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Abstract. Discretization-based approaches to solving online reinforcement learning prob-
lems are studied extensively on applications such as resource allocation and cache manage-
ment. The two major questions in designing discretization-based algorithms are how to 
create the discretization and when to refine it. There are several experimental results inves-
tigating heuristic approaches to these questions but little theoretical treatment. In this 
paper, we provide a unified theoretical analysis of model-free and model-based, tree-based 
adaptive hierarchical partitioning methods for online reinforcement learning. We show 
how our algorithms take advantage of inherent problem structure by providing guarantees 
that scale with respect to the “zooming” instead of the ambient dimension, an instance- 
dependent quantity measuring the benignness of the optimal Q?

h function. Many applica-
tions in computing systems and operations research require algorithms that compete on 
three facets: low sample complexity, mild storage requirements, and low computational 
burden for policy evaluation and training. Our algorithms are easily adapted to operating 
constraints, and our theory provides explicit bounds across each of the three facets.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2396. 
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1. Introduction
Reinforcement learning (RL) is a popular approach for 
sequential decision making and is successfully applied 
to games (Silver et al. 2016) and systems applications 
(Alizadeh et al. 2010). In these models, a principal inter-
acts with a system that has stochastic transitions and 
rewards. The principal aims to control the system either 
online through exploring available actions using real- 
time feedback or off-line by exploiting known proper-
ties of the system and an existing data set.

These sequential decision-making problems are consid-
ered across multiple communities. As data has become 
more readily available and computing power improves, 
the new zeitgeist for these fields is developing data- 
driven decision algorithms: algorithms that adapt to the 
structure of information, constraints, and objectives in any 
given domain. This paradigm highlights the importance 
of taking advantage of data collected and the inherent 
structure and geometry of the problem to help algorithms 
scale to complex domains.

With the successes of neural networks as a universal 
function approximator, RL has received a lot of interest in 

the design of algorithms for large-scale systems using pa-
rametric models (Jiang et al. 2017, Mozur 2017). Whereas 
these results highlight the power of RL in learning 
complex control policies, they are infeasible for many 
applications arising in operations research and comput-
ing systems (Hubbs et al. 2020). As an example, the 
AlphaGo Zero algorithm that mastered Chess and Go 
from scratch was trained over 72 hours using four tensor 
processing units and 64 graphics processing units (Silver 
et al. 2016). The limiting factor in using these large-scale 
parametric algorithms is implementing regression oracles 
or gradient steps on computing hardware and the large 
storage burden in maintaining the models. These issues 
don’t typically arise in game-based or robotics applica-
tions. However, they are key algorithmic ingredients that 
are ignored in theoretical treatment analyzing storage 
and time complexity. Moreover, these models require 
strict parametric assumptions, suffer under model mis-
specification, and do not adapt to the underlying geome-
try of the problem.

In contrast, RL has received interest in designing 
small-scale and efficient controllers for problems arising 
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in operations research (OR) and computing systems, 
including memory systems (Alizadeh et al. 2010) and 
resource allocation in cloud-based computing (Ipek et al. 
2008). Their engineering approaches use discretizations 
at various levels of coarseness to learn estimates in a 
data-efficient manner. Common to these examples are 
computation and storage limitations on the devices used 
for the controller, requiring algorithms to compete on 
three major facets: efficient learning, low computation, 
and low storage requirements—a trifecta for RL in OR.

Motivated by this paradigm, we consider nonpara-
metric discretization (or quantization) techniques that 
map complex problems to discrete ones. These algo-
rithms are based on simple primitives that are easy to 
implement on hardware, can leverage existing hard-
ware quantization techniques, and have been tested 
heuristically in practice (Uther and Veloso 1998; Pyeatt 
et al. 2001; Lolos et al. 2017; Araújo et al. 2020a, b). A 
key challenge in this approach is picking a discretiza-
tion to manage the trade-off between the discretization 
error and the errors accumulated from solving the dis-
crete problem. Moreover, if the discretization is fixed a 
priori, then the algorithm cannot adapt to the underly-
ing structure in the problem, and so adaptive discreti-
zations are necessary for instance-specific gains. We 
develop theoretical foundations for an adaptive discre-
tization of the space, in which the discretization is only 
refined on an as needed basis using collected data. We 
answer the two important aspects of designing adap-
tive discretization algorithms: how to create the discre-
tization and when to refine it by exploiting the metric 
structure induced by specific problem instances.

1.1. Our Contributions
We provide a unified analysis of ADAMB and ADAQL, 
model-based and model-free algorithms that discretize 
the state action space in a data-driven way so as to mi-
nimize regret. This extends the well-studied adaptive 
discretization techniques seen in contextual multiarmed 
bandits to dynamic environments (Slivkins 2014, Klein-
berg et al. 2019). Moreover, it illustrates that adaptive 
discretization can be viewed as an all-purpose tool for 
improving fixed discretization algorithms to better take 
advantage of problem structure.

These algorithms require that the state and action 
spaces are embedded in compact metric spaces, and the 
problem primitives are Lipschitz continuous with respect 
to this metric. This encompasses discrete and continu-
ous state action spaces with mild assumptions on the 
transition kernel and rewards. Our algorithms only re-
quires access to the metric unlike prior nonparametric 
algorithms that require access to simulation oracles or 
impose additional assumptions on the action space to 
be computationally efficient. In fact, the assumption 
that |A| <∞ is quite common in theoretical treatment 
for simplicity. However, this ignores the technical and 

computational hurdles required. Our algorithms avoid 
this issue through the efficient discretization of the ac-
tion space.

We show that ADAMB and ADAQL achieve near opti-
mal dependence of the regret on the zooming dimension 
of the metric space, an instance-dependent quantity that 
measures the intrinsic complexity and geometry of the 
problem by scaling with the dimension of the level sets 
of the optimal Q?

h function instead of the ambient dimen-
sion. Our main result is summarized in the following 
informal theorem.

Informal Theorem 1. For an H-step MDP played over K 
episodes, our algorithms achieve regret

REGRET(K)≲

ADAQL : H5=2K
zmax+1
zmax+2

ADAMB : H3=2K
zmax+dS�1

zmax+dS dS > 2

ADAMB : H3=2K
zmax+1
zmax+2 dS ≤ 2

8

>

>

>

<

>

>

>

:

where dS is the covering of the state space and zmax �maxhzh 

is the worst case over the step h zooming dimensions zh.

Our bounds are uniformly better in terms of de-
pendence on K and H than the best existing bounds for 
nonparametric RL (see Table 1). Our bounds exhibit ex-
plicit dependence on the zooming instead of the ambient 
dimension, leading to exponential improvements in 
sample complexity because the zooming dimension is 
trivially upper bounded by the ambient dimension. In 
addition, ADAQL matches the lower bound up to polylo-
garithmic factors, whereas ADAMB suffers from addi-
tional dS terms when dS > 2. In general, the lower bound 
shows that this exponential scaling is necessary in non-
parametric settings (a fundamental trade-off of using 
nonparametric algorithms), but note that the exponential 
scaling is with respect to the zooming instead of ambient 
dimensions. We also show that ADAMB matches the 
bounds of ADAQL under additional assumptions of the 
transition distribution.

In addition to having lower regret, ADAMB and ADAQL 
are also simple and practical to implement with low 
query complexity and storage compared with other 
techniques (see Table 1). To the best of our knowledge, 
our algorithms are the first to have provably sublinear 
regret with improved time and storage complexity in 
the setting of continuous state and action MDPs. We 
complement our theory with synthetic experiments com-
paring model-free and model-based algorithms using 
both fixed and adaptive discretizations. We picked ex-
periments of varying complexity in low-dimensional 
spaces, including those with provably smaller zooming 
dimensions, to help highlight the adaptive discreti-
zations matching the level sets of the underlying Q?

h 

value. Through our experiments, we measure the three 
aspects of the trifecta for RL in OR, comparing the per-
formance of these algorithms in terms of regret and 
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time and space complexity. Our experiments show that, 
with a fixed discretization, model-based algorithms out-
perform model-free ones and suffer from worse storage 
and computational complexity. However, when using an 
adaptive partition of the space, model-based and model- 
free algorithms perform similarly.

1.2. Motivating Examples
Reinforcement learning has enjoyed remarkable suc-
cess in recent years in large-scale game playing and 
robotics. These results, however, mask the high under-
lying costs in terms of computational resources, energy 
costs, training time, and hyperparameter tuning that 
their demonstrations require (Mnih et al. 2013, 2016; Sil-
ver et al. 2016, 2017). On the other hand, RL is applied 
heuristically in the following problems.

1.2.1. Memory Management. Many computing systems 
have two sources of memory: on-chip memory, which 
is fast but limited, and off-chip memory, which has 
low bandwidth and suffers from high latency. Design-
ing memory controllers for these systems requires a 
scheduling policy to adapt to changes in workload and 
memory reference streams, ensuring consistency in the 
memory and controlling for long-term consequences 
of scheduling decisions (Alizadeh et al. 2010, 2013; 
Chinchali et al. 2018).

1.2.2. Online Resource Allocation. Cloud-based clus-
ters for high-performance computing must decide how 
to allocate computing resources to different users or 
tasks with highly variable demand. Controllers for these 
algorithms make decisions online to manage the trade- 
offs between computation cost, server costs, and delay 
in job completions (Ipek et al. 2008, Nishtala et al. 2013, 
Lykouris and Vassilvitskii 2018, Tessler et al. 2022).

Common to these examples are computation and stor-
age limitations on the devices used for the controller. 

1. Limited memory: As any RL algorithm requires 
memory to store estimates of relevant quantities, algo-
rithms for computing systems must manage their stor-
age requirements, so frequently needed estimates are 
stored in on-chip memory.

2. Power consumption: Many applications require 
low power consumption for executing RL policies on 
general computing platforms.

3. Latency requirements: Problems for computing sys-
tems (e.g., memory management) have strict latency 
quality of service requirements that limits reinforcement 
learning algorithms to execute their policy quickly.

A common technique in these domains is cerebellar 
model articulation controllers (CMACs) or other quan-
tization and hashing based methods, which are used in 
optimizing controllers for dynamic RAM access (Ipek 
et al. 2008, Nishtala et al. 2013, Lykouris and Vassilvit-
skii 2018). The CMAC technique uses a random discre-
tization of the space at various levels of coarseness 
combined with hashing. The other approaches are hier-
archical decision trees, in which researchers investigate 
splitting heuristics for refining the adaptive partition by 
testing their empirical performance (Uther and Veloso 
1998, Pyeatt and Howe 2001, Lolos et al. 2017). These 
quantization-based algorithms address the computa-
tion and storage limitations by allowing algorithm im-
plementations to exploit existing hashing and caching 
techniques for memory management because the algo-
rithms are based on simple look-up tables. Our algo-
rithms are motivated by these approaches, taking a first 
step toward designing theoretically efficient reinforce-
ment learning algorithms for continuous spaces.

1.3. Related Work
There is an extensive and growing literature on rein-
forcement learning; we highlight the work that is closest 
to ours, but for more extensive references, see Sutton 
and Barto (2018), Agarwal et al. (2019), Puterman (1994), 
and Powell (2022) for RL and Bubeck and Cesa-Bianchi 
(2012) and Slivkins (2019) for bandits.

Table 1. Comparison of Our Bounds with Several State-of-the-Art Bounds for Nonparametric RL

Algorithm Type Regret Time Space

ADAMB (dS > 2) MB H3=2K
zmax+dS�1

zmax+dS HK
d+2dS

d+dS HK

ADAMB (dS ≤ 2) MB H3=2K
zmax+1
zmax+2 HK

d+dS+2

d+dS HK
d+dS

d+2

ADAQL MF H5=2K
zmax+1
zmax+2 HKlogd(K) HK

d
d+2

KERNEL UCBVI (Domingues et al. 2020) MB H3 K
2d

2d+1 HAK2 HK

NET-BASED Q-LEARNING (Song and Sun 2019) MF H5=2K
d+1
d+2 HK2 HK

NET-BASED UCBVI MB H3=2K
2d+1
2d+2 H2K2 HK

LOWER BOUND — H K
zmax+1
zmax+2 — —

Notes. d is the covering dimension of the state-action space, dS is the covering dimension of the state space, H is the 
horizon of the MDP, and K is the total number of episodes. Under “Type” we denote whether the algorithm is 
model-based (MB) or model-free (MF). As implementing KERNEL UCBVI (Domingues et al. 2020) is unclear under 
general action spaces, we specialize the time complexity under a finite set of actions of size A, but more details are 
included in their paper. See Online Appendix H for a discussion on NET-BASED UCBVI.
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1.3.1. Tabular RL. There is a long line of research on the 
regret for RL in tabular settings. In particular, the first 
asymptotically tight regret bound for tabular model-based 
algorithms with nonstationary dynamics is established to 

be O(H3=2
ffiffiffiffiffiffiffiffiffiffi

SAK
√

), where S and A are the size of the state 
and action spaces, respectively (Azar et al. 2013). These 
bounds were matched (in terms of K) using an “asyn-
chronous value-iteration” (or one-step planning) ap-
proach (Azar et al. 2017, Efroni et al. 2019), which is 
simpler to implement (Ipek et al. 2008, Nishtala et al. 
2013, Lykouris and Vassilvitskii 2018, Tessler et al. 
2022). This regret bound was also matched (in terms of 
K) for model-free algorithms (Jin et al. 2018). More 
recently, the analysis was extended to develop instance- 
dependent bounds as a function of the variance or 
shape of the underlying Q?

h function (Simchowitz and 

Jamieson 2019, Zanette and Brunskill 2019). Our work 
extends this latter approach to continuous spaces using 
adaptive discretization to obtain instance-specific guar-
antees scaling with the zooming dimension instead of 
the ambient dimension of the space.

1.3.2. Parametric Algorithms. For RL in continuous 
spaces, several recent works focus on the use of linear 
function approximation (Osband and Van Roy 2014; Du 
et al. 2019; Wang et al. 2019, 2020; Zanette et al. 2019; Jin 
et al. 2020; Chen and Zhang 2021). These works assume 
that the principal has a feature extractor under which 
the process is well-approximated by a linear model. In 
practice, these algorithms require an initial “feature 
engineering” process to learn features under which the 
problem is linear, and the guarantees then hinge upon a 
perfect construction of features. If the requirements are 
violated, it is shown that the theoretical guarantees 
degrade poorly (Du et al. 2020). Other work extends this 
approach to problems with bounded eluder dimension 
and other notions of dimension of parametric problems 
(Russo and Van Roy 2013, Wang et al. 2020).

1.3.3. Nonparametric Algorithms. In contrast, nonpara-
metric algorithms only require mild local assumptions 
on the underlying process, most commonly that the Q- 
function is Lipschitz continuous with respect to a given 
metric. For example, Yang et al. (2019) and Shah and Xie 
(2018) consider nearest neighbor methods for determin-
istic, infinite horizon discounted settings. Others assume 
access to a generative model (Kakade et al. 2003, Henaff 
2019, Shah et al. 2020).

The works closest to ours concern online algorithms 
for finite horizon problems with continuous state action 
spaces (see also Table 1). In model-free settings, tabular 
algorithms are adapted to continuous state-action spaces 
via fixed discretization (i.e., ɛ-nets) (Song and Sun 2019). 
In model-based settings, researchers tackle continuous 
spaces using kernel methods based on either a fixed 

discretization of the space (Lakshmanan et al. 2015) or 
with smooth kernel functions (Domingues et al. 2020). 
Whereas the latter learns a data-driven representation of 
the space, it requires solving a complex optimization 
problem over actions at each step and, hence, is efficient 
mainly for finite action sets (more discussion on this is 
in Section 4). Finally, adaptive discretization is success-
fully implemented and analyzed in model-free and 
model-based settings (Sinclair et al. 2019, Cao and 
Krishnamurthy 2020, Sinclair et al. 2020). This work 
serves as a follow-up providing a unified analysis between 
the two approaches, improved performance guarantees 
for ADAMB, instance-dependent guarantees scaling with -
the zooming instead of the ambient dimension, and addi-
tional numerical simulations.

1.3.4. Discretization-Based Approaches. Discretization- 
based approaches to reinforcement learning are explored 
heuristically in different settings. One line of work in-
vestigates adaptive basis functions, in which the para-
meters of the functional model (e.g., neural network) are 
learned online, simultaneously adapting the basis func-
tions (Menache et al. 2005, Keller et al. 2006, Whiteson and 
Stone 2006). Similar techniques are done with soft state 
aggregation (Singh et al. 1995). Most similar to our algo-
rithm, though, are tree-based partitioning rules, which 
store a hierarchical partition of the state and action space 
that is refined over time (Uther and Veloso 1998, Pyeatt 
and Howe 2001, Lolos et al. 2017). These were tested heu-
ristically with various splitting rules (e.g., Gini index, etc.), 
and instead, our algorithm splits based off the metric and 
statistical uncertainty in the estimates. Researchers also 
extend our adaptive discretization techniques to using a 
single partition in infinite horizon time-discounted set-
tings, and the algorithm is benchmarked on various con-
trol tasks in OPEN AI showing comparative performance 
between discretization and deep learning techniques (Ara-
újo et al. 2020a, b).

1.4. Outline of Paper
Section 2 introduces the model, nonparametric assump-
tions, and the zooming dimension. Our algorithms, 
ADAQL and ADAMB, are described in Section 3 with the 
regret bound and proof sketch given in Sections 4 and 5, 
respectively. Proof details are included in Online Ap-
pendices A–F with miscellaneous technical results in 
Online Appendix I. The experimental results are in 
Online Appendix J.

2. Preliminaries
2.1. MDP and Policies
We consider the online episodic reinforcement learning 
setting, in which an agent is interacting with an underly-
ing finite-horizon Markov decision process (MDP) over 
K sequential episodes, denoted [K] � {1, : : : , K}(Puter-
man 1994).
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Definition 1. An episodic MDP is given by a five-tuple 
(S,A, H, T, R), where the horizon H is the number of 
steps indexed [H] � {1, 2, : : : , H} in each episode and 
(S,A) denotes the set of states and actions in each step. 
State transitions are governed by a collection of transi-
tion kernels T � {Th(·|x, a)}h∈[H], x∈S, a∈A, where Th(·|x, a)
∈ ∆(S) gives the distribution over states in S if action 
a is taken in state x at step h. The instantaneous re-
wards are bounded in [0, 1], and their distributions are 
specified by a collection of parameterized distributions 
R � {Rh}h∈[H], Rh : S ×A→ ∆([0, 1]). We let rh(x, a) �
Er~Rh(x,a)[r] denote the mean reward.

The agent interacts with the MDP by selecting a policy, 
and a policy π�is a sequence of distributions π � {πh|h 
∈ [H]}, where each πh : S→ ∆(A) is a mapping from a 
given state x ∈ S to a distribution over actions in A.

2.2. Value Function and Bellman Equations
For any policy π, let Aπh denote the (potentially random) 
action taken in step h under policy π, that is, Aπh �
πh(Xk

h).
Definition 2. We define the policy value function at 
step h under policy π�to be the expected sum of future 
rewards under policy π�starting from Xh � x in step h 
until the end of the episode, which we denote Vπh : S 

→ R. Formally,

Vπh (x) :� E
X

H

h′�h

Rh′

�

�

�

�

�

Xh � x

" #

for Rh′ ~ Rh′(Xh′ , Aπh′):

(1) 

We define the state-action value function (or Q-function) 
Qπh : S ×A→ R at step h as the sum of the expected 

rewards received after taking action Ah � a at step h 
from state Xh � x and then following policy π�in all sub-
sequent steps of the episode. Formally,

Qπh (x, a) :� rh(x, a) +E
"

X

H

h′�h+1

Rh′

�

�

�

�

�

Xh+1 ~ Th(·|x, a)
#

for Rh′ ~ Rh′(Xh′ , Aπh′): (2) 

Under suitable assumptions on S ×A there exists a 
deterministic optimal policy π? that gives the optimal 
value V?

h(x) � supπVπh (x) for all x ∈ S and h ∈ [H] (Puter-

man 1994). For ease of notation, we denote Q? �Qπ
?

and 

V? � Vπ
?
. Recall the Bellman equations (Puterman 1994) 

which state that

Vπh (x) �Qπh (x,πh(x)) ∀x ∈ S

Qπh (x, a) � rh(x, a) +E[Vπh+1(Xh+1)|Xh � x, Ah � a]

∀(x, a) ∈ S ×A

VπH+1(x) � 0 ∀x ∈ S: (3) 

For the optimal policy π?, it additionally holds that 
V?

h(x) �maxa∈AQ?
h(x, a):

2.2.1. Online Interaction Structure. We consider an agent 
interacting with the MDP in the online setting. At the 
beginning of each episode k, the agent fixes a policy πk 

for the entire episode and is given an initial (arbitrary) 

state Xk
1 ∈ S. In each step h ∈ [H], the agent receives the 

state Xk
h, picks an action Ak

h � πk
h(Xk

h), receives reward 

Rk
h ~ Rh(Xk

h, Ak
h), and transitions to a random state Xk

h+1 ~ 

Th(·|Xk
h, Ak

h) sampled from the transition distribution. 

This continues until the final transition to state Xk
H+1, at 

which point the agent chooses policy πk+1 for the next 
episode after incorporating observed data (including the 
rewards and transitions), and the process is repeated. 
The goal is to maximize the total expected reward 
PK

k�1 Vπ
k

1 (Xk
1). We benchmark the agent on the regret: 

the additive loss over all episodes the agent experiences 
using the agent’s policy instead of the optimal one. As 

the policies cannot be anticipatory, we introduce F k �
σ((Xk′

h , Ak′
h , Rk′

h )h∈[H],k′<k,, Xk
1) to denote the information 

available to the decision maker at the start of episode k.

Definition 3. The REGRET for an algorithm that deploys 
a sequence of F k-measurable policies {πk}k∈[K] given a 
sequence of initial states {Xk

1}k∈[K] is defined as

REGRET(K) �
X

K

k�1

�

V?
1(Xk

1)� Vπ
k

1 (Xk
1)
�

: (4) 

Our goal is to develop algorithms that have regret 
REGRET(K) growing sublinearly in K and low per-step 
storage and computational requirements.

2.3. Metric Space and Lipschitz Assumptions
In contrast to parametric algorithms, our algorithms 
require flexible assumptions on the underlying process. 
At a high level, we require the algorithm to have access 
to a metric on the state action space under which the 
underlying Q?

h function (or rewards and dynamics) are 
Lipschitz continuous. This is well-motivated in prob-
lems in continuous domains (in which the metric can 
be taken to be any ℓp metric on the Euclidean space). 
For large discrete spaces, it requires an embedding of 
the space in a metric space that encodes meaningful 
relationships between the discrete states and actions 
(Ipek et al. 2008). Trivially, any problem can be em-
bedded in a metric space in which the metric is taken to 
be the difference of Q?

h values, but this requires know-
ing the optimal values for determining the adaptive 
partition. Recent work investigates the options of select-
ing a metric in terms of its induced topological structure 
on the space (Le Lan et al. 2021).
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We assume the state space S and the action space A 

are each separable compact metric spaces with metrics 
DS and DA. We assume that the transition kernels 
{Th(·|x, a)}x,a∈S×A are Borel measures with respect to the 
topology induced by DS on S. These metrics impose a 
metric structure D on S ×A via the product metric 
or any subadditive metric such that D((x, a), (x′, a′)) ≤
DS(x, x′) +DA(a, a′):

The covering dimension of a compact metric space 
X is defined as dX �min{d > 0 : Nr(X ) ≤ cr�d

∀r > 0}
with Nr(X ) as the r-packing number of the set X . This 
metric structure on S ×A ensures that the covering 
dimension of S ×A is at most d � dS + dA, where dS 

and dA are the covering dimensions of S and A, respec-
tively. For notational brevity we omit with respect to 
which metric the packing numbers are computed as it 
should be clear from the context.

We assume without loss of generality that S ×A has 
diameter one, and we denote the diameter of Y ⊂ S as 
D(Y) � supa∈A,(x,y)∈Y2D((x, a), (y, a)) and overload nota-
tion and use diam(B) �max{D((x, a), (y, b))| (x, a), (y, b) ∈
B} to be the diameter of a region B ⊂ S ×A. For more 
information on metrics and covering dimension, see Sliv-
kins (2014), Kleinberg et al. (2019), Sinclair et al. (2019), 
and Royden and Fitzpatrick (1988) for a summary.

To motivate the discretization approach, we also as-
sume Lipschitz structure on the system. This can come 
in two forms, which we call model-free Lipschitz and 
model-based Lipschitz (required for ADAQL and ADAMB, 
respectively). We start with model-free Lipschitz, which 
assumes the underlying Q?

h and V?
h functions are Lip-

schitz continuous.

Assumption 1 (Model-Free Lipschitz). The optimal Q?
h 

and V?
h are Lipschitz continuous with respect to D and DS , 

that is, for every x, x′, a, a′, h ∈ S
2 ×A

2 × [H],

|Q?
h(x, a)� Q?

h(x′, a′)| ≤ LVD((x, a), (x′, a′))

|V?
h(x)� V?

h(x′)| ≤ LVDS(x, x′):

The next assumption, model-based Lipschitz, puts Lip-
schitz assumptions on the underlying rewards and dy-
namics of the system.

Assumption 2 (Model-Based Lipschitz). The average 
reward function rh(x, a) is Lipschitz continuous with re-
spect to D, and the transition kernels Th(·|x, a) are Lipschitz 
continuous in the 1-Wasserstein metric dW with respect to 
D,that is, for every x, x′, a, a′, h ∈ S

2 ×A
2 × [H],

|rh(x, a)� rh(x′, a′)| ≤ LrD((x, a), (x′, a′))

dW(Th(·|x, a), Th(·|x′, a′)) ≤ LTD((x, a), (x′, a′)):

It’s important to note that Assumption 2 implies Ass-
umption 1.

Lemma 1. Suppose that Assumption 2 holds. Then, As-
sumption 1 holds with LV �

PH
h�0 LrL

h
T.

The next assumption is similar to previous literature for 
algorithms in general metric spaces (Slivkins 2014, Klein-
berg et al. 2019, Sinclair et al. 2019). This assumes access to 
the similarity metrics. Learning (or picking) the metric is 
important in practice but beyond the scope of this paper 
(Wanigasekara and Yu 2019, Le Lan et al. 2021).

Assumption 3. The agent has oracle access to the similarity 
metrics via several queries that are used by the algorithm.

In particular, ADAMB and ADAQL require access to 
several covering and packing oracles that are used 
throughout the algorithm. For more details on the 
assumptions required and implementing the algorithm 
in practice, see Online Appendix H.

2.4. Zooming Dimension
Our theoretical guarantees scale with respect to an 
instance-dependent zooming dimension of S ×A in-
stead of the ambient dimension. This serves as an ana-
log to the zooming dimension originally appearing in 
instance-dependent bounds in the bandit literature 
(Slivkins 2014) extended to dynamic settings and a con-
tinuous analog to instance-dependent guarantees de-
veloped for RL in the tabular setting (Simchowitz and 
Jamieson 2019). Analyzing the zooming dimension for 
reinforcement learning problems is much more techni-
cal than in the simpler bandit setting because of having 
to account for the dynamics of the problem. We start by 
introducing the concept of a GAP, a quantity measuring 
the suboptimality of a given state action pair (x, a) ∈
S ×A.

Definition 4. For any (x, a) ∈ S ×A and h ∈ [H], the 
stage-dependent suboptimality gap is GAPh(x, a) � V?

h(x)
� Q?

h(x, a):
One can interpret GAPh(x, a) as a measure of regret the 

algorithm experiences upon taking action a in state x in 
step h instead of the optimal action. This definition sim-
plifies to the same definition of GAP developed in the 
contextual bandit literature when the transition distri-
bution of the problem is independent of the given state 
and action.

In bandits, existing results show that adaptive dis-
cretization algorithms only discretize a subset of the 
entire state and action set, defined as the set of points 
whose gap is small. Whereas we later see in Section 5
that the same does not extend to reinforcement learn-
ing, we are still able to bound the regret of the algo-
rithm based on the size of a set of near optimal points.

Definition 5. We define the near-optimal set of S ×A 

for a given value r as

Zr
h � {(x, a) ∈ S ×A| GAPh(x, a) ≤ CL(H+ 1)r}, 
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where CL is an absolute constant depending on the Lip-
schitz constants of the problem.

Clearly, we have that Zr
h ⊂ S ×A. However, for many 

problem instances, Zr
h can be a (much) lower dimen-

sional manifold. Finally, we define the step h zooming 
dimension as follows.

Definition 6. The step h zooming dimension with con-
stant ch is zh such that

zh � inf{d > 0 : Nr(Zr
h) ≤ chr�d

∀r > 0}:
We also denote zmax �maxh∈[H]zh to be the worst case 
zooming dimension across all of the steps.

To give some intuition behind the zooming dimen-
sion, first notice that, whereas the covering dimension is 
focused on covering the entire metric space, the zooming 
dimension focuses instead on covering a near-optimal 
subset of it. This serves as a way to quantify the benign-
ness of a problem instance. Whereas it is trivially no 
larger than the zooming dimension, in many settings, it 
can be significantly smaller.

Lemma 2. The following examples show improved scaling 
of the zooming dimension over the ambient dimension: 

� Linear Q?
h: Suppose that Q?

h(x, a) � θ⊤(x, a) for some 

vector θ ∈ RdS+dA with S ⊂ RdS and A ⊂ RdA under any ℓp 

norm. Then, zh ≤ dS + dA � ‖θA‖0.
� Low-dimensional optimality: Suppose that there exists a 

set Y ⊂A that contains all optimal or near-optimal actions 
for every state. Then, zh ≤ dS + dY.

� Strongly concave: Suppose that the metric space is S �
[0, 1]dS and A � [0,1]dA under any ℓp metric. If Q?

h(x, a) is 

C2 smooth, and for all x ∈ S, we have that Q?
h(x, ·) has a 

unique maxima and is strongly concave in a neighborhood 

around the maxima, then zh ≤ dS + dA

2 :

Analyzing the zooming dimension in reinforcement 
learning is more complicated than in bandit settings as 
you have to show properties of the Q?

h function, which is 
coupled by the dynamics of the system. In the experi-
ments in Online Appendix J, we highlight problem instan-
ces with improved bounds on the zooming dimension.

Note that all of the examples presented in Lemma 2
have zh ≥ dS . This is as the zooming dimension does 
not take into account the distribution over states that 
are visited by the optimal policy. As such, scaling with 
respect to dS is inevitable because the set {(x,π?h(x)) : x ∈
S} is contained in Zr

h for any r > 0. This results in the fol-

lowing lower bound on the zooming dimension.

Lemma 3. For any h, we have that zh ≥ dS � 1.

Even in the simpler contextual multiarmed bandit 
model, the zooming dimension necessarily scales with the 
dimension of the context space regardless of the support 
or mass over the context space the context distribution 
places. Whereas, analytically, we cannot show gains in 

the state space dimension, we see empirically in Online 
Appendix J that the algorithms only cover the state space 
in regions the optimal policy visits, but it is unclear how 
to include this intuition formally in the definition. Revis-
iting new notions of “instance-specific” complexity is an 
interesting direction for future work in both tabular and 
continuous RL.

Algorithm 1 (Adaptive Discretization for Online Reinfor-

cement Learning (ADAMB, ADAQL)) 
1: procedure ADAPTIVE DISCRETIZATION FOR ONLINE RL(S, 

A,D, H, K,δ)

2: Initialize partitions P0
h � S ×A for h ∈ [H], esti-

mates Q
0

h(·) �V
k

h(·) �H � h+ 1
3: for each episode k← 1, : : :K do
4: Receive starting state Xk

1

5: for each step h← 1, : : : , H do
6: Observe Xk

h and determine RELEVANtk
h(Xk

h) �
{B ∈ P

k�1
h |Xk

h ∈ B}
7: Greedy selection rule: pick Bk

h �
arg maxB∈RELEVANTk

h(Xk
h
)Q

k�1

h (B)
8: Play action Ak

h � ã(Bk
h) associated with ball 

Bk
h; receive Rk

h and transition to Xk
h+1

9: UPDATE ESTIMATES(Xk
h, Ak

h, Xk
h+1, Rk

h, Bk
h) via ADA 

MB or ADAQL
10: if CONF

k
h(Bk

h) ≤ diam(Bk
h) then REFINE PARTI-

TION (Bk
h)

11: procedure REFINE PARTITION(B, h, k)
12: Construct P(B) � {B1, : : : , Bm} as the children of 

B in the hierarchical partition
13: Update Pk

h � P
k�1
h ∪ P(B) \B

14: For each Bi, initialize estimates from parent ball
15: procedure UPDATE ESTIMATES (ADAMB) (Xk

h, Ak
h, 

Xk
h+1, Rk

h, Bk
h)

16: for each h← 1, : : :H and B ∈ P
k
h do: Update 

Q
k

h(B) and V
k

h(·) via Equations (6) and (8)
17: procedure UPDATE ESTIMATES (ADAQL) (Xk

h, Ak
h, 

Xk
h+1, Rk

h, Bk
h)

18: Update Q
k

h(B) via Equation (9).

3. Algorithm
Reinforcement learning algorithms come in two primary 
forms: policy- or value-based learning. Policy-based 
learning focuses on directly iterating on the policy used 
in episode k πk through optimizing over a set of candi-
date policies (Bhandari and Russo 2021). Our algorithms 
use value-based learning, which focuses on constructing 
estimates Q

k

h for Q?
h. The algorithms then play the policy 

πk
h that is greedy with respect to the estimates, that is,

πk
h(Xk

h) � arg max
a∈A

Q
k�1

h (Xk
h, a):

The motivation behind this approach is that the optimal 

policy plays π?h(Xk
h) � arg maxa∈AQ?

h(Xk
h, a). The hope is 
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that, when Qh is uniformly close to Q?
h, then the value of 

the policy used is similar to that of the optimal policy. 
What distinguishes between different value-based algo-
rithms is the method used to construct the estimates for 
Q?

h. We provide both model-based and model-free varia-

tions of our algorithm. Note that, for both algorithms, 

we set V
k

h(x) �maxa∈AQ
k

h(x, a). 
1. Model-based (ADAMB) estimates the MDP param-

eters directly (rh and Th) and plugs in the estimates to 
the Bellman Equation (3) to set

Q
k

h(x, a) ≈ rk
h(x, a) + E

Y~T
k

h(x,a)[V
k

h+1(Y)], 

where r and T denote explicit empirical estimates for 
the reward and transition kernel. 

2. Model-free (ADAQL) foregoes estimating the MDP 
parameters directly and instead does one-step updates 
in the Bellman Equation (3) to obtain Q

k

h(x, a) ≈ (1 � αt)
Q

k�1

h (x, a) +αt(Rk
h +V

k

h+1(Xk
h+1)). By decomposing the re-

cursive relationship, you get

Q
k

h(x, a) ≈
X

t

i�1

αi
t(Rki

h +V
ki

h+1(Xki

h+1)), 

where t is the number of times (x, a) has been visited 
and k1, : : : , kt denote the episodes it was visited before, 

αt is the learning rate, and αi
t � αi

Qt
j�i+1(1 � αj). Note 

that this instead stores implicit estimates of the average 
reward (weighted by the learning rate) and the transi-
tion kernel. The key difference is that the estimate of 
the next step is not updated based on the current epi-

sode k as V
k

h+1(·), but instead is updated based on the 

episode it was visited in the past by V
ki

h+1(·). As a result, 
the learning rates are chosen to impose recency bias for 

the estimates (Jin et al. 2018). If V
k

h+1(·) was used, the 
algorithm would need to store all of the data and 
recompute these quantities, leading to regret improve-
ments only in logarithmic terms. We see later that this 
approach leads to substantial time and space complex-
ity improvements.

3.1. Algorithm Description
We now present our model-based and model-free rein-
forcement learning algorithms with adaptive partitioning, 
which we refer to as ADAMB and ADAQL, respectively. 
Our algorithms proceed in the following four steps: 

1. (Adaptive partition) The algorithms maintain an 
adaptive hierarchical partition of S ×A for each step h, 
which is used to represent the (potentially continuous) 
state and action space. The algorithms also maintain 

estimates Qh and Vh for Q?
h and V?

h over each region 

that are constructed based on collected data.

2. (Selection rule) Upon visiting a state Xk
h in step h 

episode k, the algorithms pick a region containing Xk
h 

that maximizes the estimated future reward Q
k�1

h . 
They then play any action contained in that region.

3. (Update estimates) After collecting data (Xk
h, Ak

h, 

Rk
h, Xk

h+1) with the observed reward and transitions, the 

algorithms update the estimates Q
k

h and V
k

h, which are 
used for the next episode.

4. (Splitting rule) After observing data and updating 
the estimates, the algorithm determines whether to 
subpartition the current region. This is a key algorith-
mic step differentiating adaptive discretization algo-
rithms from their uniform discretization counterparts. 
Our splitting rule arises by splitting a region once the 
confidence in its estimate is smaller than its diameter, 
forming a bias–variance trade-off.

For a discussion on implementation details, see On-
line Appendix H. We now describe the four steps of the 
algorithms in more detail.

3.2. Adaptive Partition
We first start by introducing the adaptive hierarchical 
partitions that are used by the algorithm to efficiently 
discretize the state and action space for learning and 
computation (Munos 2014, Slivkins 2014, Kleinberg et al. 
2019). For each step h ∈ [H], ADAMB and ADAQL main-
tain a partition of the space S ×A into a collection of 
“balls,” which is refined over episodes k ∈ [K]. We use 
the term “ball” loosely here as, in general, the regions 
form a nondisjoint partition of S ×A. However, in our 

diagrams, we use the ℓ∞ metric on R2 under which the 
metric-balls indeed form a discrete partition of the space. 
In particular, we assume that the algorithms are given 
access to a hierarchical partition of S ×A of the follow-
ing form.

Definition 7. A hierarchical partition of S ×A is a collec-
tion of disjoint regions Pℓ�for levels ℓ � 0, : : : , K such that 

� Each region B ∈ Pℓ�is of the form S(B) ×A(B), 
where S(B) ⊂ S and A(B) ⊂A.

� P0 � {S ×A}.
� For every ℓ, we have that S ×A � ∪B∈PℓB.
� For every ℓ�and B ∈ Pℓ, we have diam(B) ≤ 2�ℓ.
� For any two regions B1, B2 ∈ Pℓ, their centers are at 

a distance at least 2�ℓ�from each other.
� For each ℓ�and B ∈ Pℓ, there exists a unique A ∈

Pℓ�1 (referred to as the parent of B) such that B ( A.

Whereas one can construct a hierarchical partition 
for any compact metric space, a canonical example to 

keep in mind is S � [0,1]dS ,A � [0,1]dA with the infinity 
norm D((x, a), (x′, a′)) � | | (x, a)� (x′, a′)| |∞. Here, one 
can simply take Pℓ�to be the dyadic partition of S ×A 

into regions of diameter 2�ℓ. Moreover, each hierarchical 
partition admits a tree, whereby the root corresponds to 
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the node representing S ×A, and there is a node for 
each region B ∈ Pℓ�with an edge to its unique parent, 
which is the region A ∈ Pℓ�1 such that B(A.

Our algorithm maintains an adaptive partition Pk
h 

over the hierarchical partition for each step h and k, 
which can be thought of as a subtree of the original 
hierarchical partition. Originally, we set P0

h � {S ×A}
for every h. Over time, the partition is refined by add-
ing new nodes to the subtree originating from the hier-
archical partition. The leaf nodes represent the active 
balls, and inactive parent balls of B ∈ P

k
h corresponding 

to {B′ ∈ P
k
h|B′ ⊃ B}; moreover, ℓ(B) is the depth of B in 

the tree (with the root at level zero). See Figure 1 for an 
example partition and tree generated by the algorithm. 
We let CENTER(B) � (~x(B),~a(B)) be the center of B.

ADAMB requires the induced state partition of the 
adaptive partition when maintaining estimates of the 
value function and a hierarchical partition over the state 
space for maintaining estimates of the transition kernel. 
We use the following notation:

S(Pk
h) :�

[

B∈Pk
h s:t: @B′∈Pk

h,S(B′)⊂S(B)
S(B) and

S(Pℓ) � {S(B)|B ∈ Pℓ} (5) 

to denote the partition over the state space induced by 

the current state-action partition Pk
h and the hierarchical 

partition over the state space at level ℓ. For example, in 

Figure 1(a), we have a representation of S(Pk�1
h ) and S2.

3.3. Selection Rule

Upon visiting state Xk
h in step h of episode k, the algo-

rithms find all of the relevant balls defined via RELEVANT
k
h 

(Xk
h) � {active B ∈ P

k�1
h | (Xk

h, a) ∈ B for some a ∈A}. The 

algorithm then selects the selected ball:

Bk
h � arg max

B∈RELEVANT
k
h
(Xk

h
)
Q

k�1

h (B):

Once the selected ball Bk
h is chosen, the algorithm plays 

either action ã(Bk
h) or any distribution over actions a 

such that (Xk
h, a) ∈ Bk

h.

3.4. Maintaining Estimates
At a high level, for each active ball B ∈ P

k
h, our algo-

rithms maintain the following statistics: 
� nk

h(B): the number of times the ball B or its ances-
tors in the tree have been selected up to and including 
episode k.

� Q
k

h(B): an estimate for Q?
h(x, a) for points (x, a) ∈ B.

In addition, ADAMB also maintains estimates of the 
rewards and transitions via 

� rk
h(B): the empirical reward earned from playing 

actions in B and its ancestors.
� T

k

h(·|B): the empirical fractions of transitions from 
playing actions in B and its ancestors to sets in a 
2�ℓ(B)-coarse partition of S formed by taking the projec-
tion of the hierarchical partition to the state space 
(which we denote as S(Pℓ(B))).

3.4.1. Update Counts. After playing action Ak
h in state 

Xk
h at step h, the algorithm transitions to a new state Xk

h+1 

and observes a reward Rk
h. Each algorithm then updates 

the number of samples collected from the selected ball 

Bk
h via nk

h(Bk
h) � nk�1

h (Bk
h) + 1. In addition, ADAMB updates 

Figure 1. (Color online) Partitioning Scheme for S ×A � [0,1]2 

(a) (b)

Notes. (a) Our scheme. Partition Pk�1
h is depicted with corresponding tree (showing active balls as leaves, and inactive parents as nodes with 

children). The algorithm plays ball Bk
h�1 in step h – 1, leading to new state Xk

h. Because (Bk
h�1) � 2, in ADAMB, we store transition estimates 

T
k

h�1(·|Bk
h�1) for all subsets of S of diameter 2�2 denoted as S2 (depicted via dotted lines). The set of relevant balls RELEVANT

k
h(Xk

h) � {B4, B21, B23}
are highlighted. S(Pk�1

h ) here would be [0, 1
2], [12 , 3

4], [34 , 1]
� �

. (b) The partition PK
2 from one of our synthetic experiments. The scale denotes the true 

Q?
2 values with the diagonal corresponding to higher values. Note that the partition is more refined in areas that have higher Q?

2.
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the estimates for the average reward and transition 
as follows: 

� Update average reward: rk
h(Bk

h) �
nk�1

h
(Bk

h
)rk�1

h (Bk
h
)+Rk

h

nk
h
(Bk

h
) :

� Update T
k

h(·|Bk
h) as follows: For each set A in a 

2�ℓ(Bk
h
)-coarse partition of S denoted by S(Pℓ(Bk

h
)), we set

T
k

h(A|Bk
h) �

nk�1
h (Bk

h)T
k�1

h (A|Bk
h) +1{Xk

h+1
∈A}

nk
h(Bk

h)
:

This is maintaining an empirical estimate of the transition 

kernel for a ball Bk
h at a level of granularity proportional 

to its diameter. We use this to ensure that the error of the 
estimates for a ball B is proportional to its diameter, but 
this also serves as an efficient compression of the data 
collected so that the algorithm isn’t required to store all 
collected samples. Other model-based algorithms forego 
this step, suffering from added computational and stor-
age burden by maintaining the full empirical transition 
kernel (Shah and Xie 2018, Domingues et al. 2020).

With this in place, we now describe how ADAMB and 
ADAQL use these statistics in order to generate esti-

mates for Q
k

h(B) over the partition.

3.4.2. Compute Estimates—ADAMB. We start by defin-
ing confidence terms according to

RUCB
k
h(B) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2log(2HK2=δ)
nk

h(B)

s

TUCB
k
h(B) �

LV 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(2HK2=δ)
nk

h(B)

s

+ c
�

nk
h(B)

�

�1=dS

 !

if dS > 2

LV 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(2HK2=δ)
nk

h(B)

s

+ c
log(K)
ffiffiffiffiffiffiffiffiffiffiffi

nk
h(B)

q

0

B

@

1

C

A

if dS ≤ 2

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

BIAS(B) � 4Lrdiam(B) + LV(5LT + 4)diam(B):
Here, c is an absolute constant, and the difference in 

definitions of TUCB
k
h(·) comes from the dimension de-

pendence in Wasserstein concentration. The first term 
corresponds to the uncertainty in the rewards, the sec-
ond to the uncertainty in the dynamics of the environ-
ment, and the third the biases in the ball resulting from 
aggregation. With these in place, we compute the esti-

mate Q
k

h(B) according to

Q
k

h(B) :�
rk

h(B) + RUCB
k
h(B) + BIAS(B) if h�H

rk
h(B) + RUCB

k
h(B) +EA~T

k

h(·|B)
[Vk

h+1(A)]

+TUCB
k
h(B) + BIAS(B) if h < H:

8

>

>

<

>

>

:

(6) 

The value function estimates are computed in a two- 

stage process. We first define Ṽ
k

h(A) over the balls A ∈
S(Pk

h) according to

Ṽ
k

h(A) :�min Ṽ
k

h(A), max
B∈Pk

h:S(B)⊇A
Q

k

h(B)
( )

: (7) 

We define V
k

h(x) to extrapolate the estimate across all 
points in the state space in a Lipschitz manner. For each 
point x ∈ S, we define

V
k

h(x) � min
A′∈S(Pk

h)

�

Ṽ
k

h(A′) + LVDS(x, x̃(A′)
�

: (8) 

The Lipschitz property is used to show concentration of 

expectations over V
k

h(·) taken with respect to transition 

kernel estimates. As the support of T
k

h(·|B) is only over 

sets in S(Pℓ(B)), we overload notation to let V
k

h(A) �
V

k

h(x̃(A)). We equivalently overload notation so that x ~ 

T
k

h(·|B) refers to sampling over the centers associated to 
balls in S(Pℓ(B)).

This corresponds to a value iteration step, in which 
we replace the true rewards and transitions in the Bell-
man equations (Equation (3)) with their estimates. We 
compute full updates instead of one-step updates as in 
Efroni et al. (2019) for ease of presentation, but see Sin-
clair et al. (2020) for discussion on the one-step update 
procedure.

3.4.3. Compute Estimates—ADAQL. Next, we discuss 

the update rule Q
k

h for ADAQL. Fix an episode k, step h, 

and ball B ∈ P
k
h. Let t � nk

h(B) be the number of times B 

or its ancestors have been selected by the algorithm at 
step h in episodes up to the current episode k. The confi-
dence terms are defined according to

RUCB
k
h(B) � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hlog(2HK2=δ)
nk

h(B)

s

TUCB
k
h(B) � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H3log(2HK2=δ)
nk

h(B)

s

BIAS(B) � 2LVdiam(B):

The first term corresponds to the uncertainty in the 
rewards, the second to the uncertainty in the dynamics 
of the environment, and the third the biases in the ball 
resulting from aggregation.

Upon visiting state Xk
h taking action Ak

h with selected 

ball Bk
h � B, we update the estimate for the selected ball 

Q
k

h(B) (leaving all other estimates unchanged) via

Q
k

h(B) � (1 � αt)Q
k�1

h (B) + αt(Rk
h + RUCB

k
h(B)

+V
k�1

h+1(Xk
h+1) + TUCB

k
h(B) + BIAS(B)), (9) 
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where Rk
h is the observed reward, Xk

h+1 is the state to 

which the agent transitions, αt � H+1
H+t is the learning 

rate, and

V
k�1

h+1(x) �min H, max
B∈RELEVANTk�1

h+1
(x)

Q
k�1

h+1(B)
 !

(10) 

is our estimate of the expected future reward for being 
in a given state. Note that, with this recursive update, 

we can equivalently write Q
k

h(B) by unraveling the 
recursion. First, denote

αi
t � αi

Y

t

j�i+1

(1 � αj): (11) 

Lemma 4 (Recursive Relationship for AdaQL). For any 

h, k ∈ [H] × [K] and ball B ∈ P
k
h, let t � nk

h(B) be the number 

of times that B or its ancestors were encountered during 
the algorithm before episode k. Further, suppose that B and its 
ancestors were encountered at step h of episodes k1 < k2 

< ⋯ < kt ≤ k. By the update rule of Q, we have that

Q
k

h(B) � 1[t�0]H+
X

t

i�1

αi
t

�

Rki

h + RUCB
ki

h (B
ki

h ) +V
ki

h+1(Xki

h+1)

+ TUCB
ki

h (B
ki

h ) + BIAS(Bki

h )
�

:

Proof of Lemma 4. We show the claim by induction 
on t � nk

h(B).
First suppose that t � 0, that is, that the ball B has 

not been encountered before by the algorithm. Then, 

initially Q
0

h(B) �H � 1[t�0]H.
Now, for the step case, we notice that Q

k

h(B) was 
last updated at episode kt. kt is either the most recent 
episode when ball B was encountered or the most 
recent episode when its parent was encountered if B 
was activated and not yet played. In either case, by 
the update rule (Equation (9)), we have

Q
k

h(B) � (1 � αt)Q
kt�1

h (B) + αt

�

Rkt

h + RUCB
kt

h (B
kt

h )

+V
kt

h+1(Xkt

h+1) + TUCB
kt

h (B
kt

h ) + BIAS(Bkt

h )
�

� (1 � αt)α0
t�1H+ (1 � αt)

X

t�1

i�1

αi
t

�

Rki

h + RUCB
ki

h (B
ki

h )

+V
ki

h+1(Xki

h+1) + TUCB
ki

h (B
ki

h ) + BIAS(Bki

h )
�

+αt

�

Rkt

h +V
kt

h+1(Xkt

h+1) + TUCB
kt

h (B
kt

h ) + BIAS(Bkt

h )
�

by the induction hypothesis

� 1[t�0]H+
X

t

i�1

αi
t

�

Rki

h + RUCB
ki

h (B
ki

h ) +V
ki

h+1(xki

h+1)

+ TUCB
ki

h (B
ki

h ) + BIAS(Bki

h )
�

by definition of αi
t. w

3.5. Splitting Rule
To refine the partition over episodes, we split a ball 
when the confidence in its estimate is smaller than its 
bias. Formally, because of the Lipschitz property on the 
Q function from the assumption, we know that the bias 
in the estimates is proportional to the diameter of the 

ball. In episode k, step h, we split the selected ball Bk
h if

CONF
k
h(Bk

h) ≤ diam(Bk
h): (12) 

Here, CONF
k
h(Bk

h) � C̃=nk
h(B)

α�is the dominating term of 

RUCB
k
h(B) and TUCB

k
h(B) for some polylogarithmic con-

stant C̃. In particular, we take

CONF
k
h(B)

:�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H3log(2HK2=δ)
nk

h(B)

s

ADAQL : α � 1

2

4LVc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(2HK2=δ)
nk

h(B)

s

ADAMB dS ≤ 2 : α � 1

2

4LVc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(2HK2=δ)
p

nk
h(B)

1=dS

ADAMB dS > 2 : α � 1

dS

:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

This splitting rule differs from previous analysis of 
adaptive discretization for RL (Sinclair et al. 2019, 2020; 
Cao and Krishnamurthy 2020) and is key for achieving 
the proper instance-dependent guarantees. By taking 
the splitting threshold to depend explicitly on the dom-
inating term in the confidence bounds, we are able to 
upper bound the bias of the ball (proportional to the 
diameter) by these confidence terms as we later see in 
the regret analysis.

In episode k step h, if we need to split Bpar � Bk
h, then we 

add the child nodes in the hierarchical partition immedi-

ately under Bk
h to form Pk

h. Each child ball then inherits all 

estimates and counts from its parent ball in the adaptive 
partition with the exception of the estimate of the transi-
tion distribution in ADAMB .

Recall that T
k

h(·|Bpar) defines a distribution over 

S(Pℓ(Bpar)), whereas T
k

h(·|B) for children B of Bpar should 
define a distribution over S(Pℓ(B)). As a result, for 

ADAMB, we need to additionally update the transi-
tional kernel estimates to map to a distribution over 
S(Pℓ(B)) by splitting the mass equally over subregions 

according to

T
k

h(A|B) � 2�dS T
k

h(Apar|Bpar), 

where Bpar is the parent of B and Apar is the parent of 
A, that is, the unique element in S(Pℓ(Bpar)) such that 

A ⊂ Apar. Each element is weighted by 2�dS to split the 

mass evenly as each element of S(Pℓ(Bpar)) has 2dS chil-

dren in S(Pℓ(B)).
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4. Main Results
In this section, we outline the main results for our paper. 
We provide guarantees for ADAMB and ADAQL on all 
three aspects of the trifecta for RL in OR, including regret 
bounds, storage requirements, and computational com-
plexity for the algorithms. We refer the readers to Table 
1 for a summary of the main results.

4.1. Regret Minimization Guarantees
We start by providing instance-dependent bounds on 
the regret for ADAMB and ADAQL. These bounds explic-
itly depend on the zooming dimension as outlined in 
Section 2.4 measuring the complexity of a problem in-
stance instead of the ambient dimension.

Theorem 1. Let zh be the step h zooming dimension and dS 

be the covering dimension of the state space. Then, the 
regret of ADAMB and ADAQL for any sequence of starting 

states {Xk
1}

K
k�1 is upper bounded with probability at least 

1 � 3δ�by

REGRET(K) ≲

H3=2
ffiffiffiffi

K
√
+ L
X

H

h�1

K
zh+dS�1

d+dS ADAMB : dS > 2

H3=2
ffiffiffiffi

K
√
+ L
X

H

h�1

K
zh+1

zh+2 ADAMB : dS ≤ 2

LH3=2
X

H

h�1

K
zh+1

zh+2 ADAQL

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

where L � 1+ Lr + LV + LVLT and ≲ omits poly-logarithmic 

factors of 1
δ , H, K, d and any universal constants.

4.1.1. Comparison Between Model-Free and Model- 

Based Methods. As we see from Theorem 1, the bounds 
for ADAMB have better dependence on the number of 
steps H. This is expected as current analysis for model- 
free and model-based algorithms under tabular settings 
shows that model-based algorithms achieve better de-
pendence on the horizon. However, under the Lipschitz 
assumptions, the constant L scales with H, so the true 
dependence is masked (see Lemma 1). When we com-
pare the dependence on the number of episodes K, we 
see that the dependence is worse for ADAMB, primarily 
because of the additional factor of dS , the covering 
dimension of the state space. This discrepancy arises as 
model-based algorithms maintain an estimate of the 
transition kernel, whose worst case statistical complexity 
for Wasserstein concentration depends on dS when 
dS > 2. In Online Appendix G we give improved bounds 
for ADAMB under additional assumptions on the transi-
tion distribution that match the performance of ADAMB.

4.1.2. Metric-Specific Guarantees. Our guarantees scale 
with respect to the zooming instead of the ambient di-
mension of the metric space. As the zooming dimension 

can be much smaller than the ambient dimension (see 
Lemma 2), our adaptive discretization algorithms are 
able to achieve exponentially better regret guarantees 
than other nonparametric algorithms. Moreover, in the 
final regret bound in Online Appendix E, we provide 
more fine-tuned metric-dependent guarantees.

4.1.3. Comparison with Other Nonparametric Meth-

ods. Current state-of-the-art model-based algorithms 
achieve regret scaling such as H3K2d=(2d+1) (Domingues 
et al. 2020). We achieve better scaling with respect to both 
H and K, and our algorithm has lower time and space 
complexity. However, we require additional oracle as-
sumptions on the metric space to be able to construct 
packings and coverings efficiently, whereas KERNEL- 
UCBVI uses the data and the metric itself. Better depend-
ence on H and K is achieved by using recent work on 
concentration for the Wasserstein metric and by showing 
zooming dimension guarantees. These guarantees allow 
us to construct tighter confidence intervals that are inde-
pendent of H, obviating the need to construct a covering 
of H-uniformly bounded Lipschitz functions as in prior 
work (see Online Appendix B).

In addition, KERNEL-UCBVI uses a fixed bandwidth 
parameter in the kernel interpolation. We instead keep 
an adaptive partition of the space, helping our algo-
rithm maintain a smaller and more efficient discretiza-
tion and adapting to the zooming dimension of the 
space instead of the ambient dimension.

4.1.4. Policy-Identification Guarantees. Using similar 
arguments from Jin et al. (2018), it is straightforward to 
show sample complexity guarantees on learning a pol-
icy of a desired quality in the probably approximately 
correct guarantee framework for learning RL policies 
(Watkins 1989).

4.2. Lower Bounds
Existing work for the contextual bandit literature shows 
that the worst case regret scales exponentially with 
respect to the zooming dimension (Slivkins 2014). This 
construction can be modified directly to obtain a lower 
bound for the RL setting as follows.

Theorem 2. Let (S,DS) and (A,DA) be arbitrary metric 
spaces and D be the product metric. Fix an arbitrary time 
horizon K and number of steps H. There exists a distribu-
tion I over problem instances on (S ×A,D) such that, for 
any algorithm,

EI [REGRET(K)] ≥Ω
X

H

h�1

K
zh+1

zh+2=log(K)
 !

This builds on the lower bounding technique from 
(Jaksch et al. 2010, Slivkins 2014, Kleinberg et al. 2019) by 
using a needle-in-the-haystack example. The haystack 
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consists of several actions with an expected payoff of 1
2 

and the needle an action whose expected payoff is slightly 
higher. In fact, the construction from Slivkins (2014) can 
be used directly by developing a problem instance of 
length H that is a sequence of H contextual bandit 
problems.

4.2.1. Comparison with Lower Bounds. Comparing our 
regret bounds to the lower bound, we see that ADAQL 
and ADAMB (for dS ≤ 2) match the lower bound with 
respect to the instance dependent zooming dimension 
zh. However, ADAMB when dS > 2 has the additionally 
factors of dS as a result of maintaining the explicit esti-
mate of the transition kernel.

4.2.2. Exponential Scaling on Episodes. The regret is 
always upper bounded by HK. In order for Theorem 1
to give a nontrivial regret guarantee, then the number 
of episodes needs to be on the order of Hzmax . This expo-
nential dependence is a fundamental factor in all esti-
mation problems with nonparametric statistics. Our 
work focuses on improving on the exponent by show-
ing exponential sample complexity gains from scaling 
with the zooming dimension instead of the ambient 
dimension. Moreover, the algorithms require no prior 
knowledge of the zooming dimension in order to ac-
hieve these regret bounds. Theoretically speaking, the 
value of these results is limited when the dimension of 
the space starts to grow. However, experimental results 
show the value of nonparametric algorithms in practice 
(Ipek et al. 2008; Araújo et al. 2020a, b).

4.3. Space and Time Complexity Guarantees
Next, we consider the storage and time complexity of 
both of our algorithms. In particular, we are able to 
show the following.

Theorem 3. The storage and time complexity for ADAMB 
and ADAQL can be upper bounded via

SPACE(K)≲
HK ADAMB : dS > 2

HK
d+dS

d+dS+2 ADAMB : dS ≤ 2

HK
d

d+2 ADAQL

8

>

<

>

:

TIME(K)≲
HK

d+2dS

d+dS ADAMB : dS > 2

HK
d+dS+2

d+dS ADAMB : dS ≤ 2
HK logd(K) ADAQL:

8

>

<

>

:

4.3.1. Comparison Between Model-Free and Model- 

Based Methods. As we can see, both the storage and 
time complexity for ADAQL are uniformly better than 
that of ADAMB. This should not come as a surprise as, 
even in the tabular setting, model-free algorithms have 
better storage and computational requirements than 

model-based ones as they forego maintaining and using 
explicit estimates of the transition kernel.

4.3.2. Comparison with Other Nonparametric Meth-

ods. As seen in Table 1, our bounds are uniformly bet-
ter for both storage and time complexity than other 
nonparametric algorithms. These gains are primarily a 
result of using the discretization to maintain an efficient 
compression of the data and statistical accuracy and uti-
lizing quantizing techniques to speed up the algorithms.

4.3.3. Monotone Increasing Runtime and Storage Com-

plexity. The runtime and storage complexity guarantees 
presented are monotonically increasing with respect to 
the number of episodes K. However, to get sublinear 
minimax regret in a continuous setting for nonparamet-
ric Lipschitz models, the model complexity must grow 
over episodes. In practice, one runs our adaptive discre-
tization algorithms until running out of space, and our 
experiments show that the algorithms use resources 
(storage and computation) much better than a uniform 
discretization.

4.3.4. Comparison with Lower Bounds. To the best of 
our knowledge, there are no existing results showing 
storage or computational lower bounds for an RL algo-
rithm in continuous spaces.

5. Proof Sketch
We start with giving the proof sketch of Theorem 1
before going into the proof of Theorem 3 in Section 5.4. 
The high-level proof of Theorem 1 is divided into three 
sections. First, we show concentration, clean events, 
and optimism under which our estimates constitute 
upper bounds on their relevant quantities. Afterward, 
we show a regret decomposition with clipping, which 
upper bounds the difference between the estimated 
value and the value accumulated by the algorithm as a 
function of the confidence terms. This uses the clipping 
operator first introduced in Simchowitz and Jamieson 
(2019) for obtaining instance-dependent regret guaran-
tees in tabular settings. Finally, we use an argument to 
bound the sum of confidence terms, which is used for 
the final regret bound. We include a brief discussion 
here on each of the three parts, but the full details are 
included in the online appendix.

5.1. Concentration, Clean Events, and Optimism 

(Online Appendices B and C)

ADAMB explicitly maintains estimates rk
h(B) and T

k

h(·|B)
for the unknown rewards and transitions of the under-
lying MDP. Similarly, ADAQL implicitly maintains esti-
mates for the rewards and transitions; the rewards are 

taken via 
P

tα
i
tR

ki

h and the transitions are taken using 
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old estimates of V
ki

h instead of V
k

h. In order to ensure 
that the one-step value iteration update in Equations 
(6) and (9) concentrates, we need to verify that these 
estimates provide good approximations to their true 
quantities. In particular, we show that

ADAMB:

|rk
h(B)�rh(x, a)| ≲ RUCB

k
h(B) + Lrdiam(B)

dW(T
k

h(·|B)�Th(·|x, a)) ≲ TUCB
k
h(B) + LVLTdiam(B),

(

AdaQL:
�

�

�

�

�

X

t

i�1

αi
t(Rki

h �rh(x, a))
�

�

�

�

�

≲ RUCB
k
h(B)

�

�

�

�

�

X

t

i�1

αi
t(V?

h+1(X
ki

h+1)�EY~Th(·|X
ki
h

,A
ki
h
)[V

?
h+1(Y)]

�

�

�

�

�

≲ TUCB
k
h(B):

8

>

>

>

>

>

<

>

>

>

>

>

:

However, recall that our estimates for Q
k

h(B) are con-
structed via

Q
k

h(B) � r̃k
h(B) + RUCB

k
h(B) + T̃

k

h(V
k̃

h+1(B))
+ TUCB

k
h(B) + BIAS(B), 

where r̃ and T̃ vary for the two different algorithms. 
As such, the concentration results leads to upper and 

lower bounds on Q
k

h(B) via the bonus terms of the fol-
lowing form.

Informal Theorem 2. For any (h, k) ∈ [H] × [K], B ∈ P
k
h 

and (x, a) ∈ B, we have that

0 ≤Q
k

h(B)� Q?
h(x, a)≲ CONF

k
h(B) + BIAS(B) + f k

h+1, 

where f k
h+1 is an algorithm-dependent term depending on the 

estimates at step h + 1.

5.2. Upper Bound via Clipping (Online 

Appendix D)
We use an argument based on the clipping operator first 
introduced in Simchowitz and Jamieson (2019) for ob-
taining instance-dependent regret guarantees for tabular 
reinforcement learning. We define CLIP[µ|ν] � µ1[µ≥ν]. 
The value of this function is zero until µ ≥ ν, and after-
ward, it takes on the value of µ. We use this operator to 
bound the regret at step h in episode k in two terms. The 
first part corresponds to the clipped bonus terms and the 
bias of the estimate using concentration and Lipschitz 
properties of the estimation procedure. The second term 

is f k
h+1, the algorithm-dependent quantity measuring the 

downstream effects of errors at the next time step.
In particular, consider the ball Bk

h selected by the 

algorithm in step h of episode k. Letting (Xk
h, Ak

h) be the 

state–action pair played at that time step, we note that

GAPh(Bk
h) � min

(x, a)∈Bk
h

GAPh(x, a) ≤ GAPh(Xk
h, Ak

h)

� V?
h(Xk

h)� Q?
h(Xk

h, Ak
h)

≤Q
k�1

h (Bk
h)� Q?

h(Xk
h, Ak

h) ≤ CONF
k�1
h (Bk

h)

+ BIAS(Bk
h) + f k�1

h+1 :

Via some simple algebraic manipulations, we are able 
to show that this gives

Q
k�1

h (Bk
h)� Q?

h(Xk
h,Ak

h)

≤ CLIP CONF
k�1
h (Bk

h) + BIAS(Bk
h)|

GAPh(Bk
h)

H+ 1

� �

+ 1+ 1

H

� �

f k�1
h+1 :

(13) 

This expression can be thought of as bounding the one- 
step regret of the algorithm by a term scaling with re-
spect to the confidence in the estimates and a second 
term scaling with the downstream misestimation errors.

5.3. Regret Bound via the Splitting Rule (Online 

Appendix E)
Finally, we use the previous equation to develop a final 
regret bound for the algorithm. In particular, consider 

the quantity ∆k
h �V

k�1

h (Xk
h)� Vπ

k

h (Xk
h). Via optimism 

and the greedy selection rule, we have that

REGRET(K) �
X

K

k�1

V?
1(Xk

1)� Vπ
k

1 (Xk
1)

≤
X

K

k�1

V
k�1

1 (Xk
1)� Vπ

k

1 (Xk
1) �

X

K

k�1

∆
k
1:

We use the bound on Q
k�1

h (Bk
h)� Q?

h(Xk
h, Ak

h) and the 

definition of f k�1
h+1 to show that, for each algorithm,

X

K

k�1

∆
k
h ≲
X

K

k�1

CLIP CONF
k�1
h (Bk

h) + BIAS(Bk
h)
�

�

�

�

GAPh(Bk
h)

H + 1

� �

+ 1+ 1

H

� �

X

K

k�1

ξk
h+1 +

X

K

k�1

∆
k
h+1, 

where ξk
h+1 is an algorithm-dependent martingale dif-

ference sequence. Using this and recursing backward, 
we have that

REGRET(K)

≲
X

H

h�1

X

K

k�1

CLIP CONF
k�1
h (BK

h ) + BIAS(Bk
h)
�

�

�

�

GAPh(Bk
h)

H+ 1

� �

+ lower order terms:

By properties of the splitting rule for Bk
h, diam(Bk

h) ≤
CONF

k�1
h (Bk

h) ≤ 4diam(Bk
h). Moreover, the BIAS(Bk

h) is of 
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the form CLdiam(Bk
h) for some Lipschitz-dependent 

constant CL. Thus, we get that the term inside of the 
clipping operator can be upper bounded by (CL + 1)
CONF

k�1
h (Bk

h) ≤ 4(CL + 1)diam(Bk
h).

By definition of the clip operator, we only need to 

consider when 4(CL + 1)diam(Bk
h) ≥

GAPh(Bk
h
)

H+1 . However, 

this implies that GAPh(Bk
h) ≤ 4(H+ 1)(CL + 1)diam(Bk

h). 
Letting (xc, ac) denote the center of Bk

h, we can show 

using the Lipschitz assumption that

GAPh(xc, ac) ≤ GAPh(Bk
h) + 2LVdiam(Bk

h)
≤ (4(H+ 1)(CL + 1) + 2LV)diam(Bk

h)
≤ CL(H+ 1)diam(Bk

h), 

and so (xc, ac) lies in the set Zr
h for r � diam(Bk

h) by rede-

fining the constant CL. The final regret bound follows 
by replacing the clipping operator with the indicator 
that the center of the ball lies in the near-optimal set 
and considering the scaling of the confidence terms.

This regret derivation for our adaptive discretization 
algorithm serves in contrast to typical guarantees seen 
for “zooming algorithms” in contextual bandits (Sliv-
kins 2014). In particular, in contextual bandits, we can 
show that a ball B is sampled proportional to its diame-
ter for action elimination (essentially eliminating the 
second term in Equation (13)). However, in RL, we 
have to account for downstream uncertainty, requiring 
a more nuanced analysis using the clipping argument 
for the final regret bound.

5.4. Bound on Time and Storage Complexity 

(Online Appendix F)
We use properties of the splitting rule in order to gener-
ate bounds on the size of the partition that are needed 
for the time and space complexity guarantees. In partic-
ular, we formulate these quantities as a linear program 
(LP) in which the objective function is to maximize a 
sum of terms associated with a valid adaptive partition 
(represented as a tree) constructed by the algorithm. 
The constraints follow from conditions on the number 
of samples required before a ball is split into subse-
quent child balls. To derive an upper bound on the 
value of the LP, we find a tight dual feasible solution. 
This argument can be more broadly useful and modi-
fied for problems with additional structures by includ-
ing additional constraints into the LP. Start by defining 
a quantity n+(ℓ(B)) as an upper bound of the number 
of times a ball at level ℓ(B) is sampled before it is 
split (which we call the splitting thresholds). Based on 

the splitting rule, we have that n+(ℓ(B)) ≈ diam(B)�1=α, 
where α�is determined by the dominating term of the 
bonus terms (see Section 3.4). However, noting that 

diam(B) ≈ 2�ℓ(B) we get that n+(ℓ(B)) ≈ 2γℓ(B).

Lemma 5. Consider any partition Pk
h for any k ∈ [K], h ∈

[H] induced with splitting thresholds n+(ℓ(B)) � φ2γℓ(B)

and consider any “penalty” vector {aℓ}ℓ∈N0 
that satisfies 

aℓ+1 ≥ aℓ ≥ 0 and 2aℓ+1=aℓ ≤ n+(ℓ)=n+(ℓ � 1) for all ℓ ∈ N0. 

Define ℓ? � inf{ℓ|2d(ℓ�1)n+(ℓ � 1) ≥ k}. Then,

X

∞

ℓ�0

X

B∈Pk
h:ℓ(B)�ℓ

aℓ ≤ 2dℓ?aℓ?

One immediate corollary of Lemma 5 is a bound on the 

size of the partition Pk
h for any h and k by taking aℓ � 1 

for every ℓ. In particular, one can show the following.

Corollary 1. For any h and k, we have that |Pk
h| ≤ 4d k

φ

� � d
d+γ�

and ℓ? ≤ 1
d+γ log2(k=φ) + 2:

These results are used to bound the storage and time 
complexity of the algorithms by noting the dominating 
complexity terms in the algorithm description, writing 
the total accumulation by formulating them as an LP 
and applying the result from Lemma 5.

6. Conclusion
In this paper, we present a unified analysis of model- 
based and model-free reinforcement learning algorithms 
using adaptive discretization. In worst case instances, 
we show regret bounds for our algorithms with expo-
nential improvements over other online nonparametric 
RL algorithms (i.e., the underlying model is Lipschitz 
continuous with a known metric of the space). This 
is partially a result of our instance-dependent regret 
bounds, exhibiting how the discretization and regret 
scales with respect to the zooming dimension of the 
problem instead of the ambient dimension. We pro-
vided simulations comparing model-based and model- 
free methods using adaptive and fixed discretizations of 
the space on several canonical control problems. Our 
experiments show that adaptive partitioning empirically 
performs better than fixed discretizations in terms of 
both faster convergence and lower memory.

One future direction for this work is analyzing the dis-
crepancy between model-based and model-free meth-
ods in continuous settings as model-based algorithms so 
far have suboptimal dependence on the dimension of 
the state space. Whereas in Online Appendix G, we give 
specific instances in which the regret of ADAMB matches 
ADAQL, in general, the regret has additional dependence 
on dS because of uniform Wasserstein concentration on 
the state space. Moreover, we are interested in deriving 
the “optimal” space and time complexity for an algorithm 
in continuous settings. We also believe that new hard-
ware techniques can help improve the complexities of 
implementing these adaptive discretization algorithms in 
practice.
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