the resulting estimation

error is changed by poly(ε), both with respect to the MSE and

max-norm. That is, with respect to arbitrary bounded noise in

the observations, we are able to characterize the error induced

by our method, which is of interest in its own right.

We remark on the Lipschitz property of f : the Lipschitz

assumption implies that the tensor is ªsmoothº, and thus there

are sets of rows and columns that are similar to one another.

As our algorithm is based on a nearest neighbor style approach

we need that for any coordinate u, there is a significant mass

of other coordinates a that are similar to u with respect

to the function behavior. Other regularity conditions beyond
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Lipschitz that would also guarantee sufficiently many ªnearest

neighborsº would lead to similar results for our algorithm.

Lipschitzness also implies approximate low rankness as a Lip-

schitz function can be approximated by a piecewise constant

function, where the number of pieces would then upper bound

the rank.

IV. ALGORITHM

The algorithm is a nearest neighbor style in which the first

phase is to estimate a distance function between coordinates,

denoted dist(u, a) for all (u, a) ∈ [n]2. Given the similarities,

for some threshold η, the algorithm estimates by averaging

datapoints from coordinates (a, b, c) for which dist(u, a) ≤ η,

dist(v, b) ≤ η, and dist(w, c) ≤ η.

The entry F (a, b, c) depends on a coordinate a through

its representation in the eigenspace, given by Qea. Therefore

f(a, b, c) ≈ f(u, v, w) as long as Qeu ≈ Qea, Qev ≈ Qeb,
and Qew ≈ Qec. Ideally we would like our distance function

dist(u, a) to approximate ∥Qeu−Qea∥2, but these are hidden

latent features that we do not have direct access to.

Let’s start with a thought experiment supposing that the

density of observations were p = ω(n−1) and the noise

variance is σ2 for all entries. For a pair of coordinates u and

a, the expected number of pairs (b, c) such that both (u, b, c)
and (a, b, c) are observed is on the order of p2n2 = ω(1). For

fixed θa, θu, and for randomly sampled θb, θc, the expected

squared difference between the two corresponding datapoints

reflects the distance between Qea and Qeu along with the

overall level of noise,

E[(M(a, b, c) −M(u, b, c))2 | θa, θu]
= E[(F (a, b, c) − F (u, b, c))2 | θa, θu] + E[ϵ2abc + ϵ2ubc]

= E[(
∑

k λk(qk(θa) − qk(θu))qk(θb)qk(θc))
2 | θa, θu]+2σ2

= E[
∑

k λ
2
k(qk(θa) − qk(θu))

2qk(θb)
2qk(θc)

2 | θa, θu]+2σ2

=
∑

k λ
2
k(qk(θa) − qk(θu))

2 + σ2

= ∥ΛQ(ea − eu)∥2
2 + 2σ2,

where we use the fact that qk(·) are orthonormal. This sug-

gests that approximating dist(u, a) with the average squared

difference between datapoints corresponding to pairs (b, c) for

which both (u, b, c) and (a, b, c) are observed.

This method does not attain the p = n−3/2 sample complex-

ity, as the expected number of pairs (b, c) for which (a, b, c)
and (u, b, c) are both observed will go to zero for p = o(n−1).
This limitation arises due to the fact that when p = o(n−1),
the observations are extremely sparse. Consider the n ×

(

n
2

)

ªflattenedº matrix of the tensor where row u correspond to

coordinates u ∈ [n], and columns correspond to pairs of

indices, e.g. (b, c) ∈ [n] × [n] with b ≤ c. For any given

row u, there are very few other rows that share observations

along any column with the given row u, i.e. the number of

‘neighbors’ of any row index is few. If we wanted to exploit

the intuition of the above simple calculations, we have to

somehow enrich the neighborhood. We do so by constructing a

graph using the non-zero pattern of the matrix as an adjacency

matrix. This mirrors the idea from [18] for matrix estimation,

which approximates distances by comparing expanded depth

2t+1 local neighborhoods in the graph representing the spar-

sity pattern of the unfolded or flattened tensor. In particular,

we will construct a statistic dist(u, a) such that with high

probability it concentrates around d(u, a) for

d(θu, θa)=∥Λ2t+1Q(eu−ea)∥2
2 =

r
∑

k=1

λ4t+2
k (qk(θu)−qk(θa))2.

(IV.1)

As F (u, v, w) = f(θu, θv, θw) =
∑r
k=1 λkqk(θu)qk(θv)

qk(θw), we can show that if d(θu, θa), d(θv, θb), and d(θw, θc)
are small, then F (u, v, w) will be close to F (a, b, c).
The remaining challenge thus how to approximate d(u, a).
Consider a length 2t path in the bipartite graph from

u to a, denoted by (u, e1, x1, e2, x2, . . . xt−1, et, a), where

x1, . . . xt−1 are distinct coordinates in [n] \ {u, a}, and

e1, . . . et consist of pairs in [n]2 such that the coordinates

represented in these pairs are distinct from each other as well

as {u, a, x1, . . . xt−1}. Let us denote the pair ei = (ei1, e
i
2).

Then the product of weights along this path in expectation

conditioned on θu, θa is equal to eTuQ
TΛ2tQea as shown

in (IV.2) shown at the bottom of the next page.

Therefore, the product of weights along the path connecting

u to a is a good proxy of quantity eTuQ
TΛ2tQea, for paths

which do not revisit coordinates. The algorithm first constructs

the local neighborhood of depth 2t centered at each coordinate

u, and then connects these neighborhoods to form paths of

length 4t+2 in total, where t is chosen such that for every u, a
there are sufficiently many paths used to construct the statis-

tic dist(u, a) to guarantee concentration. The tensor setting

requires an important modification of how one constructs the

local breadth-first-search (BFS) trees due to the shared latent

variables across different modes, as described in step 3 below.

A. Formal Description

We provide a formal description of the algorithm below.

The crux of the algorithm is to compute similarity between

any pair of indices using the matrix obtained by flattening the

tensor, and then using a nearest neighbor estimator using these

similarities between indices over the tensor structure. Details

are as follows.

Step 1: Sample Splitting: Let us assume for simplicity of

the analysis that we obtain 2 independent fresh observation

sets of the data, Ω1 and Ω2. Tensors M1 and M2 contain

information from the subset of the data in M associated

to Ω1 and Ω2 respectively. M1 is used to compute pair-

wise similarities between coordinates, and M2 is used to

average over datapoints for the final estimate. Furthermore,

we take the coordinates [n] and split it into two sets, [n] =
{1, 2, . . . , n/2} ∪ {n/2 + 1, n/2 + 2, . . . n}. Without loss of

generality, let’s assume that n is even. Let VA denote the set of

coordinate pairs within set 1 consisting of distinct coordinates,

i.e. VA = {(b, c) ∈ [n/2]2 s.t. b < c}. Let VB denote the set of

coordinate pairs within set 2 consisting of distinct coordinates,

i.e. VB = {(b, c) ∈ ([n] \ [n/2])2 s.t. b < c}. The sizes of

|VA| and |VB | are both equal to
(

n/2
2

)

. We define MA to be the

n-by-
(

n/2
2

)

matrix taking values MA(a, (b, c)) = M1(a, b, c),
where each row corresponds to an original coordinate of the
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Fig. 3. Consider a symmetric 3-order tensor with n = 8, and the observation set Ω1 = {(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 4, 8), (2, 3, 4), (2, 4, 5),
(2, 5, 6), (3, 4, 7), (3, 5, 6)}. Figure (a) depicts the bipartite graph constructed from this set of observations. Weights would be assigned to edges based on
the value of the observed entry in the tensor M1. Figure (b) depicts the traditional notion of the BFS tree rooted at vertices 1 and 4. Vertices at layer/depth
s correspond to vertices with shortest path distance of s to the root vertex. Figure (c) depicts valid BFS trees for our algorithm, which imposes an additional
constraint that coordinates cannot be repeated across depths. For the BFS tree rooted at vertex 1, edges ((2, 4), 3) and ((3, 4), 2) are not valid, as coordinates
2 and 3 have both been visited in layer 2 by the vertices (2, 4) and (3, 4). For the BFS tree rooted at vertex 4, edge (5, (2, 4)) is not valid as coordinate 2
has been visited in layer 2 by the vertex (2, 3) and coordinate 4 has been visited in layer 1 by the root vertex 4. Figure (d) depicts the sets Su,s and Uu,s
along with the neighborhood vectors Nu,s and Wu,s for a specific valid BFS tree rooted at vertex u = 4.

tensor, and each column corresponds to a pair of coordinates

(b, c) ∈ VA from the original tensor. We define MB to be the

n-by-
(

n/2
2

)

matrix taking values MB(a, (b, c)) = M1(a, b, c),
where each row corresponds to an original coordinate of the

tensor, and each column corresponds to a pair of coordinates

(b, c) ∈ VB from the original tensor. A row-column pair

in the matrix corresponds to a triplet of coordinates in the

original tensor. We will use matrices MA and MB to compute

similarities or distances between coordinates, and we use

tensor M2 to compute the final estimates via nearest neighbor

averaging. The data in MA is used to construct depth 2t local

neighborhoods rooted at each coordinate u, and MB is used

to connect the neighborhoods to form 2t + 2 length paths

between any two coordinates u and a, which are then used to

estimate the similarity between u and a. This approach is akin

to the technique of ªsprinklingº used in random graph analysis,

in which we first analyze local neighborhoods formed with the

edges in MA, and then ªsprinkleº the edges in MB to connect

these neighborhoods and argue that there are sufficiently many

paths then that connect any two coordinates u and v.

Step 2: Construct Bipartite Graph From Ω1,MA: We define

a bipartite graph corresponding to the flattened matrix MA.

Construct a graph with vertex set [n] ∪ VA. There is an edge

between vertex a ∈ [n] and vertex (b, c) ∈ VA if (a, b, c) ∈ Ω1,

and the corresponding weight of the edge is M1(a, b, c). Recall

that we assumed a symmetric model such that triplets that are

permutations of one another will have the same data entry and

thus the same edge weight in the associated graph. Figure 3(a)

provides a concrete example of a bipartite graph constructed

from tensor observations.

E

[

M(u, e11, e
1
2)

(

t−1
∏

i=1

M(ei1, e
i
2, x

i)M(xi, ei+1
1 , ei+1

2 )

)

M(et1, e
t
2, a)

∣

∣

∣

∣

∣

θu, θa

]

= E

[

f(θu, θe11 , θe12)

(

t−1
∏

i=1

f(θei1 , θei2 , θxi)f(θxi , θei+1
1
, θei+1

2
)

)

f(θet1 , θet2 , θa)

∣

∣

∣

∣

∣

θu, θa

]

=
r
∑

k=1

λ2t
k qk(θu)qk(θa) = eTuQ

TΛ2tQea. (IV.2)
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Step 3: Expanding the Neighborhood: Consider the graph

constructed from Ω1,MA. For each vertex u ∈ [n], we con-

struct a breadth first search (BFS) tree rooted at vertex u such

that the vertices for each depth of the BFS tree consists only of

new and previously unvisited coordinates, i.e. if vertex a ∈ [n]
is first visited at depth 4 of the BFS tree, then no vertex

corresponding to (a, b) for any b ∈ [n] can be visited in any

subsequent depths greater than 4. Similarly, if (a′, b′) is visited

in the BFS tree at depth 3, then vertices that include either of

these coordinates, i.e. a′, b′, (a′, c), or (b′, c) for any c ∈ [n],
can not be visited in subsequent depths greater than 3. This

restriction is only across different depths; we allow (a, b) and

(a, c) to be visited at the same depth of the BFS tree.

There may be multiple valid BFS trees due to different

ordering of visiting edges at the same depth. For example,

if a vertex at depth s has edges to two different vertices at

depth s− 1 (i.e. two potential parents), only one of the edges

can be chosen to maintain the tree property, but either choice

is equally valid. Let us assume that when there is more than

one option, one of the valid edges are chosen uniformly at

random. Figure 3(c) shows valid BFS trees for a bipartite graph

constructed from an example tensor.

The graph is bipartite so that each subsequent layer of

the BFS tree alternates between the vertex sets [n] and VA.

Consider a valid BFS tree rooted at vertex u ∈ [n] which

respects the constraint that no coordinate is visited more than

once. We will use Uu,s ⊆ VA to denote the set of vertices

at depth (2s − 1) of the BFS tree, and we use Su,s ⊆ [n]
to denote the set of vertices at depth 2s of the BFS tree. Let

Bu,s ⊂ [n] ∪ VA denote the set of vertices which are visited

in the first s layers of the BFS tree,

Bu,s = ∪h∈⌊s/2⌋Su,h ∪l∈⌈s/2⌉ Uu,l.
We will overload notation and sometimes use Bu,s to denote

the subset of coordinates in [n] visited in the first s layers of

the BFS tree, including both visited single coordinate vertices

or coordinates in vertices VA, i.e.

Bu,s =∪h∈⌊s/2⌋Su,h

∪
{

x ∈ [n] s.t. ∃(y, z) ∈ ∪l∈⌈s/2⌉Uu,l satisfying x ∈ {y, z}
}

.

Let G(Bu,s) denote all the information corresponding to the

subgraph restricted to the first s layers of the BFS tree rooted

at u. This includes the vertex set Bu,s, the latent variables

{θa}a∈Bu,s and the edge weights {M1(a, b, c)}a,(b,c)∈Bu,s .

We define neighborhood vectors which represent the differ-

ent layers of the BFS tree. Let Nu,s ∈ [0, 1]n be associated

to set Su,s, where the a-th coordinate is equal to the product

of weights along the path from u to a in the BFS tree for

a ∈ Su,s. Similarly, let Wu,s ∈ [0, 1]VA be associated to set

Uu,s, where the (b, c)-th coordinate is equal to the product of

weights along the path from u to (b, c) in the BFS tree for

(b, c) ∈ Uu,s. For a ∈ [n], let πu(a) denote the parent of a
in the valid BFS tree rooted at vertex u. For (b, c) ∈ VA, let

πu(b, c) denote the parent of (b, c) in the BFS tree rooted at

vertex u. We can define the neighborhood vectors recursively,

Nu,s(a) = MA(a, πu(a))Wu,s(πu(a))I(a∈Su,s)
Wu,s(b, c) = MA(πu(b, c), (b, c))Nu,s−1(πu(b, c))I((b,c)∈Uu,s)

and Nu,0 = eu. Let Ñu,s denote the normalized vector

Ñu,s = Nu,s/|Su,s| and let W̃u,s denote the normalized vector

W̃u,s = Wu,s/|Uu,s|. Figure 3(d) illustrates the neighborhood

sets and vectors for a valid BFS tree. Recall from Eq. (IV.2),

shown at the bottom of the previous page, that conditioned on

θu and θa, E[Nu,s(a) | θu, θa] = P (a ∈ Sus) eTuQTΛ2sQea.

Furthermore the event that a ∈ Sus only depends on the

presence of the edges as determined by the Bernoulli uniform

sampling, and is thus independent from the latent variable θa.

We will show in a subsequent Lemma 7.2 that eTkQÑu,t ≈
eTkΛ2tQeu, implying that the neighborhood vector Ñu,t, which

is constructed from products of weights over length 2s paths

originating at u, is a statistic that is approximates Λ2tQeu.

Similar calculations show that E[Wu,s(b, c) | θu, θb, θc] =
P ((b, c) ∈ Uus)

∑r
k=1 λ

2t−1
k qk(θu)qk(θb)qk(θc).

Step 4: Computing the Distances Using MB: Let

t =
⌈ ln(n)

2 ln(p2n3)

⌉

. (IV.3)

A heuristic for the distance would be

dist(u, v) ≈ 1

|VB |p2 (Ñu,t − Ñv,t)MBMB
T

(Ñu,t − Ñv,t)

=
1

|VB |p2
∑

(α,β)∈VB

∑

a,b∈[n]2

(Ñu,t(a)−Ñv,t(a))MB(a, α, β)

×MB(b, α, β)(Ñu,t(b) − Ñv,t(b)) (IV.4)

For technical reasons that facilitate cleaner analysis, we use

the following distance calculations. There are two deviations

from the equation in (IV.4). First we exclude a = b from the

summation. Second we exclude coordinates for α or β that

have been visited previously in Bu,2t or Bv,2t. Define distance

as

dist(u, v)= (Zuu + Zvv − Zuv − Zvu), (IV.5)

Zuv=
1

|VB(u, v, t)|p2|Su,t||Sv,t|
∑

(α,β)∈VB(u,v,t)

Tuv(α, β),

VB(u, v, t)= {(α, β) ∈ VB s.t. α /∈ Bu,2t ∪ Bv,2t, β /∈ Bu,2t ∪ Bv,2t},

Tuv(α, β)=
∑

a ̸=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)). (IV.6)

We will show in Lemma 6.2 that dist(u, v) ≈ d(u, v) :=
∥Λ2t+1Q(eu − ev)∥2

2. The estimate is constructed by aver-

aging over the product of weights over paths from u to v,

where the term Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)) in

Eq. (IV.6) is the product of weights over the path that goes

from u to a to (α, β) to b to v, as Nu,t(a) represents the

products of weights on the path from u to a and Nv,t(b)
represents the products of weights on the path from b to v.

The parameter t is chosen such that there are sufficiently

many paths that we are averaging over in order to reduce

the noise. In particular, the choice of t ≥ ln(n)/2 ln(p2n3)
implies that |Su,t| ≥ (p2n3)t = Ω(n1/2), such that the

number of paths the estimator averages over is approximately

n2p2|Su,t||Sv,t| = Ω(p2n3). This rough calculation highlights

that p must be ω(n−3/2) to guarantee that the number of paths

used to compute dist(u, v) is increasing with n.

Step 5: Averaging Datapoints to Produce Final Estimate

Let Ω2uvw denote the set of indices (a, b, c) such that a ≤
b ≤ c, (a, b, c) ∈ Ω2, and the estimated distances dist(u, a),
dist(v, b), dist(w, c) are all less than some chosen threshold
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parameter η. The final estimate averages the datapoints corre-

sponding to indices in Ω2uvw,

F̂ (u, v, w) = 1
|Ω2uvw|

∑

(a,b,c)∈Ω2uvw
M2(a, b, c). (IV.7)

B. Difference Between Tensor and Matrix Setting

The modifications in the construction of the breadth-first-

search (BFS) tree for the tensor setting relative to the matrix

setting are critical to the analysis. If we simply considered the

classical construction of a BFS tree in the associated bipartite

graph (as the matrix setting uses), this would lead to higher

variance and bias due to the correlations of vertices sharing

common latent variables associated to the same underlying

coordinates of the tensor. Alternatively, if one constructed a

BFS tree by not allowing any coordinate of the tensor to be

visited more than once, this would also lead to suboptimal

results as it would throw away too many entries, limiting

the computed statistic to only order n data points. Our final

algorithm, which allows for vertices with shared coordinates

in the same depth of the BFS but not across different depths,

is carefully chosen in order to break dependencies across

different depths of the BFS tree, while still allowing for

sufficient expansion in each depth.

To extend the algorithm to d-order tensors for d > 3, we will

compute similarities between u, v via a similar computation as

described in Steps 2-4 above, except it would be applied to the

n×nd−1 matrix and associated bipartite graph corresponding

to an unfolding of the tensor. Given the similarity estimates

for pairwise coordinates, the final estimate would result from a

standard nearest neighbor estimator over the high dimensional

tensor. The primary part of the proof that would need to be

modified is the analysis of the neighborhood vectors Nu,s and

Wus in step 3, which may involve constraining the growth

of the BFS trees such that they extend deep enough before

exhausting the visited coordinates.

V. MAIN RESULT

We provide an upper bound on the mean squared error

(MSE) as well as the max entry-wise error (MEE) for the

algorithm, showing that both the MSE and the MEE converge

to zero as long as p = n−3/2+κ for some κ > 0. Our result

implies that the simple variant of collaborative filtering algo-

rithm based on estimating similarities produces a consistent

estimator when the tensor latent function has finite spectrum or

low rank. Further we show that it is robust to arbitrary, additive

perturbation in that the estimation error increases gracefully in

the amount of perturbation. To the best of our knowledge, such

robustness to arbitrary bounded additive noise with respect to

max-norm estimation is first of its kind in the literature on

tensor estimation.

A. Finite Spectrum

We establish consistency of our estimator with respect to

MSE and max-norm error of the algorithm when the underly-

ing f has finite spectrum, i.e. rank r model with r = Θ(1).
Theorem 5.1: We assume that the function f is rank r, L-

Lipschitz and that θ ∼ U [0, 1]. Assume that p = n−3/2+κ for

some κ ∈ (0, 1
2 ). Let t be defined according to (IV.3). For any

arbitrarily small ψ ∈ (0,min(κ, 3
8 )), choose the threshold

η = Θ
(

n−(κ−ψ)
)

.

The algorithm produces estimates so that,

MSE = O(n−(κ−ψ)) = O

(

nψ

(p2n3)1/2

)

,

and

∥F − F̂∥max = O(n−(κ−ψ)/2),

with probability 1 −O
(

n4 exp(−Θ(n2ψ))
)

.

The error bounds in Theorem 5.1 imply that our estimator

is consistent as long as p = n−3/2+κ for some κ > 0,

with a MSE that scales as O(1/pn3/2). The threshold of

p = Ω(n−3/2) is optimal, and furthermore this requirement

is precisely the threshold at which the constructed bipartite

graph in Step 2 of the algorithm is fully connected. Below

the connectivity threshold, the graph will be disconnected into

small components with insufficient information to recover the

expected value of edges across disconnected components.

In comparison to the literature, [31] prove that the minimax

optimal MSE is O(1/pn2), which is achieved via spectral

initialization followed by power iteration [31] or gradient

descent [40] as long as p = Ω(n−3/2). While our result

achieves a similar sample complexity threshold, our MSE rate

is suboptimal by a factor of
√
n. A limitation of neighborhood

smoothing is that we do not achieve exact recovery under the

noiseless setting, and we do not achieve the minimax optimal

rates. It is unclear whether the gap is due to a limitation in the

analysis or the algorithm. A benefit of our analysis in contrast

to the literature is that the neighborhood smoothing approach

can more easily deal with approximate low rank settings as

arise under smoothness, as presented in Theorem 5.2. While

low rank is often a useful modeling concept for real world

datasets, in reality most real-world applications are likely only

approximately low rank rather than exactly low rank.

B. Approximately Finite Spectrum

For approximate rank r model, we establish a natural pertur-

bation result for the algorithm. Specifically, if the underlying

model has ε-approximate rank r, then we argue that the result

of Theorem 5.1 remain true, both with respect to MSE and

max-norm error, with perturbation amount of poly(ε).
Theorem 5.2: We assume that the function f has ε-

approximate rank r, L-Lipschitz and that θ ∼ U [0, 1]. Assume

that p = n−3/2+κ for some κ ∈ (0, 1
2 ). Choosing t according

to (IV.3), it follows that t = ⌈ 1
4κ⌉. For any arbitrarily small

ψ ∈ (0,min(κ, 3
8 )), choose the threshold

η = Θ
(

n−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2
)

.

The algorithm produces estimates so that,

MSE = O(n−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2)

= O

(

nψ

(p2n3)1/2
+tε(1 + ε)2t−1+t2ε2(1 + ε)4t−2

)

,
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and

∥F − F̂∥max = O(n−(κ−ψ)/2 + tε(1 + ε)2t−1 +
√

tε(1 + ε)2t−1),

with probability 1 −O
(

n4 exp(−Θ(n2ψ))
)

−O(n−2).
As the entries of F are normalized such that ∥F∥max ≤ 1,

the bound is meaningful when ε < 1, in which case the

dominating term of the additional error due to the perturbation

is linear in ε, as t is a constant. The proof of Theorem 5.2

relies on the following observation: the distribution of the data

under the setting where the latent function f has ε-rank r is

equivalent to the distribution of data generated according to

the rank r approximation of f and then adding a deterministic

perturbation to each observation accounting for the difference

between f and its rank r approximation fr, which is entrywise

bounded by ε. In particular, the proof of Theorem 5.2 shows

that under arbitrary deterministic perturbation of a rank r
model where the perturbation is bounded by ε, the estimation

error is perturbed by at most poly(ε). As a byproduct, our

result proves that our estimator is robust to arbitrary deter-

ministic bounded noise in the observations.

The approximation guarantee depends on the spectral decay.

Since the analysis allows any arbitrary adversarial model for

the ε deviation from a low rank model, the resulting guarantee

depending polynomially in ε is qualitatively best one can hope

for. By definition, the minimal error must be lower bounded

by ε, but determining the best achievable error as a function

of ε is an important open question for future investigation.

It is worth noting that no other prior work addresses such a

robust error model.

C. Reducing Computational Complexity

The computational complexity can be estimated by ana-

lyzing steps 3-5 of the algorithm. Step 3 costs O(pn4),
as there are n BFS trees to construct, which each take at most

pn3 edge traversals as there are at most order pn3 edges in

the constructed graph. Step 4 costs O(p2n6) as there are order

n2 pairwise distances to compute, and each computed distance

involves sums over terms indexed by a, b, α, β ∈ [n]4 where

(a, α, β) and (b, α, β) are in the observation set. As the

sparsity of the dataset is p, this results in order p2n4 nonzero

terms in the summation, each of which is the product of

4 quantities, taking O(1) to compute. Step 5 costs O(pn6)
as there are Θ(n3) triplets we need to estimate, and each

involves averaging at most O(pn3) datapoints. In summary,

the computation cost of the entire method, for p = n− 3
2+κ is

O(pn4 + p2n6 + pn6) where the cost in Step 5 dominates.

This computation cost can be improved drastically. For

example, as explained in [18], by use of ‘representative’ or

’anchor’ vertices chosen as random, the algorithm can instead

cluster the vertices with respect to these anchor vertices and

learn a block constant estimate, significantly reducing the

involved computation. If there are y anchor vertices, then

Step 4 reduces to only computing pairwise distances between
(

y
2

)

+ ny pairs of vertices, as non-anchor vertices are only

compared to the small set of y anchor vertices. Step 5 reduces

to only estimating
(

y
3

)

entries of the tensor corresponding to

combinations of the anchor vertices, and then extrapolating

the estimate to other vertices assigned to the same cluster.

This would result in a computational cost of O(pn4 + (y2 +
ny)p2n4+y3pn3). When p = n− 3

2+κ, our proof indicates that

by choosing y = Θ((p2n3)1/4) = Θ(nκ/2), the corresponding

block constant estimator would achieve the same rates on the

MSE and MEE as presented in Theorem 5.1, while requiring

a reduced computational complexity of O(n5/2+κ+n2+5κ/2).
Corollary 5.3: We assume that the function f is rank r,

L-Lipschitz and that θ ∼ U [0, 1]. Assume that p = n−3/2+κ

for some κ ∈ (0, 1
2 ). Let t be defined as per (IV.3). For any

arbitrarily small ψ ∈ (0,min(κ, 3
8 )), choose the threshold

η = Θ
(

n−(κ−ψ)
)

.

The modified algorithm which subsamples y =
Ω((p2n3)1/4) = Ω(nκ/2) anchor vertices at random

and uses them to cluster the vertices to learn a block constant

estimate will achieve

MSE = O(n−(κ−ψ)) = O

(

nψ

(p2n3)1/2

)

,

and

∥F − F̂∥max = O(n−(κ−ψ)/2),

with probability 1 −O
(

n4 exp(−Θ(n2ψ))
)

.

D. Discussion of Assumptions

We assumed in our algorithm and analysis that we had two

fresh samples of the dataset, M1 and M2. The dataset M1 is

used to estimate distances between coordinates, and the dataset

M2 is used to compute the final nearest neighbor estimates.

Given only a single dataset, the same theoretical results can

also be shown by simply splitting the samples uniformly into

two sets, one used to estimate distances and one used to

compute the nearest neighbor estimates. as we are considering

the sparse regime with p = n−3/2+κ for κ ∈ (0, 1
2 ), the two

subsets after sample splitting will be nearly independent, such

that the analysis only needs to be slightly modified. This is

formally handled in the paper on collaborative filtering for

matrix estimation in [18].

Our model and analysis assumes that the latent variables

{θu}u∈[n] are sampled uniformly on the unit interval, and that

the function f is Lipschitz with respect to θ. This assumption

can in fact be relaxed significantly, as it is only used in

the final step of the proof in analyzing the nearest neighbor

estimator. Proving that the distance estimates concentrate well

does not require these assumptions, in particular it primarily

uses the low rank assumption. Given that the distance estimate

concentrates well, the analysis of the nearest neighbor estima-

tor depends on the local measure, i.e. what fraction of other

coordinates have similar function values so that the estimated

distance is small. We used Lipschitzness and uniform distri-

bution on the unit interval in order to lower bound the fraction

of nearby coordinates, however many other properties would

also lead to such a bound. The dependence of the noisy nearest

neighbor estimator on the local measure is discussed in detail

in [16]. Similar extensions as presented in [16] would apply
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for our analysis here, leading to consistency and convergence

rate bounds for examples including when

• the latent space has only finitely many elements, or equiv-

alently the distribution of θ has finite support;

• the latent space is the unit hypercube in a finite dimen-

sional space and the latent function is Lipschitz;

• the latent space is a complete, separable metric space,

i.e. Polish space, with bounded diameter and the latent

function is Lipschitz.

Although our stated results assume a symmetric tensor, the

results naturally extend to asymmetric (n1 ×n2 ×n3) tensors

as long as n1, n2, and n3 are proportional to one another. Our

analysis can be modified for the asymmetric setting, or one can

reduce the asymmetric tensor to a (n×n×n) symmetric tensor

where n = n1+n2+n3, and the coordinates of the new tensor

consists of the union of the coordinates in all three dimensions

of the asymmetric tensor. The results applied to this larger

tensor would still hold with adjustments of the model allowing

for piecewise Lipschitz functions.

In the proof sketch that follows below, we show that

for the 3-order tensor, the sample complexity threshold of

p = ω(n−3/2) directly equals the density of observations

needed to guarantee the bipartite graph is connected with

high probability. Although our stated results assume a 3-order

tensor, our algorithm and analysis can be likely extended

to general d-order tensors. The proof would instead require

analysis of the n×nd−1 matrix and associated bipartite graph

corresponding to the unfolding of the tensor. The bipartite

graph would consist of vertex sets [n] and [n]d−1.

Remark 5.1: In order for the vertices in [n] to be fully

connected to each other, p needs to be Ω(nd/2), which can

be proved using the standard branching process analysis as is

used to prove the connectivity threshold of an Erdos Renyi

graph [45]. Let Xu denote the set of vertices v ∈ [n] such

that the distance between u and v in the bipartite graph

is 2. It follows that P (v ∈ Xu) = 1 − (1 − p2)n
d−1

, such

that E[|Xu|] = (n − 1)(1 − (1 − p2)n
d−1

) = Θ(p2nd).
As a result, if p = o(nd/2), it follows that P (Xu = ∅) =
1 − P (|Xv| ≥ 1) ≥ 1 − E[|Xu|] = 1 − o(1), such that with

probability tending to 1 the vertex u will be isolated, i.e. not

connected to any other vertex v ∈ [n]. To prove that the

graph is connected for p = Ω̃(nd/2), one would relate the

growth of a local neighborhood in the graph to an appropriate

branching process, where the expected number of descendents

alternates between pn and pnd−1. To formalize the argument,

one would then argue that the branching process survives to

infinity if p2nd is sufficiently large, e.g polylog(n), and also

argue that the branching process is a reasonable approximation

for the neighborhood growth of the graph until a linear

number of vertices are visited. The requirement for graph

connectivity in our algorithm and analysis arises from the

similarity computation dist(u, v), which involves products of

weights over paths in the graph that connect u and v. The fact

that nd/2 also corresponds to the connectivity threshold in the

corresponding bipartite graph sheds light on the computational

lower bound for tensor completion in [27], giving another way

to explain the Ω(nd/2) lower bound.

VI. PROOF

In this section, we present the proof for Theorem 5.1. The

proof outline is similar to the matrix setting in [18], in that

the core of the analysis is proving that the distance function

as defined in (IV.5) concentrates appropriately and captures

an appropriate notion of distance that enables the classical

ªnearest neighborº algorithm to be effective. However, due

to high-dependencies across latent factors associated with

columns that share tensor coordinates, the concentration of the

BFS neighborhood expansion in section VII-B requires a new

argument beyond the simple martingale argument in the matrix

setting. This involves a careful application of the concentration

of U-statistics. Furthermore, the concentration of the distance

calculation in Eq (IV.6) as analyzed in section VII-D requires a

new argument relating the computed statistic to a thresholded

variant more amenable to analysis. This is due to both the

dependencies in the latent factors along with the lopsidedness

in the dimensions so that straightforward applications of

standard concentration results are too weak and insufficient

to drive the error to zero.

While the proof is stated for bounded observations, i.e.

bounded noise, the result can be extended to sub-Gaussian

noise rather than uniformly bounded noise. This would involve

showing that the norms of the neighborhood vectors Nus
and Wus are well-controlled such that the application of

Hoeffding’s inequality used in Lemmas 7.4 and 7.5 still hold.

Additionally the proof of 7.7 naively bounds the products of

weights over a path in absolute value by 1; if the noise were

not bounded but sub-Gaussian, one would have to additionally

argue that the product of the weights would be sufficiently

controlled with high probability.

The critical lemma that the proof hinges on shows that the

computed similarities, i.e. dist(u, a), concentrates around the

function d(u, a) = ∥Λ2t+1Q(eu − ea)∥2
2. This then implies

that if d(u, a), d(v, b) and d(w, c) are small, the function

value F (u, v, w) would be close to F (a, b, c). Additionally,

we use Lipschitzness of the latent function f along with the

assumption that θu are sampled independently from U [0, 1] to

argue that for any u, there is a sufficiently large set of other

coordinates a such that d(u, a) is small. If these properties

hold, then a simple analysis of nearest neighbor averaging

using dist(u, a) to determine the neighbors will result in a

bias variance tradeoff that can be tuned to show our final

results. As such, the complexity of the proof revolves around

showing that the computed dist(u, a) concentrates around

d(u, a). This involves a delicate analysis which involves first

arguing that the normalized neighborhood vectors Ñu,t satisfy

eTkQÑu,t ≈ eTkΛ2tQeu, which involves martingale concen-

tration as well as concentration of appropriately defined U-

statistics. Subsequently we need to argue that the statistic

Zuv=
1

|VB(u, v, t)|p2|Su,t||Sv,t|
×

∑

(α,β)∈VB(u,v,t)

∑

a ̸=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))

≈ Ñ
T
u,tQ

T
Λ

2
QÑv,t.

A challenge in the analysis is that each term in the sum has

very small probability of being nonzero such that the sum is

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2023 at 20:46:58 UTC from IEEE Xplore.  Restrictions apply. 



3132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 5, MAY 2023

sparse enough that the standard concentration inequalities are

not tight enough. Thus we relate the sum to a thresholded

variant and use a tighter approximation of the binomial cdf to

obtain the desired bound.

A. Analyzing Noisy Nearest Neighbors

We start by stating an important Lemma 6.1, adapted

from [18] that characterizes the error of the noisy near-

est neighbor algorithm. Recall that our algorithm estimates

F (u, v, w), i.e. f(θu, θv, θw), according to (IV.7), which sim-

ply averages over data-points M2(a, b, c) corresponding to

tuples (a, b, c) for which a is close to u, b is close to v and

c is close to w according to the estimated distance function.

The choice of parameter η allows for tradeoff between bias

and variance of the algorithm.

We first argue that the data-driven distance estimates dist

will concentrate around an ideal data-independent distance

d(θu, θv) for d : [0, 1]2 → R+. We subsequently argue that the

nearest neighbor estimate produced by (IV.7) using d(θu, θv)
in place of dist(u, v) will yield a good estimate by properly

choosing the threshold η to tradeoff between bias and variance.

The bias will depend on the local geometry of the function f
relative to the distances defined by d. The variance depends

on the measure of the latent variables {θu}u∈[n] relative to

the distances defined by d, i.e. the number of observed tuples

(a, b, c) ∈ Ω2 such that d(θu, θa) ≤ η, d(θv, θb) ≤ η and

d(θw, θc) ≤ η needs to be sufficiently large. We formalize the

above stated desired properties.

Property 6.1 (Good Distance): We call an ideal distance

function d : [0, 1]2 → R+ to be a bias-good distance function

for some bias : R+ → R+ if for any given η > 0 it

follows that |f(θa, θb, θc) − f(θu, θv, θw)| ≤ bias(η) for

all (θa, θb, θc, θu, θv, θw) ∈ [0, 1]4 such that d(θu, θa) ≤ η,

d(θv, θb) ≤ η and d(θw, θc) ≤ η.

Property 6.2 (Good Distance Estimation): For some ∆ >
0, we call distance d̂ : [n]2 → R+ a ∆-good estimate for ideal

distance d : [0, 1]2 → R+, if |d(θu, θa)− d̂(u, a)| ≤ ∆ for all

(u, a) ∈ [n]2.

Property 6.3 (Sufficient Representation): The collection of

coordinate latent variables {θu}u∈[n] is called meas-

represented for some meas : R+ → R+ if for any u ∈ [n]
and η′ > 0, 1

n

∑

a∈[n] I(d(u,a)≤η′) ≥ meas(η′).
Lemma 6.1: Assume that property 6.1 holds with probabil-

ity 1, property 6.2 holds for any given pair u, a ∈ [n] with

probability 1 − α1, and property 6.3 holds with probability

1 − α2 for some η,∆, and η′ = η − ∆; in particular d is a

bias-good distance function, d̂ = dist as estimated from MA

is a ∆-good distance estimate for d, and {θu}u∈[n] is meas-

represented. Then noisy nearest neighbor estimate F̂ computed

according to (IV.7) satisfies

MSE(F̂ ) ≤ bias
2(η + ∆) +

σ2

(1 − δ)p (meas(η − ∆)n)
3

+ exp

(

−δ
2p (meas(η − ∆)n)

3

2

)

+3 nα1+α2,

for any δ ∈ (0, 1). Furthermore, for any δ′ ∈ (0, 1) and

(u, v, w) ∈ [n]3,

|F̂ (u, v, w) − f(θu, θv, θw)| ≤ bias(η + ∆) + δ′,

with probability at least

1 − exp
(

− 1
2δ

2p (meas(η − ∆)n)
3
)

− exp
(

−δ′2(1 − δ)p (meas(η − ∆)n)
3
)

− 3 nα1 − α2.

The proof of Lemma 6.1 is a modification from [18] and is

included in the Appendix.

B. Proofs of Theorems 5.1 and 5.2

Proof: We prove that as long as p = n−3/2+κ for any

κ ∈ (0, 1
2 ), with high probability, properties 6.1-6.3 hold for

an appropriately chosen function d, and for distance estimates

d̂ = dist computed according to (IV.5) with t defined in (IV.3).

We subsequently use Lemma 6.1 to conclude Theorem 5.1 and

Theorem 5.2. The proofs of Properties 6.1 and 6.3 are identical

in Theorem 5.1 and Theorem 5.2, while that of property 6.2

differ. For Theorem 5.1, we utilize Lemma 6.2 while for

Theorem 5.2, we utilize Lemma 6.3. The proof of Theorem 5.2

follows nearly the same argument, where f will be replaced

by the rank r approximation fr, c.f. (III.4).

Good Distance d and Property 6.1: We start by defining the

ideal distance d as follows. For all (u, v) ∈ [n]2, let

d(θu, θv) = ∥Λ2t+1Q(eu − ev)∥2
2

=
r
∑

k=1

λ
2(2t+1)
k (qk(θu) − qk(θv))

2. (VI.1)

Recall that t is defined in (IV.3). Since p = n−3/2+κ and

κ ∈ (0, 1
2 ), we have that

t =

⌈

ln(n)

2 ln(p2n3)

⌉

=

⌈

1

4κ

⌉

. (VI.2)

We want to show that there exists bias : R+ → R+ so that

|(f(θa, θb, θc) − f(θu, θv, θw))| ≤ bias(η) for any η > 0 and

(u, a, v, b, w, c) ∈ [n]3 such that d(θu, θa) ≤ η, d(θv, θb) ≤ η
and d(θw, θc) ≤ η. Consider

|f(θu, θv, θw) − f(θa, θb, θc)|
≤ |f(θu, θv, θw) − f(θa, θv, θw)|

+ |f(θa, θv, θw) − f(θa, θb, θw)|
+ |f(θa, θb, θw) − f(θa, θb, θc)|. (VI.3)

Now

|f(θu, θv, θw) − f(θa, θv, θw)|
= |
∑

k

λk(qk(θu) − qk(θa))qk(θv)qk(θw)|

(a)

≤ B2|
∑

k

λk(qk(θu) − qk(θa))|

= B2∥ΛQ(eu − ea)∥1

≤ B2
√
r∥ΛQ(eu − ea)∥2

≤ B2
√
r|λr|−2t∥Λ2t+1Q(eu − ea)∥2

= B2
√
r|λr|−2t

√

d(θu, θa). (VI.4)
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In above, (a) follows from the ∥qk(·)∥∞ ≤ B for all k.

Repeating this argument to bound the other terms in (VI.3),

we obtain that

|f(θu, θv, θw) − f(θa, θb, θc)|
≤ 3B2

√
r|λr|−2tmax

(
√

d(θu, θa),
√

d(θv, θb),
√

d(θw, θc)
)

≤ 3B2|λr|−2t√rη ≡ bias(η). (VI.5)

In summary, property 6.1 is satisfied for distance function d
defined according to (VI.1) and bias(η) = 3B2|λr|−2t√rη.

Good Distance Estimate d̂ and Property 6.2: We state the

following Lemma whose proof is delegated to Section VII.

Lemma 6.2: Given f with rank r, assume that p = n−3/2+κ

for κ ∈ (0, 1
2 ). Let d̂ = dist as defined in (IV.5). Then for any

(u, a) ∈ [n]2, for any ψ ∈ (0, κ),

|d(θu, θa) − d̂(u, a)| = O
(

rλ4t
maxn

−(κ−ψ)
)

,

with probability at least 1 −O
(

exp(−n2ψ(1 − o(1)))
)

.

Lemma 6.2 implies that property 6.2 holds with probability

1 − o(1) for ∆ = Θ
(

rλ4t
maxn

−(κ−ψ)
)

when f has rank r.

Lemma 6.3: Given f with ε-approximate rank r for ε ≥ 0,

assume that p = n−3/2+κ for κ ∈ (0, 1
2 ). Let d̂ = dist as

defined in (IV.5). Then for any (u, a) ∈ [n]2, for any ψ ∈
(0, κ),

|d(θu, θa) − d̂(u, a)| = O
(

rλ4t
maxn

−(κ−ψ)
)

+O
(

tε(1+ε)2t−1+t2ε2(1+ε)4t−2
)

,

with probability at least 1 − O
(

exp(−n2ψ(1 − o(1)))
)

−
O
(

n−6
)

.

Lemma 6.3 implies that property 6.2 holds with probability

1 − o(1) for

∆=Θ
(

rλ4t
maxn

−(κ−ψ)+tε(1 + ε)2t−1+t2ε2(1 + ε)4t−2
)

,

when f has ε-approximate rank r.

Sufficient Representation and Property 6.3: Since f is

L-Lipschitz, the distance d as defined in (VI.1) is bounded

above by the squared ℓ2 distance:

d(θu, θv) (VI.6)

= ∥Λ2t+1Q(eu − ev)∥2
2

≤ |λ1|4t∥ΛQ(eu − ev)∥2
2

= |λ1|4t
(

r
∑

k=1

λ2
k(qk(θu) − qk(θv))

2

= |λ1|4t
r
∑

k=1

λ2
k(qk(θu) − qk(θv))

2
(

∫ 1

0

qk(θa)
2dθa

)

×
(

∫ 1

0

qk(θb)
2dθb

)

= |λ1|4t
r
∑

k=1

λ2
k

∫

[0,1]2
(qk(θu)qk(θa)qk(θb)

− qk(θv)qk(θa)qk(θb))
2dθadθb

)

(a)
= |λ1|4t

∫ 1

0

∫ 1

0

(f(θu, θa, θb) − f(θv, θa, θb))
2dθadθb

≤ |λ1|4tL2|θu − θv|2, (VI.7)

where in (a) we have used the fact that qk(·), k ∈ [r] are

orthonormal with respect to uniform distribution over [0, 1].
We assumed that the latent parameters {θu}u∈[n] are sampled

i.i.d. uniformly over [0, 1]. Therefore, for any θu ∈ [0, 1], for

any v ∈ [n] and η′ > 0,

P
(

d(θu, θv) ≤ η′
∣

∣ θu
)

≥ P
(

|λ1|4tL2|θu − θv|2 ≤ η′
∣

∣ θu
)

= P

(

|θu − θv| ≤
√
η′

|λ1|2tL
∣

∣ θu

)

≥ min
(

1,

√
η′

|λ1|2tL
)

. (VI.8)

Let us define

meas(η′) =
(1 − δ)

√
η′

|λ1|tL
(VI.9)

for all η′ ∈ (0, |λ1|4tL2). By an application of Chernoff’s

bound and a simple majorization argument, it follows that for

all η′ ∈ (0, |λ1|4tL2) and δ ∈ (0, 1),

P





1

n− 1

∑

a∈[n]\u
I(d(u,a)≤η′) ≤ meas(η′)

∣

∣ θu





≤ exp

(

−δ
2(n− 1)

√
η′

2|λ1|2tL

)

.

By using union bound over all n indices, it follows that

for any η′ ∈ (0, |λ1|4tL2), with probability at least 1 −
n exp

(

− δ2(n−1)
√
η′

2|λ1|2tL

)

, property 6.3 is satisfied with meas as

defined in (VI.9).

Concluding Proof of Theorem 5.1: In summary, property 6.1

holds with probability 1, by Lemma 6.2 property 6.2 holds

for a given tuple (u, a) ∈ [n]2 with probability 1 − α1 where

α1 = O
(

exp(−n2ψ(1 − o(1)))
)

for ψ ∈ (0,min(κ, 3
8 )) and

κ ∈ (0, 1
2 ), property 6.3 holds with probability 1 − α2 where

α2 = n exp
(

− δ2(n−1)
√
η−∆

2|λ1|2tL

)

with distance estimate d̂ = dist

defined in (IV.5) with

d(θu, θv) = ∥Λ2t+1Q(eu − ev)∥2
2,

bias(η) = 3B2|λr|−2t√rη,
∆ = Θ(rλ4t

maxn
−(κ−ψ)),

meas(η′) =
(1 − δ)

√
η′

|λ1|2tL
, (VI.10)

for any η > 0, δ ∈ (0, 1) and η′ = η − ∆ ∈ (0, |λ1|4tL2).
By substituting the expressions for bias, meas, and α into

Lemma 6.1, it follows that

MSE(F̂ )

≤ 9B4|λr|−4tr(η + ∆) +
σ2L3|λ1|6t

(1 − δ)4p
(√
η − ∆n

)3

+ exp

(

−δ
2(1 − δ)3p

(√
η − ∆n

)3

2L3|λ1|6t

)

+ nO
(

exp(−n2ψ(1 − o(1)))
)

+ n exp

(

−δ
2(n− 1)

√
η − ∆

2|λ1|2tL

)

.
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Additionally, for any δ′ ∈ (0, 1),

|F̂ (u, v, w) − f(θu, θv , θw)| ≤ 3B2|λr|−2t
√

r(η + ∆) + δ′ (VI.11)

with probability at least

1 − exp

(

−δ
2(1 − δ)3p

(√
η − ∆n

)3

2L3|λ1|6t

)

− exp

(

−δ
′2(1 − δ)4p

(√
η − ∆n

)3

L3|λ1|6t

)

− nO
(

exp(−n2ψ(1 − o(1)))
)

−n exp

(

−δ
2(n− 1)

√
η − ∆

2|λ1|2tL

)

.

By selecting η = Θ
(

∆
)

= Θ(rλ4t
maxn

−(κ−ψ)) with a large

enough constant so that η −∆ = Θ(η), it follows that by the

conditions that ψ > 0 and κ < 1
2 ,

η ± ∆ = Θ(rλ4t
maxn

−(κ−ψ)),

p(
√

η − ∆n)3 = Θ(r3/2λ6t
maxn

3
2−κ

2 + 3ψ
2 ) = Ω(n

5
4 ),

n
√

η − ∆ = Θ(r1/2λ2t
maxn

1−κ−ψ
2 ) = Ω(n

3
4 ).

By substituting this choice of η and δ = 1
2 , it follows that

MSE(F̂ ) = O
(

r2(λmax/λr)
4tn−(κ−ψ)

)

. (VI.12)

By choosing δ′ = n−(κ−ψ)/2 such that δ′ = Θ(
√
η) and

δ′2p(
√
η − ∆n)3 = Ω(n

3
4 ) = Ω(n2ψ) because ψ < 3

8 . There-

fore, by substituting into (VI.11), it follows that for any given

(u, v, w) ∈ [n]3, with probability 1 −O(n exp(−Θ(n2ψ))
)

,

|F̂ (u, v, w) − f(θu, θv, θw)| = O
(

r(λmax/λr)
2t
n
−(κ−ψ)/2

)

. (VI.13)

Using union bound over choices of (u, v, w) ∈ [n]3, it follows

that the maximum entry-wise error is bounded above by

O
(

n−(κ−ψ)/2
)

with probability 1 − O(n4 exp(−Θ(n2ψ))
)

.

This completes the proof of Theorem 5.1. □

Concluding Proof of Theorem 5.2: We follow similar line

of argument as for proof of Theorem 5.1. As noted earlier,

property 6.1 holds with probability 1, by Lemma 6.3 prop-

erty 6.2 holds for a given tuple (u, a) ∈ [n]2 with probability

1 − α1 where α1 = O
(

exp(−n2ψ(1 − o(1))) + n−6
)

for

ψ ∈ (0,min(κ, 3
8 )) and κ ∈ (0, 1

2 ), property 6.3 holds with

probability 1 − α2 where α2 = n exp
(

− δ2(n−1)
√
η−∆

2|λ1|2tL

)

with

distance estimate d̂ = dist defined in (IV.5) with

d(θu, θv)= ∥Λ2t+1
Q(eu − ev)∥2

2,

bias(η)= 3B
2|λr|−2t√

rη,

∆= Θ(rλ
4t
maxn

−(κ−ψ)
+ tε(1 + ε)

2t−1
+ t

2
ε
2
(1 + ε)

4t−2
),

meas(η
′
)=

(1 − δ)
√
η′

|λ1|2tL
, (VI.14)

for any η > 0, δ ∈ (0, 1) and η′ = η − ∆ ∈ (0, |λ1|4tL2).
By substituting the expressions for bias, meas, and α into

Lemma 6.1, it follows that for any δ′ ∈ (0, 1),

|F̂ (u, v, w) − fr(θu, θv, θw)| ≤ 3B
2|λr|−2t

√

r(η + ∆) + δ
′, (VI.15)

with probability at least

1 − exp

(

−δ
2(1 − δ)3p

(√
η − ∆n

)3

2L3|λ1|6t

)

− exp

(

−δ
′2(1 − δ)4p

(√
η − ∆n

)3

L3|λ1|6t

)

− nO
(

exp(−n2ψ(1 − o(1))) + n−6
)

−n exp

(

−δ
2(n− 1)

√
η − ∆

2|λ1|2tL

)

.

By selecting

η = ∆ + min
(

∆, |λ1|4tL2
)

, (VI.16)

it follows by the conditions ψ > 0 and κ < 1
2 that

η + ∆=Θ(rλ4t
maxn

−(κ−ψ)+tε(1 + ε)2t−1+t2ε2(1+ε)4t−2),

η − ∆ = Ω(n−(κ−ψ)),

p(
√

η − ∆n)3 = Ω(n
5
4 ),

n
√

η − ∆ = Ω(n
3
4 ).

By choosing δ′ = n−(κ−ψ)/2 such that δ′ = O(
√
η) and

δ′2p(
√
η − ∆n)3 = Ω(n

3
4 ) = Ω(n2ψ) because ψ < 3

8 . There-

fore, by substituting into (VI.15), it follows that for any given

(u, v, w) ∈ [n]3, with probability 1−O(n exp(−Θ(n2ψ))
)

−
O(n−5),

|F̂ (u, v, w) − f(θu, θv, θw)|

≤ |F̂ (u, v, w) − fr(θu, θv, θw)| + |fr(θu, θv, θw) − f(θu, θv, θw)|

= O
(

r(λmax/λr)
2t
n
−(κ−ψ)/2

+ tε(1 + ε)
2t−1

+
√

tε(1 + ε)2t−1
)

,

where the bias between fr and f is bounded by ε, and

dominated by the bound between F̂ and fr. The final result

follows from a union bound over (u, v, w) ∈ [n]3.

The bound on MSE also follows by substituting δ = 1
2 and

the same choice of η from (VI.16) into Lemma 6.1, and again

noting that the bias between F and Fr is dominated by the

error between F̂ and Fr such that

MSE(F̂ ) = O
(

r2(λmax/λr)
4tn−(κ−ψ) + tε(1 + ε)2t−1

)

+O
(

t2ε2(1 + ε)4t−2
)

.

This completes the proof of Theorem 5.2.

C. Proof of Corollary 5.3

Proof: The proof follows the same format as the proof of

Theorem 5.1. Let us denote the set of anchor vertices as Y such

that |Y| = y, and they are assumed to be chosen uniformly at

random amongst all vertices. For a pair of vertices (a, b) ∈ Y2,

the estimate F̂ (a, b) follows the same exact computation as

described in Section IV-A. As a result it follows from Theorem

5.1 that with high probability,

max
(a,b,c)∈Y3

|F (a, b, c) − F̂ (a, b, c)| = O(n−(κ−ψ)/2).

Next we need to show the error is not degraded for

non-anchor vertices (u, v, w) ∈ ([n] \ Y)3. Let ζ : [n] → Y
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denote the function that maps from each vertex to the closest

anchor vertex as determined by the true distances d,

ζ(u) = arg min
a∈A

d(θu, θa),

and let ζ̂ : [n] → Y denote the data-dependent function

that maps from each vertex to the closest anchor vertex as

determined by the computed distances d̂,

ζ̂(u) = arg min
a∈A

d̂(u, a).

The estimate for non-anchor vertices is then taken to be

the estimate computed for the corresponding closest anchor

vertices,

F̂ (u, v, w) = F̂ (ζ̂(u), ζ̂(v), ζ̂(w)),

such that

|F̂ (u, v, w) − F (u, v, w)|
≤ |F̂ (ζ̂(u), ζ̂(v), ζ̂(w)) − F (ζ̂(u), ζ̂(v), ζ̂(w))|

+ |F (ζ̂(u), ζ̂(v), ζ̂(w)) − F (u, v, w)|.

By Theorem 5.1, as (ζ̂(u), ζ̂(v), ζ̂(w)) ∈ Y3, the first term

is bounded by O(n−(κ−ψ)/2) with high probability. By prop-

erty 6.1,

|F (ζ̂(u), ζ̂(v), ζ̂(w)) − F (u, v, w)|
≤ 3B2

√
r|λr|−2t

×
√

max
(

d(θu, θζ̂(u)), d(θv, θζ̂(v)), d(θw, θζ̂(w))
)

.

The modified algorithm computes distances using Step 4 of

the described algorithm between all pairs of anchor vertices,

as well as all pairs (u, a) such that u ∈ [n] and a ∈ Y . For

each computed distance between a pair (u, a), by Lemma 6.2,

property 6.2 holds for ∆ = Θ(n−κ+ψ) with probability

1 − α1 where α1 = O
(

exp(−n2ψ(1 − o(1)))
)

for ψ ∈
(0,min(κ, 3

8 )) and κ ∈ (0, 1
2 ).

In order to bound maxu∈[n] d(θu, θζ̂(u)), we argue that for

every u ∈ [n], with high probability

d(θu, θζ̂(u))
(a)

≤ d̂(u, ζ̂(u)) + ∆

(b)

≤ d̂(u, ζ(u)) + ∆

(c)

≤ d(θu, θζ(u)) + 2∆

(d)
= min

a∈A
d(θu, θa) + 2∆,

where (a) and (c) hold with high probability for ∆ =
Θ(n−κ+ψ) as a result of property 6.2, and (b) and (d) follow

from the definition of the functions ζ̂ and ζ.

To bound mina∈A d(θu, θa), we use (VI.8) from prop-

erty 6.3 to show that for any u ∈ [n], η = Θ(n−κ+ψ), and

y = Ω((p2n3)1/4) = Ω(nκ/2)

P

(

min
a∈Y

d(θu, θa) > η
∣

∣ θu

)

=
∏

a∈Y
P
(

d(θu, θa) > η
∣

∣ θu
)

≤
(

1 −
√
η

|λ1|2tL

)y

≤ exp(− y
√
η′

|λ1|2tL
) = exp(−Θ(n

ψ/2
)).

As a result, the max entrywise error is bounded by

O(n−(κ−ψ)/2) with high probability, which can be used to

show the MSE bound of O(n−(κ−ψ)). □

VII. PROVING DISTANCE ESTIMATE IS CLOSE

In this section we argue that the distance estimate as defined

in (IV.5) is close to an ideal distance as claimed in the

Lemma 6.2.

A. Regular Enough Growth of Breadth-First-Search (BFS)

Tree

The distance estimation algorithm of interest constructs a

specific BFS tree for each vertex u ∈ [n] with respect to

the bipartite graph between vertices [n] and VA where recall

that VA = {(b, c) ∈ [n/2]2 s.t. b < c}. The BFS tree

construction is done so that vertices at different levels do not

share coordinates, i.e. if vertex a ∈ [n] is visited in an earlier

layer of the BFS tree, then no vertex corresponding to (a, b) for

any b ∈ [n] can be visited subsequently. Similarly, if (a, b) is

visited in the BFS tree, then no subsequent vertices including

either coordinates a or b can be visited. The restriction is

placed across different depths, whereas pairs of vertices (a, b)
and (a, c) can be visited in the same depth. Amongst various

valid BFS trees, the algorithm chooses one arbitrarily (for

example, see Figure 3(c)).

We recall some notations. Consider a valid BFS tree rooted

at vertex u ∈ [n] which respects the constraint that no

coordinate is visited more than once. Recall that for any s ≥ 1,

Uu,s ⊆ VA denotes the set of vertices at depth (2s − 1)
and Su,s ⊆ [n] denotes the set of vertices at depth 2s of

the BFS tree, Bu,s = ∪l∈⌈s/2⌉Uu,l ∪h∈⌊s/2⌋ Su,h, G(Bu,s)
denotes all the information corresponding to the subgraph

restricted to the first s layers of the BFS tree which includes

Bu,s, the latent variables {θa}a∈Bu,s and the edge weights

{M1(a, b, c)}a,(b,c)∈Bu,s . The vector Nu,s ∈ [0, 1]n is such

that the a-th coordinate is equal to the product of weights

along the path from u to a in the BFS tree for a ∈ Su,s, and

the vector Wu,s ∈ [0, 1]VA is such that the (b, c)-th coordinate

is equal to the product of weights along the path from u
to (b, c) in the BFS tree for (b, c) ∈ Uu,s. The normalized

vectors are Ñu,s = Nu,s/|Su,s| and W̃u,s = Wu,s/|Uu,s| for

u ∈ [n], s ≥ 1.

In a valid BFS tree rooted at vertex u, πu(a) denotes the

parent of a ∈ [n], and πu(b, c) denotes the parent of (b, c) ∈
VA. The neighborhood vectors satisfy recursive relationship,

Nu,s(a) = MA(a, πu(a))Wu,s(πu(a))I(a∈Su,s)
Wu,s(b, c) = MA(πu(b, c), (b, c))Nu,s−1(πu(b, c))I((b,c)∈Uu,s)

with Nu,0 = eu. We state the following result regarding

regularity in the growth of the BFS tree.

Lemma 7.1: Let p = n−3/2+κ for κ ∈ (0, 1
2 ). Let t be as

defined in (IV.3). For a given δ ∈ (0, 1
2 ) and for any u ∈ [n],

with probability 1−O
(

n exp
(

−Θ(n2κ)
)

)

, or all s ∈ [t−1],

|Su,s| ∈
[

(1 − δ)2s2−3sn2κs(1 − o(1)), (1 + δ)2s2−sn2κs
]

,

(VII.1)
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for s = t,

|Su,t| ∈
[

(1 − δ)2t2−3t−1n2κt(1 − o(1)), (1 + δ)2t2−tn2κt
]

,

(VII.2)

and for s ∈ [t],

|Uu,s| ∈
[

(1 − δ)2s−12−3sn
1
2+κ(2s−1)(1 − o(1)),

(1 + δ)2s−12−sn
1
2+κ(2s−1)

]

. (VII.3)

The set of single coordinate vertices visited within depth 2t is

o(n),

| ∪tℓ=0 Su,ℓ| = o(n). (VII.4)

Proof: First observe that if t is as defined in (IV.3) with

κ ∈ (0, 1
2 ), then

t =
⌈ ln(n)

2 ln(p2n3)

⌉

=
⌈ 1

4κ

⌉

such that

1

4κ
≤ t <

1

4κ
+ 1. (VII.5)

Note that t is constant with respect to n.

For any s ∈ [t], we study the growth of |Su,s| and

|Uu,s| conditioned on Bu,2s−1 ∪ Uu,s and Bu,2(s−1) ∪ Su,s−1

respectively. To that end, conditioned on the set Bu,2s−1

and the set Uu,s, any vertex i ∈ [n] \ Bu,2s−1 is in Su,s
independently with probability (1 − (1 − p)|Uu,s|). Thus the

number of vertices in Su,s is distributed as a binomial random

variable. By Chernoff’s bound,

P

(

|Su,s| /∈ (1 ± δ)(|[n] \ Bu,2s−1|)(1 − (1 − p)
|Uu,s|) | Bu,2s−1,Uu,s

)

≤ 2 exp

(

− 1

3
δ
2
(|[n] \ |Bu,2s−1|)(1 − (1 − p)

|Uu,s|)

)

. (VII.6)

Similarly, conditioned on the sets Bu,2(s−1) and Su,s−1, the

set of vertices in Uu,s is equivalent to the number of edges in

a graph with vertices [n/2] \ Bu,2(s−1) and an edge between

(i, j) if there is some h ∈ Su,s−1 such that (i, j, h) ∈ Ω1.

This is an Erdos-Renyi graph, as each edge is independent

with probability (1 − (1 − p)|Su,s−1|). By Chernoff’s bound,

P

(

|Uu,s| /∈ (1 ± δ)
(|[n/2] \ Bu,2(s−1)|

2

)

× (1 − (1 − p)
|Su,s−1|

) | Bu,2(s−1),Su,s−1

)

≤ 2 exp

(

− 1

3
δ
2
(|[n/2] \ Bu,2(s−1)|

2

)

(1 − (1 − p)
|Su,s−1|

)

)

.

(VII.7)

Let us define the events

A1
u,s(δ)=

{

|Su,s| ∈ (1 ± δ)(|[n] \ Bu,2s−1|)(1 − (1 − p)
|Uu,s|)

}

,

(VII.8)

A2
u,s(δ)=

{

|Uu,s| ∈ (1 ± δ)
(|[n/2] \ Bu,2(s−1)|

2

)

(1 − (1 − p)
|Su,s−1|

)
}

.

(VII.9)

Since p ∈ (0, 1) and hence 1 − (1 − p)x ≤ px for all x ≥ 1,

we have that under events A1
u,s(δ) ∩ A2

u,s(δ),

|Su,s| ≤ (1 + δ)np|Uu,s| and |Uu,s| ≤ (1 + δ)
(n/2

2

)

p|Su,s−1|,

which together implies that conditioned on event

∩sh=1

(

A1
u,h(δ) ∩ A2

u,h(δ)
)

, for all s ∈ [t]

|Su,s| ≤
(

(1 + δ)
2 p

2n3

8

)s

= (1 + δ)
2s

2
−3s

n
2κs, (VII.10)

and

|Uu,s| ≤ (1 + δ)
pn2

8

(

(1 + δ)2
p2n3

8

)s−1

(VII.11)

= (1 + δ)2s−12−3sn
1
2+κ(2s−1). (VII.12)

Therefore, for any s ∈ [t−1] such that s ≤ 1
4κ by the definition

of t,

|Bu,2s|

≤ 1 +
s
∑

ℓ=1

(2|Uu,ℓ| + |Su,ℓ|)

≤ 1 +

s
∑

ℓ=1

(

2(1 + δ)
pn2

8

(

(1 + δ)
2 p

2n3

8

)ℓ−1

+

(

(1 + δ)
2 p

2n3

8

)ℓ)

= 1 +

(

2(1 + δ)
pn2

8
+

(

(1 + δ)
2 p

2n3

8

))

s
∑

ℓ=1

(

(1 + δ)
2 p

2n3

8

)ℓ−1

= O
(

pn
2
(p

2
n

3
)
s−1)

= O
(

n
κ(2s−1)+ 1

2
)

= O
(

n
1−κ)

= o(n).

(VII.13)

With a similar argument we can show that

t
∑

ℓ=0

|Su,ℓ| ≤
t
∑

ℓ=0

(

(1 + δ)2
p2n3

8

)ℓ

= O((p2n3)t) = O(n2κt) = o(n). (VII.14)

The last step follows from checking that when κ ∈ [ 14 ,
1
2 ), t =

1 such that n2κt = o(n), and when κ ∈ (0, 1
4 ), from t ≤ 1

4κ +

1, it follows such that n2κt = O(n
1
2+2κ) = o(n) as κ < 1

4 .

Recall that we split the coordinates such that ∪tℓ=1Uu,ℓ ⊂ VA,

and the coordinates represented in (a, b) ∈ VA are such that

a ∈ [n/2] and b ∈ [n/2]. Therefore by (VII.14),

|[n] \ Bu,2t−1| ≥ n/2 −
t−1
∑

ℓ=0

|Su,ℓ| =
n

2
(1 − o(1)).

Using (VII.13), we establish lower bounds on |Su,s| and

|Uu,s| next. Note that, for p ∈ (0, 1), 1− p ≤ e−p and for any

x ∈ (0, 1), e−x ≤ 1−x + x2. It follows that 1 − (1 − p)x ≥
px(1 − px). For s ∈ [t] we can show that

|Uu,s| ≥ (1−δ) (n(1 − o(1)))2(1 − o(1))

8
(1−(1−p)|Su,s−1|)

≥ (1 − δ)
n2

8
p|Su,s−1|(1 − p|Su,s−1|)(1 − o(1))

= (1 − δ)
n2

8
p|Su,s−1|(1 − o(1)).

For s ∈ [t− 1] we can show that

|Su,s| ≥ (1 − δ)n(1 − o(1))(1 − (1 − p)|Uu,s|)

≥ (1 − δ)n(1 − o(1))p|Uu,s|(1 − p|Uu,s|)
≥ (1 − δ)n(1 − o(1))p|Uu,s|(1 − o(1))

= (1 − δ)pn|Uu,s|(1 − o(1)),
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and for s = t,

|Su,t| ≥ (1 − δ)
n

2
(1 − o(1))(1 − (1 − p)|Uu,t|).

Then for s ∈ [t],

|Uu,s| ≥ (1 − δ)2
p2n3

8
|Uu,s−1|(1 − o(1))

≥
(

(1 − δ)2
p2n3

8

)s−1

|Uu,1|(1 − o(1))

≥
(

(1 − δ)2
p2n3

8

)s−1

(1 − δ)
pn2

8
(1 − o(1))

= (1 − δ)2s−12−3sn
1
2+κ(2s−1)(1 − o(1)); (VII.15)

for s ∈ [t− 1],

|Su,s| ≥ (1 − δ)2pn
n2

8
p|Su,s−1|(1 − o(1)),

≥
(

(1 − δ)2
p2n3

8

)s

(1 − o(1)),

= (1 − δ)2s2−3sn2κs(1 − o(1)); (VII.16)

and for s = t, |Su,t| ≥ (1 − δ)2t2−3t−1n2κt(1 − o(1)).
To conclude the proof of Lemma 7.1, we need to argue that

∩ts=1

(

A1
u,s(δ)∩A2

u,s(δ)
)

holds with high probability. To that

end,

P

(

¬(∩ts=1(A
1
u,s(δ) ∩ A2

u,s(δ)))
)

= P

(

∪ts=1¬(A1
u,s(δ) ∩ A2

u,s(δ))
)

=

t
∑

s=1

P

(

¬(A1
u,s(δ) ∩ A2

u,s(δ)) ∩
s−1
h=1 (A1

u,h(δ) ∩ A2
u,h(δ))

)

≤
t
∑

s=1

P

(

¬(A1
u,s(δ) ∩ A2

u,s(δ)) | ∩s−1
h=1 (A1

u,h(δ) ∩ A2
u,h(δ))

)

≤
t
∑

s=1

P

(

¬A1
u,s(δ) | ∩s−1

h=1 (A1
u,h(δ) ∩ A2

u,h(δ))
)

+

t
∑

s=1

P

(

¬A2
u,s(δ) | A

1
u,s(δ) ∩

s−1
h=1 (A1

u,h(δ) ∩ A2
u,h(δ))

)

.

We bound the each of the two summation terms on the

right hand side in the last inequality next. Using (VII.6) and

(VII.10), we have

t
∑

s=1

P

(

¬A1
u,s(δ) | ∩s−1

h=1 (A1
u,h(δ) ∩ A2

u,h(δ))
)

≤
t−1
∑

s=1

2 exp

(

− 1

3
δ
2
(1 − δ)

p2n3

2

(

(1 − δ)
2 p

2n3

2

)s−1

(1 − o(1))

)

+2 exp

(

− 1

3
δ
2
(1 − δ)

p2n3

4

(

(1 − δ)
2 p

2n3

2

)t−1

(1 − o(1))

)

≤ 4 exp

(

− 1

3
δ
2
(1 − δ)

p2n3

2
(1 − o(1))

)

= O
(

exp
(

− Θ(n
2κ

)
)

)

.

Similarly, using (VII.7) and (VII.12), we have

t
∑

s=1

P
(

¬A2
u,s(δ) | A1

u,s(δ) ∩s−1
h=1 (A1

u,h(δ) ∩ A2
u,h(δ))

)

≤
t+1
∑

s=1

2 exp

(

−1

3
δ2
n2p

2

(

(1 − δ)2
p2n3

2

)s−1

(1 − o(1))

)

≤ 4 exp

(

−1

3
δ2
n2p

2
(1−o(1))

)

=O
(

exp
(

−Θ(n
1
2+κ)

)

)

.

Putting it all together, we have that

P
(

¬(∩ts=1(A1
u,s(δ) ∩ A2

u,s(δ)))
)

≤ O
(

exp
(

− Θ(n2κ)
)

)

+O
(

exp
(

− Θ(n
1
2+κ)

)

)

= O
(

exp
(

− Θ(n2κ)
)

)

,

since κ ∈ (0, 1
2 ). By union bound over all u ∈ [n], we obtain

the desired bound on the probability of error. This concludes

the proof of Lemma 7.1. □

B. Concentration of Quadratic Form One

Let A3
u,t(δ) denote the event that (VII.1) holds for all s ∈

[t− 1], (VII.2) holds, (VII.3) holds for all s ∈ [t], and (VII.4)

holds. Lemma 7.1 established that this event holds with high

probability. Conditioned on the event A3
u,t(δ), we prove that

a specific quadratic form concentrates around its mean. This

will be used as the key property to eventually establish that

the distance estimates are a good approximation to the ideal

distances.

Lemma 7.2: Let p = n−3/2+κ for κ ∈ (0, 1
2 ), t as defined

in (IV.3), δ ∈ (0, 1
2 ), and ψ ∈ (0, κ). For any u ∈ [n], with

probability 1 − 2 exp(−n2ψ(1 − o(1))),

|eTkQÑu,t − eTkΛ2tQeu| <
16λ2t−2

k nψ

(1 − δ)nκ
.

Proof: Recall that conditioning on event A3
u,t(δ) simply

imposes the restriction that the neighborhood of u ∈ [n]
grows at a specific rate. This event is independent from latent

parameters {θa}a∈[n], the precise entries in Ω1 as well as

associated values, i.e. M1.

Conditioned on A3
u,t(δ), let Fu,s for 0 ≤ s ≤ 2t denote the

sigma-algebra containing information about the latent parame-

ters, edges and the values associated with nodes in the bipartite

graph up to distance s from u, i.e. nodes Su,h′ for h′ ≤ ⌊s/2⌋,

Uu,h′′ for h
′′ ≤ ⌈s/2⌉, associated latent parameters as well

as edges of Ω1. Specifically, Fu,0 contains information about

latent parameter θu associated with u ∈ [n]; Fu,s contains

information about latent parameters ∪⌊s/2⌋
h=1 {θa}a∈Su,h ∪⌈s/2⌉

h=1

{θb, θc}(b,c)∈Uu,h and all the associated edges and observa-

tions. This implies that Fu,0 ⊂ Fu,1 ⊂ Fu,2, etc.

Recall that Q denotes the r × n matrix where Qka =
qk(θa), k ∈ [r], a ∈ [n]. We modify the notation due to the

sample splitting, and we let Q denote the r ×
(

n/2
2

)

matrix

where Qkb = qk(θb1)qk(θb2) for some b ∈ VA that represents

the pair of coordinates (b1, b2) for b1 < b2 ∈ [n/2].
We shall consider a specific martingale sequence with

respect to the filtration Fu,s that will help establish the desired

concentration of eTkQÑu,t−eTkΛ2tQeu. For 1 ≤ s ≤ 2t, define

Yu,s =

{

eTkΛ2t−sQÑu,s/2 if s even

eTkΛ2t−sQW̃u,(s+1)/2 if s odd

Du,s = Yu,s − Yu,s−1,

Yu,2t − Yu,0 = eTkQÑu,t − eTkΛ2tQÑu,0 =

2t
∑

s=1

Du,s.
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Note that Ñu,0 = eu, and Yu,s is measurable with respect

to Fu,s because eTkΛ2t−sQÑu,s/2 and eTkΛ2t−sQÑu,(s+1)/2

only depend on observations in the BFS tree within depth s.
By Lemmas 7.4 and 7.5, it follows that Yu,s is martingale

with respect to Fu,s for 1 ≤ s ≤ t, i.e.

E[Du,s | Fu,s−1] = 0. (VII.17)

Furthermore, for properly chosen νs as specified in Lem-

mas 7.4 and 7.5,

E[eλDs | Fs−1,A3
u,t(δ)] ≤ eλ

2ν2
s/2

almost surely for any λ ∈ R.

We can then apply Proposition 7.3 with any arbitrarily small

α∗ such that for any x ≥ 0,

P

(

|eTkQÑu,t − eTkΛ2tQeu| ≥ x | A3
u,t(δ)

)

≤ 2 exp

(

− x2

2
∑2t
s=1 ν

2
s

)

where for n large enough,

2t
∑

s=1

ν2
s =

t
∑

s=1

(1 + 4π)λ4t−4s
k 23s−1(1 + o(1))

(1 − δ)2sn2κs

+
t
∑

s=1

(1 + 16π)72λ4t−4s+2
k B423s−1(1 + o(1))

(1 − δ)2s−1nmin{1, 12+κ(2s−1)}

≤ 8(1 + 4π)λ4t−4
k (1 + o(1))

(1 − δ)2n2κ
,

and 1 + 4π ≤ 16.

For ψ ∈ (0, κ), we choose x =
16λ2t−2

k nψ

(1−δ)nκ = o(1), such that

with probability 1 − 2 exp(−n2ψ(1 − o(1))),

|eTkQÑu,t − eTkΛ2tQeu| < x.

□

We recall the following concentration inequality for Mar-

tingale difference sequence, cf. [46, Theorem 2.19]:

Proposition 7.3: Let {Dk,Fk}k≥1 be a martingale differ-

ence sequence such that E[eλDk |Fk−1] ≤ eλ
2ν2
k/2 almost

surely for all λ ∈ R. Then for all x > 0,

P

(

∣

∣

∣

n
∑

k=1

Dk

∣

∣

∣ ≥ x

)

≤ 2 exp

(

− x2

2
∑n
k=1 ν

2
k

)

. (VII.18)

Lemma 7.4: For any s ∈ [t],

E
[

Du,2s | Fu,2s−1,A3
u,t(δ)

]

= 0.

Let ν =
√

Q(1+4π)
2 , and

Q =
B2λ4t−4s

k 23s(1 + o(1))

(1 − δ)2sn2κs
.

For any λ ∈ R,

E
[

eλDu,2s | Fu,2s−1,A3
u,t(δ)

]

≤ exp
(λ2ν2

2

)

.

Proof: Recall F2s−1 contains all information in the depth

2s− 1 neighborhood of vertex u. In particular this includes

the vertex set

Bu,2s−1 = ∪sl=1Uu,l ∪s−1
h=1 Su,h,

the vertex latent variables {θi}i∈Bu,2s−1
and the edges and

corresponding weights. Let us additionally condition on the

set Su,s. As 2s is even,

Du,2s= Yu,2s − Yu,2s−1

= λ
2t−2s
k

(

e
T
kQÑu,s − λke

T
kQW̃u,s

)

= λ
2t−2s
k





1

|Su,s|
∑

i∈[n]

Nu,s(i)qk(θi) − λke
T
kQW̃u,s





= λ
2t−2s
k

(

1

|Su,s|
∑

i∈Su,s

∑

a=(a1,a2)∈Uu,s

×Wu,s(a)I(a=π(i))M1(a1, a2, i)qk(θi) − λke
T
kQW̃u,s

)

.

Let us define

Xi=
∑

a=(a1,a2)∈Uu,s

Wu,s(a)I(a=π(i))M1(a1, a2, i)qk(θi)

=
∑

a=(a1,a2)∈Uu,s

Wu,s(a)I(a=π(i))(f(θa1 , θa2 , θi) + ϵa1a2i)qk(θi).

The randomness in Xi only depends on θi, ϵa1a2i, I(a=π(i)).

Note that we already conditioned on θa1 , θa2 for a ∈ Uu,s ⊂
B2s−1. Xi is independent from Xj because the vertices and

edges are disjoint, and π(i) is independent from π(j) as

different vertices are allowed to have the same (or different)

parents. First we compute the mean of Xi (conditioned on

i ∈ Su,s). For any vertex i ∈ Su,s, it must have exactly one

parent in Uu,s due to the BFS tree constraints. The parent is

equally likely to be any vertex in Uu,s due to the symmetry

in the randomly sampled observations. Because the additive

noise terms are mean zero, the eigenfunctions are orthonormal,

and π(i) is equally likely to be any a ∈ Uu,s, it follows that

E[Xi|i ∈ Su,s] = eTkΛQW̃u,s as shown in (VII.19) shown at

the bottom of the next page.

Furthermore, |Xi| ≤ B almost surely as we assumed |qk(θ)| ≤
B. By Hoeffding’s inequality, it follows that

P (|Du,2s| ≥ z | Fu,2s−1,Su,s) ≤ 2 exp

(

− 2|Su,s|z2

λ4t−4s
k B2

)

.

If we condition on the event A3
u,t(δ),

|Su,s| ≥ (1 − δ)2s2−3s−1n2κs(1 − o(1))

for s ∈ [t]. Therefore,

P
(

|Du,2s| ≥ z | Fu,2s−1,A3
u,t(δ)

)

≤ 2 exp

(

−2(1 − δ)2s2−3s−1n2κs(1 − o(1))z2

λ4t−4s
k B2

)

.

We finish the proof by using Lemma A.2 with c = 2 and

Q =
B2λ4t−4s

k 23s(1+o(1))

(1−δ)2sn2κs . □

Lemma 7.5: For any s ∈ [t],

E
[

Du,2s−1 | Fu,2s−1,A3
u,t(δ)

]

= 0.

Let ν =
√

Q(1+16π)
2 , and

Q =
72λ4t−4s+2

k B423s(1 + o(1))

(1 − δ)2s−1nmin{1, 12+κ(2s−1)} .

For any λ ∈ R,

E
[

eλDu,2s−1 | Fu,2s−1,A3
u,t(δ)

]

≤ exp
(λ2ν2

2

)

.
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Proof: As 2s− 1 is odd,

Du,2s−1 = Yu,2s−1 − Yu,2(s−1)

= λ2t−2s+1
k

(

eTkQW̃u,s − λke
T
kQÑu,s−1

)

.

Recall F2s−2 contains all information in the depth 2s − 2
neighborhood of vertex u. In particular this includes the vertex

set

Bu,2s−2 = ∪l∈[s−1]Uu,l ∪h∈[s−1] Su,h,

the vertex latent variables {θi}i∈Bu,2(s−1)
and the edges and

corresponding weights {M1(i, a)}i,a∈Bu,2(s−1)
. Consider

eTkQW̃u,s

=
1

|Uu,s|
∑

i=(i1,i2)∈Uu,s
Wu,s(i)qk(θi1)qk(θi2)

=
1

|Uu,s|
∑

i=(i1,i2)∈Uu,s

∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))

× M1(v, i)qk(θi1)qk(θi2)

=
1

|Uu,s|
∑

i=(i1,i2)∈Uu,s
Xi,

where we define for i = (i1, i2) ∈ Uu,s,

Xi =
∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))M1(v, i)qk(θi1)qk(θi2)

=
∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))

×
(

∑

l

λlql(θv)ql(θi1)ql(θi2)+ϵvi1i2

)

qk(θi1)qk(θi2).

Conditioned on Fu,2(s−1) the randomness in Xi only depends

on θi1 , θi2 , ϵπ(i)i1i2 , and I(v=π(i)). Conditioned on Uu,s and

{θi1 , θi2}i∈Uu,s , the random variables Xi are independent as

ϵπ(i)i1i2 and I(v=π(i)) are independent. The parent of i =
(i1, i2) ∈ Uu,s is equally likely to be any vertex in Su,s−1,

and the parent of i = (i1, i2) ∈ Uu,s is independent from the

parent of j = (j1, j2) ∈ Uu,s with j ̸= i as different vertices

are allowed to have the same (or different) parent. First we

compute the mean of Xi conditioned on i ∈ Uu,s and θi1 , θi2 .

Because the additive noise terms are mean zero and the parent

of i is equally likely to be any v ∈ Su,s−1,

E[Xi | θi1 , θi2 , i ∈ Uu,s]

= E

[

∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))

(

∑

l

λlql(θv)ql(θi1)ql(θi2)

)

× qk(θi1)qk(θi2)
∣

∣

∣ θi1 , θi2

]

=
1

|Su,s−1|
∑

v∈Su,s−1

Nu,s−1(v)

(

∑

l

λlql(θv)ql(θi1)ql(θi2)

)

× qk(θi1)qk(θi2).

Furthermore, |Xi| ≤ B2 almost surely as we assumed

|qk(θ)| ≤ B. By Hoeffding’s inequality, it follows that

P

(

|eTkQW̃u,s − E[eTkQW̃u,s | {θi1 , θi2}i∈Uu,s ,Uu,s]|

> z
∣

∣

∣
Fu,2(s−1),Uu,s, {θi1 , θi2}i∈Uu,s

)

≤ 2 exp

(

−|Uu,s|z2

B4

)

. (VII.20)

Next we consider concentration with respect to the random

subset Uu,s out of the VA \Bu,2(s−1) possible vertices. In par-

ticular we would like to argue that with high probability,

1

|Uu,s|
∑

i∈Uu,s

∑

l

λlql(θv)ql(θi1 )ql(θi2 )qk(θi1 )qk(θi2 )

≈ 1

|VA \ Bu,2(s−1)|
×

∑

i∈VA\Bu,2(s−1)

∑

l

λlql(θv)ql(θi1 )ql(θi2 )qk(θi1 )qk(θi2 ).

Next, we formalize it. To that end, conditioned on the size

|Uu,s|, the set Uu,s is a uniform random sample of the possible

set of vertices VA \ Bu,2(s−1). The above expression on

the left is thus the mean of a random sample Uu,s without

replacement from VA\Bu,2(s−1). Due to negative dependence,

it concentrates around its means no slower than assuming that

they were a sample of the same size from the same population

with replacement, cf. [47, Theorem 4]. Therefore, using

∑

l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

= |f(θv, θi1 , θi2)qk(θi1)qk(θi2)| ≤ B2,

E[Xi | i ∈ Su,s]

= E





∑

a=(a1,a2)∈Uu,s
Wu,s(a)I(a=π(i))(f(θa1 , θa2 , θi) + ϵa1a2i)qk(θi)





=
∑

a=(a1,a2)∈Uu,s

1

|Uu,s|
E

[

Wu,s(a)
∑

h

λhqh(θa1
)qh(θa2

)qh(θi)qk(θi)

]

=
∑

a=(a1,a2)∈Uu,s
W̃u,s(a)λkqk(θa1

)qk(θa2
)

= eTkΛQW̃u,s. (VII.19)
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we can apply Hoeffding’s inequality to argue that

P

(∣

∣

∣

1

|Uu,s|
∑

i∈Uu,s
ql(θi1 )ql(θi2 )qk(θi1 )qk(θi2 )

− 1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

ql(θi1 )ql(θi2 )qk(θi1 )qk(θi2 )
∣

∣

∣

≥ z | {θi1 , θi2}i∈VA , |Uu,s|
)

≤ 2 exp
(

− |Uu,s|z2

B4

)

. (VII.21)

Finally, we need to account for the randomness in

{θi1 , θi2}i∈VA , arguing that with high probability

1

|VA \ Bu,2(s−1)|

×
∑

i∈VA\Bu,2(s−1)

∑

l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

≈ λkqk(θv).

To formalize this, we start by recalling that

VA \ Bu,2(s−1) = {(i1, i2) s.t. i1 < i2, {i1, i2} ⊂ [n/2] \ Bu,2(s−1)}.

Let nu,s = |[n/2]\Bu,2(s−1)|, then |VA\Bu,2(s−1)| =
(|nu,s|

2

)

.

Then the above summation can be written as a pairwise

U-statistic,

U =
1

|VA \ Bu,2(s−1)|
∑

(i1,i2)∈VA\Bu,2(s−1)

g(θi1 , θi2)

where g is a symmetric function and each term g(θi1 , θi2) is

bounded in absolute value by B2. Furthermore,

E[
∑

l

λlql(θi2)qk(θi1)qk(θi2)] = λkqk(θv)

by the orthogonality model assumption. Therefore,

by Lemma A.3

P

(∣

∣

∣

1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

∑

l

λlql(θi1 )ql(θi2 )qk(θi1 )qk(θi2 )

−λkqk(θv)
∣

∣

∣ ≥ z
)

≤ 2 exp
(

− nu,sz
2

8B4

)

. (VII.22)

By putting together all calculations, it also follows that

E[eTkQW̃u,s] = eTkΛQÑu,s−1,

and for z1, z2, z3 > 0, with probability at least

1 − 2 exp
(

− |Uu,s|z21
B4

)

− 2 exp
(

− |Uu,s|z22
B4

)

− 2 exp
(

− nu,sz
2
3

8B4

)

it holds that |eTkQW̃u,s − eTkΛQÑu,s−1| ≤ z1 + z2 + z3 as

shown in (VII.23), shown at the bottom of the next page, using

the fact that ∥Nu,s−1∥∞ ≤ 1. Conditioned on A3
u,t(δ), nu,s =

n/2(1 − o(1)), and

|Uu,s| ∈
[

(1 − δ)2s−12−3sn
1
2+κ(2s−1)(1 − o(1)),

(1 + δ)2s−12−sn
1
2+κ(2s−1)

]

.

As a result, for z1 = z2 = z3, the expression in (VII.20) and

(VII.21) asymptotically dominate the expression in (VII.22).

It follows that, with appropriate choice of z1 = z2 = z3 in the

above,

P

(

|Du,2s−1| ≥ z | F2s−2,A3
u,t(δ)

)

≤ 6 exp



− (1 − δ)2s−12−3snmin{1, 1
2
+κ(2s−1)}(1 − o(1))z2

72λ4t−4s+2
k B4



.

We finish the proof by using Lemma A.2 with c = 4 and

Q =
72λ4t−4s+2

k B423s(1+o(1))

(1−δ)2s−1nmin{1, 1
2
+κ(2s−1)} .

□

C. Concentration of Quadratic Form Two

Lemma 7.2 suggests the following high probability events:

for any u ∈ [n], k ∈ [r], t as defined in (IV.3), i.e. t =
⌈

1
4κ

⌉

,

δ ∈ (0, 1), and

x =
16λ2t−2

max n
ψ

(1 − δ)nκ
.

define

A4
u,k,t(x, δ) =

{

|eTkQÑu,t − eTkΛ2tQeu| < x
}

∩ A3
u,t(δ).

Now, we state a useful concentration that builds on the above

condition holding. It will be useful step towards establishing

Lemma 6.2.

Lemma 7.6: Let p = n−3/2+κ for κ ∈ (0, 1
2 ), t as defined

in (IV.3), and δ ∈ (0, 1
2 ). For any u, v ∈ [n], conditioned on

∩rk=1

(

A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)

,
∣

∣ÑT
u,tQ

TΛ2QÑv,t − eTuQ
TΛ2(2t+1)Qev

∣

∣

≤ x2

(

r
∑

k=1

λ2
k

)

+ xB

(

r
∑

k=1

2λ
2(t+1)
k

)

.

Proof: Proof of Lemma 7.6. Assuming event

∩rk=1

(

A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)

holds,

|ÑTu,tQ
T

Λ
2
QÑv,t − e

T
uQ

T
Λ

2(2t+1)
Qev|

≤ |(ÑTu,tQ
T − e

T
uQ

T
Λ

2t
)(Λ

2
QÑv,t − Λ

2(t+1)
Qev)|

+|(ÑTu,tQ
T − e

T
uQ

T
Λ

2t
)Λ

2(t+1)
Qev|

+|eTuQ
T

Λ
2(t+1)

(QÑv,t − Λ
2t
Qev)|

≤
∣

∣

∣

r
∑

k=1

(e
T
kQÑu,t − e

T
k Λ

2t
Qeu)(e

T
k Λ

2
QÑv,t − e

T
k Λ

2(t+1)
Qev)

∣

∣

∣

+
∣

∣

∣

r
∑

k=1

(e
T
kQÑu,t − e

T
k Λ

2t
Qeu)e

T
k Λ

2(t+1)
Qev

∣

∣

∣

+
∣

∣

∣

r
∑

k=1

(e
T
k Λ

2(t+1)
Qeu)(e

T
kQÑv,t − e

T
k Λ

2t
Qev)

∣

∣

∣. (VII.24)

In above, we have simply used the fact that for two vectors

a, b ∈ R
r, aT b =

∑

k akbk =
∑

k(e
T
k a)(e

T
k b). Now, consider

the first term on the right hand side of the last inequality.

If ∩rk=1A4
u,k,t(x, δ) holds, then |(eTkQÑu,t − eTkΛ2tQeu)| ≤

x. And if ∩rk=1A4
v,k,t(x, δ) holds, then |(eTkΛ2QÑv,t −

eTkΛ2(t+1)Qev)| ≤ λ2
kx. Similar application to other terms and

the fact that |eTkQeu|, |eTkQev| ≤ ∥qk(·)∥∞ ≤ B, we conclude

that

|ÑT
u,tQ

TΛ2QÑv,t − eTuQ
TΛ2(2t+1)Qev|

≤ x2

(

r
∑

k=1

λ2
k

)

+ xB

(

r
∑

k=1

2λ
2(t+1)
k

)

. (VII.25)

□
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D. Concentration of Quadratic Form Three

We establish a final concentration that will lead us to the

proof of good distance function property. For any u ∈ [n],
define event

A′
u,v,t(x, δ) = ∩rk=1

(

A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)

. (VII.26)

Lemma 7.7: Let p = n−3/2+κ for κ ∈ (0, 1
2 ), t as defined

in (IV.3), δ ∈ (0, 1
2 ), and

x =
16λ2t−2

max n
ψ

(1 − δ)nκ
.

Let S ≡ Su,v,t = [n]\(Bu,2t ∪ Bv,2t ∪ [n/2]). Then, under

event A′
u,v,t(x, δ),

∣

∣

∣

∣

∣

∣

1
(|S|

2

)

p2|Su,t||Sv,t|
∑

α<β∈S×S
T (α, β) − ÑT

u,tQ
TΛ2QÑv,t

∣

∣

∣

∣

∣

∣

= O

(

nψ

(|S|2p2|Su,t||Sv,t|)1/2
)

+O

(

nψ

|S|1/2
)

with probability at least 1−4 exp(−n2ψ(1−o(1)))−O(n−6)
with ψ ∈ (0, κ).

Proof: First, note that A′
u,v,t(x, δ) includes events

A3
u,t(δ) and A3

v,t(δ). This implies that |S| = n
2 − o(n) =

n(1−o(1))
2 . Furthermore, it implies that |Su,t| and |Sv,t| are

both greater than or equal to (1 − δ)2t2−3t−1n2κt(1 − o(1)).
As a result,

|S|2p2|Su,t||Sv,t|≥
n2

8
p
2

(

(1 − δ)2

8
n

2κ

)2t

(1 − o(1))

(VII.27)

≥ n
2+4κt

n
2(− 3

2
+κ) 1

8

(

(1 − δ)2

8

)2t

(1 − o(1))

(VII.28)

= Θ(n
−1+2κ(2t+1)

) (VII.29)

= Ω(n
2κ

). (VII.30)

The asymptotic relationships follow from the choice of t ≥ 1
4κ ,

and the fact that δ and t are both constants.

Recall that MB(a, (α, β)) = I((a,α,β)∈Ω1)(F (a, α, β) +
ϵaαβ) for

F (a, α, β) =

r
∑

k=1

λkqk(θa)qk(θα)qk(θβ).

There are 3 sources of randomness: the sampling of entries

in Ω1, the observation noise terms ϵaαβ , and the latent

variables θa, θα, θβ . Since we enforce that α and β are in the

complement of Bu,2t ∪ Bv,2t, the sampling, observations, and

latent variables involved in MB are independent from Nu,t
and Nv,t.

Let us define the quantity

T̃ (α, β) = min(max(T (α, β),−ϕ2), ϕ2)

= sign(T (α, β)) min(|T (α, β)|, ϕ2)

for ϕ = ⌈16/(1 − 2κ)⌉ where recall that

T (α, β)=
∑

a̸=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)).

Trivially, due to this thresholding, |T̃ (α, β)| ≤ ϕ2 such that

|T̃ (α, β) − E[T̃ (α, β)]| ≤ 2ϕ2.

To begin with, Nu,t(a) = 0 if a /∈ Su,t ⊂ Bu,2t and

Nv,t(b) = 0 if b /∈ Sv,t ⊂ Bv,2t. Further, conditioned on

event A′
u,v,t(x, δ), all the information associated with Bu,2t

and Bv,2t is revealed; however, information about [n]\(Bu,2t∪
Bv,2t) is not. Let F(u, v, t, x, δ) denote all the information

revealed such that event A′
u,v,t(x, δ) holds.

Let’s prove concentration in two steps. In step one, we con-

dition on F(u, v, t, x, δ) and the latent variables {θi}i∈[n]. The

sampling process (edges in Ω1) and the observation noise are

independent for distinct pairs (α, β) and (α′, β′). As a result,

T (α, β) and T (α′, β′) are conditionally independent as long as

{α, β}∩{α′, β′} ≠ 2, i.e. they are not the exact same pair. The

correlations across T (α, β) and T (α′, β′) are due only to the

latent variables if α, β, α′, β′ share any values. We will bound

the variance of T (α, β) in Lemma 7.8, and by combining it

with the conditional independence property across T (α, β),

|eTkQW̃u,s − eTkΛQÑu,s−1|
≤ |eTkQW̃u,s − E[eTkQW̃u,s | {θi1 , θi2}i∈Uu,s ,Uu,s]|

+
∣

∣

∣

1

|Su,s−1|
∑

v∈Su,s−1

Nu,s−1(v)
( 1

|Uu,s|
∑

i∈Uu,s

∑

l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

− 1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

∑

l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)
)∣

∣

∣

+
∣

∣

∣

1

|Su,s−1|
∑

v∈Su,s−1

Nu,s−1(v)
(

∑

i∈VA\Bu,2(s−1)

∑

l λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

|VA \ Bu,2(s−1)|
− λkqk(θv)

)∣

∣

∣

≤ z1 +
1

|Su,s−1|
∑

v∈Su,s−1

|Nu,s−1(v)|z2 +
1

|Su,s−1|
∑

v∈Su,s−1

|Nu,s−1(v)|z3

≤ z1 + z2 + z3, (VII.23)
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it follows that (using notation F = F(u, v, t, x, δ))

Var





∑

α<β∈S×S
T (α, β)

∣

∣

∣

∣

∣

∣

F , {θi}i∈[n]





=
∑

α<β∈S×S
Var
[

T (α, β) | F , {θi}i∈[n]

]

≤ 2

(|S|
2

)

p2|Su,t||Sv,t|(1 + o(1)).

The variables T̃ (α, β) are also independent across (α, β)
conditioned on the latent variables {θi}i∈[n], and their

variance is bounded above by the corresponding vari-

ances of T (α, β). Using the boundedness of T̃ (α, β),
by applying Bernstein’s inequality with the choice of z =

2 nψ
(

(|S|
2

)

p2|Su,t||Sv,t|
)1/2

for ψ ∈ (0, κ), it follows that

P





∣

∣

∣

∑

α<β∈S×S
(T̃ (α, β) − E[T̃ (α, β) | F , {θi}i∈[n]])

∣

∣

∣

≥ z

∣

∣

∣

∣

∣

F(u, v, t, x, δ), {θi}i∈[n]





≤ 2 exp

(

−
z2

2

2
(|S|

2

)

p2|Su,t||Sv,t|(1 + o(1)) + 2ϕ2z
3

)

= 2 exp(−n2ϕ(1 − o(1))). (VII.31)

The last equality arises from the observation that t is chosen

such that conditioned on F , we can plug in (VII.30) to show

that for our choice of z, it holds that

z = o(|S|2p2|Su,t||Sv,t|).
In Lemma 7.9, we will show a bound on

P
(

|T (α, β)| ≥ ϕ2
)

, which translates to a bound on

E[I|T (α,β)|≥ϕ2(|T (α, β)| − ϕ2) | F ], which then upper

bound the difference between the conditional expectations of

T and T̃ according to

|E[T (α, β) | F ] − E[T̃ (α, β) | F ]|
≤ E[|T (α, β) − T̃ (α, β)| | F ]

= E[|T (α, β)| − min(|T (α, β)|, ϕ2) | F ]

= E[I|T (α,β)|≥ϕ2(|T (α, β)| − ϕ2) | F ]

Using this bound from Lemma 7.9 along with the conditions

from F that guarantee |S| = Θ(n) and naively |Su,t∪Sv,t| =
O(n), it follows that
∣

∣

∣

∑

α<β∈S×S
(E[T̃ (α, β) | F , {θi}i∈[n]] − E[T (α, β) | F , {θi}i∈[n]])

∣

∣

∣

≤ (1 + o(1))

(

|S|

2

)

2ϕ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)ϕ

= O
(

|S|2 (|Su,t ∪ Sv,t|p)ϕ
)

= O

(

n
2
(

n
−( 1

2
−κ)
)ϕ
)

. (VII.32)

We choose ϕ = ⌈ 16
1−2κ⌉ ≥ 16

1−2κ so that this difference

between the expectations of T and T̃ is O(n−6).

By plugging in our choice of ϕ into Lemma 7.9, it also

follows that

P

(

∪α,β{T̃ (α, β) ̸= T (α, β)} | F
)

≤ O(n−6). (VII.33)

By combining (VII.31), (VII.32), and (VII.33), with proba-

bility at least 1 − 2 exp(−n2ψ(1 − o(1))) −O(n−6),

∣

∣

∣

∣

∣

∣

∑

α<β∈S×S

(

T (α, β) − E
[

T (α, β) | F , {θi}i∈[n]

])

∣

∣

∣

∣

∣

∣

≤ 2 nψ
((|S|

2

)

p2|Su,t||Sv,t|
)1/2

+O(n−6), (VII.34)

where the first term will dominate the second term.

Finally we want to show concentration of the following

expression with respect to the latent variables,

1
(|S|

2

)

p2|Su,t||Sv,t|
E





∑

α<β∈S×S
T (α, β)

∣

∣

∣

∣

∣

∣

F , {θi}i∈[n]



 .

The expression can be written as a pairwise U-statistic,

U =
1
(|S|

2

)

∑

α<β∈S×S
g(θα, θβ),

where g is a symmetric function, and

g(θα, θβ)

=
1

p2|Su,t||Sv,t|
E
[

T (α, β) | F , {θi}i∈[n]

]

=
1

p2|Su,t||Sv,t|
∑

a̸=b∈[n]

Nu,t(a)Nv,t(b)

× E
[

MB(a, (α, β))MB(b, (α, β)) | F , {θi}i∈[n]

]

=
1

|Su,t||Sv,t|
∑

a̸=b∈[n]

Nu,t(a)Nv,t(b)F (a, α, β)F (b, α, β).

It follows by boundedness of entries in F and the fact that

∥Nu,t∥∞ ≤ 1 and ∥Nu,t∥0 = |Su,t|, that |g(θα, θβ)| ≤
1 almost surely. Therefore, by Lemma A.3 and choosing

z =
√

8nψ|S|−1/2,

P





∣

∣

∣

∣

∣

∣

1
(|S|

2

)

p2|Su,t||Sv,t|
∑

α<β∈S×S

(

E
[

T (α, β) | F , {θi}i∈[n]

]

−E [T (α, β) | F ])

∣

∣

∣

∣

∣

∣

≥ z





≤ 2 exp
(

− |S|z2

8

)

= 2 exp(n2ψ). (VII.35)
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The expected value with respect to the randomness in the

latent variables is

1
(|S|

2

)

p2|Su,t||Sv,t|
E





∑

α<β∈S×S
T (α, β)

∣

∣

∣

∣

∣

∣

F





=
1
(|S|

2

)

∑

α<β∈S×S

1

|Su,t||Sv,t|
∑

a̸=b∈[n]

Nu,t(a)Nv,t(b)

×E[F (a, α, β)F (b, α, β)]

=
1
(|S|

2

)

∑

α<β∈S×S

1

|Su,t||Sv,t|

×
∑

a̸=b∈[n]

Nu,t(a)Nv,t(b)
∑

k

λ2
kqk(θa)qk(θb)

= ÑT
u,tQ

TΛ2QÑv,t −
∑

a∈[n]

Ñu,t(a)Ñv,t(a)
∑

k

λ2
kq2
k(θa).

Furthermore,
∣

∣

∣

∣

∣

∣

∑

a∈[n]

Ñu,t(a)Ñv,t(a)
∑

k

λ2
kq

2
k(θa)

∣

∣

∣

∣

∣

∣

≤ B2
(
∑

k λ
2
k

)

max(|Su,t|, |Sv,t|)

= O((|Su,t||Sv,t|)−1/2).

(VII.36)

By combining (VII.34), (VII.35), and (VII.36), it follows that

conditioned on F(u, v, s, ℓ, x, δ), with probability

1 − 2 exp
(

−n2ψ(1 − o(1))
)

− 2 exp(n2ψ) −O(n−6),

it holds that
∣

∣

∣

∣

∣

∣

1
(|S|

2

)

p2|Su,t||Sv,t|
∑

α<β∈S×S
T (α, β) − ÑT

u,tQ
TΛ2QÑv,t

∣

∣

∣

∣

∣

∣

≤ 2 nψ
((|S|

2

)

p2|Su,t||Sv,t|
)−1/2

+O(n−6) +

√
8nψ

|S|1/2

+ o

(

((|S|
2

)

p2|Su,t||Sv,t|
)−1

)

+
B2
(
∑

k λ
2
k

)

max(|Su,t|, |Sv,t|)

≤ O

(

nψ

(|S|2p2|Su,t||Sv,t|)1/2
)

+O

(

nψ

|S|1/2
)

+O

(

1

(|Su,t||Sv,t|)1/2
)

.

Note that the third term is dominated by the first term as

|S|p = o(1). This completes the proof of Lemma 7.7.

□

Lemma 7.8: Let F = F(u, v, t, x, δ) denote all the infor-

mation revealed such that event A′
u,v,t(x, δ) holds.

Var[T (α, β) | F , {θi}i∈[n]] ≤ 2 p2|Su,t||Sv,t|(1 + o(1)).

Proof: To compute the variance of T (α, β) conditioned

on F , {θi}i∈[n], note that there is correlation in the terms

within the sum of T (α, β) as there may be pairs (a, b)
and (a′, b′) that share coordinates. In particular because the

observation noise and sampling randomness for MB(a, b, c) is

independent across different entries (a, b, c), then conditioned

on {θi}i∈[n], for a ̸= b and a′ ̸= b′, if all four coordinates

{a, b, a′, b′} are distinct,

Cov[MB(a, (α, β))MB(b, (α, β)),MB(a
′
, (α, β))MB(b

′
, (α, β))] = 0;

if |{a, b} ∩ {a′, b′}| = 2, i.e. (a′, b′) = (a, b) or (a′, b′) =
(b, a),

∣

∣Cov[MB(a, (α, β))MB(b, (α, β)),MB(a
′
, (α, β))MB(b

′
, (α, β))]

∣

∣

= Var[MB(a, (α, β))MB(b, (α, β))]

≤ E[MB
2
(a, (α, β))MB

2
(b, (α, β))] ≤ p

2;

and if {a, b}∪{a′, b′} = {x, y, z} such that {a, b}∩{a′, b′} =
{x}, then

∣

∣Cov[MB(a, (α, β))MB(b, (α, β)), MB(a′
, (α, β))

×MB(b′, (α, β)) | F , {θi}i∈[n]]
∣

∣

= |Var[MB(x, (α, β))]E[MB(y, (α, β))]E[MB(z, (α, β))]|

≤
∣

∣E[MB
2(x, (α, β))]E[MB(y, (α, β))]E[MB(z, (α, β))]

∣

∣

≤ p
3.

The inequalities follow from the property that every entry of

MB has absolute value bounded by 1, and takes value 0 with

probability (1 − p) in the event it is not observed.

We use this to expand the variance calculation, and use

the properties that for every entry a, |Nu,t(a)| ≤ I(a∈Su,t).
We have dropped the conditioning notation due to the length

of the expressions.

The first term in (VII.37) dominates the latter terms because

p|Su,t| ≤ pn = o(1) and p|Sv,t| = o(1). The final variance

calculation that uses the above inequalities to prove the lemma

is given in (VII.37) shown at the bottom of the next page.

Lemma 7.9:

P (|T (α, β)| ≥ z | F) ≤ (|Su,t ∪ Sv,t|p)⌈
√
z⌉

(1 + o(1).

As a result,

P (∪α,β{|T (α, β)| ≥ z} | F) ≤
(|S|

2

)

(|Su,t ∪ Sv,t|p)⌈
√
z⌉

(1 + o(1)),

and

E[I|T (α,β)|≥ϕ2(|T (α, β)| − ϕ2) | F ]

≤ (1 + o(1))
2ϕ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)ϕ

Proof: Let us define

Zu(α, β) = {a ∈ [n] s.t. a ∈ Su,t, (a, α, β) ∈ Ω1},
Zv(α, β) = {b ∈ [n] s.t. b ∈ Sv,t, (b, α, β) ∈ Ω1}.

Furthermore, because |MB(·, ·, ·)| ≤ 1 and ∥Nu,s∥∞ ≤ 1, for

any a, b ∈ [n], it follows that

|Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))|
≤ I(a∈Zu(α,β))I(b∈Zv(α,β)),

which implies

|T (α, β)| ≤ |Zu(α, β)||Zv(α, β)| ≤ |Zu(α, β) ∪ Zv(α, β)|2.
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Note that |Zu(α, β) ∪ Zv(α, β)| ∼ Binomial(|Su,t ∪ Sv,t|, p).
It follows then that

P (|T (α, β)| ≥ z | F)

≤ P
(

|Zu(α, β) ∪ Zv(α, β)|2 ≥ z | F
)

= P
(

|Zu(α, β) ∪ Zv(α, β)| ≥ ⌈
√

z⌉ | F
)

=

|Su,t∪Sv,t|
∑

i=⌈√z⌉

(|Su,t ∪ Sv,t|
i

)

pi(1 − p)|Su,t∩Sv,t|−i

≤ (1 − p)|Su,t∪Sv,t|
|Su,t∪Sv,t|
∑

i=⌈√z⌉

(

|Su,t ∪ Sv,t|p
1 − p

)i

≤ (1 − p)|Su,t∪Sv,t|
(

|Su,t ∪ Sv,t|p
1 − p

)⌈√z⌉ ∞
∑

i=0

(

|Su,t ∪ Sv,t|p
1 − p

)i

≤ (1 − p)|Su,t∪Sv,t|
(

|Su,t ∪ Sv,t|p
1 − p

)⌈√z⌉
(1 + o(1))

≤ (|Su,t ∪ Sv,t|p)⌈
√
z⌉ (1 + o(1))

≤ (|Su,t ∪ Sv,t|p)
√
z (1 + o(1)),

where we used the fact that |Su,t ∪ Sv,t|p = o(1).
We use the bound on the tail probabilities to show that

E[I|T (α,β)|≥ϕ2(|T (α, β)| − ϕ2) | F ]

=

∫ ∞

0

P
(

|T (α, β)| ≥ ϕ2 + z
)

dz

≤ (1 + o(1))

∫ ∞

0

(|Su,t ∪ Sv,t|p)
√
ϕ2+z

dz

≤ (1 + o(1))

∫ ∞

ϕ

2 y (|Su,t ∪ Sv,t|p)y dy

= (1 + o(1))
2ϕ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)ϕ.

□

E. Proof of Lemma 6.2

Proof: Now we are ready to bound the difference

between d(u, v) and d̂(u, v) for any u, v ∈ [n]. Recall,

d(θu, θv) = ∥Λ2t+1Q(eu − ev)∥2

= (eu − ev)
TQTΛ4t+2Q(eu − ev)

= eTuQ
TΛ4t+2Qeu + eTvQ

TΛ4t+2Qev

− eTuQ
TΛ4t+2Qev − eTvQ

TΛ4t+2Qeu, (VII.38)

and according to (IV.5),

dist(u, v) =
1

(|S|
2

)

p2
(Zuu + Zvv − Zuv − Zvu) (VII.39)

for S ≡ Su,s,t = n \ (Bu,t ∪ Bv,t ∪ [n/2]) and

Zuv =
1

(|Su,s,t|
2

)

p2|Su,t||Sv,t|
∑

α<β∈Su,s,t×Su,s,t
Tuv(α, β).

(VII.40)

By Lemma 7.1, event A3
u,t(δ) holds with probability at least

1 − O
(

n exp
(

− Θ(n2κ)
)

)

. By Lemmas 7.2 and 7.6, condi-

tioned on A3
u,t(δ), for

x =
16λ2t−2

max n
ψ

(1 − δ)nκ
= o(1),

event A′
u,v,t(x, δ) holds with probability at least 1 − 4

r exp(−n2ψ(1 − o(1))), implying

∣

∣ÑT
u,tQ

TΛ2QÑv,t − eTuQTΛ2(2t+1)Qev
∣

∣

≤ nψ

nκ

(

16Bλ
2(t−1)
max

(

r
∑

k=1

2λ
2(t+1)
k

)

(1 − δ)−1(1 + o(1))

)

.

By Lemma 7.7, conditioned on A′
u,v,t(x, δ), with probability

1 − 4 exp(−n2ψ(1 − o(1))),

|Zuv − ÑT
u,tQ

TΛ2QÑv,t| = O

(

nψ

(|Su,s,t|2p2|Su,t||Sv,t|)1/2
)

+O

(

nψ

|Su,s,t|1/2
)

,

where |Su,s,t| = Θ(n) = Ω(n2κ), by event A′
u,v,t(x, δ) and

t ≥ 1
4κ ,

|Su,s,t|2p2|Su,t||Sv,t| = Θ(n2n−3+2κn4κt) = Ω(n2κ).

Var[T (α, β) | F , {θi}i∈[n]]

=
∑

a̸=b∈[n]

(

N2
u,t(a)N

2
v,t(b) +Nu,t(a)Nv,t(b)Nu,t(b)Nv,t(a)

)

Var[MB(a, (α, β))MB(b, (α, β))]

+
∑

a̸=b∈[n]

∑

c/∈{a,b}

(

N2
u,t(a)Nv,t(b)Nv,t(c) +N2

v,t(a)Nu,t(b)Nu,t(c) +Nu,t(a)Nu,t(b)Nv,t(a)Nv,t(c)

+Nu,t(a)Nu,t(c)Nv,t(a)Nv,t(b)
)

Var[MB(a, (α, β))]E[MB(b, (α, β))]E[MB(c, (α, β))]

≤ p2
∑

a̸=b∈[n]

(I(a∈Su,t,b∈Sv,t) + I({a,b}⊂Su,t∩Sv,t))

+ p3
∑

a̸=b∈[n]

∑

c/∈{a,b}

(

I(a∈Su,t,{b,c}⊂Sv,t) + I(a∈Sv,t,{b,c}⊂Su,t) + I(a∈Su,t∩Sv,t,b∈Su,t,c∈Sv,t) + I(a∈Su,t∩Sv,t,c∈Su,t,b∈Sv,t)
)

≤ 2 p2|Su,t||Sv,t| + 2 p3|Su,t||Sv,t|2 + 2 p3|Su,t|2|Sv,t|
= 2 p2|Su,t||Sv,t|(1 + o(1)). (VII.37)
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To put it all together, for ψ ∈ (0, κ), with probability at least

1 −O
(

exp(−n2ψ(1 − o(1)))
)

,

it holds that

|dist(u, v) − d(θu, θv)| = O

(

rλ4t
maxn

ψ

nκ

)

.

This completes the proof of Lemma 6.2. □

VIII. PROOF OF LEMMA 6.3: PERTURBATION

ANALYSIS OF DISTANCE

We establish the proof of Lemma 6.3 here. To do so,

we establish a perturbation property of dist here, which com-

bined with Lemma 6.2 will result into the proof of Lemma 6.3.

We study the perturbation in the dist estimate when each

noisy observed entry is arbitrarily perturbed. Specifically, for

any (u, v, w) ∈ [n]3, M1(u, v, w) is observed with prob-

ability p. If observed, according to (III.1), M1(u, v, w) =
F (u, v, w) + ϵuvw = Fr(u, v, w) + εuvw + ϵuvw, where Fr
is the best rank r approximation to F . This expression shows

that we can interpret the deviation from a rank r model as a

deterministic perturbation of εuvw, bounded in absolute value

by ε. Note that εuvw can be any arbitrary (or adversarial),

unknown deterministic quantity satisfying |εuvw| ≤ ε.

Lemma 8.1 provides a bound on the perturbation in the

distance estimate, dist, that results from these entrywise per-

turbations of the observations.

Lemma 8.1: Let p = n−3/2+κ for κ ∈ (0, 1
2 ), t as defined

in (IV.3), δ ∈ (0, 1
2 ), and

x =
16λ2t−2

max n
ψ

(1 − δ)nκ
.

For any u ∈ [n], recall the event

A′
u,v,t(x, δ) = ∩rk=1

(

A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)

. (VIII.1)

Let event A′
u,v,t(x, δ) hold. Let each observed entry of M1 be

perturbed by adding arbitrary, deterministic quantity bounded

by ε ≥ 0. Then for any u, v ∈ [n]2, the distance estimate

dist(u, v) is perturbed by at most O(tε(1+ε)2t−1 + t2ε2(1+
ε)4t−2) with probability at least 1−exp

(

−Ω(n2κ)
)

−O(n−8).
Proof: Recall definition of dist in (IV.5):

dist(u, v) = (Zuu + Zvv − Zuv − Zvu),

Zuv =
1

|VB(u, v, t)|p2|Su,t||Sv,t|
∑

(α,β)∈VB(u,v,t)

Tuv(α, β),

VB(u, v, t) = {(α, β) ∈ VB s.t. α /∈ Bu,2t ∪ Bv,2t, β /∈ Bu,2t ∪ Bv,2t},

Tuv(α, β) =
∑

a̸=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))

We shall bound the perturbation on Zuv . Similar bounds

will follow for the other three terms which will conclude

the main results. Our interest is in understanding how does

Zuv change if each observed entry is changed by arbitrary

quantity bounded by ε ≥ 0. This will induce a bound on

the changes in Tuv(·, ·) which will help bound the change

in Zuv . By assumption (VIII.1), A′
u,v,t(x, δ) holds. Condi-

tioned on event A′
u,v,t(x, δ), all the information associated

with Bu,2t and Bv,2t is revealed; however, information about

[n]\(Bu,2t ∪ Bv,2t) is not. Let F(u, v, t, x, δ) denote all the

information revealed such that event A′
u,v,t(x, δ) holds.

Under A′
u,v,t(x, δ), by definition A3

u,t(δ) and A3
v,t(δ) holds.

This implies that for S ≡ VB(u, v, t), |S| = n
2 − o(n) =

n(1−o(1))
2 . Furthermore, it implies that |Su,t| and |Sv,t| are

both greater than or equal to (1 − δ)2t2−3t−1n2κt(1 − o(1)).
As shown in (VII.30),

|S|2p2|Su,t||Sv,t| = Ω(n2κ) (VIII.2)

results from the choice of t ≥ 1
4κ , and the fact that δ and t

are both constants.

For given α ̸= β ∈ VB(u, v, t), Tuv(α, β) is summation

over terms, indexed by a ̸= b ∈ [n], containing product

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)). Now Nu,t(a) =
0 if a /∈ Su,t, Nv,t(b) = 0 if b /∈ Sv,t. For a ∈ Su,t, Nu,t(a)
is product of 2t terms, each bounded in absolute value by 1:

let Nu,t(a) =
∏2t
i=1 wi with |wi| ≤ 1 for all i ≤ 2t. Let εi be

arbitrary, deterministic quantity added to wi with |εi| ≤ ε for

i ≤ 2t. Then change in Nu,t(a) is bounded as

∣

∣

2t
∏

i=1

wi −
2t
∏

i=1

(wi + εi)
∣

∣

=
∣

∣

∑

S⊂[2t]:S ̸=∅

∏

i∈S
εi

∏

s∈[2t]\S
wi
∣

∣

≤
∑

S⊂[2t]:S ̸=∅

∏

i∈S
|εi|

∏

s∈[2t]\S
|wi|

≤
∑

S⊂[2t]:S ̸=∅
ε
|S| =

2t
∑

i=1

(

2t

i

)

ε
s

= ε

(

2t−1
∑

i=0

(2t)!

(2t− i− 1)!(i+ 1)!
ε
i
)

≤ 2tε
(

2t−1
∑

i=0

(2t− 1)!

((2t− 1) − i)!i!
ε
i
)

= 2tε
(

2t−1
∑

i=0

(

2t− 1

i

)

ε
i
)

= 2tε(1 + ε)2t−1 ≡ ∆(t, ε). (VIII.3)

That is, Nu,t(a) changes by at most ∆(t, ε). Similarly Nv,t(b)
changes by at most ∆(t, ε). Therefore, Nu,t(a)Nv,t(b) can

change at most by O(∆(t, ε) + ∆(t, ε)2).
By definition |MB(a, (α, β))|, |MB(b, (α, β))| ≤ 1. Further,

MB(a, (α, β))MB(b, (α, β)) ̸= 0 only if I((a,α,β)∈Ω1)

I((b,α,β)∈Ω1) = 1. Therefore, we can bound change

in the term Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)) as

I((a,α,β)∈Ω1)I((b,α,β)∈Ω1)O(∆(t, ε) + ∆(t, ε)2). Therefore,

we can bound the change in Zuv by

O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
(

∑

a∈Su,t,b∈Sv,t,α,β∈S
I((a,α,β)∈Ω1)I((b,α,β)∈Ω1)Ia̸=b

)

(VIII.4)

=
O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
∑

α,β∈S
Xαβ (VIII.5)
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where

Xαβ =
∑

a∈Su,t,b∈Sv,t,a̸=b
I((a,α,β)∈Ω1)I((b,α,β)∈Ω1).

To conclude the Lemma, it will be sufficient to argue

that
∑

α,β∈S Xαβ = O(|S|2p2|Su,t||Sv,t|) with high prob-

ability given F . We use a similar argument as the proof

of Lemma 7.7. Given F ≡ F(u, v, t, x, δ), {Xαβ}α,β∈S2

are conditionally independent random variables. By the same

argument as that in Lemma 7.9, it follows that

P
(

∪α,β{Xα,β ≥ ϕ2} | F
)

≤
(|S|

2

)

(|Su,t ∪ Sv,t|p)ϕ (1 + o(1))

(VIII.6)

E[IXα,β≥ϕ2 (Xα,β − ϕ2) | F ]

≤ (1 + o(1))
2ϕ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)ϕ. (VIII.7)

We define X̃αβ = min(Xαβ , ϕ
2) for ϕ = ⌈16/(1 − 2κ)⌉ so

that |X̃αβ − E[X̃αβ ]| ≤ ϕ2. By (VIII.6), and the choice of ϕ
along with the conditions from F that guarantee |S| = Θ(n)
and naively |Su,t ∪ Sv,t| = O(n),

P





∑

α,β

Xα,β ̸=
∑

α,β

X̃α,β | F





≤
(|S|

2

)

(|Su,t ∪ Sv,t|p)ϕ (1 + o(1)) = O
(

n−6
)

. (VIII.8)

By (VIII.7),

|E[Xα,β | F ] − E[X̃α,β | F ]|
≤ E[IXα,β≥ϕ2(Xα,β − ϕ2) | F ]

≤ (1 + o(1))
2ϕ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)ϕ

= O
(

n−6
)

. (VIII.9)

By the same argument as that in Lemma 7.8, it follows that

Var[X̃α,β | F , {θi}i∈[n]] ≤ Var[Xα,β | F , {θi}i∈[n]]

≤ 2 p2|Su,t||Sv,t|(1 + o(1)).

By Bernstein’s inequality, for z = 2 nψ|S|p(|Su,t||Sv,t|)1/2
for ψ ∈ (0, κ),

P





∑

α,β∈S

(

X̃α,β − E[X̃α,β ]
)

> z





≤ exp
(

− 3z2

2zϕ2 + 12(1 + o(1))|S|2p2|Su,t||Sv,t|
)

= exp(−n2ψ(1 − o(1))). (VIII.10)

By (VIII.5), (VIII.8), (VIII.9), and (VIII.10), given

A′
u,v,t(x, δ) holds, with probability 1−exp

(

−n2κ(1−o(1))
)

−
O(n−6), the change in Zuv is bounded above by

O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
∑

α,β∈S
Xαβ

=
O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
∑

α,β∈S
X̃αβ

=
O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
(E[

∑

α,β∈S
Xαβ | F ] + 2 n

ψ|S|p(|Su,t||Sv,t|)1/2).

By (VIII.2), this choice of 2nψ|S|p(|Su,t||Sv,t|)1/2) =
o(|S|2p2|Su,t||Sv,t|) for ψ ∈ (0, κ). Finally we use the bound

that E[
∑

α,β∈S Xαβ | F ] =
(|S|

2

)

p2|Su,t||Sv,t| to argue that

with high probability the change in Zuv is bounded above by

O(∆(t, ε)+∆(t, ε)2) = O(tε(1+ε)2t−1 + t2ε2(1+ε)4t−2).

This completes the proof of Lemma 8.1.

□

A. Completing Proof of Lemma 6.3

Under the setup of Lemma 6.3, as argued in the proof of

Lemma 6.2, A′
u,v,t(x, δ), with appropriate choice of x, δ as

considered in statement of Lemma 8.1, holds with probability

at least 1 − 4 r exp(−n2ψ(1 − o(1))). And dist (without

perturbation), is within O
(

n−(κ−ψ)
)

for any pair of u, v ∈ [n].
By Lemma 8.1, under event A′

u,v,t(x, δ), the dist is further

perturbed by O
(

tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2
)

with prob-

ability at least 1 − O
(

exp(−n2ψ(1 − o(1)))
)

− O
(

n−6
)

.

Putting these together, we conclude the claim of Lemma 6.3.

APPENDIX

USEFUL LEMMAS AND OMITTED PROOFS

We present the Proof of Lemma 6.1 below.

Proof: [Lemma 6.1] We assumed the algorithm has access

to two fresh samples, where M1 is used to compute d̂, and

M2 is used to compute the final estimate F̂ . Alternatively one

could effectively obtain two sample sets by sample splitting.

For some (a, b, c) ∈ Ω2, the observation M2(a, b, c) is inde-

pendent of d̂, and E[M2(a, b, c)] = f(θa, θb, θc). Conditioned

on Ω2, by definition of F̂ and by assuming properties 6.1

and 6.2, it follows that

E[(F̂ (u, v, w) − f(θu, θv, θw))2]

=





1

|Ω2uvw|
∑

(a,b,c)∈Ω2uvw

f(θa, θb, θc) − f(θu, θv, θw)





2

+
1

|Ω2uvw|2
∑

(a,b,c)∈Ω2uvw

Var[M2(a, b, c)]

(a)

≤ bias2(η + ∆) +
σ2

|Ω2uvw|
.

Inequality (a) follows from property 6.1 and property 6.2

for all 3n tuples {(u, a) : a ∈ [n]} ∪ {(v, b) : b ∈ [n]} ∪
{(w, c) : c ∈ [n]}: |d(u, a) − d̂(u, a)| ≤ ∆ and d̂(u, a) ≤
η =⇒ d(u, a) ≤ η + ∆, similarly d(v, b), d(w, c) ≤ η + ∆.

As per (III.1), we have that Var[M2(a, b, c)] ≤ σ2 for all

(a, b, c) ∈ Ω2. Define Vuvw = {(a, b, c) ∈ [n]3 : d(u, a) <
η − ∆, d(v, b) < η − ∆, d(w, c) < η − ∆}. Assuming

property 6.3,

|Vuvw|= |{a ∈ [n] : d(u, a) < η − ∆}| |{b ∈ [n] : d(v, b) < η − ∆}|
× |{c ∈ [n] : d(w, c) < η − ∆}|

≥ (meas(η − ∆)n)3.

By the Bernoulli sampling model, each tuple (a, b, c) ∈
[n]3 belongs to Ω2 with probability p independently. By a
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straightforward application of Chernoff’s bound, it follows that

for any δ ∈ (0, 1),

P

(

|Ω2 ∩ Vuvc| ≤ (1 − δ) (meas(η − ∆)n)
3
)

≤ exp

(

−δ
2p (meas(η − ∆)n)

3

2

)

. (A.1)

Therefore, by assuming property 6.2 for 3n tuples {(u, a) :
a ∈ [n]} ∪ {(v, b) : b ∈ [n]} ∪ {(w, c) : c ∈ [n]}, it follows

that with probability at least 1 − exp
(

− δ2p(meas(η−∆)n)3

2

)

,

|Ω2uvw|= |{(a, b, c) ∈ Ω2 : d̂(u, a) < η, d̂(v, b) < η, d̂(w, c) < η}|
≥ |{(a, b, c) ∈ Ω2 : d(u, a) < η − ∆,

d(v, b) < η − ∆, d(w, c) < η − ∆}|
= |Ω2 ∩ Vuvw|

≥ (1 − δ)p (meas(η − ∆)n)3.

Define the event H = {|Ω2uvw| ≥ (1 −
δ)p (meas(η − ∆)n)

3 |}. It follows that P (Hc) ≤
exp

(

− 1
2δ

2p (meas(η − ∆)n)
3
)

. By definition,

F (u, v, w) = f(θu, θv, θw) ∈ [0, 1] for all u, v, w ∈ [n].
Therefore,

E[(F̂ (u, v, w) − f(θu, θv, θw))2]

≤ E[(F̂ (u, v, w) − f(θu, θv, θw))2
∣

∣

∣ H] + P (Hc)

≤ bias
2(η + ∆) +

1

(1 − δ)p (meas(η − ∆)n)
3

+ exp

(

−1

2
δ2p (meas(η − ∆)n)

3

)

.

We add an additional 3nα1 + α2 in the final MSE bound:

3nα1 for violation of property 6.2 for any of the 3n tuples

{(u, a) : a ∈ [n]} ∪ {(v, b) : b ∈ [n]} ∪ {(w, c) : c ∈ [n]}, and

α2 for violation of property 6.3.

To obtain the high-probability bound, note that M2(a, b, c)
are independent across indices (a, b, c) ∈ Ω2 as well

as independent of observations in Ω1. Additionally, the

model assumes that F (a, b, c),M2(a, b, c) ∈ [0, 1], and

E[M2(a, b, c)] = F (a, b, c) for observed tuples (a, b, c). By an

application of Hoeffding’s inequality for bounded, zero-mean

independent variables, for any δ′ ∈ (0, 1) it follows that

assuming property 6.1, property 6.2 for 3n tuples {(u, a) : a ∈
[n]} ∪ {(v, b) : b ∈ [n]} ∪ {(w, c) : c ∈ [n]}, and property 6.3

hold, we have

P





∣

∣

∣

∑

(a,b,c)∈Ω2uvw
(M(a,b,c)−F (a,b,c))

∣

∣

∣

|Ω2uvw| ≥ δ′

∣

∣

∣

∣

∣

∣

H





≤ exp
(

−δ′2(1 − δ)p (meas(η − ∆)n)
3
)

.

Therefore,

|F̂uvw − f(θu, θv, θw)| ≤ bias(η + ∆) + δ′,

with probability at least

1 − exp

(

−1

2
δ2p (meas(η − ∆)n)

3

)

− exp
(

−δ′2(1 − δ)p (meas(η − ∆)n)
3
)

− 3nα1 − α2.

This completes the proof of Lemma 6.1. □

Lemma A.1: The following inequalities hold:

(a) For any ρ ≥ 2 and integer r ≥ 1,

r
∑

s=1

ρs ≤ 2ρr.

(b) For any ρ ≥ 2 and non-negative integer s,

ρs ≥ sρ.

(c) Further, if exp(−aρ) ≤ 1
2 for some a > 0, then

r
∑

s=1

exp(−aρs) ≤ 2 exp(−aρ)

Proof: To prove (a), note that for any ρ ≥ 2,

r
∑

s=1

ρs ≤ ρr
r
∑

s=1

ρs−r = ρr
r−1
∑

s=0

ρ−s ≤ ρr
r−1
∑

s=0

2−s ≤ 2ρr.

To prove (b), first check that it trivially holds for s = 0 and

s = 1. The inequality holds for s = 2 iff ρ ≥ 2. The inequality

hold for s iff ρ ≥ s1/(s−1). We can verify that s1/(s−1) is

a decreasing function in s, such that if the inequality holds

for s = 2, it will also hold for s ≥ 2. To prove (c), further

consider exp(−aρ) ≤ 1
2 ,

r
∑

s=1

exp(−aρs) ≤
r
∑

s=1

exp(−asρ)

≤ exp(−aρ)
r
∑

s=1

exp(−aρ(s− 1))

≤ exp(−aρ)
r−1
∑

s=0

exp(−aρs)

≤ exp(−aρ)
r−1
∑

s=0

2−s

≤ 2 exp(−aρ).

□

Lemma A.2: If P (|X| ≥ z) ≤ c exp(− z2

Q ), then for all

λ ∈ R,

E[eλX ] ≤ exp(
λ2ν2

2
)

with ν =
√

Q(1+c2π)
2 .
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Proof:

E[eλX ] =

∫ ∞

0

P
(

eλX ≥ Z
)

dZ

=

∫ ∞

−∞
P (λX ≥ z) ezdz

≤
∫ ∞

−∞
c exp(− z2

Qλ2
+ z)dz

≤ c exp(
λ2Q

4
)

∫ ∞

−∞
exp(− 1

λ2Q
(z − λ2Q

2
)2)dz

≤ c exp(
Qλ2

4
)
√

πλ2Q.

Using the fact that
√
x < ex/5 for all x ≥ 0, it follows that

E[eλX ] ≤ exp(
Qλ2

4
+
c2πλ2Q

4
)

Therefore, for all λ ∈ R,

E[eλX ] ≤ exp(
(1 + c2π)Qλ2

4
).

□

Lemma A.3: Let X1, . . . , Xn be i.i.d. random variables

taking values in X . Let g : X × X → R be a symmetric

function. Consider U-statistics with respect to g of X1, . . . , Xn

defined as

U =
1
(

n
2

)

∑

1≤i<j≤n
g(Xi, Xj). (A.2)

Let ∥g∥∞ ≤ b for some b > 0. Then,

P (|U − E[U ]| > t) ≤ 2 exp
(

− nt2

8b2

)

. (A.3)

The proof follows directly from an implication of Azuma-

Hoeffding’s inequality. For example, see [46, Example 2.23]

for a proof.
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