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Abstract— Consider the task of estimating a 3-order n X n X n
tensor from noisy observations of randomly chosen entries in
the sparse regime. We introduce a similarity based collaborative
filtering algorithm for estimating a tensor from sparse observa-
tions and argue that it achieves sample complexity that nearly
matches the conjectured computationally efficient lower bound
on the sample complexity for the setting of low-rank tensors.
Our algorithm uses the matrix obtained from the flattened tensor
to compute similarity, and estimates the tensor entries using a
nearest neighbor estimator. We prove that the algorithm recovers
a finite rank tensor with maximum entry-wise error (MEE) and
mean-squared-error (MSE) decaying to O as long as each entry
is observed independently with probability p = Q(n~3/21*)
for any arbitrarily small < > 0. More generally, we establish
robustness of the estimator, showing that when arbitrary noise
bounded by € > 0 is added to each observation, the estimation
error with respect to MEE and MSE degrades by poly(¢).
Consequently, even if the tensor may not have finite rank but can
be approximated within € > 0 by a finite rank tensor, then the
estimation error converges to poly(&). Our analysis sheds insight
into the conjectured sample complexity lower bound, showing
that it matches the connectivity threshold of the graph used by
our algorithm for estimating similarity between coordinates.

Index Terms— Sparse observations, tensor estimation, max
entrywise error bounds, low rank models, latent variable models,
collaborative filtering, nearest neighbor estimator.

I. INTRODUCTION

ENSOR estimation involves the task of predicting under-
lying structure in a high-dimensional tensor structured
dataset given only a sparse subset of observations. We call
this “tensor estimation” rather than the conventional “tensor
completion” as the goal is not only to fill missing entries
but also to estimate entries whose noisy observations are
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available. Whereas matrices represent data associated to two
modes, rows and columns, tensors represent data associated
to general d modes. For example, a datapoint collected from
a user-product interaction an e-commerce platform may be
associated to a user, product, and date/time, which could be
represented in a 3-order tensor where the three modes would
correspond to users, products, and date/time. Image data is
also naturally represented in a 3-order tensor format, with
two modes representing the location of the pixel, and the
third mode representing the RGB color components. Video
data furthermore introduces a fourth mode indexing the time.
Dynamic network data can also be represented in a tensor with
one mode indexing the time and the other two modes indexing
the nodes in the network.

There are many applications in which the dataset inherently
has a lot of noise or is very sparsely observed. For example,
e-commerce data is typically very sparse as the typical number
of products a user interacts with is very small relative to the
entire product catalog; furthermore the timepoints at which
the user interacts with the platform may be sparse. When
the dataset can be represented as a matrix, equivalent to a
2-order tensor, there has been a significant amount of research
in designing practical algorithms and studying statistical limits
for matrix estimation, a critical step in data pre-processing.
Under conditions on uniform sampling and incoherence, the
minimum sample complexity for estimation has been tightly
characterized and achieved by simple algorithms. It is a
natural and relevant question then to consider whether the
techniques developed can extend to higher order tensors as
well.

The previous literature has primarily focused on attaining
consistency with respect to the mean squared error (MSE).
Unfortunately as this is aggregated over the error in the full
tensor, it does not translate to consistent bounds on entrywise
error, as the error on a single entry could be very large despite
the MSE being small due to averaging over many entries.
However, entrywise bounds are important in practice as the
results of tensor estimation are often used subsequently for
decisions that involve comparisons between the estimates of
individual entries.

In this work we focus on attaining consistent max entry-
wise error bounds by extending similarity based collaborative
filtering algorithms to tensor estimation. Similarity based
collaborative filtering is widely used in industry due to its
simplicity, interpretability, and amenability to distributed and
parallelized implementations. In the analysis of our proposed
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algorithm we show that it achieves a sample complexity that
nearly matches a conjectured lower bound for computationally
efficient algorithms. Perhaps most notably, our theoretical
guarantees provide high probability bounds on the maximum
entrywise error of the estimate, which is significantly stronger
than the typical mean squared error style bounds found in the
literature for other algorithms. We also provide error bounds
under arbitrary bounded noise, which has implications towards
approximately low rank settings.

A. Related Literature

Algorithms for analyzing sparse low rank matrices (equiv-
alent to 2-order tensors) where the observations are sampled
uniformly randomly have been well-studied. The algorithms
consist of spectral decomposition or matrix factorization [1],
[2], [3], nuclear norm minimization [4], [5], [6], [7], [8],
[9], gradient descent [1], [2], [10], [11], [12], alternating
minimization [13], [14], and nearest neighbor style collabo-
rative filtering [15], [16], [17], [18], [19]. These algorithms
have been shown to be provably consistent as long as the
number of observations is £2(rn poly(logn)) for the noiseless
setting where r is the rank and n is the number of rows
and columns [1], [4]; similar results have been attained under
additive Gaussian noise [2], [5] and generic bounded noise [3],
[18]. Lower bounds show that 2(rn) samples are necessary
for consistent estimation, and 2(rnlog(n)) samples are nec-
essary for exact recovery [5], [6], implying that the proposed
algorithms are nearly sample efficient order-wise up to the
information theoretic lower bounds.

There are results extending matrix estimation algorithms
to higher order tensor estimation, assuming the tensor is
low rank and that observations are sampled uniformly at
random. The earliest approaches simply flatten or unfold
the tensor to a matrix and subsequently apply matrix esti-
mation algorithms [20], [21], [22], [23]. A d-order tensor
where each dimension is length n would be unfolded to
a nl?/2] x pld/2] matrix, resulting in a sample complexity
of O(n!%/?1 poly(logn)), significantly larger than the natural
statistical lower bound that is linear with n due to the model
being parameterized by linear in n latent variables. When d is
odd, for example d = 3 the sample complexity for this naive
approach scales as O(n? poly(logn)).

Subsequent works have improved upon this sample com-
plexity, requiring only Q(n3/2 poly(logn)) observed entries
for a 3-order tensor [24], [25], [26], [27], [28], [29], [30], [31].
References [24] and [25] analyzes the alternating minimization
algorithm for exact recovery of the tensor given noiseless
observations and finite rank r = ©(1). References [27]
and [28] use the sum of squares (SOS) method, and [29]
introduces a spectral method. Both of these latter algorithms
can handle noisy observations and overcomplete tensors where
the rank is larger than the dimension. References [30] and
[31] furthermore characterize the minimax optimal rate for
the MSE and achieve it using spectral initialization followed
by power iteration. For a general d-order tensor these results
translate into a sample complexity scaling as O(n%/?), improv-
ing upon O(nl?/21 Reference [32] prove that tensor nuclear
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norm minimization can recover the underlying low-rank d-
order tensor with O(n3/2 poly(log n)) samples in the noiseless
setting; however, the algorithm is not efficiently computable
as computing tensor nuclear norm is NP-hard [33].

Reference [27] conjecture that any polynomial time esti-
mator for a 3-order tensor must require Q(n3/2) samples,
based on a reduction between tensor estimation for a rank-1
tensor to the random 3-XOR distinguishability problem. They
argue that if using the sum of squares hierarchy to construct
relaxations for tensor rank, any result that achieves a con-
sistent estimator with fewer than n/2 samples will violate
a conjectured hardness of random 3-XOR distinguishability.
Information theoretic bounds imply that one needs at least
Q(drn) observations to recover a d-order rank r tensor, con-
sistent with the degrees of freedom or number of parameters
in the model. Interestingly, this implies a conjectured gap
between the computational and statistically achievable sample
complexities, highlighting how tensor estimation is distinctly
more difficult than matrix estimation.

The majority of the results in tensor estimation provide
bounds on the mean squared error, which aggregates errors
across entries. In contrast our results will also provide bounds
on the maximum entrywise error. There has been recent
interest on developing matrix estimation methods that pro-
vide max entrywise bounds using a leave one out analysis,
cf. [34], [35], [36], [37], [38], [39]. Subseqeuntly [40], [41]
extended the leave one out analysis to the tensor setting to
obtain entrywise error bounds for a gradient descent algorithm
with spectral initialization. The analysis and algorithm in our
paper is significantly different than their work, as it results
from showing high probability guarantees on the similarity
computation, which is akin to a spectral algorithm, followed
by a nearest neighbor analysis. Our results suggests that a
combination of spectral analysis and nearest neighbor smooth-
ing can achieve entrywise consistent estimates without further
gradient descent refinements. As nearest neighbor methods are
still widely used in industry, understanding their theoretical
performance is of interest.

B. Contribution

Our results answer the following unresolved questions in
the literature.

1. Is there a computationally efficient estimator that can
provide a consistent estimation of low-rank tensor with
respect to maximum entry-wise error (MEE) with min-
imal sample complexity of Q(n%) in the presence of
noise?

2. Is there an extension of matrix estimation collaborative
filtering algorithm for the setting of tensor estimation
that can provide consistent estimation with such minimal
sample complexity?

3. Can the estimator be robust to adversarial bounded noise
in the observations?

To begin with, we propose an algorithm for a symmetric
3-order tensor estimation which generalizes a nearest neighbor
collaborative filtering algorithm for sparse matrix estimation
introduced in [18]. Naively applying the matrix estimation
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algorithm in [18] to the n x n? matrix obtained by unfolding
the 3-order tensor would require {2(n?) samples, far more than
the desired sample complexity of Q(n%) However, we argue
that such a matrix obtained from the unfolded tensor can be
used, after non-trivial modification, to compute the similarities
between rows accurately using Q(n?**) samples for any
positive x > 0. After computing these similarities we can
achieve consistent estimation via a nearest neighbor estimator
by additionally using the tensor structure.

Specifically, we establish that the mean squared error (MSE)
in the estimation converges to 0 as long as Q(n3/2**) random
samples are observed for any « > 0 for tensor with rank
r = ©(1). We further establish a stronger guarantee that the
maximum entry-wise error (MEE) converge to 0 with high
probability with similar sample complexity of Q(n3/2+%).
Thus, this simple iterative collaborative filtering algorithm
nearly achieves the conjectured computational sample com-
plexity lower bound of Q(n3/?) for tensor estimation. While
we present the results for symmetric tensors, our method and
analysis can extend to asymmetric tensors, which we discuss
in Section V-D.

Beyond low-rank tensors, our results hold for tensors with
potentially countably infinite rank as long as they can be well
approximated by a low-rank tensor. Specifically, if the tensor
can be approximated with € > 0 with respect to max-norm by
a rank 7 = O(1) tensor, then the MSE converges to poly(e)
and MEE converges to poly(e) with high probability as long
as Q(n®/?*%) random samples are observed for any & > 0.
This follows as a consequence of the robustness property of
the algorithm that we establish: if arbitrary noise bounded by
e > 0 is added to each observation, then the estimation error
with respect to MEE and MSE degrades by poly(e).

To establish our results, the key analytic tool is utilizing
certain concentration properties of a bilinear form arising from
the local neighborhood expansion of any given coordinate for
an asymmetric matrix with dimensions n xn?. This generalizes
the analysis of a similar property for symmetric matrices in
the prior work of [18]. Specifically, establishing the desired
concentration requires handling dependencies arising in the
local neighborhood expansion of the 3-order tensor that was
absent in the matrix setting considered in [18]. Subsequently,
we require a novel analytic method compared to the prior
work. In particular we believe that the proof techniques in
Lemma 7.7 may be useful to other settings in which one
may desire a tighter concentration on sums of sparse random
variables. As a consequence, we also establish performance
guarantees for matrix estimation for asymmetric matrices
having dimensions of different order, generalizing beyond
of [18].

The algorithm and analysis also sheds insight on the con-
jectured lower bound for 3-order tensor. In particular, the
threshold of n3/2 is precisely the density of observations
needed for the connectivity in the associated graph that is
utilized to calculate similarities. If the graph is disconnected,
the similarities can not be computed, while if the graph is
connected, we are able to show that similarity calculations
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yield an excellent estimator. Understanding this relationship
further remains an interesting open research direction.

A benefit of our algorithm is that it can be implemented
in a parallelized manner where the similarities between pair
of indices are computed in parallel. This lends itself to a
distributed, scalable implementation. A naive bound on the
computational complexity of our algorithm for 3-order tensor
is at most pnﬁ. As discussed in Section V-D, with use of
approximate nearest neighbors, these can be further improved
and made truly implementable.'

II. PRELIMINARIES

Tensor estimation from sparse observations hinges on an
assumption that the true model exhibits low dimensional struc-
ture despite the high dimensional representation. However,
there is not a unique definition of rank in the tensor setting,
as natural generalizations of matrix rank lead to different
quantities when extended to higher order tensors. We will
focus on two commonly used definitions of tensor rank, the
CP rank and the Tucker or multilinear rank.

For a d-order tensor F' € R”d, we can decompose F' into a
sum of rank-1 tensors. For example if d = 3, then

r
F:Zuk@)vk@wk,
k=1

where {uy, vg, Wk }rep) i a collection of length n vectors.
The CP-rank is the minimum number 7 such that F' can be
written as a sum of r rank-1 tensors, which we refer to as
a CP-decomposition. The CP-rank may in fact be larger than
the dimension n, and furthermore the latent vectors need not
be orthogonal as is the case in the matrix setting.

An alternate notion of tensor rank is defined according to
the dimension of subspaces corresponding to each mode. Let
F(y) denote the unfolded tensor along the y-th mode, which
is a matrix of dimension n x n?"!. Let columns of F
be referred to as mode y fibers of tensor F' as depicted in
Figure 1. The Tucker rank, or multilinear rank, is a vector
(r1,79,...74) such that for each mode ¢ € [d], r; is the
dimension of the column space of F{,). The Tucker rank is
also the minimal values of (71,72, ...74) such that the tensor
F' can be decomposed according to a multilinear multiplication
of a core tensor A € R™ *"2%---"d with latent factor matrices
Q1 ...Qq for Qp € R™*"_denoted as

F=(Qi® Q) (A)
= Z AK)Q1 (-, k1)®Q2(, k2) - - - @Qa(-, ka),

ke[ry]X[rz2]--X[rq]

(IL1)

'A weaker abbreviated version of this result appeared in [42] without any
proofs or discussion. Since the preliminary results, the convergence rates of the
error have improved, and we have new results showing a perturbation analysis
under arbitrary bounded noise, which extends our results to the approximately
low rank setting. We also present a modification of the algorithm that
significantly improves the overall computational complexity of the algorithm.
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mode-1 fiber

mode 2

unfolded tensor along mode 1

Depicting an unfolding of a 3rd order tensor along mode 1. The columns of the resulting matrix are referred to as the mode-1 fibers of the tensor.

Fig. 1.
@| 1 @| 1 @l 1 @u 1
Fig. 2.
(r1,72,...7r4) admits a decomposition corresponding to a multilinear multiplication of a core tensor of dimensions (71,72, ...

associated to each mode.

and depicted in Figure 2. The higher order SVD (HOSVD)
specifies a unique Tucker decomposition in which the factor
matrices @1 . .. Q) are orthonormal and correspond to the left
singular vectors of the unfolded tensor along each mode [43].

If the CP-rank is r, the Tucker-rank is bounded above by
(ry7,...7) by constructing a superdiagonal core tensor. If the
Tucker rank is (rq,73,...74), the CP-rank is bounded by the
number of nonzero entries in the core tensor, which is at
most 117y - - - r4/(max, re) [43]. While the latent factors of
the HOSVD are orthogonal, the latent factors corresponding
to the minimal CP-decomposition may not be orthogonal. For
simplicity of presentation, we will consider a limited setting
where there exists a decomposition of the tensor into the sum
of orthogonal rank-1 tensors. This is equivalent to enforcing
that the core tensor A associated to the Tucker decomposition
is superdiagonal, or equivalently enforcing that the latent fac-
tors in the minimal CP-decomposition are orthogonal. There
does not always exist such an orthogonal CP-decomposition,
however this class still includes all rank 1 tensors which
encompasses the class of instances used to construct the
hardness conjecture in [27]. Our results also extend beyond
to general tensors as well, though the presentation is simpler
in the orthogonal setting.

III. PROBLEM STATEMENT AND MODEL

Consider an n X n X n symmetric tensor F' generated as
follows: For each u € [n], sample 6,, ~ U[0, 1] independently.
Let the true underlying tensor F' be described by a Lipschitz
function f evaluated over the latent variables, F'(u,v,w) =
f(0u,0,,0,) for u,v,w € [n]. Without loss of generality,
we shall assume that sup,, ., ,cp0,1] |f(Ou, 60, 0)| < 1. For
example, if the coordinates of one mode of the tensor represent
users or products in an e-commerce platform, one can view
the latent variables associated to a coordinate as the unknown
“type” of the user/product, which can be thought of as sampled
ii.d. from an underlying population distribution. The latent
function f would then describe the expected observed inter-
action between units of type 6,,,6,, and 6,,.

Let M denote the observed symmetric data tensor, and let
Q0 C [n]? denote the set of observed indices. Due to the

L7
_ e

i

(Left) The tensor CP-rank admits a decomposition corresponding to the sum of r rank-1 tensors. (Right) The Tucker rank or multilinear rank

rq) with latent factor matrices

symmetry, it is sufficient to restrict the index set to triplets
(u,v,w) such that v < v < w, as the datapoint is identical
for all other permutations of the same triplet. The datapoint
at each of these distinct triplets {(u,v,w) : u < v < w} is
observed independently with probability p € (0, 1], where we
assume the observation is corrupted by mean zero independent
additive noise terms. For (u,v,w) € ,

M (u,v,w) = F(u,v,w) + €upw, (OL.1)

and for (u,v,w) ¢ Q, M(u,v,w) = x> We shall assume
that |M (u,v,w)| < 1 with probability 1. We allow €4
to have different distributions for different distinct triplets
(u,v,w) as long as it is uniformly bounded so as to satisfy
the boundedness constraints on | M (u, v, w)| and |F(u, v, w)].
When the observations M (u,v,w) are binary, this model is
equivalent to the 3-uniform simple lipschitz hypergraphon
in [44], which states a generative model for hypergraphs
where the hyperedges consist of size 3 vertex sets. In this
setting, F'(u,v,w) € [0,1] would represent the probability of
observing the hyperedge (u,v,w), and M (u,v,w) € {0,1}
would indicate the presence of the hyperedge (u,v,w). The
noise term €,,,, is clearly bounded since the observations
are binary. For any application in which the observations
M (u,v,w) are bounded, then F(u,v,w) = E[M (u,v,w)]
would also be bounded, such that the boundedness on the
Noise €4, would be reasonable. However, for applications
in which M (u,v,w) may not be bounded, or the almost sure
bound is very large, we can extend our analysis to allow for
sub-Gaussian noise €, rather than uniformly bounded noise,
which is further discussed in section VI.

The goal is to recover the underlying tensor F' from the
incomplete noisy observation M so that the mean squared
error (MSE) is small, where MSE for an estimate F is defined
as
MSE(F) :==E | %

n3

Z(u,v,w)e[np (F(ua v, U)) _F‘<'Uz7 v, U}))2j| .
(I11.2)

2The notation of x is used to denote the missing observation. When
convenient, we shall replace x by O for the purpose of computation.
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We will also be interested in the maximum entry-wise error
(MEE) defined as
[F' = Fllmax :==

|EF(u,v,w) — F(u,v,w)|.

max
u,v,w)€[n]3

(I11.3)

A. Finite Spectrum

Consider the setting where the function f has finite spec-
trum. That is,

f(ua v, w) = 22:1 )‘ka(eu)Qk(Gv)Qk(ew)a

where = ©(1) and g;(.) denotes the orthonormal /5 eigen-
functions, satisfying fol qx(0)%df = 1 and fol qx(0)qn(0)do =
0 for k& # h. Assume that the eigenfunctions are bounded, i.e.
lgx(0)] < B for all k € [r].

Let A denote the diagonal r x 7 matrix where Agr = Ag.
Let @ denote the r x n matrix where Qr, = qx(0,). Let Q
denote the 7 x (%) matrix where Qry, = qi(6s, )qi(0s,) for
some b € (}) that represents the pair of vertices (by,bs) for
b1 < by. The finite spectrum assumption for f implies that the
sampled tensor F' is such that,

F=31%(QTer) ® (Qer) @ (QTex).

That is, ' has CP-rank at most r. In above and in the
remainder of the paper, e, denotes a vector with all Os but
kth entry being 1 of appropriate dimension (here it is 7).

B. Approximately Finite Spectrum

In general, f may not have finite spectrum, e.g. a generic
analytic function f. For such a setting, we shall consider f
with approximately finite spectrum. Specifically, a function f :
[0,1]> — R, it is said to have e-approximate finite spectrum
with rank r for € > 0 if there exists a symmetric function
fr 110,13 — R such that

sup

|f(9u;9va9w) - fT(9u79’U;9w)| <e
011497170w€[0»1]

Fr(uv v, w) = fr(elu 0y, ew) = Zzzl )‘qu(ou)qk(av)qk(gw)v
(1IL.4)

where 7 = ©(1) and g;(.) denotes the orthonormal /5 eigen-
functions as before. That is, they satisfy fol qr(0)%d0 = 1,
fol qx(0)qn(0)d0 = 0 for k # h and |gx(0)] < B for all
k€ [r].

The above describe property of f implies that the sam-
pled tensor F' is has e-approximate rank r such that F. =
k1 M@ er) ® (QTex) ® (Q"ey) and

|F — Frllmax < €.

C. Extensions Beyond Orthogonal CP-Rank

The orthogonality conditions on our latent variable decom-
position imply that the tensor F' can be written as a sum of
r rank-1 tensors, where the latent factors are approximately
orthogonal. Alternately, this would suggest a Tucker decompo-
sition of the tensor where the core tensor is superdiagonal. Not
all tensors admit an orthogonal CP-rank decomposition, but
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this assumption has also been used in the literature as in [24].
This assumption of the existence of an orthogonal CP-rank
decomposition can be relaxed as the main property that our
algorithm and analysis use is the orthogonal decomposition
of the unfolded tensors along each mode. Our algorithm
and analysis will still extend to tensors with Tucker rank
bounded by (r,r, 7). For a general (r,r,r) Tucker rank tensor,
we would instead carry out the analysis with respect to the
latent orthogonal factors corresponding to the SVD of the
unfolded tensor into a matrix, and the algorithm would use the
same procedure to estimate similarities along each of the three
modes separately. The presentation is stated for the orthogonal
symmetric setting for simplicity.

D. Comparision of Assumptions With Literature

In the decomposition of the model f when it has finite
spectrum, we assume that the functions q; are orthonormal.
This induces a decomposition of tensor F' in terms of @ €
R™*™ with respect to the sampled latent features 6 ~ U[0, 1].
The rank r of the underlying decomposition is assumed to be
O(1). We compare and contrast these with those assumed in
the tensor estimation literature.

Most literature on tensor estimation do not impose a distri-
bution on the underlying latent variables, but instead assume
deterministic ‘incoherence’ style conditions on the latent sin-
gular vectors associated to the underlying tensor decomposi-
tion. This plays a similar role to our combined assumption of
qr, being orthonormal and the latent variables sampled from
a uniform distribution so that the mass in the singular vector
matrix is roughly uniformly spread. For example, the notion of
incoherence used in [27] imposes that the entries of the latent
factors are bounded by a constant when the norm of the latent
factor vectors scales as ©(y/n). As 6, ~ U|[0, 1], it holds that
the latent factor vector (g (61), qx(62),...qx(60,)) will have
norm scaling as y/n. Due to the boundedness assumption that
lgx(9)] < B, our model will satisfy incoherence as defined
in [27]. Some of the literature on tensor estimation allows for
overcomplete tensors, i.e. 7 > n. While our finite spectrum
setup requires r = O(1), the approximately finite spectrum
can allow for potentially countably infinite spectrum but with
sharply decaying spectrum so that it has e-approximate rank
being r = ©(1).

In order to establish our result for the approximately finite
spectrum setting, we perform a perturbation analysis wherein
each observed entry is perturbed arbitrarily bounded by &
in magnitude: we shall establish that the resulting estimation
error is changed by poly(g), both with respect to the MSE and
max-norm. That is, with respect to arbitrary bounded noise in
the observations, we are able to characterize the error induced
by our method, which is of interest in its own right.

We remark on the Lipschitz property of f: the Lipschitz
assumption implies that the tensor is “smooth”, and thus there
are sets of rows and columns that are similar to one another.
As our algorithm is based on a nearest neighbor style approach
we need that for any coordinate u, there is a significant mass
of other coordinates a that are similar to u with respect
to the function behavior. Other regularity conditions beyond
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Lipschitz that would also guarantee sufficiently many “nearest
neighbors” would lead to similar results for our algorithm.
Lipschitzness also implies approximate low rankness as a Lip-
schitz function can be approximated by a piecewise constant
function, where the number of pieces would then upper bound
the rank.

IV. ALGORITHM

The algorithm is a nearest neighbor style in which the first
phase is to estimate a distance function between coordinates,
denoted dist(u, a) for all (u,a) € [n]?. Given the similarities,
for some threshold 7, the algorithm estimates by averaging
datapoints from coordinates (a, b, ¢) for which dist(u,a) <7,
dist(v,b) <7, and dist(w,c) <.

The entry F'(a,b,c) depends on a coordinate a through
its representation in the eigenspace, given by Qe,. Therefore
fla,b,¢) = f(u,v,w) as long as Qe, = Qe,, Qe, =~ Qep,
and Qe,, ~ Qe.. Ideally we would like our distance function
dist(u, a) to approximate ||Qe,—Qe,]|2, but these are hidden
latent features that we do not have direct access to.

Let’s start with a thought experiment supposing that the
density of observations were p = w(n~!) and the noise
variance is o2 for all entries. For a pair of coordinates u and
a, the expected number of pairs (b, ¢) such that both (u, b, c)
and (a, b, c) are observed is on the order of p?>n? = w(1). For
fixed 0,,60,, and for randomly sampled 6, 6., the expected
squared difference between the two corresponding datapoints
reflects the distance between Qe, and Qe, along with the
overall level of noise,

E[(M(a,b,c) — M(u,b,¢))? | 0a,0,]

[(F(CLJL C) —F(u,b,c))Q | 9a79 ]+E[ Zbc +6’L2Lbc]
E[(3" Me(qx(0a) — 41 (04))qx (06) a1 (6c))? | Oa, 0u] +207
E[3", M (ar(0a) — qr(04))?ar(06)*qr (0)* | ba, 0u]+20°
Yok A0k (0a) — qi(04))? + 0

[AQ(eq — eu)l3 + 207,

where we use the fact that ¢ (-) are orthonormal. This sug-
gests that approximating dist(u, a) with the average squared
difference between datapoints corresponding to pairs (b, ¢) for
which both (u, b, c) and (a, b, c) are observed.

This method does not attain the p = n~3/2 sample complex-
ity, as the expected number of pairs (b, c) for which (a, b, c)
and (u, b, c) are both observed will go to zero for p = o(n™1).
This limitation arises due to the fact that when p = o(n~1),
the observations are extremely sparse. Consider the n X (Z)
“flattened” matrix of the tensor where row wu correspond to
coordinates u € [n], and columns correspond to pairs of
indices, e.g. (b,c) € [n] x [n] with b < ¢. For any given
row u, there are very few other rows that share observations
along any column with the given row wu, i.e. the number of
‘neighbors’ of any row index is few. If we wanted to exploit
the intuition of the above simple calculations, we have to
somehow enrich the neighborhood. We do so by constructing a
graph using the non-zero pattern of the matrix as an adjacency
matrix. This mirrors the idea from [18] for matrix estimation,
which approximates distances by comparing expanded depth
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2t + 1 local neighborhoods in the graph representing the spar-
sity pattern of the unfolded or flattened tensor. In particular,
we will construct a statistic dist(u,a) such that with high
probability it concentrates around d(u, a) for

(0, 00) = A>T Q(en—ea)3=D N g (0u) —ax(60a))>
k=1
IV.1)

As F(u,v,w) = [f(0u,0,,04) St Ak (0)a(6y)
g (0. ), we can show that if d(0,,0,),d(0,,60), and d(0,,,0.)
are small, then F'(u,v,w) will be close to F(a,b,c).
The remaining challenge thus how to approximate d(u,a).
Consider a length 2¢ path in the bipartite graph from
u to a, denoted by (u,el,zt e? 22 ... 2t et a), where
xl . .2t are distinct coordinates in [n] \ {u,a}, and
el,...e! consist of pairs in [n]? such that the coordinates
represented in these pairs are distinct from each other as well
as {u,a,x',...2'71}. Let us denote the pair e! = (e}, ed).
Then the product of weights along this path in expectation
conditioned on 6,6, is equal to e, QTAZtha as shown
in (IV.2) shown at the bottom of the next page.

Therefore, the product of weights along the path connecting
u to a is a good proxy of quantity el QT A%'Qe,, for paths
which do not revisit coordinates. The algorithm first constructs
the local neighborhood of depth 2¢ centered at each coordinate
u, and then connects these neighborhoods to form paths of
length 4¢4-2 in total, where ¢ is chosen such that for every u, a
there are sufficiently many paths used to construct the statis-
tic dist(u,a) to guarantee concentration. The tensor setting
requires an important modification of how one constructs the
local breadth-first-search (BFS) trees due to the shared latent
variables across different modes, as described in step 3 below.

A. Formal Description

We provide a formal description of the algorithm below.
The crux of the algorithm is to compute similarity between
any pair of indices using the matrix obtained by flattening the
tensor, and then using a nearest neighbor estimator using these
similarities between indices over the tensor structure. Details
are as follows.

Step 1: Sample Splitting: Let us assume for simplicity of
the analysis that we obtain 2 independent fresh observation
sets of the data, 2; and (). Tensors M; and M contain
information from the subset of the data in M associated
to 7 and Qo respectively. M; is used to compute pair-
wise similarities between coordinates, and M5, is used to
average over datapoints for the final estimate. Furthermore,
we take the coordinates [n] and split it into two sets, [n] =
{1,2,...,n/2} U{n/2+ 1,n/2 + 2,...n}. Without loss of
generality, let’s assume that n is even. Let V4 denote the set of
coordinate pairs within set 1 consisting of distinct coordinates,
ie. Va={(bc) € [n/2]? s.t. b < c}. Let Vg denote the set of
coordinate pairs within set 2 consisting of distinct coordinates,
ie. Vg = {(b,c) € ([n] \ [n/2])? s.t. b < c}. The sizes of
|Val and | V| are both equal to ("42) We define M 4 to be the
n-by-("}?) matrix taking values M (a, (b,¢)) = M (a,b,c),
where each row corresponds to an original coordinate of the
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(a) Bipartite graph constructed from tensor; set V, = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}

(b) Traditional BFS trees

(c) Valid BFS trees for our algorithm,
no repeat coordinates across depths

1 valid BFS tree rooted at 1

1 valid BFS trees rooted at 4

Su0

®k

Su,1

® Wi

€4

I
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(d) Neighborhood sets and vectors for a valid BFS tree with root vertex u = 4.
Let e, and e, ) denote standard basis vectors.

M, (47 1, 3)6(172) + M (47 2, 3)6(2,3) + M (47 1, S)e(LS)
\® N471 = M1 (47 17 2)]\/[1(1, 2, 6)66 + M1(4, 1, 2)M1(1, 2, 5)65

Fig. 3.

Consider a symmetric 3-order tensor with n = 8, and the observation set Q1 = {(1,2,4),(1,2,5), (1,2,6),(1,3,4),(1,4,8),(2,3,4), (2,4,5),

(2,5,6),(3,4,7),(3,5,6)}. Figure (a) depicts the bipartite graph constructed from this set of observations. Weights would be assigned to edges based on
the value of the observed entry in the tensor M7. Figure (b) depicts the traditional notion of the BES tree rooted at vertices 1 and 4. Vertices at layer/depth
s correspond to vertices with shortest path distance of s to the root vertex. Figure (¢) depicts valid BFS trees for our algorithm, which imposes an additional
constraint that coordinates cannot be repeated across depths. For the BFS tree rooted at vertex 1, edges ((2,4),3) and ((3,4), 2) are not valid, as coordinates
2 and 3 have both been visited in layer 2 by the vertices (2,4) and (3,4). For the BFS tree rooted at vertex 4, edge (5, (2,4)) is not valid as coordinate 2
has been visited in layer 2 by the vertex (2,3) and coordinate 4 has been visited in layer 1 by the root vertex 4. Figure (d) depicts the sets Sy,s and Uy, s
along with the neighborhood vectors N, s and Wy, s for a specific valid BFS tree rooted at vertex u = 4.

tensor, and each column corresponds to a pair of coordinates
(b,c¢) € V4 from the original tensor. We define Mp to be the
n—by-("éz) matrix taking values Mp(a, (b,c)) = Mi(a,b,c),
where each row corresponds to an original coordinate of the
tensor, and each column corresponds to a pair of coordinates
(b,c) € Vg from the original tensor. A row-column pair
in the matrix corresponds to a triplet of coordinates in the
original tensor. We will use matrices M 4 and M p to compute
similarities or distances between coordinates, and we use
tensor M to compute the final estimates via nearest neighbor
averaging. The data in M4 is used to construct depth 2¢ local
neighborhoods rooted at each coordinate u, and Mp is used
to connect the neighborhoods to form 2t 4 2 length paths
between any two coordinates v and a, which are then used to
estimate the similarity between u and a. This approach is akin

to the technique of “sprinkling” used in random graph analysis,
in which we first analyze local neighborhoods formed with the
edges in M 4, and then “sprinkle” the edges in Mp to connect
these neighborhoods and argue that there are sufficiently many
paths then that connect any two coordinates v and v.

Step 2: Construct Bipartite Graph From ), M 4: We define
a bipartite graph corresponding to the flattened matrix M 4.
Construct a graph with vertex set [n] U V4. There is an edge
between vertex a € [n] and vertex (b, c) € V4 if (a,b,¢) € Oy,
and the corresponding weight of the edge is M (a, b, ¢). Recall
that we assumed a symmetric model such that triplets that are
permutations of one another will have the same data entry and
thus the same edge weight in the associated graph. Figure 3(a)
provides a concrete example of a bipartite graph constructed
from tensor observations.

t—1
E | M(u,el,ed) H M(el,eb, zYM(z' e
i=1

i+1

1

76?_1) M(eiae;a) einaa

1
=K f(eua Ge% ) 965) H f(ee“i y eeéaeml)f(em‘a 9€§+1 ) 06;+1) f(eeiﬂge;a 9@) eua 0

t
i=1

= Mae(0u)ar(0a) = e QTA* Qe,.
k=1

IV.2)
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Step 3: Expanding the Neighborhood: Consider the graph
constructed from €2y, M 4. For each vertex u € [n], we con-
struct a breadth first search (BFS) tree rooted at vertex w such
that the vertices for each depth of the BFS tree consists only of
new and previously unvisited coordinates, i.e. if vertex a € [n]
is first visited at depth 4 of the BFS tree, then no vertex
corresponding to (a,b) for any b € [n] can be visited in any
subsequent depths greater than 4. Similarly, if (a’, b') is visited
in the BFS tree at depth 3, then vertices that include either of
these coordinates, i.e. a’, V', (a/,¢), or (¥, ¢) for any ¢ € [n],
can not be visited in subsequent depths greater than 3. This
restriction is only across different depths; we allow (a, b) and
(a,c) to be visited at the same depth of the BFS tree.

There may be multiple valid BFS trees due to different
ordering of visiting edges at the same depth. For example,
if a vertex at depth s has edges to two different vertices at
depth s — 1 (i.e. two potential parents), only one of the edges
can be chosen to maintain the tree property, but either choice
is equally valid. Let us assume that when there is more than
one option, one of the valid edges are chosen uniformly at
random. Figure 3(c) shows valid BFS trees for a bipartite graph
constructed from an example tensor.

The graph is bipartite so that each subsequent layer of
the BFS tree alternates between the vertex sets [n] and V4.
Consider a valid BFS tree rooted at vertex u € [n| which
respects the constraint that no coordinate is visited more than
once. We will use U, s C V4 to denote the set of vertices
at depth (2s — 1) of the BFS tree, and we use S, s C [n]
to denote the set of vertices at depth 2s of the BFS tree. Let
B.s C [n] UVa4 denote the set of vertices which are visited
in the first s layers of the BFS tree,

Bu,s = Upe ls/2] Su,h Ule[s/Q] Z/lu,l-

We will overload notation and sometimes use 5, s to denote
the subset of coordinates in [n] visited in the first s layers of
the BFS tree, including both visited single coordinate vertices
or coordinates in vertices V4, i.e.

Bu,s =Une|s/2]Su,h
U {z€[n]st I(y,2) € Urers/21Uu, satisfying = € {y, z}}.

Let G(B,,s) denote all the information corresponding to the
subgraph restricted to the first s layers of the BFS tree rooted
at w. This includes the vertex set B, s, the latent variables
{0a}aens, . and the edge weights {M;(a,b,¢)}q (b,c)eB. .-
We define neighborhood vectors which represent the differ-
ent layers of the BFS tree. Let N, s € [0,1]" be associated
to set S, 5, where the a-th coordinate is equal to the product
of weights along the path from u to a in the BFS tree for
a € S5 Similarly, let W, s € [0,1]V4 be associated to set
U,,s, where the (b, ¢)-th coordinate is equal to the product of
weights along the path from w to (b,c) in the BFES tree for
(b,¢) € Uy,s. For a € [n], let m,(a) denote the parent of a
in the valid BFS tree rooted at vertex u. For (b,¢) € Va4, let
7y (b, ¢) denote the parent of (b,c) in the BFS tree rooted at
vertex u. We can define the neighborhood vectors recursively,

Ny s(a) = MA(avWu(a))Wu,S(ﬂ'u(a))ﬂ(aesu‘s)
Wu,s(bv C) = My ('/Tu(b7 C), (ba C))Nu,sfl(ﬂu(bv C))H((b,c)euuys)
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and N, o = e,. Let Nws denote the normalized vector
Nu,s = Ny s/|Su,s| and let st denote the normalized vector
W%S = W,s/ Uy s|. Figure 3(d) illustrates the neighborhood
sets and vectors for a valid BFS tree. Recall from Eq. (IV.2),
shown at the bottom of the previous page, that conditioned on
0, and 0,, E[N, s(a) | 0u,0.] = P(a € Sus) e QT A% Qe,.
Furthermore the event that a € S,s only depends on the
presence of the edges as determined by the Bernoulli uniform
sampling, and is thus independent from the latent variable 6,,.
We will show in a subsequent Lemma 7.2 that efQNuyt ==
eZAQthu, implying that the neighborhood vector Nu,t, which
is constructed from products of weights over length 2s paths
originating at u, is a statistic that is approximates A% Qe,,.
Similar calculations show that E[W,, s(b,c) | 04,0p,0.] =
P ((b,c) € Uns) > pey An qr(0u) gk (06)qr (0.
Step 4: Computing the Distances Using Mp: Let

n(n)
= [ sy |

A heuristic for the distance would be

(IV.3)

1
[Vslp?

- Y S (Fuil@)-Nuu(@)Ms(a, a, B)

2
IVslp (,B)EVB a,be[n]?

x Mp (b, a, B)(Nu,t(b) — Ny, (b))

dist(u, v)

Q

(Nu,t - Nu.t)AIBMBT(Nu,t - Nv,t)

(IV.4)

For technical reasons that facilitate cleaner analysis, we use
the following distance calculations. There are two deviations
from the equation in (IV.4). First we exclude a = b from the
summation. Second we exclude coordinates for a or (8 that
have been visited previously in B, 2; or B, 2;. Define distance

as
dist(t, V)= (Zuw + Zov — Zuv — Zow),s (IV.5)
1

Zyv= 2
VB (u, v, t)[p?|Su,t||S

Tyv (e, B),
v,t‘ (a,8)EVE(u,v,t)

Vp(u,v,t)={(a,8) € Vp s.t. a & By,2t U By 2t, B & Bu,2t UBy 2t}

> Nuw(@)Nui(W)Mp(a, (a, B)Mp (b, (o, 8).  (IV.6)
a#be[n]

We will show in Lemma 6.2 that dist(u,v) ~ d(u,v) =
|A%2F1Q(e, — e,)||3. The estimate is constructed by aver-
aging over the product of weights over paths from u to v,
where the term N, ;(a) Ny (b)) Mp(a, (o, 8))Mp(b, (o, 5)) in
Eq. (IV.6) is the product of weights over the path that goes
from u to a to (a,3) to b to v, as N, (a) represents the
products of weights on the path from u to a and N, ;(b)
represents the products of weights on the path from b to v.
The parameter ¢ is chosen such that there are sufficiently
many paths that we are averaging over in order to reduce
the noise. In particular, the choice of ¢ > In(n)/21n(p?n3)
implies that |S, ¢ > (p?n®)'! = Q(n'/?), such that the
number of paths the estimator averages over is approximately
n?p?|Su.t||Sv.c| = Q(p?n?). This rough calculation highlights
that p must be w(n~3/2) to guarantee that the number of paths
used to compute dist(u, v) is increasing with n.

Step 5: Averaging Datapoints to Produce Final Estimate
Let Qo,,,, denote the set of indices (a,b,c) such that a <
b <c¢ (a,b,c) € Qo, and the estimated distances dist(u, a),
dist(v, b), dist(w, c¢) are all less than some chosen threshold

Tuv (e, B)=
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parameter 7). The final estimate averages the datapoints corre-
sponding to indices in 22,

F(u, v,w) = m E(a,b,c)eﬂmw Ms(a,b,c).  (IV.7)

B. Difference Between Tensor and Matrix Setting

The modifications in the construction of the breadth-first-
search (BFS) tree for the tensor setting relative to the matrix
setting are critical to the analysis. If we simply considered the
classical construction of a BFS tree in the associated bipartite
graph (as the matrix setting uses), this would lead to higher
variance and bias due to the correlations of vertices sharing
common latent variables associated to the same underlying
coordinates of the tensor. Alternatively, if one constructed a
BFS tree by not allowing any coordinate of the tensor to be
visited more than once, this would also lead to suboptimal
results as it would throw away too many entries, limiting
the computed statistic to only order n data points. Our final
algorithm, which allows for vertices with shared coordinates
in the same depth of the BFS but not across different depths,
is carefully chosen in order to break dependencies across
different depths of the BFS tree, while still allowing for
sufficient expansion in each depth.

To extend the algorithm to d-order tensors for d > 3, we will
compute similarities between u, v via a similar computation as
described in Steps 2-4 above, except it would be applied to the
n x n%1 matrix and associated bipartite graph corresponding
to an unfolding of the tensor. Given the similarity estimates
for pairwise coordinates, the final estimate would result from a
standard nearest neighbor estimator over the high dimensional
tensor. The primary part of the proof that would need to be
modified is the analysis of the neighborhood vectors IV, , and
Waus in step 3, which may involve constraining the growth
of the BFS trees such that they extend deep enough before
exhausting the visited coordinates.

V. MAIN RESULT

We provide an upper bound on the mean squared error
(MSE) as well as the max entry-wise error (MEE) for the
algorithm, showing that both the MSE and the MEE converge
to zero as long as p = n—3/2*% for some x > 0. Our result
implies that the simple variant of collaborative filtering algo-
rithm based on estimating similarities produces a consistent
estimator when the tensor latent function has finite spectrum or
low rank. Further we show that it is robust to arbitrary, additive
perturbation in that the estimation error increases gracefully in
the amount of perturbation. To the best of our knowledge, such
robustness to arbitrary bounded additive noise with respect to
max-norm estimation is first of its kind in the literature on
tensor estimation.

A. Finite Spectrum

We establish consistency of our estimator with respect to
MSE and max-norm error of the algorithm when the underly-
ing f has finite spectrum, i.e. rank r model with r = O(1).

Theorem 5.1: We assume that the function f is rank r, L-
Lipschitz and that § ~ U[0, 1]. Assume that p = n~3/2+* for
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some x € (0, 3). Let ¢ be defined according to (IV.3). For any
arbitrarily small ¢ € (0, min(x, 2)), choose the threshold

n=0 (n*(’“w)) .

The algorithm produces estimates so that,

»
— O(n~—(=¥)) — n

and
£~ F”max = O(ni(ﬁiw)/z)a

with probability 1 — O (n* exp(—©(n?¥))).

The error bounds in Theorem 5.1 imply that our estimator
is consistent as long as p = n=3/2+% for some Kk > 0,
with a MSE that scales as O(1/pn3/2). The threshold of
p = Q(n=3/2) is optimal, and furthermore this requirement
is precisely the threshold at which the constructed bipartite
graph in Step 2 of the algorithm is fully connected. Below
the connectivity threshold, the graph will be disconnected into
small components with insufficient information to recover the
expected value of edges across disconnected components.

In comparison to the literature, [31] prove that the minimax
optimal MSE is O(1/pn?), which is achieved via spectral
initialization followed by power iteration [31] or gradient
descent [40] as long as p = Q(n3/2). While our result
achieves a similar sample complexity threshold, our MSE rate
is suboptimal by a factor of y/n. A limitation of neighborhood
smoothing is that we do not achieve exact recovery under the
noiseless setting, and we do not achieve the minimax optimal
rates. It is unclear whether the gap is due to a limitation in the
analysis or the algorithm. A benefit of our analysis in contrast
to the literature is that the neighborhood smoothing approach
can more easily deal with approximate low rank settings as
arise under smoothness, as presented in Theorem 5.2. While
low rank is often a useful modeling concept for real world
datasets, in reality most real-world applications are likely only
approximately low rank rather than exactly low rank.

B. Approximately Finite Spectrum

For approximate rank r model, we establish a natural pertur-
bation result for the algorithm. Specifically, if the underlying
model has e-approximate rank r, then we argue that the result
of Theorem 5.1 remain true, both with respect to MSE and
max-norm error, with perturbation amount of poly(e).

Theorem 5.2: We assume that the function f has e-
approximate rank r, L-Lipschitz and that § ~ U[0, 1]. Assume
that p = n=3/2** for some x € (0, %). Choosing ¢ according
to (IV.3), it follows that ¢t = [--]. For any arbitrarily small

P 4Kk
¢ € (0, min(x, 2)), choose the threshold

n=0 (n‘(“‘w) +te(1+e)* 1 +t2e%(1 + e)‘“—?) .
The algorithm produces estimates so that,

MSE = O(n~""%) +te(1 + €)' +12e%(1 + €)*7?)

U
=0 <(p2;L3)1/2+t€(1 + €)2t71+t2€2(1 + €)4t2>,
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and

IF = Fllmax = O(n~ (=92 £ 4e(1 + )21 + \/te(1 + £)2t—1),

with probability 1 — O (n* exp(—©(n?¥))) — O(n=2).

As the entries of F' are normalized such that || F||max < 1,
the bound is meaningful when € < 1, in which case the
dominating term of the additional error due to the perturbation
is linear in €, as t is a constant. The proof of Theorem 5.2
relies on the following observation: the distribution of the data
under the setting where the latent function f has e-rank r is
equivalent to the distribution of data generated according to
the rank r approximation of f and then adding a deterministic
perturbation to each observation accounting for the difference
between f and its rank r approximation f,., which is entrywise
bounded by €. In particular, the proof of Theorem 5.2 shows
that under arbitrary deterministic perturbation of a rank r
model where the perturbation is bounded by e, the estimation
error is perturbed by at most poly(g). As a byproduct, our
result proves that our estimator is robust to arbitrary deter-
ministic bounded noise in the observations.

The approximation guarantee depends on the spectral decay.
Since the analysis allows any arbitrary adversarial model for
the € deviation from a low rank model, the resulting guarantee
depending polynomially in € is qualitatively best one can hope
for. By definition, the minimal error must be lower bounded
by €, but determining the best achievable error as a function
of € is an important open question for future investigation.
It is worth noting that no other prior work addresses such a
robust error model.

C. Reducing Computational Complexity

The computational complexity can be estimated by ana-
lyzing steps 3-5 of the algorithm. Step 3 costs O(pn?),
as there are n BFS trees to construct, which each take at most
pn> edge traversals as there are at most order pn® edges in
the constructed graph. Step 4 costs O(p?>n®) as there are order
n? pairwise distances to compute, and each computed distance
involves sums over terms indexed by a,b, a, 3 € [n]* where
(a,a, ) and (b,«,3) are in the observation set. As the
sparsity of the dataset is p, this results in order p?n* nonzero
terms in the summation, each of which is the product of
4 quantities, taking O(1) to compute. Step 5 costs O(pn®)
as there are O(n?) triplets we need to estimate, and each
involves averaging at most O(pn?) datapoints. In summary,
the computation cost of the entire method, for p = n=3te s
O(pn* + p*n® + pn®) where the cost in Step 5 dominates.

This computation cost can be improved drastically. For
example, as explained in [18], by use of ‘representative’ or
anchor’ vertices chosen as random, the algorithm can instead
cluster the vertices with respect to these anchor vertices and
learn a block constant estimate, significantly reducing the
involved computation. If there are y anchor vertices, then
Step 4 reduces to only computing pairwise distances between
(12/) + ny pairs of vertices, as non-anchor vertices are only
compared to the small set of y anchor vertices. Step 5 reduces
to only estimating (g) entries of the tensor corresponding to
combinations of the anchor vertices, and then extrapolating
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the estimate to other vertices assigned to the same cluster.
This would result in a computational cost of O(pn* + (y? +
ny)p*n* +y>pn3). When p = n=3+ our proof indicates that
by choosing y = O((p?n?)/*) = ©(n"/?), the corresponding
block constant estimator would achieve the same rates on the
MSE and MEE as presented in Theorem 5.1, while requiring
a reduced computational complexity of O (n®/2+# 4 p2+56/2),
Corollary 5.3: We assume that the function f is rank r,
L-Lipschitz and that 6§ ~ U0, 1]. Assume that p = n~3/2+#
for some x € (0, 3). Let ¢ be defined as per (IV.3). For any
arbitrarily small ¥ € (0, min(x, 2)), choose the threshold

n=0 (n*(”*w)) .

The modified algorithm which subsamples vy =
Q((p*n*)/*) = Q(n*/?) anchor vertices at random
and uses them to cluster the vertices to learn a block constant
estimate will achieve

e n¥

and
| F— F”max = O(n—(f@—’d))/Q)?

with probability 1 — O (n* exp(—O(n?¥))).

D. Discussion of Assumptions

We assumed in our algorithm and analysis that we had two
fresh samples of the dataset, M, and M. The dataset M is
used to estimate distances between coordinates, and the dataset
Ms> is used to compute the final nearest neighbor estimates.
Given only a single dataset, the same theoretical results can
also be shown by simply splitting the samples uniformly into
two sets, one used to estimate distances and one used to
compute the nearest neighbor estimates. as we are considering
the sparse regime with p = n=3/2** for x € (0, 1), the two
subsets after sample splitting will be nearly independent, such
that the analysis only needs to be slightly modified. This is
formally handled in the paper on collaborative filtering for
matrix estimation in [18].

Our model and analysis assumes that the latent variables
{0u}uen) are sampled uniformly on the unit interval, and that
the function f is Lipschitz with respect to 6. This assumption
can in fact be relaxed significantly, as it is only used in
the final step of the proof in analyzing the nearest neighbor
estimator. Proving that the distance estimates concentrate well
does not require these assumptions, in particular it primarily
uses the low rank assumption. Given that the distance estimate
concentrates well, the analysis of the nearest neighbor estima-
tor depends on the local measure, i.e. what fraction of other
coordinates have similar function values so that the estimated
distance is small. We used Lipschitzness and uniform distri-
bution on the unit interval in order to lower bound the fraction
of nearby coordinates, however many other properties would
also lead to such a bound. The dependence of the noisy nearest
neighbor estimator on the local measure is discussed in detail
in [16]. Similar extensions as presented in [16] would apply

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2023 at 20:46:58 UTC from IEEE Xplore. Restrictions apply.



SHAH AND YU: ROBUST MAX ENTRYWISE ERROR BOUNDS FOR TENSOR ESTIMATION

for our analysis here, leading to consistency and convergence
rate bounds for examples including when

« the latent space has only finitely many elements, or equiv-
alently the distribution of 6 has finite support;

« the latent space is the unit hypercube in a finite dimen-
sional space and the latent function is Lipschitz;

« the latent space is a complete, separable metric space,
i.e. Polish space, with bounded diameter and the latent
function is Lipschitz.

Although our stated results assume a symmetric tensor, the
results naturally extend to asymmetric (n1 X 1y X n3) tensors
as long as nj,ng, and ng are proportional to one another. Our
analysis can be modified for the asymmetric setting, or one can
reduce the asymmetric tensor to a (nXn xn) symmetric tensor
where n = nq+ns+ng3, and the coordinates of the new tensor
consists of the union of the coordinates in all three dimensions
of the asymmetric tensor. The results applied to this larger
tensor would still hold with adjustments of the model allowing
for piecewise Lipschitz functions.

In the proof sketch that follows below, we show that
for the 3-order tensor, the sample complexity threshold of
p = w(n=3/?) directly equals the density of observations
needed to guarantee the bipartite graph is connected with
high probability. Although our stated results assume a 3-order
tensor, our algorithm and analysis can be likely extended
to general d-order tensors. The proof would instead require
analysis of the n x n?~! matrix and associated bipartite graph
corresponding to the unfolding of the tensor. The bipartite
graph would consist of vertex sets [n] and [n]¢~1.

Remark 5.1: In order for the vertices in [n] to be fully
connected to each other, p needs to be Q(n%/?), which can
be proved using the standard branching process analysis as is
used to prove the connectivity threshold of an Erdos Renyi
graph [45]. Let X, denote the set of vertices v € [n] such
that the distance between u and v in the bipartite graph
is 2. It follows that P(v € X,,) = 1 — (1 — p*)"*"", such
that E[|X,]] = (n — 1)1 — (1 — p>)"" ") = ©@p2nd).
As a result, if p = o(n?/?), it follows that P (X, =) =
1-P(X,|>1) > 1-E[|X,|]] = 1—0(1), such that with
probability tending to 1 the vertex u will be isolated, i.e. not
connected to any other vertex v € [n]. To prove that the
graph is connected for p = Q(n%?), one would relate the
growth of a local neighborhood in the graph to an appropriate
branching process, where the expected number of descendents
alternates between pn and pn?—!. To formalize the argument,
one would then argue that the branching process survives to
infinity if p?n? is sufficiently large, e.g polylog(n), and also
argue that the branching process is a reasonable approximation
for the neighborhood growth of the graph until a linear
number of vertices are visited. The requirement for graph
connectivity in our algorithm and analysis arises from the
similarity computation dist(u,v), which involves products of
weights over paths in the graph that connect u and v. The fact
that n%/2 also corresponds to the connectivity threshold in the
corresponding bipartite graph sheds light on the computational
lower bound for tensor completion in [27], giving another way
to explain the Q(n%/?) lower bound.
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VI. PROOF

In this section, we present the proof for Theorem 5.1. The
proof outline is similar to the matrix setting in [18], in that
the core of the analysis is proving that the distance function
as defined in (IV.5) concentrates appropriately and captures
an appropriate notion of distance that enables the classical
“nearest neighbor” algorithm to be effective. However, due
to high-dependencies across latent factors associated with
columns that share tensor coordinates, the concentration of the
BFS neighborhood expansion in section VII-B requires a new
argument beyond the simple martingale argument in the matrix
setting. This involves a careful application of the concentration
of U-statistics. Furthermore, the concentration of the distance
calculation in Eq (IV.6) as analyzed in section VII-D requires a
new argument relating the computed statistic to a thresholded
variant more amenable to analysis. This is due to both the
dependencies in the latent factors along with the lopsidedness
in the dimensions so that straightforward applications of
standard concentration results are too weak and insufficient
to drive the error to zero.

While the proof is stated for bounded observations, i.e.
bounded noise, the result can be extended to sub-Gaussian
noise rather than uniformly bounded noise. This would involve
showing that the norms of the neighborhood vectors N,
and W, are well-controlled such that the application of
Hoeffding’s inequality used in Lemmas 7.4 and 7.5 still hold.
Additionally the proof of 7.7 naively bounds the products of
weights over a path in absolute value by 1; if the noise were
not bounded but sub-Gaussian, one would have to additionally
argue that the product of the weights would be sufficiently
controlled with high probability.

The critical lemma that the proof hinges on shows that the
computed similarities, i.e. dist(u, a), concentrates around the
function d(u,a) = [[A**1Q(e, — eq)||3. This then implies
that if d(u,a), d(v,b) and d(w,c) are small, the function
value F(u,v,w) would be close to F(a,b,c). Additionally,
we use Lipschitzness of the latent function f along with the
assumption that 6,, are sampled independently from U[0, 1] to
argue that for any wu, there is a sufficiently large set of other
coordinates a such that d(u,a) is small. If these properties
hold, then a simple analysis of nearest neighbor averaging
using dist(u,a) to determine the neighbors will result in a
bias variance tradeoff that can be tuned to show our final
results. As such, the complexity of the proof revolves around
showing that the computed dist(u,a) concentrates around
d(u, a). This involves a delicate analysis which involves first
arguing that the normalized neighborhood vectors ]\Nf%t satisfy
e QN ~ e} A**Qe,, which involves martingale concen-
tration as well as concentration of appropriately defined U-
statistics. Subsequently we need to argue that the statistic

1
T Ve (w0, 1P SIS0 ]
X > D>~ Nue(a)No(D)Mp(a, (@, 8))Mp (b, (o, 8))

(a,8)€EVp (u,v,t) a#be[n]
~ NI .QTAQN, ;.

Zuw

A challenge in the analysis is that each term in the sum has
very small probability of being nonzero such that the sum is
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sparse enough that the standard concentration inequalities are
not tight enough. Thus we relate the sum to a thresholded
variant and use a tighter approximation of the binomial cdf to
obtain the desired bound.

A. Analyzing Noisy Nearest Neighbors

We start by stating an important Lemma 6.1, adapted
from [18] that characterizes the error of the noisy near-
est neighbor algorithm. Recall that our algorithm estimates
F(u,v,w), i.e. f(0y,0,,0,), according to (IV.7), which sim-
ply averages over data-points M5 (a,b,c) corresponding to
tuples (a,b,c) for which a is close to u, b is close to v and
c is close to w according to the estimated distance function.
The choice of parameter 7 allows for tradeoff between bias
and variance of the algorithm.

We first argue that the data-driven distance estimates dist
will concentrate around an ideal data-independent distance
d(0.,0,) for d : [0,1]*> — R. We subsequently argue that the
nearest neighbor estimate produced by (IV.7) using d(8,,6,)
in place of dist(u,v) will yield a good estimate by properly
choosing the threshold 7 to tradeoff between bias and variance.
The bias will depend on the local geometry of the function f
relative to the distances defined by d. The variance depends
on the measure of the latent variables {0, },c[n relative to
the distances defined by d, i.e. the number of observed tuples
(a,b,c) € Q9 such that d(0y,0,) < n, d(0,,6,) < n and
d(6.,60.) < n needs to be sufficiently large. We formalize the
above stated desired properties.

Property 6.1 (Good Distance): We call an ideal distance
function d : [0, 1] — R, to be a bias-good distance function
for some bias : Ry — R, if for any given n > 0 it
follows that |f(0q4,0p,0.) — f(0y,6y,0,) < bias(n) for
all (0,,0p,0.,04,0,,0,) € [0,1]* such that d(6,,0,) < n,
d(0,,0p) <nand d(0y,0.) <.

Property 6.2 (Good Distance Estimation): For some A >
0, we call distance d : [n]> — R, a A-good estimate for ideal
distance d : [0,1]2 — R, if |d(0y,0,) — d(u, a)| < A for all
(u,a) € [n]%

Property 6.3 (Sufficient Representation): The collection of
coordinate latent variables {0y},cr is called meas-
represented for some meas : R,y — R if for any u € [n]
and 11 > 0, 5 ¥ o) Ua(w.a) <) > MeAS(1)).

Lemma 6.1: Assume that property 6.1 holds with probabil-
ity 1, property 6.2 holds for any given pair u,a € [n] with
probability 1 — oy, and property 6.3 holds with probability
1 — ag for some 7, A, and ' = 1 — A; in particular d is a
bias-good distance function, d = dist as estimated from M4
is a A-good distance estimate for d, and {0, },¢[n) is meas-
represented. Then noisy nearest neighbor estimate F computed
according to (IV.7) satisfies

0_2

(1—6)p(meas(n — A)n)°
©exp <_ §%p (meas(n — A)n)?

MSE(F) < bias®(n+ A) +

5 >+3 nay+as,
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for any 6 € (0,1). Furthermore, for any ¢’ € (0,1) and
(u,v,w) € [n]?

|, 0,w) = f(8u, 00, 0)| < bias(n + A) + 0,
with probability at least
1 —exp (75521) (meas(n — A)n)g)

— exp (—5’2(1 —6)p (meas(n — A)n)3) — 3 nay — as.

>

The proof of Lemma 6.1 is a modification from [18] and is
included in the Appendix.

B. Proofs of Theorems 5.1 and 5.2

Proof: We prove that as long as p = n~3/2T% for any
r € (0, %), with high probability, properties 6.1-6.3 hold for
an appropriately chosen function d, and for distance estimates
d = dist computed according to (IV.5) with ¢ defined in (IV.3).
We subsequently use Lemma 6.1 to conclude Theorem 5.1 and
Theorem 5.2. The proofs of Properties 6.1 and 6.3 are identical
in Theorem 5.1 and Theorem 5.2, while that of property 6.2
differ. For Theorem 5.1, we utilize Lemma 6.2 while for
Theorem 5.2, we utilize Lemma 6.3. The proof of Theorem 5.2
follows nearly the same argument, where f will be replaced
by the rank r approximation f,, c.f. (IIL.4).
Good Distance d and Property 6.1: We start by defining the
ideal distance d as follows. For all (u,v) € [n]?, let

d(0u,0y) = AT Q(en — e) |3
= Zki(%ﬂ)(qk(eu) — qx(0,))% (VL1)
k=1

Recall that ¢ is defined in (IV.3). Since p = n~—3/2*% and
r € (0,3), we have that

L In(n) 1
B {21n(p2n3)“ B Ll/@“

We want to show that there exists bias : R; — R so that
|(f(0a 0b,0c) — f(0u,00,0,))| < bias(n) for any n > 0 and
(u,a,v,b,w,c) € [n]3 such that d(0,,0,) <, d(0,,0,) <n
and d(6.,60.) <n. Consider

|f(0u791)3 aw) - f(9a79b7 96)‘
< |f(9u79va Qw) - f(aaa 91)7 9w)|
+ |f(9a79v7 ew) - f(eaaeb’ Qw)‘

(V1.2)

+ |f(9a79b7 ew) - f(9a70b7 96)‘ (VI3)
Now
‘f(eua evvew) - f(eav Hva 9w)|
= | Z Ak (@ (Bu) — qr(0a))ar (00 ) i ()|
k
(a)
< B> A(ak(8u) — ax(6a)))]
k

= B*[AQ(eu — ¢a)|h
< B2Vr|[AQ(ey — €4)ll2
< B2\/7j|/\rl_2t”A2t+lQ(eu - ea)||2
= B%\/r|\ |72 \/d(0y,0,). (VL4)
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In above, (a) follows from the |gx(-)]lcc < B for all k.
Repeating this argument to bound the other terms in (VL.3),
we obtain that

|f(91u9117 ew) - f(aa; Hba 90)|
< 3B*\/r|\|"*max (\/d(0u, 0,
< 3B\, [/ = bias(n).

In summary, property 6.1 is satisfied for distance function d
defined according to (VI.1) and bias(n) = 3B?|\.|~%,/r7.
Good Distance Estimate d and Property 6.2: We state the
following Lemma whose proof is delegated to Section VII.
Lemma 6.2: Given f with rank r, assume that p = n=%/2*"
for k € (0, 2) Let d = dist as defined in (IV.5). Then for any
(u,a) € [n]?, for any ¥ € (0, k),

d(0u,0,) — d(u,a)] = O (rAh, n= %)
‘ (ua a) ( ? )| max 9

with probability at least 1 — O exp(—n?¥(1 — 0(1)))).
Lemma 6.2 implies that property 6.2 holds with probability
1—o(1) for A = © (rAkt, ,n=(*=%)) when f has rank r.

Lemma 6.3: Given f with e-approximate rank r for € > 0,
assume that p = n=3/2+% for k € (0,1). Let d = dist as
defined in (IV.5). Then for any (u,a) € [n]?, for any ¢ €
(0, ),

|d(0u; 0a) —

), \/d(am eb)v \/d(ewa 6‘0))

(VL5)

d(u,a)| = O (At ™)
+ O (te(1+€)* 1 +%e?(14€)*2),

with probability at least 1 — O(exp(—nw(l - 0(1)))) -

O(n=*
Lemma 6.3 implies that property 6.2 holds with probability
1 —o0(1) for

A=0 (m‘“

m 'IX

“"H—ts(l +€)2t71+t2€2(1 +€)41572>7

when f has e-approximate rank 7.

Sufficient Representation and Property 6.3: Since f is
L-Lipschitz, the distance d as defined in (VI.1) is bounded
above by the squared /5 distance:

d(0,0y)

= ||A2t+1Q(6u - ev)”g
< |/\1|4tHAQ(€u - ev)||2

|A1|4t(2)\2 Qk

=S A2 e 00) — a0 | ao.yas,)
k=1 0

(VL6)

- Qk(av))z

1
X (-/0 Qk(eb)2d9b)
|A1|4tZA2 / (06 (0,001 (01 (6)
= 0e(0)0k (6 )01 (61)) 0,6, )

1 1
@ |3, / / (F(Bus B, 06) — [(60 B0, 05))> A6y
0 0
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S |/\1|4tL2‘9u - 9v|2a

where in (a) we have used the fact that ¢;(-),k € [r] are
orthonormal with respect to uniform distribution over [0, 1].
We assumed that the latent parameters {6, },c[n) are sampled
i.i.d. uniformly over [0, 1]. Therefore, for any 6,, € [0, 1], for
any v € [n] and ' > 0,

(VL7)

P (d(0u,00) <0 | 6u) =P (IM[*" L0, — 6u* < 0" | 6)
e (-0 < 22 |)
> min (1, A;TZ:L) (VL8)
Let us define
meas(r’) = W (VL9)

for all 7’ € (0,|\;|*L?). By an application of Chernoff’s
bound and a simple majorization argument, it follows that for
all ' € (0, [\1[*L?) and § € (0,1),

P ﬁ Y Latuayzyy < meas(y) | 6,
a€[n]\u
0*(n — DV’
<o (o)

By using union bound over all n indices, it follows that
for any n' € (0,|\1|*L?), with probability at least 1 —
nexp (—%), property 6.3 is satisfied with meas as
defined in (VI.9).

Concluding Proof of Theorem 5.1: In summary, property 6.1
holds with probability 1, by Lemma 6.2 property 6.2 holds
for a given tuple (u,a) € [n]? with probability 1 — o where
) = O(exp(—nw(l - o(l)))) for ¢ € (0, min(k, 2)) and

'8
r € (0, 3), property 6.3 holds with probability 1 — vy where

Qa2 = nexp —% %_A) with distance estimate d = dist
defined in (IV.5) with
d(0u, b, ) = [[A**1Q(ey — e)I5,
bias(n) = 3B%|\.| %/,
A O(rAmtan ),
(1—=38)vn'
meas(n’) = ——2>— VI.10
(TI ) |A1 |2tL ) ( )

for any n > 0, § € (0,1) and ' = — A € (0, [\ |*L3?).
By substituting the expressions for bias, meas, and « into
Lemma 6.1, it follows that

MSE(F
( ) O.2L3|/\1|6t
<OBYN[TMr(n+A) + (1= 8)ip (v = an)’
—8)4p (Vin — An
o (=0 (V= Bn)’
P 2L3[ )\, [6F
+ nO(eXp(—nw(l - 0(1))))
P —1)yn—A
+ nexp <— 2\)\1|2tL ) .
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Additionally, for any &’ € (0, 1),
— f(0u,00,00)| < 3B\ |2t/ r(n+ A)+ 6" (VL11)

with probability at least

. ( 62(1—6>3p(mn)3>
e

2L3[\ [0
< §2(1—6)*p (\/T]—An)3>
—exp | —

L3|Aq|6F

| (u, v, w)

— nO(exp(—nw(l - 0(1))))
—nexp (52(n _ 1)m) .

2|\ |*L
By selecting n = O(A) = O(rA, n=(""¥)) with a large
enough constant so that n — A = ©(n), it follows that by the
conditions that ¢ > 0 and k < 1,

n+A=0(r k.
p( V1= An)B = @( S/QA?rfaX
ny/n—A=0(r

1/2)2t
By substituting this choice of  and § = % it follows that

—(n—w))

R =g,
w

I
=
S
wlw

max )

MSE(F) = O(rQ(AmaX/A,,)4tn—(”—1/’)). (VL12)
By choosing ¢’ = n*(’f*w)/Z such that ¢’ = ©(,/n) and
82p(v/m— An)® = Q(nt) = Q(n?") because ¢ < 2. There-
fore, by substituting into (VI.11), it follows that for any given
(u,v,w) € [n]?, with probability 1 — O(n exp(—@(nw))),

[E(u, v, w) = f(Ou, 0, 0u)| = O(r(Amax/Ar)Q‘n*(”*"")/Q). (VL.13)

Using union bound over choices of (u, v, w) € [n]3, it follows
that the maximum entry-wise error is bounded above by
O(n=(=¥)/2) with probability 1 — O(n* exp(—@(nw))).
This completes the proof of Theorem 5.1. |

Concluding Proof of Theorem 5.2: We follow similar line
of argument as for proof of Theorem 5.1. As noted earlier,
property 6.1 holds with probability 1, by Lemma 6.3 prop-
erty 6.2 holds for a given tuple (u,a) € [n]? with probability
1 — a; where ay (1 - 0(1))) + n_6) for
¢ € (0,min(x, 2)) and x € (0, %), property 6.3 holds with

R g
probability 1 — cy where ay = nexp (—% Vt’]:A) with

distance estimate d = dist defined in (IV.5) with

= O| exp(—n

(0, 0.)= A% Q(ew — )3,
bias(n)= 3B%|x.| %' /7,

A=0O(rAM nTTY) Lte(1 4 )M 11262 (1 4 6)M ),

(1= VT
e (VL.14)

for any n > 0, 6 € (0,1) and ' = n— A € (0, |\ [*L?).
By substituting the expressions for bias, meas, and « into
Lemma 6.1, it follows that for any ¢’ € (0, 1),

[ (u, v, w) = fr (0, 00, 00)] < 3B%IA| 724 /r(n + A) + 6,

meas(n’)=

(VIL15)
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with probability at least

) 5%(1-6)°%p (\/77 — An)3
—exp | — TN
oo (P08 (Vi Bn)®
exp L3\

- TLO(G‘XP(— (1 —0(1)) + niG)
Cnexp (52(n - v — A) _

2|\ |*L
By selecting

n=A+min (A, |\ |*L?), (VL16)

it follows by the conditions ¢ > 0 and x < % that

N+ A=0( A~ T te(1+€)* T +7 (146)1 ),

n—A=Qmn ),

p(vn— An)g = Q(ni),
ny/n—A= %

By choosing &' = n~(#=%)/2 guch that §' = O(y/n) and
8%p(v/m— Bn)® = Q(n) = Q(n?") because ¥ < 2. There-
fore, by substituting into (VI.15), it follows that for any given
(u,v,w) € [n]?, with probability 1 — O(n exp(fG(nw))) —

O(n_s),
[E(u, v, w) — f(Ou, Ou, 0u)]
< NE(u,0,w) = fr(Ous 0, 00)| + | fr(8us 00, 00) — f(Ou, 00, 0]

= O(rOmax /A0~ 72 dte(1 4 6) 7 4 V(T + )7 ),

where the bias between f, and f is bounded by &, and
dominated by the bound between F and f,. The final result
follows from a union bound over (u,v,w) € [n]3.

The bound on MSE also follows by substituting § = % and
the same choice of 7 from (VI.16) into Lemma 6.1, and again
noting that the bias between F' and F) is dominated by the

error between F' and F, such that
MSE(F) = O (72 (Amax/A) 0™ %) 4 te(1 + )21
+0 (Pe*(1+e)"7?).

This completes the proof of Theorem 5.2.

C. Proof of Corollary 5.3

Proof: The proof follows the same format as the proof of
Theorem 5.1. Let us denote the set of anchor vertices as ) such
that || = y, and they are assumed to be chosen uniformly at
random amongst all vertices. For a pair of vertices (a,b) € V2,
the estimate F (a,b) follows the same exact computation as
described in Section IV-A. As a result it follows from Theorem
5.1 that with high probability,

|F(a,b,¢) — F(a,b,c)| = O(n~

Next we need to show the error is not degraded for
non-anchor vertices (u,v,w) € ([n] \ ¥)3. Let  : [n] — Y

(r=16)/2).

max
(a,b,c)€Y3
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denote the function that maps from each vertex to the closest
anchor vertex as determined by the true distances d,

((u) = argmind(0y, 0,),
acA

and let ¢ : [n] — ) denote the data-dependent function
that maps from each vertex to the closest anchor vertex as
determined by the computed distances d,
((u) = argmind(u, a).
acA

The estimate for non-anchor vertices is then taken to be
the estimate computed for the corresponding closest anchor
vertices,

F(u,v,w) = F({(w),¢(v), {(w)),
such that
|F(’LL,'U’[U)—AF(U11),U))| . R
< [F({(w), {(v), C(w)) = F((u), {(v), {(w))|
+[F(C(w), C(v), {(w)) = F(u,v,w)].
By Theorem 5.1, as (C(u),{(v),C(w)) € V3, the first term
is bounded by O(n~("~%)/2) with high probability. By prop-
erty 6.1,
|F({(w), C(v),{(w)) = F(u,v,w)]
< 3B2f|A |72t

\/max <(u ) (91}76;*(@ ); d(ew’eé(w)))'

The modified algorithm computes distances using Step 4 of
the described algorithm between all pairs of anchor vertices,
as well as all pairs (u,a) such that v € [n] and @ € Y. For
each computed distance between a pair (u,a), by Lemma 6.2,
property 6.2 holds for A = ©(n~**%) with probability
1 — a; where a; = O(exp(fnw(l - o(l)))) for ¢ €
(0,min(x, 3)) and & € (0, ).

In order to bound maxyen) d(0u, 0, ), we argue that for
every u € [n], with high probability

—~
S
=

< c2<u7<<u>> LA

—~
S
=

mi nd(9u,9 )+ 24,

where (a) and (c) hold with high probability for A =
O(n="*¥) as a result of property 6.2, and (b) and (d) follow
from the definition of the functions CA and (.

To bound minge .4 d(6,,6,), we use (VI.8) from prop-
erty 6.3 to show that for any u € [n], n = O(n~"*¥), and
y = Q(p*nd) /1) = Qnr/?)

P (an’lelg d(0u,0a) > n | eu): T P (du.6a) > 7] 6.)

acy
Yy
<[1- il
- [A1[2*L
yvn' !
< exp(—m) = exp(—©(n*/?)).
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As a result, the max entrywise error is bounded by
O(n~(*=%)/2) with high probability, which can be used to
show the MSE bound of O(n~(*=%)), O

VII. PROVING DISTANCE ESTIMATE IS CLOSE

In this section we argue that the distance estimate as defined
in (IV.5) is close to an ideal distance as claimed in the
Lemma 6.2.

A. Regular Enough Growth of Breadth-First-Search (BFS)
Tree

The distance estimation algorithm of interest constructs a
specific BFS tree for each vertex u € [n] with respect to
the bipartite graph between vertices [n] and V4 where recall
that V4 = {(b,¢c) [n/2]? s.t. b < c}. The BFS tree
construction is done so that vertices at different levels do not
share coordinates, i.e. if vertex a € [n] is visited in an earlier
layer of the BFS tree, then no vertex corresponding to (a, b) for
any b € [n] can be visited subsequently. Similarly, if (a,b) is
visited in the BFS tree, then no subsequent vertices including
either coordinates a or b can be visited. The restriction is
placed across different depths, whereas pairs of vertices (a, b)
and (a, c) can be visited in the same depth. Amongst various
valid BFS trees, the algorithm chooses one arbitrarily (for
example, see Figure 3(c)).

We recall some notations. Consider a valid BFS tree rooted
at vertex u € [n] which respects the constraint that no
coordinate is visited more than once. Recall that for any s > 1,
Uy,s € Va denotes the set of vertices at depth (2s — 1)
and S, s C [n] denotes the set of vertices at depth 2s of
the BFS tree, B, s = Ulers/2'|uu’l Une|s/2] Su,hs G(Bu,s)
denotes all the information corresponding to the subgraph
restricted to the first s layers of the BFS tree which includes
By, the latent variables {0,}qep, . and the edge weights
{Mi(a,b,¢)}a,b,c)eB, .- The vector N, , € [0,1]™ is such
that the a-th coordinate is equal to the product of weights
along the path from u to a in the BFS tree for a € S, ;, and
the vector W, € [0,1]V4 is such that the (b, ¢)-th coordinate
is equal to the product of weights along the path from u
o (b,¢) in the BFS tree for (b,c¢) € U, s. The normalized
vectors are Nu,s = Ny s/|Su,s| and V~Vu73 = Wy,s/|Uu,s| for
u € [n], s> 1.

In a valid BFS tree rooted at vertex u, m,(a) denotes the
parent of a € [n], and 7, (b, ¢) denotes the parent of (b,c) €
V4. The neighborhood vectors satisfy recursive relationship,

Nu,s(a) = MA(aa 7Tu(a))vvu S(T"u(a'))ﬂ(ae‘su )
Wa,s(b,c) = Ma(mu(b, c), (b, €)) Nu,s—1(mu(b, €)@, ) EUu.s)

with N, o = e,. We state the following result regarding
regularity in the growth of the BFS tree.

Lemma 7.1: Let p = n~3/?** for 5 € (0,1). Let ¢ be as
defined in (IV.3). For a given § € (0, 3) and for any u € [n],

with probability 1 — O(n exp (—O(n 2“))), orall s € [t—1],

|Su,s| € [(1—0)2273 0% (1 — (1)), (1 + §)*27 0],

(VIL1)
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for s = ¢,
|Su,t‘ c [(1 _ 5)21&2731571”2:{15(1 _ 0(1))7 (1 +6)2t27tn2m&] ,
(VIL.2)
and for s € [t],
|uu,s| c {(1 _ 5)23—12—3sn%+m(25—1)(1 . 0(1))’
(1+ 5)28*12*371%“(28*1)] . (VIL3)

The set of single coordinate vertices visited within depth 2¢ is
o(n),

| Ui=o Suel = o(n).

Proof: First observe that if ¢ is as defined in (IV.3) with
k€ (0,1), then

(VIL4)

= [ons | =[]

such that

i <t< i + 1.

4k 4K
Note that ¢ is constant with respect to n.

For any s € [t|, we study the growth of |S, | and

|Uy,s| conditioned on By 251 Uly,s and By g(5—1) U Sus—1
respectively. To that end, conditioned on the set B, 251
and the set U, s, any vertex i € [n] \ By 2s—1 is in Sy s
independently with probability (1 — (1 — p)/“w=!). Thus the
number of vertices in S, ; is distributed as a binomial random
variable. By Chernoff’s bound,

(VILS)

P (1Su,al (12 8)([0]\ Bugama)(1 = (1= )2y | Bugon, Uss)

<200 (= 500\ Bz ah(1 = (1= )0 ) (VIL6)

Similarly, conditioned on the sets B, 5(s—1) and S, s—1, the
set of vertices in U, s is equivalent to the number of edges in
a graph with vertices [n/2] \ B, 2(s—1) and an edge between
(i,7) if there is some h € S, s—1 such that (¢,j,h) € Q.
This is an Erdos-Renyi graph, as each edge is independent
with probability (1 — (1 — p)!S=s=11). By Chernoff’s bound,

P(“/’u,sl ¢ (1£6) (I[n/2] \ Bzu,z(s—1)|>

X (1—(1—p)Sus=1ly| B, 2(s— 1)»3u,571)

1o p)lSeenih),

(VIL7)

<2cxp( 3 (\[n/Q]\Bu ,2(s— 1)‘) ¢

Let us define the events
AL @)= {ISusl € 1 £ )]\ Buze—1 (1 = (1= p) e},
(VILS8)

- (- p)Fwath]
(VILY)

A2 (5)= {IUu,sl e jE(5)(|[n/2] \ BQu,2(s—1)|)(1
Since p € (0,1) and hence 1 — (1 — p)* < pz for all z > 1,
we have that under events A}, ((6) N A2 (),

n/2
ISu.sl < (14 )nplthy o] and [Us,s| < (14 6)( é )PISu sl

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 5, MAY 2023

which together implies that conditioned on event
o1 (AL (0) N A2, (8)), for all s € [t]
2713 S
[Su.s] < ((1 T 5)”?) = (14 6)22 3 p2ms (VIL.10)

and

2 s—1
U, < (1+5)% ((1+6)2p; ) (VIL11)

= (1+468)% 12 3spatr2s—1) (VIL12)
Therefore, for any s € [t—1] such that s < ;- by the definition
of ¢,
[Bu,2s|

ST+ > el + [Suel)
£=1
202\ ! NSO
<1+Z( 1+6 <(1+5) —) +<(1+5) 3 ))

o p2nd s p2n’ £-1
=1+ <2(1+5)T+ <(1+6)2T>> ((1+6)2T)
£=1

. _ 1
:O(pn2(p2n3)s—1) _ O(nn(2s 1)+2) _

(VIL.13)
With a similar argument we can show that
¢
B3 (0057)
£=0
= O(( )t = 0(n**) =o(n).  (VIL14)
The last step follows from checking that when x € [% %), t=
1 such that n?** = o(n), and when « € (0, 1), from t < L +
1, it follows such that n2"* = O(n2+2%) = o(n) as k < 1.

Recall that we split the coordinates such that U@zll/{u’g C Va4,
and the coordinates represented in (a,b) € V4 are such that
a € [n/2] and b € [n/2]. Therefore by (VIL.14),

t—1

)\ Buze—a] = /2 =Y " Suel = (1 —o(1)).

£=0

Using (VIL.13), we establish lower bounds on |S, | and
|y, s| next. Note that, for p € (0,1), 1 —p < e~ ? and for any

€ (0,1), e=® < 1—x + 22, It follows that 1 — (1 — p)* >
px(1 — pz). For s € [t] we can show that
o > (10 A= g s
n2
>(1- 6)§p‘8u7s—1|(1 = p|[Su,s—1])(1 —o(1))
n2
= (1= 5) piS. (1~ of1)).
For s € [t — 1] we can show that
[Susl = (1= 8)n(l —o(1))(1 — (1 —p)lHeel)
= (1= 8)n(1 — o(1))pllu,s|(1 = plthu,s])
= (1 =d)n(1l = o(1))pllu,s|(1 = o(1))
= (1= 8)pn|liu,s|(1 = o(1)),
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and for s =t,
Suel = (1 =0)Z(1—o(1)(1 — (1 = p)Herl),

Then for s € [t],

|mwuzu—6fp”umsuu—o<»

> (a- QP")_|mﬂudn>
s—1 pn2
> (0-958) a- 9B -o)
= (1-0)>" 12—35 3+R2s=1) (1 — o(1));  (VIL15)
for s e [t —1],
2
Ssl 2 (1= 8P plSuaa] (1 = o(1)),
2.3\ ¢
> (=055 ) - o)
= (1—6)%%273n*(1 — o(1)); (VIL16)
and for s = t, [Sy¢| > (1 — §)2273 " 1n2r4(1 — 0(1)).

To conclude the proof of Lemma 7.1, we need to argue that
Ni_y (AL o(6)NA2 ((8)) holds with high probability. To that
end,

P (=(Nio (AL () N ALL0)) = P (Ul (AL
= Z]P’( (AL

< DR (S(ALLE N AL L@) ] Nz

s=1

)NA2L(9)

J(6) AL L(6) M2 (AL (8) N A%, (6)))
(AL L () N AL, (6)

<Y (FALLO) | MAZ (AL (0) N AL ()

+ 0P (A2 L(9) [ AL L(8) M) (AL L (6) N A2 L (6)).

We bound the each of the two summation terms on the
right hand side in the last inequality next. Using (VIL.6) and
(VIL.10), we have

le(ﬂ
t—1 1 p2nd p2nd s—1

S;Zexp <—§62(1—6)T ((1—5)2 5 ) (1—0(1))>
2 3 3\ t-1

+2exp <7%52(175)% ((175)“7 n ) (170(1))>

2n3
< dexp <—%52(1 - 5)%(1 - 0(1))> = O(exp (- @(nz“))).

AL (@) N3 (AL L (O) N AL, (6)))

Similarly, using (VIL.7) and (VII.12), we have

Zpﬂﬂ )AL L(8) M52 (AL L (8) N A2, (6)))
f+1

<ZZeXp <—52” P <(1_5)2p2” > ) (1_0(1))>

<4exp ( :1))6271210(1 0(1))> :O(exp (—@(n%+”))).

3137

Putting it all together, we have that
P (=(Ni=i (AL (0) NVAZ(6))))
< O(exp (- @(n%))) + O(exp (- @(n%“””)))
= O(exp (- @(nz"))),

since £ € (0, ). By union bound over all u € [n], we obtain
the desired bound on the probability of error. This concludes
the proof of Lemma 7.1. ]

B. Concentration of Quadratic Form One

Let A3 ,(6) denote the event that (VIL1) holds for all s €
[t — 1], (VIL2) holds, (VIL3) holds for all s € [t], and (VIL4)
holds. Lemma 7.1 established that this event holds with high
probability. Conditioned on the event A3 ,(6), we prove that
a specific quadratic form concentrates around its mean. This
will be used as the key property to eventually establish that
the distance estimates are a good approximation to the ideal
distances.

Lemma 7.2: Let p = n=3/2%% for k € (0
in (IV.3), § € (0
probability 1 — 2 exp(—

,3), t as defined
,3), and ¢ € (0, k). For any u € [n], with

n?¥(1 - o(1))).

16)\it_2nw

A2t u k"
Qeal < (1—-20)n*

|65QN w,t eg

Proof: Recall that conditioning on event A% () simply

imposes the restriction that the neighborhood of u € [n]

grows at a specific rate. This event is independent from latent

parameters {0, },e[n], the precise entries in Q; as well as
associated values, i.e. M.

Conditioned on A3 ,(6), let F  for 0 < s < 2t denote the
sigma-algebra containing information about the latent parame-
ters, edges and the values associated with nodes in the bipartite
graph up to distance s from w, i.e. nodes S, 5/ for A’ < |s/2],
U, for h' < [s/2], associated latent parameters as well
as edges of (2. Specifically, F,, o contains information about
latent parameter 6,, associated with u e [n], Fu,s contains
information about latent parameters U {9 Yaes,n U Lg/ 21
{0b,0:} v,c)eut,, and all the assomated edges and observa-
tions. This implies that F,, o0 C Fy1 C Fy,2, etc.

Recall that () denotes the r x n matrix where Qr, =
qr(0a), k € [r],a € [n]. We modify the notation due to the
sample splitting, and we let Q denote the 7 x (") matrix
where Qrp = qi(0p, )qi(0s,) for some b € V4 that represents
the pair of coordinates (by,bs) for by < ba € [n/2].

We shall consider a specific martingale sequence with
respect to the filtration F,, , that will help establish the desired
concentration of e%QNuvtfegA%Qeu. For 1 < s < 2¢, define

Yy . — egAQt_SQ]?u,s/Q
T e AT TIQW sy 2
Du,s - Yu,s - Yu,s 1

if s even
if s odd

Yu,Zt - Yu,O == SEQN R ek A2tQNu 0 — ZDu e

s=1
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Note that ]\7%0 = ey, and Y, 5 is measurable with respect

to Fu,s because ef A27*QN,, ;/o and ef A2 QN, (5412

only depend on observations in the BFS tree within depth s.
By Lemmas 7.4 and 7.5, it follows that Y,, ; is martingale

with respect to F,, s for 1 <s <t ie.
E[Du,s | fu,s—l] =0. (VIIl7)

Furthermore, for properly chosen v as specified in Lem-
mas 7.4 and 7.5,

E[erPe | Fooy, A3 (8)] < XVi/2

almost surely for any A € R.
We can then apply Proposition 7.3 with any arbitrarily small
v, such that for any x > 0,

P(IF QN — A Qeul > x| A3,(9))

£E2
SR NS S
s=1"s

where for n 1arge enough,

(1+4n X“ 4s93s—1(1 4 o(1
Z Z ) ( (1))

5)29n2n9
+ Z

=1
_sa +47r>Ait 4(1 +o(1))
- (1 =6)2n2r ’
and 1 + 47 < 16. -
For ¢ € (0, k), we choose z = % = o(1), such that
—n*¥(1 - o(1))),
1P QN+ — ef A% Qe,| < .

(1+ 167r)72/\4f 4s+2p493s=1(1 4 0(1))
25 1min{1l,5+r(25—-1)}

with probability 1 — 2 exp(

O
We recall the following concentration inequality for Mar-
tingale difference sequence, cf. [46, Theorem 2.19]:
Proposition 7.3: Let {Dy, Fi, }r>1 be a martingale differ-
ence sequence such that E[e*0%|F,_y] < e*¥i/2 almost
surely for all A € R. Then for all z > 0,

n 2

x
P H Dk’zx <2exp| — o= 3
<k_1 22 Vi

Lemma 7.4: For any s € [t],
E [Du,2s ‘ fu,Zsfla Ai,t(é)] = 0.

Let v = \/M, and

Q _ BQAit—ZLSQBS(l + 0(1))

(1 _ 6)2sn2ns
For any A € R,

) . (VIL18)

2V2)
Proof: Recall F5,_; contains all information in the depth

2s — 1 neighborhood of vertex u. In particular this includes
the vertex set

A
E[eAP42 | Fyaer, AL, (8)] < exp (

—1
Bu,2sfl = Uf:luu,l UZ:l Su,h;
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the vertex latent variables {0;}icp, ,._, and the edges and
corresponding weights. Let us additionally condition on the
set Sy 5. As 2s is even,

Dy 2s= Yu,25s — Yu,25s—-1

AT (R QN — Arel QWL

_ /\2t 2s

2t 2.5(

X Wa,s (@) [(amr (i) M1 (a1, az, 9)qr(0:) — Awey QWu,b‘) .

\usl

Z Nu,s(1)ar(0:) — Aeey, QWa, s)

i€[n]

>

Su,sl zeSu s a=(ay,a3)EUy, s

Let us define

X;= >

a=(a1,an)€Uy,s

W, s(a)(a=n(i)) M1 (a1, az,1)qr(6:)

= Z W, s(@)(a=n(i)) (F(Oay,Oass0i) + €ayagi)qn(:)-

a=(ay,a)€EUy,s

The randomness in X; only depends on 0;, €q, a5 [(a=r(i))-
Note that we already conditioned on 8, ,6,, for a € U, s C
Bas—1. X; is independent from X; because the vertices and
edges are disjoint, and 7(¢) is independent from (j) as
different vertices are allowed to have the same (or different)
parents. First we compute the mean of X; (conditioned on
i € Sy,¢). For any vertex i € S, s, it must have exactly one
parent in U, s due to the BFS tree constraints. The parent is
equally likely to be any vertex in U/, s due to the symmetry
in the randomly sampled observations. Because the additive
noise terms are mean zero, the eigenfunctions are orthonormal,
and (i) is equally likely to be any a € U, s, it follows that
E[X;|i € Sy 5] = ekAQWu s as shown in (VII.19) shown at
the bottom of the next page.

Furthermore, < 0) <
B. By Hoeffding’s inequality, it follows that
2|8, 5|22
P(|Du2s| > 2 | Fu2s—1,Su,s) < 2exp <—/\4t_4532 .
k

If we condition on the event A
|Su.s| = (1

for s € [t]. Therefore,
P (|Du,25‘ >z | fulsflwAi,t(‘s))

2(1 _ 5)25273571712&5(1 _
< 2Zexp ( Ti—4s
A, B2
We finish the proof by using Lemma A.2 with ¢ = 2 and
. /\4t 45235(1+0(1)) |:|
Q (1 5)25n2rs
Lemma 7.5: For any s € [t],

]E [-Du,Zsfl | -,Fu,stlvAi,t((S)] = 0

Let v = \/w, and

0= T2\ ST 4235 (1 + o(1))
_( — §)2s— Lymin{1,3+x(2s—1)}

w0 (0):

_ 5)252—35—1n2ns(1 _ 0(1))

0(1))22> .

For any A\ € R,

A\2p?
E[eADu,zs—l ‘fu,zs—laAi,t(é)] Sexp( 2” )
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Proof: As 2s — 1 is odd,

Du,2571 - Yu,2571 — Yu,2(s—1)
= )\it—Zs—&-l (QEQWMS — )\ke{QNms_l) .

Recall Fy5_2 contains all information in the depth 2s — 2
neighborhood of vertex w. In particular this includes the vertex
set

By 2s—2 = Uie[s—1]Uu,i Une[s—1] Su,hs

the vertex latent variables {0;};cn and the edges and

u,2(s—1)

corresponding weights { M (i, a)}i aeB, ,._,,- Consider
e QW s
Wi T X W m)al0)
i=(i1,i2)EUu,s
= |uu1| > Y Nus1 () =r(iy

i=(41,i2)EUy, s VESu,s—1

x My (v,7)qx (05, )qr(0:,)

1
|uus| Z Xi7

i=(11,12) €Uy, s

where we define for ¢ = (i1,42) € U, s,

X— Z Nusl

VESu,s—1

Z Nus 1

VESu,s—1

(Z (0

Conditioned on F,, 3(s_1) the randomness in X; only depends
on 0;,,0i,, €x(i)iyip» and I,—r(;)). Conditioned on U, s and
{0i, .05, }icu, .. the random variables X; are independent as
€r(i)iri, and I[(v =(i)) are independent. The parent of ¢ =
(i1,92) € Uy, s is equally likely to be any vertex in S, s—1,
and the parent of i = (i1,42) € U, s is independent from the
parent of j = (j1,j2) € Uy s With j # ¢ as different vertices
are allowed to have the same (or different) parent. First we
compute the mean of X; conditioned on ¢ € U,, s and 6;,,0;,.
Because the additive noise terms are mean zero and the parent

V)l y=r i)y M1 (v, 1) qr (0, ) qr (0s,)

V) (v=r(i))

Z1 >Ql (922 ) +€Ui1i2> dk ('921 )Qk (91'2)'
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of 7 is equally likely to be any v € Sy, s—1,

E[Xl ‘ eilveizvi € uu,s]

|: Z Nus 1 (v=m(i)) (ZAlql
VESy,s—1

X ar(6:,)an (6:,) \ 01 0

> Nuaoal <Z>\HI1

|Sus 1| VESu 51
X qr (0, )qk (0iy)-

11 Ql(e ))
(05, )au(0s, ))

Furthermore, |X;| < B? almost surely as we assumed
lgx(6)] < B. By Hoeffding’s inequality, it follows that

P (‘€£QWU,S — E[Q{QWU,S | {e’iueiz}ieuu,wuuys]‘
> 2 | Funtomty Uuss (0i0: 01 ieu, . )

Uy 5|22
B4 '

Next we consider concentration with respect to the random
subset U, s out of the V4 \B%Q(S_l) possible vertices. In par-
ticular we would like to argue that with high probability,

< 2exp (— (VIL.20)

1

Tl Z Z Ai1q1(00)qi (03, )q1(0i5)qr (05, )qx (0:y)

P€Uy,s L
N 1
[Va\ Byl

<

GEVANB, a(s—

Z Aiqi(04)qi(0:1)q1(0iy)qn(0iy )ar(0iy)-

1) !

Next, we formalize it. To that end, conditioned on the size
Uy s, s 18 @ uniform random sample of the possible
set of vertices Va \ By 2(s—1). The above expression on
the left is thus the mean of a random sample U, ; without
replacement from V4 \BU’Q(S,D. Due to negative dependence,
it concentrates around its means no slower than assuming that
they were a sample of the same size from the same population
with replacement, cf. [47, Theorem 4]. Therefore, using

Z )‘IQZ 11)ql(6iz)qk(9i1)qk(9i2>

= |f(01)7 611 ) elg)qk(all)qk(

)| < B2,

E[X; | i€ Sus)

2. W

a=(a1,a2)EUy, s

ZL

a=(a1,a2) €Uy, s | u’8|

= 2

a=(a1,a2) €Uy, s

= el AQW, ..

=E

S(Q)H(a:ﬂ'(i))(f(etn ’ 9(12 ) 97,) + Ealazi)qk(ei)

E [Wys (a) Z Ahh (6(11 )Qh (0(12 )Qh (oi)Qk (01)
h

Vi/u,s (a))\qu (0(11 )Qk (6(12 )

(VIL19)
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we can apply Hoeffding’s inequality to argue that

> a0iy)a(0iy)an(0s,)qr (0i,)

1€Uy s

: >

WVa\Buz-licy \Bra s,

1
P(\m

a1(0:i1)a1(0iy)ak (0iy ) ar (0iy)

22 | {0iy,0i3}ievy, |Uu,s|)

2
< 203 ( - ‘“21"” ). (VIL21)
Finally, we need to account for the randomness in

{0:,,0;, }icv,, arguing that with high probability
1
[Va\ Bu,2(s—1)l
D DR DR 1C
P1E€EVA\By 2(s—1) !
~ Aeqr(0v).

0i1)qi(0i5) (03, ) qr (0i)

To formalize this, we start by recalling that
Va\Buyzs—1) = {(i1,42) st i1 <2, {i1,i2} C [n/2]\ By 2(s—1)}-

Let ny,s = [[n/2]\ Bu.a(s—1)|s then [Va\ By o¢s—1y| = ("5°).
Then the above summation can be written as a pairwise
U-statistic,

1
vo— L ¥
B _
Va\ Bya(s—1)l (11,i2)€VA\Bu 2o 1)

9(011 ) 012)

where ¢ is a symmetric function and each term g(6;,,0;,) is
bounded in absolute value by B2. Furthermore,

E[>  Nau(6i)ar (05, ar (0i,)] = Aegi (60)
I

by the orthogonality model Therefore,

by Lemma A.3

1
(B

assumption.

> S xa(0iy)ai(0iy)ar (04 ) an (0:,)

PEVANB,, o(s—1) !

> 2)
u,s 2
nSBZ )

By putting together all calculations, it also follows that

< 2exp ( - (VIIQ,Z)
]E[efQWu,s] = eZAQNu,sfh
and for 21, 29, 23 > 0, with probability at least

\Uu,SIZf) ) ( qu,slzg) ) (
—2exp ( — —2exp ( —
B Bi

2
nu,szg)

1-2 (—
exp 8B4

it holds that |e£QWu7s — egAQ]\N]ws_ﬂ < z1 + 29 + 23 as
shown in (VIL.23), shown at the bottom of the next page, using
the fact that || Ny s—1/|oc < 1. Conditioned on A2 ,(8), ny,s =
n/2(1 —o(1)), and

o] € |1 1—o(1)),

(1+ 5)25—12—sn%+n(2s—1)] ‘

- 6)25—12—38n%+5(28—1)(

As a result, for z; = 25 = 23, the expression in (VIL.20) and
(VIL.21) asymptotically dominate the expression in (VII.22).
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It follows that, with appropriate choice of z; = 29 = 23 in the

above,
o(1))2? )

We finish the proof by using Lemma A.2 with ¢ = 4 and
72)\41 4Q+QB423§(1+0( )
Q - (1—8)2s— 1pmin{1, T4r(2s—1)} "

P(1Duzec1] 2 2 | Faomz, A3 ,(9))

(1- 6)25712—35nn1in{1,%+m(2371)}(1 _
S Gexp | — Ti—ds12
72>\ sTep4

O

C. Concentration of Quadratic Form Two

Lemma 7.2 suggests the following high probability events:
for any u € [n], k € [r], t as defined in (IV.3), i.e. ¢t = [——‘,

4K
5 €(0,1), and
v 16)\r2rfax2
(1—d)n”
define

AL ya(,0) = {eF QN — el A% Qey| < af N A3 ,(0).

Now, we state a useful concentration that builds on the above
condition holding. It will be useful step towards establishing
Lemma 6.2.

Lemma 7.6: Let p = n=3/2*% for x € (0,3), t as defined
in (IV.3), and ¢ € (0, 2) For any u,v € [n], conditioned on
m2:1 (Aﬁ,k,t ($7 6) N A’U,k,t (.’);‘7 6))’

[NDQTAP QN — ef QTAPHD Qe |

a? < 3 Ai) +2B ( 3 2A§“+”> .
k=1 k=1

Proof: Proof of Lemma 7.6. Assuming event
M (Ao (2,6) N A (2, 6)) holds,
NG QTAPQN, ¢ — e QTN Qe |
<IN, QT = e QA (APQN,,, — A% Qe,)|
HNVL QT — e QTAT™)A Ve, |

+ef QT APT(QN, ¢+ — A% Qe

< ) Z(ef@]\?u,t — G:Atheu)(e:A2QN,,,t — ezAz(t+1)Qe1,)‘
k=1
+] S (eF QN — e A% Qey)el A2 e, ‘
k=1

+ Dk
k=1

In above, we have simply used the fact that for two vectors
a,b € R™, a’b =", arby = Y, (eFa)(elb). Now, consider
the first term on the right hand side of the last inequality.
If Nf_ AL (2,0) holds, then |(ef QN — ef A*Qe,)| <
z. And if m;zlAjm(x,a) holds, then |(e}A2QN,; —
eF A2+ Qe, )| < A2z. Similar application to other terms and
the fact that |ef Qe |, |ef Qes| < [|gx(-)|lo < B, we conclude
that

AQ(tJrl)Qeu)(ezQNu,t - efAQthv) . (VII2'4)

INL,QTAPQN,  — el QTA*PTDQe, |
< 22 (Z Ai) + 2B < > 2Ai““>> . (VIL25)
k=1 k=1

O
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D. Concentration of Quadratic Form Three

We establish a final concentration that will lead us to the
proof of good distance function property. For any u € [n],
define event

A; v t(wa 5) = m};:l (Ai,k’,t (lL’, 5) N ‘Aﬁ,k,t (1’, 6)) (VIL.26)

Lemma 7.7: Let p = n=3/2*% for k € (0, 1), t as defined

in (IV.3), § € (0, 3), and
16X222n
x‘(l—&

Let S = Su ot —
event A, ,(,6),

[n]\(Buy,2t U By 2t U [n/2]). Then, under

1 - -
T(a,8) = Ny, QTA’QN, ;
(507218 u.1S0 a<[5€ZS><S
n¥ n¥
((|5|2p25u,t||3 , )1/2) i (|5|1/2>
with probability at least 1 —4 exp(—n?¥(1—o(1))) —O(n~°)

with ¢ € (0, k).

Proof: First, note that A’

.t (T, 0) includes events

A2 (0) and A3 ,(0). This 1mphes that S| = 2 —o(n) =
w. Furthermore, it implies that |S,, | and |Sy,¢| are
both greater than or equal to (1 — §)2273= 125 (1 — o(1)).
As a result,
2 2t
\5\2P2|3ut|\3ut|>f ((1 86) n2H> (1= o(1))
(VIL.27)
> n2+4mtn2(7%+n)é ((1 ;6)2 ) 2t o)
(VIL28)
— O(n-1H2n(ED) (VIL.29)
— (n2"). (VIL30)

The asymptotic relationships follow from the choice of ¢t > %
and the fact that § and ¢ are both constants.

3141

Recall that Mp(
€aap) for

a, (aaﬁ)) - H((a,aﬁ)EQﬂ(F(a‘aO‘aﬁ) +

F(a,a,3) =

Z Arqr (0

There are 3 sources of randomness: the sampling of entries
in §;, the observation noise terms €,,3, and the latent
variables 0,0, 03. Since we enforce that o and 3 are in the
complement of B, o¢ U B, 2¢, the sampling, observations, and
latent variables involved in Mp are independent from IV, ¢
and N, ;.

Let us define the quantity

)%(95)

T(Oé76) _¢2)a¢2)

B)l,¢°)

= min(max (7' («a, §),
= sign(T'(ev, 3)) min(|T (e,

for ¢ = [16/(1 — 2x)] where recall that

Z Nut

a#be[n]

1(b)Mp(a, (o, 3)) Mp(b, (a, B)).

Tr1v1a11y, due to this thresholding, |T(
(e, 8) — B[ (0, B)]| < 262

To begin with, N, (a) = 0 if a ¢ S, C By and
Ny (b) =0if b ¢ S,y C By2:. Further, conditioned on
event Aj, , ,(x,d), all the information associated with B, o
and B, 2 is revealed; however, information about [n]\ (B, 2;U
By 2¢) is not. Let F(u,v,t,z,d) denote all the information
revealed such that event A; v.¢(2,8) holds.

Let’s prove concentration in two steps. In step one, we con-
dition on F(u,v,t, x,§) and the latent variables {0; };c[,). The
sampling process (edges in §2;) and the observation noise are
independent for distinct pairs («, 3) and (o’, 3’). As a result,
T(a, B) and T'(o', B) are conditionally independent as long as
{a, B}n{a/, B’} # 2, i.e. they are not the exact same pair. The
correlations across T'(«, 3) and T'(c/, 3') are due only to the
latent variables if «, 8, a’, 3’ share any values. We will bound
the variance of T(a, 3) in Lemma 7.8, and by combining it
with the conditional independence property across T'(a, f3),

B3)] < ¢? such that

egAQNu,sfﬂ
QW s | {04, 05, Yic, o » Uu,s]|

‘ek QWu s
< |ek QWu,s - E[eT

Nu s— A 11 91‘2 0i1 eiz
+‘\Sus y e; 1 1( (|Uus|16%: > (o )a1(0:5) i (05, ) i (0:,)
1
TS S— Z Z)‘lql 11)ql(9i2)qk(9i1)q]€<9i2)
|VA \ Bu,2(5—1)| i€VA\By (s b 1 >‘
2icva\B 21 A (00) @i (0iy ) @i (0i,) a (0, ) an (6:,)
+ ’ Nu s—1\U w2emD) - A 01} ‘
‘Su s—1l ve'ngl 7 : )< Va \Bu,Q(Sfl)‘ sarl )>
1 1
< P — Nu s— T N'LL S—
<z + Suoil EGSZ:A | Nu,s—1(v)[22 + (Suot] vesZ:,l |Nu,s—1(v)|23

<21+ 22+ 23,

(VIL23)
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it follows that (using notation F = F(u,v,t,x,d))

Var Z T(a,B) | F,{bi}tien
a<BESXS
= Z Var [T(a, B) | F,{0;}icpn]

a<pfesSxSs
S
<2( ) 21u1S.01 + o).

The variables T'(cv, ) are also independent across («, 3)
conditioned on the latent variables {0;};c},, and their
variance is bounded above by the corresponding vari-
ances of T(a,(). Using the boundedness of T(a,p),
by applying Bernstein’s inequality with the choice of z =

1/2
2 n¥ ((Igl)p2|5u7t||81,vt|) for ¢ € (0, k), it follows that

Pl S () -Ef(@0) | F i)

a<fBeSxS

>z -F(uuvatv‘T?&)a{ai}iG[n]

<2 _ 5 2
< 2exp ( 2(‘§|)p2‘8u,t||8v,t‘(]— + 0(1)) + 2¢3 z>
— 2exp(—n2?(1 — o(1))). (VIL31)

The last equality arises from the observation that ¢ is chosen
such that conditioned on F, we can plug in (VIL.30) to show
that for our choice of z, it holds that

z = O(‘S|2p2‘8u,t||sv,t|)'

In Lemma 7.9, we will show a bound on
P (|T(, B)| > ¢?), which translates to a bound on
Ellj7(a,p)>62(|1T(a, )] — ¢?) | F], which then upper
bound the difference between the conditional expectations of
T and T according to

[E[T(a, 8) | F] ~E[T(e, 8) | F]l
< EHT(O‘>5> - T(Oé,ﬁ)| | ‘7:]
= E[|T(a, §)] — min(|T(a, B)|, %) | F]
= Elljr(a,p)292 (IT(c. B)] = ¢°) | F]

Using this bound from Lemma 7.9 along with the conditions
from F that guarantee |S| = ©(n) and naively |S, ,US, | =
O(n), it follows that

| Y E(@8) | FoA0biew] ~ ET(@B) | F {6 icia)|

a<pBeSxS

< (14 o(1)) ('S ) 29

2 1n(\8u,t USv’t|71p71)

(|Su,t U Sv,t |p)¢

= 0 (ISP (180 U Sualp)”)

-0 <n2 (n—<%—“>)¢>.

We choose ¢ = [25-] > 1% so that this difference

between the expectations of 7' and T is O(n~%).

(VIL32)
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By plugging in our choice of ¢ into Lemma 7.9, it also
follows that

P (Ua,ﬁ{f(avﬁ) #T(a,0)} | f) <0(n™%. (VIL33)

By combining (VIL.31), (VIL.32), and (VII.33), with proba-
bility at least 1 — 2exp(—n?¥(1 — o(1))) — O(n~%),

>

a<feSxS

g 1/2
<o ()21ucllsudd) 0w, v

(T(er, ) — E [T(a, B) | F,{0i}icin])

where the first term will dominate the second term.
Finally we want to show concentration of the following
expression with respect to the latent variables,

1
E
(5N p2(Sut] IS0 i

Z T(aa /6) F, {01}7€[n]

a<pfeSxSs

The expression can be written as a pairwise U-statistic,

U(é) >

a<feSxS

9(904’95)7

where g is a symmetric function, and

g(@a,eg)
1
= 5o 1o & T, F{bitiem
pQ‘Su,tHSU,t [ ( ﬁ) | { }G[ ]:I
1
= S a Ny,i(a)Ny,i(b)
2 ) >
p ‘Su7t||S’U,t a;ébe[n}

x E [Mg(a, (a, B))Mp(b, (v, B)) | F,{0i}iern)]
> Nus(@)Ny ¢ (b)F(a, o, B)F (b, v, B).

B 1
Sutl|Ss

| ’t” ’t| a#be[n]
It follows by boundedness of entries in F' and the fact that
[Nutlloo < 1 and [[Nuyllo = [Suels that [g(ba,08)] <

1 almost surely. Therefore, by Lemma A.3 and choosing
2z =+/8n¥|S|71/2,

1 >

E[T(a,B) | F,{0:}icin
(lgl)p2|8u,t||5u,t a<ﬁest( [ €l ]}

—E[T(a,p) | FI)| 2 2

5]

< 2exp ( - ) = 2exp(n?). (VIL35)
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The expected value with respect to the randomness in the
latent variables is
f‘|

> Nui(a)No,t(b)

a#be[n]

>

1
TN s e
(13)P21Sutl1Sutl | aeficins

1 1
S 2 il

g a<pBeSxS
x E[F(a, o, B)F (b, o, B)]
1

T(a, B)

1
(5 2 |Sut||Su,t]

a<BeSXS

X > Nut(@)No,t(0) > A2k (0a)ar (65)
k

a#be(n]

= Ng,tQTA2QNv,t - Z Nu,t(a)Nv,t(a)Z)‘%qi(ea)~
a€[n] k

Furthermore,

B* (31 M%)
max(|Sy.t|, |Sv.t])

Z Nu,t(a)Nw(a) Z Ma2(0,)| <

a€ln] k
= O((ISu,¢ISu,e)71/?).
(VIL.36)

By combining (VIL.34), (VIL.35), and (VIIL.36), it follows that
conditioned on F(u,v, s, ¢, x,d), with probability

1—2exp (—nw(l —o(1))) - 2exp(n?¥) — O(n™%),
it holds that

: >

(2228wl [Sus] ocfibs

S —-1/2 - \/gnw
<2n¥ <<|2|>p2|8u,t|8v,t|> +O0(n 6) + |S|1/2

B3, M%)

|S|> 2 )

+ Su.tllSe +

(((2 P 1SS (Sl 1Sue])
<0 O ——+=

<0 (mmrsa) +© (gm)

1
+O0|+5——75 |-
((ISu,tISD,t|)1/2>

Note that the third term is dominated by the first term as
|S|p = o(1). This completes the proof of Lemma 7.7.

T(av ﬁ) - Ng:tQTAQQNU,t

([l
Lemma 7.8: Let F = F(u,v,t,x,0) denote all the infor-

mation revealed such that event A7, , ,(z,d) holds.

Var[T(, B) | F, {0i}iep)] < 2 °[Su,ellSu.el(1 + 0(1)).

Proof: To compute the variance of T'(«, 3) conditioned
on F,{0;}icjn). note that there is correlation in the terms
within the sum of T(a,[3) as there may be pairs (a,b)
and (a’,b") that share coordinates. In particular because the
observation noise and sampling randomness for Mg (a, b, ¢) is
independent across different entries (a, b, ¢), then conditioned
on {6;}icpn)» for a # b and o’ # V', if all four coordinates
{a,b,a’,b'} are distinct,

Cov[Mp (a, (a, B) M5 (b, (a, 8)), Mp(a’, (@, 8)) Mp (b, (a, 8))] = 0;

3143

if [{a,b} N {a’,b'}|
(b, a),

= 2, ie. (V) = (a,b) or (', V) =

‘COV[MB(‘L (O" B))MB(b7 (047 ﬁ))’ MB(U'/’ (a7ﬂ))MB(b/: (aﬁ))”
o, 3)) Mz (b, (o, 3))]
< E[Mp*(a, (, /) M5> (b, (e, 5))] < p*;

= Var[M5 (a, (

and if {a,b}U{a’,V'} = {z,y, z} such that {a,b}N{a’, '} =
{z}, then

|Cov[Mg(a, (o, B)) Mp(b, (o, B)), Ms(d', (a, B))

x Mp (', (a, B)) | F,{0:}iem]|
= |Var[Mz(z, (a, 3)|E[Mz(y, (o, B))|E[MB(z, (o, 5))]]
< |E[MB*(x, (o, B)E[M(y, (o, B)E[ME(2, (o, 8))]]|
<p’.

The inequalities follow from the property that every entry of
M p has absolute value bounded by 1, and takes value 0 with
probability (1 — p) in the event it is not observed.

We use this to expand the variance calculation, and use
the properties that for every entry a, [Ny ¢(a)| < les, ,)-
We have dropped the conditioning notation due to the length
of the expressions.

The first term in (VIL.37) dominates the latter terms because
P|Sut|l < pn = o(1) and p|S, ¢| = o(1). The final variance
calculation that uses the above inequalities to prove the lemma
is given in (VIL.37) shown at the bottom of the next page.

Lemma 7.9:

P (IT(, )] > 2 | F) < (|Sur USuulp) V7! (14 0(1).

As a result,

15|

P(Uap{IT(er. B) 2 2} | F) < (1)

) (18w USuelp) YT (14 0(1)),
and

Ell 70,8502 (1T (v, B)| — ¢°) | F]

< (14 o(1) 2

Sut USylp)?
(180 U Syl 1p-1) St U Setlp)

Proof: Let us define

Zy(a,B) ={a € [n] st. a € Syy, (a,a,8) € N},
Zy(a,B)=4{ben] st.beSyy,(b,a,B) € N}

Furthermore, because |[Mp(-,-,-)| <1 and || N, s|lc < 1, for
any a,b € [n], it follows that

|Nu,i(a) Nyt (b)) Mp(a, (o, B)) Mp(b, (o, B))]
< wez.(@.8) ez, (@,8))

which implies

T (e, )| < | Zulov, )| Zo (v, B)| < | Zu(er, B) U Zo (e, B) .
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Note that |Z,(«, 5) U Z,(a,
It follows then that

3)| ~ Binomial(|S,+ US,,

;D)

P(T(, B)] 2 2| F)
<P (|Zu(0473) U Zv(an@)‘Q >z -7'-)
=P (|Zu(e, B)U Zu(, B)| = [VZ] | F)

|Su,tUS'u,t|
-y [Sut L'JSv,t‘)pi(l — p)lSu NSyl =i
i=v] ’
[Su,tUSy,t]
<(A—p)Sasudd 3 (\Su 1t U S, tlp>
i=[v/z]
|$utUSvt‘p VAL &2 |SutU$vt‘p
<(1 _p)l‘su,tusv,tl ( - Z

=0

[VZ]
< (1 — p)lSu.tUSutl (W) (14 0(1))

(ISut USu,elp) V=1 (1 + o(1))

<
< (|Su,t USuelp)YZ (1 +0(1)),

where we used the fact that |S,,; U S, ¢|p = o(1).
We use the bound on the tail probabilities to show that

El7(a,8) 562 (IT(c, B)] — ¢%) | F]

= [ r(re sz 42 a:

< (14 0(1)) /OO (IS0t USyelp)Y ¥+ dz
0

< (1+0(1))/ 2y (|Su,t USuilp)” dy
¢

2¢
1H(|Su7t U Sv7t|71p*1)

= (1+0(1)) (ISu,t U Su elp)?.

E. Proof of Lemma 6.2

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 5, MAY 2023

= (eu - ev)TQTA4t+2Q(eu - ev)
— eTQTA4t+2Qeu + eTQTA4t+2QeU
—eFQTAY2Qe, — e QT A 2Qe,,, (VIL38)

and according to (IV.5),

. 1
dist(u,v) = (ISI) (Zuu + Zyo — Zuw — Zypu)  (VIL39)
for S =Syt =n\ Byt UB,Uln/2]) and
1
Ly = Tuv(aa ﬂ)
(\sués‘tl)p2|su,t|\8m| a<ﬁes§xsu,s,t
(VIL.40)

By Lemma 7.1, event A3 ,(6) holds with probability at least
1— O(n exp (— @(n2”))). By Lemmas 7.2 and 7.6, condi-

tioned on Ai7t(5)’ for
16A2t-2n
z= (17 Sy o(1),

event Aj , (x,6) holds with probability at least 1 — 4
rexp(—n2¥(1 — o(1))), implying

|N,thQTA2QN'U,t _ GZQTA2(2t+1>Qe'U|

) T
< <1GB,\?H<§X1) <Z 2,\i(t“)> 1-6)"'1+ 0(1))>.
nt k=1

By Lemma 7.7, conditioned on A/, , ,(x,d), with probability

1 —dexp(—n?¥(1 —o(1))),

|Zuv - NitQTA2QNv,t| =0

u,v,t

n¥
((Su,37t|2p2|8u,t|Sv,t|)1/2>

n¥
O ———
" (|Su,s,t|1/2) ’

Proof: Now we are ready to bound the difference wherflz |Sustl = O(n) = Q(n*), by event A7, (x,0) and

between d(u,v) and d(u,v) for any u,v € [n]. Recall, t2 e
2, 2 _ 2, —34+2k, 4kt\ __ 2K
d(0y,0,) = A2 Qe — )| |Su,5,t"P7[Sutl|Sut] = O(nn n*) = Q).
Var[T(a, B) | F, {9 }ZG 1]
Z (M2 (@)N2,(0) + Nu,t<a>Nv,t<b>Nu,t<b>Ny,t<a>)Var[MB<a, (0, )M (b, (o, )]
#b€(n]
+ Z Z ( Nyt (b) Ny i (c) + Ng,t(a)Nu,t(b)Nwt(C) + Nt (@) Nu,t (b) Nyt (@) Ny 1 (c)

a#be[n] c¢{a,b}

+ Nu,t(G)Nu,t(C)Nv,t(a)Nv,t(b))Var[MB(a, (a, B))JE[Mp(b, (e, 3))[E[Mp(c, (o, B))]

<P’ Y (Maesiibes,) + laprcsains, )
a#be[n]

0 Y Y (]I(aesu,t,{b,c}csv,t) + Liaes,, i tb.cycSue) T Laes,,inS,, 0 b€80 1 ce8,,0) T ]I(aesu,msu,t,cesu,t,besv,t))

a#be[n] c¢{a,b}
< 2 pQ‘Su,tHSv,tI +2 p3|8 s
= 2 [ Sutl|Su.el (1 + 0(1)).

vt 42 P800 el

(VIL37)
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To put it all together, for ¢ € (0, k), with probability at least

1- 0 exp(—n®(1 - 0(1)))),
it holds that

4t
|dist(u,v) — d(u,0,)| = O (Am?) :
n

This completes the proof of Lemma 6.2. ]

VIII. PROOF OF LEMMA 6.3: PERTURBATION
ANALYSIS OF DISTANCE

We establish the proof of Lemma 6.3 here. To do so,
we establish a perturbation property of dist here, which com-
bined with Lemma 6.2 will result into the proof of Lemma 6.3.

We study the perturbation in the dist estimate when each
noisy observed entry is arbitrarily perturbed. Specifically, for
any (u,v,w) € [n]3, Mj(u,v,w) is observed with prob-
ability p. If observed, according to (IIL.1), M;(u,v,w) =
Fu,v,w) + €upw = Fr(u,v,w0) + €ypw + €upw, Where F.
is the best rank r approximation to F'. This expression shows
that we can interpret the deviation from a rank r model as a
deterministic perturbation of &€,,,,, bounded in absolute value
by e. Note that ,,, can be any arbitrary (or adversarial),
unknown deterministic quantity satisfying |€,,,| < €.

Lemma 8.1 provides a bound on the perturbation in the
distance estimate, dist, that results from these entrywise per-
turbations of the observations.

Lemma 8.1: Let p = n=3/2%% for k € (0,

3), t as defined
in (IV.3), § € (0, 3), and

16)\225 2

max

(1—5)

For any u € [n], recall the event

Ay (@,8) =Nz 1(,4”“(95 5)n Al si(2,0)). (VILD)
Let event A’

w.0.t(7,0) hold. Let each observed entry of M be

perturbed by addlng arbitrary, deterministic quantity bounded

by € > 0. Then for any u,v € [n]?, the distance estimate

dist(u,v) is perturbed by at most O(te(1+¢€)?' 1 4+ 12e2(1+

€)*~2) with probability at least 1—exp (—Q(n?*)) —O(n~%).
Proof: Recall definition of dist in (IV.5):

xr=

dist(u, v) = (Zuu + Zvo — Zuv — Zou),

1
e I D DR
Vie(u,v,t) = {(o, 8) € Vp s.t. o & Bu,2t UBy2¢,8 & Bu,2t U By 2t}
Tuv(a,8) = > Nut(a)Not(0)Mp(a, (o, 8)Mp(b, (a, 8))

a#be[n]
We shall bound the perturbation on Z,,. Similar bounds
will follow for the other three terms which will conclude
the main results. Our interest is in understanding how does
Z.» change if each observed entry is changed by arbitrary
quantity bounded by € > 0. This will induce a bound on
the changes in T,,(-,-) which will help bound the change
in Z,,. By assumption (VIIL1), A; ,,(x,0) holds. Condi-
tioned on event A, , ,(z,9), all the information associated
with B, 2: and Bv’gt is revealed; however, information about
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M\ (Bu,2t U By,2¢) is not. Let F(u,v,t,x,d) denote all the
information revealed such that event Au “ t(as, d) holds.

Under A}, , ,(x,8), by definition A% ( ) and A3 () holds.
This implies that for S = Vi (u,v t) IS| = & —o(n) =
w. Furthermore, it implies that |S,, | and |Sy.i| are
both greater than or equal to (1 — §)2273= 12 (1 — o(1)).
As shown in (VII.30),

|S129%[Su,t|[Su,i| = Qn*") (VIIL2)

results from the choice of ¢t >
are both constants.

For given « # 3 € Vp(u,v,t), Tyy(a, 3) is summation
over terms, indexed by a # b € [n], containing product
Nut(a) Nyt (b)) Mp(a, (a, 8)) Mp(b, (a, B)). Now Ny i(a) =
Olfa¢5ut, Ut(b)folfb¢StFOI'a€Sut, ut(a)
is product of 2¢ terms, each bounded in absolute value by 1:
let Ny.¢(a) = T2, wi with |w;| <1 for all i < 2t. Let &; be
arbitrary, deterministic quantity added to w; with |¢;| < e for
i < 2t. Then change in N, ;(a) is bounded as

2t
|sz Hwi+€i)|
i=1
> Il I

SC[2t]:S#£Di€S  se€[2t]\S

S Il I il

SC[2t]:S#D i€S se[2t]\S

2t
2t
|S| 72 s
€ (Z)E

i, and the fact that 6 and ¢

IN

< >
SC[2t]:S#0 i=1
2t—1 (Qt) .
- E(Z 2t—i—1)(i +1)!€)
2t 1 (2t —1)!

< 2te< ZZ; msi)
= 2ts( Z <2t z_ 1>€i)

i=0

=2te(1+¢)* 1 = A(t,e). (VIIL3)
That is, N, +(a) changes by at most A(t, ). Similarly N, ¢(b)
changes by at most A(t,e). Therefore, N, ¢(a)N,+(b) can
change at most by O(A(t,e) + A(t, €)?).

By definition | Mg (a, (o, 8))|, IMB(b, (o, 8))| < 1. Further,
MB(a’? (Oé, ﬁ))MB(b7 (O[, 6)) 7é 0 Ol’lly if H((a,a,ﬁ)eﬂl)
I(v,a,8)e2,) = 1. Therefore, we can bound change

in the term Ny :(a)N,(b)Mp(a, (o, B))Mp(b, (o, 5)) as
L((a,0,8)c00) L((b,0,8)c00) O(A(t,€) + A(t,€)?). Therefore,
we can bound the change in Z,, by
O(A(t,e) + A(t, €)?)
[S12p?|Su,t]|Sv.¢|
> Lomseankibageonlas) (VLA
a€Sy t,bESy t,a,BES
2
_ O(A(t,e) + A(t,e)?) Z Xos (VIILS)

1S22S5 ellSotl 52
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where

Xaog =

>

a€S,y, 1,bES, +,a7#b

I((a,0.8)00) L((b,0,8)€)-

To conclude the Lemma, it will be sufficient to argue
that Za,ﬁeoncB = O(]S?p?|Su.t||Su.+|) with high prob-
ability given F. We use a similar argument as the proof
of Lemma 7.7. Given F = F(u,v,t,2,0), {Xap}apes?
are conditionally independent random variables. By the same
argument as that in Lemma 7.9, it follows that

B (Va6 (X 2 6} 1 7) < (51) (180 USualp)® (1 4 01)
(VIIL6)
¢?) | F]
2¢
Su,t USy ¢,
0(Suz USsr—1p1) (ISu,t U Su,tlp)
We define Xo5 = min(Xag, %) for ¢ = [16/(1 — 2k)] so
that | X5 — E[X,s]] < ¢. By (VIIL6), and the choice of ¢
along with the conditions from F that guarantee |S| = ©(n)
and naively |Sy : US, | = O(n),

ZXa,ﬁ # ZXa.ﬂ | F
a,p a,B

< (15 000 USalp” 1+ o) = 0u*). (vins)

By (VIIL?),

Ellx, 5>¢2(Xap —
< (L +o(D));

(VIIL7)

E[Xas | F]—ElXas | Fl
< Ellx, ;52 (Xap — ¢?) | F]
2
< (U +oMymss ué? Ty Sue U Sualp)®
=0(n7%). (VIIL9)

By the same argument as that in Lemma 7.8, it follows that
Var[Xo 5 | F, {0 }iep)] < Var[Xas | F, {0i}icin]
< 2 P?[Sul|Su,el (1 + 0(1)).

By Bernstein’s inequality, for z = 2 n%|S|p(|S..¢|/Suv.4])
for ¢ € (0, k),

1/2

P Z (Xoéﬁ — ]E[Xa)ﬁ]) >z

a,BES
< oxp ( B 322 )
22¢? +12(1 4 o(1))|S[?p?|Su.[|Sv 1]
= exp(—n2¥(1 — o(1))). (VIIL10)
By (VIILS5), (VIILS), (VIIL.9), and (VIII.10), given
A, t(x, &) holds, with probability 1—exp (—n?*(1—o(1)))—

O(n~%), the change in Z,, is bounded above by

> Xas

o,BES

O(A(t,€) + A(t, )? -
- |(S|(2 2\)8 HES )|) 2 K
P u,t v, t a.BES

O(A(t, ) + A(t, €)®)
IS12D%|Su,1]|Sw, ]

_ O(A(t,e) + A(t, €)?)

SIS Bl D Xas | F1+2n 181080, dl1Su.e) /).
w,t v,t

a,BES
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By (VIIL2), this choice of 2n¥|S|p(|Su.||Sv.:))'/?) =
o(|S12p?|Su.t||Su.¢|) for ¢ € (0, k). Finally we use the bound
that E[Y",, 5 Xap | F] = ('Sl)p |Su.t]|Su.¢| to argue that
with high probability the change in Z,,,, is bounded above by

O(A(t,€) + A(t,e)?) = O(te(1+ )21 +12e2(1 +e)*2).

This completes the proof of Lemma 8.1.
O

A. Completing Proof of Lemma 6.3

Under the setup of Lemma 6.3, as argued in the proof of
Lemma 6.2, A, , ,(z,0), with appropriate choice of z,¢ as
considered in statement of Lemma 8.1, holds with probability
at least 1 — 4 rexp(—n?¥(1 — o(1))). And dist (without
perturbation), is within O (n~(*~%)) for any pair of u, v € [n].
By Lemma 8.1, under event A; ,,(x,d), the dist is further
perturbed by O (te(1+€)* 1 + t2e2(1 + e)4t- 2) with prob-
ability at least 1 — O(exp(— (- 0(1)))) - O(n
Putting these together, we conclude the claim of Lemma 6.3.

APPENDIX
USEFUL LEMMAS AND OMITTED PROOFS

We present the Proof of Lemma 6.1 below.

Proof: [Lemma 6.1] We assumed the algorithm has access
to two fresh samples, where M; is used to compute ci, and
My is used to compute the final estimate F. Alternatively one
could effectively obtain two sample sets by sample splitting.
For some (a,b,c) € Qs, the observation Mz(a,b,c) is inde-
pendent of d, and E[M;(a,b,c)] = f(0a,0s,6.). Conditioned
on (29, by definition of F and by assuming properties 6.1
and 6.2, it follows that

E[(F(u,v,w) — f(Ou,b0,0u))?]
2
f(aay 9[), 90) - f(9u7 evyew)
|92uvw|
(a,b,c) GQ2uvw
Var|Ms(a, b, c
‘Qquwl Z [ 2( )]

(a,b,6)€Q2 ypw

0.2

(a)

< bias?(n + A) + )

|92uvw|

Inequality (a) follows from property 6.1 and property 6.2

for all 3n tuples {(u,a) : a € [n]} U{(v,b) : b € [n]} U

{(w,¢) : ¢ € [n]}: [d(u,a) — d(u,a)] < A and d(u,a) <

n = d(u,a) <n+ A, similarly d(v,b),d(w,c) < n+ A.

As per (IIL.1), we have that Var[Ms(a,b,c)] < o? for all

(a,b,¢) € Q. Define Vypw = {(a,b,c) € 0] : d(u,a) <

n—A, dlv,b) < n—A, dlw,c) < n— A}. Assuming

property 6.3,

Vuvwl={a € [n] : d(u,a) <n— A} b€ [n] : d(v,b) <n— A}
X {e€n]:d(w,c) <n— A}
> (meas(n — A)n)3.
By the Bernoulli sampling model, each tuple (a,b,c) €
[n]® belongs to €, with probability p independently. By a
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straightforward application of Chernoff’s bound, it follows that ~ with probability at least
for any 0 € (0,1), )
1—exp <—252p (meas(n — A)n)3>
P (192 N Vuwel < (1= ) (meas(n — A)n)’*)

2 A —exp (_5’2(1 — §)p(meas() — A)n)?’)
< exp <_6 p (meas(n n) ) . (A1)
2
—3na; — as.
Therefore, by assuming property 6.2 for 3n tuples {(u,a) :  This completes the proof of Lemma 6.1. O

a € [n]} U{(v,b) : b € [n]} U{(w,c): c € [n]}, it follows  Lemma A.1: The following inequalities hold:

that with probability at least 1 — exp (—M), (a) For any p > 2 and integer 7 > 1,

. . N T
|92uvw‘: H(avbvc) € Qg : d(u7 a) <mn, d(Uvb) <mn, d(wvc) < 77}' Zps < 2pr
> |{(a,b,c) € Q2 :d(u,a) <n—A, s=1
dv,b) <n =4, d(w,c) <n- A} (b) For any p > 2 and non-negative integer s,
= ‘QZ n Vu'uw|

> (1 — 8)p(meas(n — A)n)®. p° > sp.

. 1
(c) Further, if exp(—ap) < 5 for some a > 0, then

Define the event H = {12000l > (1 -
8)p(meas(n — A)n)*|}. It follows that P(HS) < r
exp (—16%p (meas(n — A)n)?). By definition, ZGXP(_GPS> < 2exp(—ap)
F(u,v,w) = f(04,0,,0,) € [0,1] for all u,v,w € [n]. s=1
Therefore, Proof: To prove (a), note that for any p > 2,
~ B 2 r r r—1 r—1
E[(F(uv 'U: w) f(auvevv aw)) ] Zps < p"" Zps_r = pT Zp_s < pr 22_3 < 2/)""_
< E[(F(u,v,w) — f(Ou,Ou, ‘9111))2 ’ H]+P(H) s=1 s=1 5=0 5=0
< bi 3.82(77 FA)+ 1 To prove (b), first check that it trivially holds for s = 0 and
- (1 - 8)p (meas(n — A)n)S s = 1. The inequality holds for s = 2 iff p > 2. The inequality
1, 5 hold for s iff p > s'/(5=1). We can verify that s'/(5=1) is
+exp <_25 p(meas(n — A)n) ) - a decreasing function in s, such that if the inequality holds

for s = 2, it will also hold for s > 2. To prove (c), further

We add an additional 3na; + ao in the final MSE bound: consider exp(—ap) < %
3no; for violation of property 6.2 for any of the 3n tuples - -
{(u,a) ta e[n]} U{(v,b) : b€ n]}U{(w,c):cée[n]}, and Zexp(_GPS) < Zexp(—asp)
oo for violation of property 6.3. p—y =

To obtain the high-probability bound, note that Ms(a, b, ¢) .
are independent across indices (a,b,c) € € as well <

Yy — — —1

as independent of observations in (2. Additionally, the < exp(—ap) Zexp( ap(s )

s=1
model assumes that F'(a,b,c), M2(a,b,c) € [0,1], and
E[Ms(a,b,c)] = F(a,b,c) for observed tuples (a, b, c). By an =
application of Hoeffding’s inequality for bounded, zero-mean < exp(—ap) Z exp(—aps)
s=0

independent variables, for any &' € (0,1) it follows that
assuming property 6.1, property 6.2 for 3n tuples {(u,a) : a €
[n]}U{(v,b) : b€ [n]} U{(w,c) : c € [n]}, and property 6.3 < exp(—ap) Z 27°

r—1

hold, we have 5=0
< 2exp(—ap).
. ]z<a,b,c>En%%iMwl,b,c)F(a,b,c» - .
o Lemma A.2: Tf P(|X|>z) < cexp(—%), then for all
< exp (—5’2(1 — §)p (meas(n — A)n)3) . AER, »
B[] < exp(X )
Therefore,

Q(1+c2m)

with v = 5

|Eyow — f(Bu, 0.,0,)| < bias(n+ A) + &,
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E[eM] =

I
— \SC\
5
~
=
Y
&
WN
IS
N

2 [ee]
<cen* ) [ et - 2

2
< cexp(QT)\)\Mr)\?Q.

Using the fact that /x < e*/5 for all > 0, it follows that

A2 22
E[e*¥] < eXP(QT + TQ)

Therefore, for all A € R,

1 2 A2
E[e*X] < exp(%).
O
Lemma A.3: Let Xq,...,X, be iid. random variables

taking values in X. Let g : X x X — R be a symmetric

function. Consider U-statistics with respect to g of X1,..., X,
defined as
1
U= Y. 9(Xi, X)) (A2)
(2) 1<i<j<n
Let ||g|lco < b for some b > 0. Then,
nt?
P (|U — E[U]| >t)§2exp(—@>. (A3)

The proof follows directly from an implication of Azuma-
Hoeffding’s inequality. For example, see [46, Example 2.23]
for a proof.
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