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Abstract. Discretization-based approaches to solving online reinforcement learning prob-
lems are studied extensively on applications such as resource allocation and cache manage-
ment. The two major questions in designing discretization-based algorithms are how to
create the discretization and when to refine it. There are several experimental results inves-
tigating heuristic approaches to these questions but little theoretical treatment. In this
paper, we provide a unified theoretical analysis of model-free and model-based, tree-based
adaptive hierarchical partitioning methods for online reinforcement learning. We show
how our algorithms take advantage of inherent problem structure by providing guarantees
that scale with respect to the “zooming” instead of the ambient dimension, an instance-
dependent quantity measuring the benignness of the optimal Qj function. Many applica-
tions in computing systems and operations research require algorithms that compete on
three facets: low sample complexity, mild storage requirements, and low computational
burden for policy evaluation and training. Our algorithms are easily adapted to operating
constraints, and our theory provides explicit bounds across each of the three facets.
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1. Introduction

Reinforcement learning (RL) is a popular approach for
sequential decision making and is successfully applied
to games (Silver et al. 2016) and systems applications
(Alizadeh et al. 2010). In these models, a principal inter-
acts with a system that has stochastic transitions and
rewards. The principal aims to control the system either
online through exploring available actions using real-
time feedback or off-line by exploiting known proper-
ties of the system and an existing data set.

These sequential decision-making problems are consid-
ered across multiple communities. As data has become
more readily available and computing power improves,
the new zeitgeist for these fields is developing data-
driven decision algorithms: algorithms that adapt to the
structure of information, constraints, and objectives in any
given domain. This paradigm highlights the importance
of taking advantage of data collected and the inherent
structure and geometry of the problem to help algorithms
scale to complex domains.

With the successes of neural networks as a universal
function approximator, RL has received a lot of interest in

the design of algorithms for large-scale systems using pa-
rametric models (Jiang et al. 2017, Mozur 2017). Whereas
these results highlight the power of RL in learning
complex control policies, they are infeasible for many
applications arising in operations research and comput-
ing systems (Hubbs et al. 2020). As an example, the
AlphaGo Zero algorithm that mastered Chess and Go
from scratch was trained over 72 hours using four tensor
processing units and 64 graphics processing units (Silver
et al. 2016). The limiting factor in using these large-scale
parametric algorithms is implementing regression oracles
or gradient steps on computing hardware and the large
storage burden in maintaining the models. These issues
don’t typically arise in game-based or robotics applica-
tions. However, they are key algorithmic ingredients that
are ignored in theoretical treatment analyzing storage
and time complexity. Moreover, these models require
strict parametric assumptions, suffer under model mis-
specification, and do not adapt to the underlying geome-
try of the problem.

In contrast, RL has received interest in designing
small-scale and efficient controllers for problems arising
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in operations research (OR) and computing systems,
including memory systems (Alizadeh et al. 2010) and
resource allocation in cloud-based computing (Ipek et al.
2008). Their engineering approaches use discretizations
at various levels of coarseness to learn estimates in a
data-efficient manner. Common to these examples are
computation and storage limitations on the devices used
for the controller, requiring algorithms to compete on
three major facets: efficient learning, low computation,
and low storage requirements—a trifecta for RL in OR.
Motivated by this paradigm, we consider nonpara-
metric discretization (or quantization) techniques that
map complex problems to discrete ones. These algo-
rithms are based on simple primitives that are easy to
implement on hardware, can leverage existing hard-
ware quantization techniques, and have been tested
heuristically in practice (Uther and Veloso 1998; Pyeatt
et al. 2001; Lolos et al. 2017; Aratjo et al. 2020a, b). A
key challenge in this approach is picking a discretiza-
tion to manage the trade-off between the discretization
error and the errors accumulated from solving the dis-
crete problem. Moreover, if the discretization is fixed a
priori, then the algorithm cannot adapt to the underly-
ing structure in the problem, and so adaptive discreti-
zations are necessary for instance-specific gains. We
develop theoretical foundations for an adaptive discre-
tization of the space, in which the discretization is only
refined on an as needed basis using collected data. We
answer the two important aspects of designing adap-
tive discretization algorithms: how to create the discre-
tization and when to refine it by exploiting the metric
structure induced by specific problem instances.

1.1. Our Contributions

We provide a unified analysis of ADAMB and ApaQL,
model-based and model-free algorithms that discretize
the state action space in a data-driven way so as to mi-
nimize regret. This extends the well-studied adaptive
discretization techniques seen in contextual multiarmed
bandits to dynamic environments (Slivkins 2014, Klein-
berg et al. 2019). Moreover, it illustrates that adaptive
discretization can be viewed as an all-purpose tool for
improving fixed discretization algorithms to better take
advantage of problem structure.

These algorithms require that the state and action
spaces are embedded in compact metric spaces, and the
problem primitives are Lipschitz continuous with respect
to this metric. This encompasses discrete and continu-
ous state action spaces with mild assumptions on the
transition kernel and rewards. Our algorithms only re-
quires access to the metric unlike prior nonparametric
algorithms that require access to simulation oracles or
impose additional assumptions on the action space to
be computationally efficient. In fact, the assumption
that |A| < oo is quite common in theoretical treatment
for simplicity. However, this ignores the technical and

computational hurdles required. Our algorithms avoid
this issue through the efficient discretization of the ac-
tion space.

We show that ADAMB and ApaQL achieve near opti-
mal dependence of the regret on the zooming dimension
of the metric space, an instance-dependent quantity that
measures the intrinsic complexity and geometry of the
problem by scaling with the dimension of the level sets
of the optimal Qj, function instead of the ambient dimen-
sion. Our main result is summarized in the following
informal theorem.

Informal Theorem 1. For an H-step MIDP played over K
episodes, our algorithms achieve regret

Zmax+1

ApaQL @ HY2Kam

Zmax+dg—1

ADAMB : HB3/2K zmarvis

RecreT(K) < ds > 2

Zmax+1

ADAMB :  H32Kcuw ds <2

where ds is the covering of the state space and z ., = maxyzy
is the worst case over the step h zooming dimensions z,.

Our bounds are uniformly better in terms of de-
pendence on K and H than the best existing bounds for
nonparametric RL (see Table 1). Our bounds exhibit ex-
plicit dependence on the zooming instead of the ambient
dimension, leading to exponential improvements in
sample complexity because the zooming dimension is
trivially upper bounded by the ambient dimension. In
addition, AbAQL matches the lower bound up to polylo-
garithmic factors, whereas ADAMB suffers from addi-
tional ds terms when ds > 2. In general, the lower bound
shows that this exponential scaling is necessary in non-
parametric settings (a fundamental trade-off of using
nonparametric algorithms), but note that the exponential
scaling is with respect to the zooming instead of ambient
dimensions. We also show that ADAMB matches the
bounds of AbAQL under additional assumptions of the
transition distribution.

In addition to having lower regret, AbAMB and ApaQL
are also simple and practical to implement with low
query complexity and storage compared with other
techniques (see Table 1). To the best of our knowledge,
our algorithms are the first to have provably sublinear
regret with improved time and storage complexity in
the setting of continuous state and action MDPs. We
complement our theory with synthetic experiments com-
paring model-free and model-based algorithms using
both fixed and adaptive discretizations. We picked ex-
periments of varying complexity in low-dimensional
spaces, including those with provably smaller zooming
dimensions, to help highlight the adaptive discreti-
zations matching the level sets of the underlying Q5
value. Through our experiments, we measure the three
aspects of the trifecta for RL in OR, comparing the per-
formance of these algorithms in terms of regret and
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Table 1. Comparison of Our Bounds with Several State-of-the-Art Bounds for Nonparametric RL

Algorithm Type Regret Time Space
ADAMB (ds > 2) MB HP2K s HK™ HK
ApAMB (ds <2) MB 2K HK s HK'
ADAQL MF HO2Kaes HKlog,(K) HK#
KerNEL UCBVI (Domingues et al. 2020) MB H? Kath HAK? HK
NET-Basep Q-LEARNING (Song and Sun 2019) MF H3/2Ki HK? HK
NEeT-Basep UCBVI MB H3/2K34 H?K? HK
Lower BounDp — H K% _ _

Notes. d is the covering dimension of the state-action space, ds is the covering dimension of the state space, H is the
horizon of the MDP, and K is the total number of episodes. Under “Type” we denote whether the algorithm is
model-based (MB) or model-free (MF). As implementing KerNeL UCBVI (Domingues et al. 2020) is unclear under
general action spaces, we specialize the time complexity under a finite set of actions of size A, but more details are

included in their paper. See Online Appendix H for a discussion on NET-Basep UCBVIL

time and space complexity. Our experiments show that,
with a fixed discretization, model-based algorithms out-
perform model-free ones and suffer from worse storage
and computational complexity. However, when using an
adaptive partition of the space, model-based and model-
free algorithms perform similarly.

1.2. Motivating Examples

Reinforcement learning has enjoyed remarkable suc-
cess in recent years in large-scale game playing and
robotics. These results, however, mask the high under-
lying costs in terms of computational resources, energy
costs, training time, and hyperparameter tuning that
their demonstrations require (Mnih et al. 2013, 2016; Sil-
ver et al. 2016, 2017). On the other hand, RL is applied
heuristically in the following problems.

1.2.1. Memory Management. Many computing systems
have two sources of memory: on-chip memory, which
is fast but limited, and off-chip memory, which has
low bandwidth and suffers from high latency. Design-
ing memory controllers for these systems requires a
scheduling policy to adapt to changes in workload and
memory reference streams, ensuring consistency in the
memory and controlling for long-term consequences
of scheduling decisions (Alizadeh et al. 2010, 2013;
Chinchali et al. 2018).

1.2.2. Online Resource Allocation. Cloud-based clus-
ters for high-performance computing must decide how
to allocate computing resources to different users or
tasks with highly variable demand. Controllers for these
algorithms make decisions online to manage the trade-
offs between computation cost, server costs, and delay
in job completions (Ipek et al. 2008, Nishtala et al. 2013,
Lykouris and Vassilvitskii 2018, Tessler et al. 2022).

Common to these examples are computation and stor-
age limitations on the devices used for the controller.

1. Limited memory: As any RL algorithm requires
memory to store estimates of relevant quantities, algo-
rithms for computing systems must manage their stor-
age requirements, so frequently needed estimates are
stored in on-chip memory.

2. Power consumption: Many applications require
low power consumption for executing RL policies on
general computing platforms.

3. Latency requirements: Problems for computing sys-
tems (e.g., memory management) have strict latency
quality of service requirements that limits reinforcement
learning algorithms to execute their policy quickly.

A common technique in these domains is cerebellar
model articulation controllers (CMACs) or other quan-
tization and hashing based methods, which are used in
optimizing controllers for dynamic RAM access (Ipek
et al. 2008, Nishtala et al. 2013, Lykouris and Vassilvit-
skii 2018). The CMAC technique uses a random discre-
tization of the space at various levels of coarseness
combined with hashing. The other approaches are hier-
archical decision trees, in which researchers investigate
splitting heuristics for refining the adaptive partition by
testing their empirical performance (Uther and Veloso
1998, Pyeatt and Howe 2001, Lolos et al. 2017). These
quantization-based algorithms address the computa-
tion and storage limitations by allowing algorithm im-
plementations to exploit existing hashing and caching
techniques for memory management because the algo-
rithms are based on simple look-up tables. Our algo-
rithms are motivated by these approaches, taking a first
step toward designing theoretically efficient reinforce-
ment learning algorithms for continuous spaces.

1.3. Related Work

There is an extensive and growing literature on rein-
forcement learning; we highlight the work that is closest
to ours, but for more extensive references, see Sutton
and Barto (2018), Agarwal et al. (2019), Puterman (1994),
and Powell (2022) for RL and Bubeck and Cesa-Bianchi
(2012) and Slivkins (2019) for bandits.
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1.3.1. Tabular RL. There is a long line of research on the
regret for RL in tabular settings. In particular, the first
asymptotically tight regret bound for tabular model-based
algorithms with nonstationary dynamics is established to

be O(H%/?+/SAK), where S and A are the size of the state
and action spaces, respectively (Azar et al. 2013). These
bounds were matched (in terms of K) using an “asyn-
chronous value-iteration” (or one-step planning) ap-
proach (Azar et al. 2017, Efroni et al. 2019), which is
simpler to implement (Ipek et al. 2008, Nishtala et al.
2013, Lykouris and Vassilvitskii 2018, Tessler et al.
2022). This regret bound was also matched (in terms of
K) for model-free algorithms (Jin et al. 2018). More
recently, the analysis was extended to develop instance-
dependent bounds as a function of the variance or
shape of the underlying Q; function (Simchowitz and
Jamieson 2019, Zanette and Brunskill 2019). Our work
extends this latter approach to continuous spaces using
adaptive discretization to obtain instance-specific guar-
antees scaling with the zooming dimension instead of
the ambient dimension of the space.

1.3.2. Parametric Algorithms. For RL in continuous
spaces, several recent works focus on the use of linear
function approximation (Osband and Van Roy 2014; Du
et al. 2019; Wang et al. 2019, 2020; Zanette et al. 2019; Jin
et al. 2020; Chen and Zhang 2021). These works assume
that the principal has a feature extractor under which
the process is well-approximated by a linear model. In
practice, these algorithms require an initial “feature
engineering” process to learn features under which the
problem is linear, and the guarantees then hinge upon a
perfect construction of features. If the requirements are
violated, it is shown that the theoretical guarantees
degrade poorly (Du et al. 2020). Other work extends this
approach to problems with bounded eluder dimension
and other notions of dimension of parametric problems
(Russo and Van Roy 2013, Wang et al. 2020).

1.3.3. Nonparametric Algorithms. In contrast, nonpara-
metric algorithms only require mild local assumptions
on the underlying process, most commonly that the Q-
function is Lipschitz continuous with respect to a given
metric. For example, Yang et al. (2019) and Shah and Xie
(2018) consider nearest neighbor methods for determin-
istic, infinite horizon discounted settings. Others assume
access to a generative model (Kakade et al. 2003, Henaff
2019, Shah et al. 2020).

The works closest to ours concern online algorithms
for finite horizon problems with continuous state action
spaces (see also Table 1). In model-free settings, tabular
algorithms are adapted to continuous state-action spaces
via fixed discretization (i.e., e-nets) (Song and Sun 2019).
In model-based settings, researchers tackle continuous
spaces using kernel methods based on either a fixed

discretization of the space (Lakshmanan et al. 2015) or
with smooth kernel functions (Domingues et al. 2020).
Whereas the latter learns a data-driven representation of
the space, it requires solving a complex optimization
problem over actions at each step and, hence, is efficient
mainly for finite action sets (more discussion on this is
in Section 4). Finally, adaptive discretization is success-
fully implemented and analyzed in model-free and
model-based settings (Sinclair et al. 2019, Cao and
Krishnamurthy 2020, Sinclair et al. 2020). This work
serves as a follow-up providing a unified analysis between
the two approaches, improved performance guarantees
for ADAMB, instance-dependent guarantees scaling with -
the zooming instead of the ambient dimension, and addi-
tional numerical simulations.

1.3.4. Discretization-Based Approaches. Discretization-
based approaches to reinforcement learning are explored
heuristically in different settings. One line of work in-
vestigates adaptive basis functions, in which the para-
meters of the functional model (e.g., neural network) are
learned online, simultaneously adapting the basis func-
tions (Menache et al. 2005, Keller et al. 2006, Whiteson and
Stone 2006). Similar techniques are done with soft state
aggregation (Singh et al. 1995). Most similar to our algo-
rithm, though, are tree-based partitioning rules, which
store a hierarchical partition of the state and action space
that is refined over time (Uther and Veloso 1998, Pyeatt
and Howe 2001, Lolos et al. 2017). These were tested heu-
ristically with various splitting rules (e.g., Gini index, etc.),
and instead, our algorithm splits based off the metric and
statistical uncertainty in the estimates. Researchers also
extend our adaptive discretization techniques to using a
single partition in infinite horizon time-discounted set-
tings, and the algorithm is benchmarked on various con-
trol tasks in OpeN Al showing comparative performance
between discretization and deep learning techniques (Ara-
djo et al. 2020a, b).

1.4. Outline of Paper

Section 2 introduces the model, nonparametric assump-
tions, and the zooming dimension. Our algorithms,
ApAQL and ApaMB, are described in Section 3 with the
regret bound and proof sketch given in Sections 4 and 5,
respectively. Proof details are included in Online Ap-
pendices A-F with miscellaneous technical results in
Online Appendix I. The experimental results are in
Online Appendix J.

2. Preliminaries

2.1. MDP and Policies

We consider the online episodic reinforcement learning
setting, in which an agent is interacting with an underly-
ing finite-horizon Markov decision process (MDP) over
K sequential episodes, denoted [K]={1,...,K}(Puter-
man 1994).
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Definition 1. An episodic MDP is given by a five-tuple
(S, A,H,T,R), where the horizon H is the number of
steps indexed [H]={1,2,...,H} in each episode and
(S,.A) denotes the set of states and actions in each step.
State transitions are governed by a collection of transi-
tion kernels T = {T},(:|x, @) }je(n), ves, se.4» Where Ty, (- x,a)
€ A(S) gives the distribution over states in S if action
a is taken in state x at step h. The instantaneous re-
wards are bounded in [0, 1], and their distributions are
specified by a collection of parameterized distributions
R =A{Ru}tnermy, R : SX A — A([0,1]). We let ry(x,a) =
E, R, (xa[7] denote the mean reward.

The agent interacts with the MDP by selecting a policy,
and a policy 7 is a sequence of distributions m = {m,|h
€ [H]}, where each 71, : S — A(A) is a mapping from a
given state x € S to a distribution over actions in A.

2.2. Value Function and Bellman Equations

For any policy 7, let Ajf denote the (potentially random)
action taken in step h under policy 7, that is, Aj =
TLh(XZ).

Definition 2. We define the policy value function at
step /1 under policy 7 to be the expected sum of future
rewards under policy 7 starting from Xj, = x in step h
until the end of the episode, which we denote Vj : S
— R. Formally,

H

Rh/ Xh =X for Rh/ ~ Rh/ (Xh/,AZ,).
h

Vi(x) = ]El
W=

@

We define the state-action value function (or Q-function)
Qf :SxA—R at step h as the sum of the expected
rewards received after taking action A, = a at step h
from state X;, = x and then following policy 7 in all sub-
sequent steps of the episode. Formally,

H
Qi (x,a) :== ry(x,a) +]El Z Ry,

W =h+1
for Rh/ ~ Rh'(Xh’/AIZ[’)' (2)

Xh+1 ~ Th('lx/ ﬂ)]

Under suitable assumptions on S X A there exists a
deterministic optimal policy * that gives the optimal
value V;(x) = sup, V] (x) forall x € S and h € [H] (Puter-

man 1994). For ease of notation, we denote Q* = Q™ and

V* = V™. Recall the Bellman equations (Puterman 1994)
which state that

i () = Qf (x, 71, (x))
Qri(x,a) = ry(x,@) + B[V, (X)) Xy = x, Ay = a]
V(x,a)eSx A
Vxes. ©)]

Vxes§

V() =0

For the optimal policy 7*, it additionally holds that
V() = maxeesQ; (x,0).

2.2.1. Online Interaction Structure. We consider an agent
interacting with the MDP in the online setting. At the
beginning of each episode k, the agent fixes a policy 7*
for the entire episode and is given an initial (arbitrary)
state XX € S. In each step h € [H], the agent receives the
state X}, picks an action Af = 7tf(X¥), receives reward
RE ~ Ry (Xk, AF), and transitions to a random state X, ~
T (| Xk ,A’,;) sampled from the transition distribution.
This continues until the final transition to state X},,,, at
which point the agent chooses policy 7! for the next
episode after incorporating observed data (including the
rewards and transitions), and the process is repeated.
The goal is to maximize the total expected reward

S, VI (XY). We benchmark the agent on the regret:
the additive loss over all episodes the agent experiences
using the agent’s policy instead of the optimal one. As
the policies cannot be anticipatory, we introduce Fj =

o((X}, AY R e <k, X5) to denote the information
available to the decision maker at the start of episode k.

Definition 3. The Recrer for an algorithm that deploys
a sequence of Fy-measurable policies {7"};(x) given a
sequence of initial states {X¥ }erk) is defined as

K
Recren(K) = Y (v;(xf) -V (xlf)). @)
k=1

Our goal is to develop algorithms that have regret
RecreT(K) growing sublinearly in K and low per-step
storage and computational requirements.

2.3. Metric Space and Lipschitz Assumptions

In contrast to parametric algorithms, our algorithms
require flexible assumptions on the underlying process.
At a high level, we require the algorithm to have access
to a metric on the state action space under which the
underlying Qj function (or rewards and dynamics) are
Lipschitz continuous. This is well-motivated in prob-
lems in continuous domains (in which the metric can
be taken to be any £, metric on the Euclidean space).
For large discrete spaces, it requires an embedding of
the space in a metric space that encodes meaningful
relationships between the discrete states and actions
(Ipek et al. 2008). Trivially, any problem can be em-
bedded in a metric space in which the metric is taken to
be the difference of Q; values, but this requires know-
ing the optimal values for determining the adaptive
partition. Recent work investigates the options of select-
ing a metric in terms of its induced topological structure
on the space (Le Lan et al. 2021).
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We assume the state space S and the action space A
are each separable compact metric spaces with metrics
Ds and Dy4. We assume that the transition kernels
{Tu(-|x, @)}, sesx4 are Borel measures with respect to the
topology induced by Ds on S. These metrics impose a
metric structure D on Sx A via the product metric
or any subadditive metric such that D((x,a),(x’,a")) <
Ds(x,x")+Dla,a’).

The covering dimension of a compact metric space
X is defined as dy = min{d > 0:N,(X) <cr? Vr>0}
with N,(&X) as the r-packing number of the set X. This
metric structure on & X A ensures that the covering
dimension of S X A is at most d =ds+d 4, where dg
and d 4 are the covering dimensions of S and A, respec-
tively. For notational brevity we omit with respect to
which metric the packing numbers are computed as it
should be clear from the context.

We assume without loss of generality that S X A has
diameter one, and we denote the diameter of Y C S as
D(Y) =sup,, A,(x,y)eYzD((x’ a),(y,a)) and overload nota-
tion and use diam(B) = max{D((x,a), (v, b))|(x,a), (y,b) €
B} to be the diameter of a region B C S X A. For more
information on metrics and covering dimension, see Sliv-
kins (2014), Kleinberg et al. (2019), Sinclair et al. (2019),
and Royden and Fitzpatrick (1988) for a summary.

To motivate the discretization approach, we also as-
sume Lipschitz structure on the system. This can come
in two forms, which we call model-free Lipschitz and
model-based Lipschitz (required for ADAQL and ApAMB,
respectively). We start with model-free Lipschitz, which
assumes the underlying Q; and V} functions are Lip-
schitz continuous.

Assumption 1 (Model-Free Lipschitz). The optimal Qj
and V}; are Lipschitz continuous with respect to D and D,
that is, for every x,x’,a,a’ ,h € S?x A% x [H],

|Qi(x,a) — Qi(x", )| < LyD((x,a), (x,a"))
|Vii(x) = Vi(x')| < LvDs(x,x').

The next assumption, model-based Lipschitz, puts Lip-
schitz assumptions on the underlying rewards and dy-
namics of the system.

Assumption 2 (Model-Based Lipschitz). The average
reward function ry(x,a) is Lipschitz continuous with re-
spect to D, and the transition kernels T, (-|x,a) are Lipschitz
continuous in the 1-Wasserstein metric dy with respect to
D,that is, for every x,x’,a,a’,h € S% x A x [H],

Iru(x,a) — m(x’,a")| < L'D((x,a), (x,a"))
dw(Ti(-|x,a), Tu(|x’,a")) < LtD((x,a), (x",a")).

It’s important to note that Assumption 2 implies Ass-
umption 1.

Lemma 1. Suppose that Assumption 2 holds. Then, As-
sumption 1 holds with Ly = Y3, L, Lk

The next assumption is similar to previous literature for
algorithms in general metric spaces (Slivkins 2014, Klein-
berg et al. 2019, Sinclair et al. 2019). This assumes access to
the similarity metrics. Learning (or picking) the metric is
important in practice but beyond the scope of this paper
(Wanigasekara and Yu 2019, Le Lan et al. 2021).

Assumption 3. The agent has oracle access to the similarity
metrics via several queries that are used by the algorithm.

In particular, AbAMB and ApAQL require access to
several covering and packing oracles that are used
throughout the algorithm. For more details on the
assumptions required and implementing the algorithm
in practice, see Online Appendix H.

2.4. Zooming Dimension

Our theoretical guarantees scale with respect to an
instance-dependent zooming dimension of & X A in-
stead of the ambient dimension. This serves as an ana-
log to the zooming dimension originally appearing in
instance-dependent bounds in the bandit literature
(Slivkins 2014) extended to dynamic settings and a con-
tinuous analog to instance-dependent guarantees de-
veloped for RL in the tabular setting (Simchowitz and
Jamieson 2019). Analyzing the zooming dimension for
reinforcement learning problems is much more techni-
cal than in the simpler bandit setting because of having
to account for the dynamics of the problem. We start by
introducing the concept of a Gap, a quantity measuring
the suboptimality of a given state action pair (x,a) €
SXA.

Definition 4. For any (x,a) e Sx A and he[H], the
stage-dependent suboptimality gap is GaPy(x,a) = Vj;(x)
- QZ(x/ ﬂ).

One can interpret GAPy(x, 4) as a measure of regret the
algorithm experiences upon taking action a in state x in
step 1 instead of the optimal action. This definition sim-
plifies to the same definition of car developed in the
contextual bandit literature when the transition distri-
bution of the problem is independent of the given state
and action.

In bandits, existing results show that adaptive dis-
cretization algorithms only discretize a subset of the
entire state and action set, defined as the set of points
whose gap is small. Whereas we later see in Section 5
that the same does not extend to reinforcement learn-
ing, we are still able to bound the regret of the algo-
rithm based on the size of a set of near optimal points.

Definition 5. We define the near-optimal set of S x A
for a given value r as

Z; ={(x,a) e S X A| cary(x,a) < Cr(H +1)r},
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where C;, is an absolute constant depending on the Lip-
schitz constants of the problem.

Clearly, we have that Z; C S X A. However, for many
problem instances, Z; can be a (much) lower dimen-
sional manifold. Finally, we define the step /1 zooming
dimension as follows.

Definition 6. The step /1 zooming dimension with con-
stant ¢, is zj, such that

zp =1inf{d > 0 : N,(Z},) < ar~® Vr> 0}
We also denote z,,,, = maxye[pjz; to be the worst case
zooming dimension across all of the steps.

To give some intuition behind the zooming dimen-
sion, first notice that, whereas the covering dimension is
focused on covering the entire metric space, the zooming
dimension focuses instead on covering a near-optimal
subset of it. This serves as a way to quantify the benign-
ness of a problem instance. Whereas it is trivially no
larger than the zooming dimension, in many settings, it
can be significantly smaller.

Lemma 2. The following examples show improved scaling
of the zooming dimension over the ambient dimension:

— Linear Qj: Suppose that Qj(x,a) = 0" (x,a) for some
vector € R4 with S ¢ R™ and A C R™ under any ty
norm. Then, z, <dgs +d 4 —|0.4llo-

— Low-dimensional optimality: Suppose that there exists a
set Y C A that contains all optimal or near-optimal actions
for every state. Then, z, < ds + dy.

— Strongly concave: Suppose that the metric space is S =
[0, 1]d5 and A = [O,l]d*‘ under any €, metric. If Q;(x,a) is
C? smooth, and for all x € S, we have that Q%(x,-) has a
unique maxima and is strongly concave in a neighborhood

around the maxima, then zj, < dgs + %A.

Analyzing the zooming dimension in reinforcement
learning is more complicated than in bandit settings as
you have to show properties of the Qj function, which is
coupled by the dynamics of the system. In the experi-
ments in Online Appendix ], we highlight problem instan-
ces with improved bounds on the zooming dimension.

Note that all of the examples presented in Lemma 2
have zj, > ds. This is as the zooming dimension does
not take into account the distribution over states that
are visited by the optimal policy. As such, scaling with
respect to ds is inevitable because the set {(x, 77j;(x)) : x €
S} is contained in Zj, for any r > 0. This results in the fol-
lowing lower bound on the zooming dimension.

Lemma 3. For any h, we have that z,, > ds — 1.

Even in the simpler contextual multiarmed bandit
model, the zooming dimension necessarily scales with the
dimension of the context space regardless of the support
or mass over the context space the context distribution
places. Whereas, analytically, we cannot show gains in

the state space dimension, we see empirically in Online
Appendix ] that the algorithms only cover the state space
in regions the optimal policy visits, but it is unclear how
to include this intuition formally in the definition. Revis-
iting new notions of “instance-specific” complexity is an
interesting direction for future work in both tabular and
continuous RL.

Algorithm 1 (Adaptive Discretization for Online Reinfor-
cement Learning (AbaMB, ApaQL))
1: procedure ADAPTIVE DISCRETIZATION FOR ONLINE RL(S,
A,D,H,K,0)
Initialize partitions P) =S x A for h € [H], esti-
mates @() = VZ(-) =H-h+1
3: foreachepisodek «1,...Kdo
4: Receive starting state X%
5
6

»

foreachsteph«1,...,Hdo
Observe X} and determine ReLevantf(X¥) =

{BeP{ !Xk eB}

7: Greedy selection rule: pick Bf =
—k—1
arg maXBeRELEVANTﬁ(X;)Qh (B)

8: Play action Af = Ez(B’fl) associated with ball
BZ ; receive R;; and transition to X’,; 1

9: Urpate Estivates(XE, AX, XK RE BF) via Apa

MB or ApaQL
10: if ConreX(Bf) < diam(Bf) then REFINE PARTL-

TION (BY)

11: procedure RErFINE PARTITION(B, £, k)

12: Construct P(B) = {By,...,B;} as the children of
B in the hierarchical partition

13:  Update Pf =P, 1 UP(B)\B

14:  For each B;, initialize estimates from parent ball

15: procedure UrpaTE EstiMates (ADAMB) (XK, AF,

XZJrl’Rﬁ’BZ)

16: for each < 1,...H and Be P} do: Update
éﬁ(B) and V’;() via Equations (6) and (8)

17: procedure UrpaTe EstiMates (ADAQL) (XK, AF,

X1/ R} B)

18:  Update QZ (B) via Equation (9).

3. Algorithm

Reinforcement learning algorithms come in two primary
forms: policy- or value-based learning. Policy-based
learning focuses on directly iterating on the policy used
in episode k 7* through optimizing over a set of candi-
date policies (Bhandari and Russo 2021). Our algorithms
use value-based learning, which focuses on constructing
estimates Q), for Q;. The algorithms then play the policy
7tk that is greedy with respect to the estimates, that is,

k-1
ik (XF) = arg maxQ,, (X}, a).
ae,

The motivation behind this approach is that the optimal
policy plays 7t;(X¥) = arg max,e 4Q}(X¥, ). The hope is
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that, when Q,, is uniformly close to Q}, then the value of
the policy used is similar to that of the optimal policy.
What distinguishes between different value-based algo-
rithms is the method used to construct the estimates for
Q;- We provide both model-based and model-free varia-
tions of our algorithm. Note that, for both algorithms,
we set VZ (x) = max,e AQZ (x,a).

1. Model-based (ADAMB) estimates the MDP param-

eters directly (1, and Tj,) and plugs in the estimates to
the Bellman Equation (3) to set

—k _ <k
Qi x,) ~ T(0a) + By e [V, (Y],

where ¥ and T denote explicit empirical estimates for
the reward and transition kernel.

2. Model-free (ADAQL) foregoes estimating the MDP
parameters directly and instead does _one-step updates
in the Bellman Equahon (3) to obtain Q,,(x,a) = (1 — )
Q 1 (x )+ a(RE+V), +1(X’,§ .1))- By decomposing the re-
cursive relationship, you get

t
6:(35/51) ~ Z (R} + v:i-i—l(Xllj-e-l))’

i=1
where t is the number of times (x, a) has been visited
and ki, ...,k denote the episodes it was visited before,
a; is the learning rate, and a! = a; ]t.:l. +1(1 —aj). Note
that this instead stores implicit estimates of the average
reward (weighted by the learning rate) and the transi-
tion kernel. The key difference is that the estimate of
the next step is not updated based on the current epi-

sode k as VZ +1(), but instead is updated based on the

_ki
episode it was visited in the past by V,,,;(:). As a result,
the learning rates are chosen to impose recency bias for

the estimates (Jin et al. 2018). If VZ +1(-) was used, the
algorithm would need to store all of the data and
recompute these quantities, leading to regret improve-
ments only in logarithmic terms. We see later that this
approach leads to substantial time and space complex-
ity improvements.

3.1. Algorithm Description

We now present our model-based and model-free rein-
forcement learning algorithms with adaptive partitioning,
which we refer to as ApDaAMB and ApaQL, respectively.
Our algorithms proceed in the following four steps:

1. (Adaptive partition) The algorithms maintain an
adaptive hierarchical partition of S X A for each step &,
which is used to represent the (potentially continuous)
state and action space. The algorithms also maintain
estimates Q,, and V), for Q; and V} over each region
that are constructed based on collected data.

2. (Selection rule) Upon visiting a state X} in step h
episode k, the algorithms pick a region containing X

that maximizes the estimated future reward 6:71
They then play any action contained in that region.

3. (Update estimates) After collecting data (Xh,Ak
RE, XF, ) with the observed reward and transitions, the

algorithms update the estimates 6’,2 and V), which are
used for the next episode.

4. (Splitting rule) After observing data and updating
the estimates, the algorithm determines whether to
subpartition the current region. This is a key algorith-
mic step differentiating adaptive discretization algo-
rithms from their uniform discretization counterparts.
Our splitting rule arises by splitting a region once the
confidence in its estimate is smaller than its diameter,
forming a bias-variance trade-off.

For a discussion on implementation details, see On-
line Appendix H. We now describe the four steps of the
algorithms in more detail.

3.2. Adaptive Partition

We first start by introducing the adaptive hierarchical
partitions that are used by the algorithm to efficiently
discretize the state and action space for learning and
computation (Munos 2014, Slivkins 2014, Kleinberg et al.
2019). For each step h € [H], ApDaAMB and ApaQL main-
tain a partition of the space S X A into a collection of
“balls,” which is refined over episodes k € [K]. We use
the term “ball” loosely here as, in general, the regions
form a nondisjoint partition of S x A. However, in our
diagrams, we use the £, metric on R? under which the
metric-balls indeed form a discrete partition of the space.
In particular, we assume that the algorithms are given
access to a hierarchical partition of S X A of the follow-
ing form.

Definition 7. A hierarchical partition of S X A is a collec-
tion of disjoint regions P, for levels £ =0, ..., K such that

— Each region Be P, is of the form S(B) x .A(B),
where S(B) ¢ S and A(B) C A.

—Po={Sx A}

— For every ¢, we have that § X A = Ugep,B.

— For every £ and B € P, we have diam(B) < 2.

— For any two regions By, B, € Py, their centers are at
a distance at least 2~ from each other.

— For each ¢ and B € P, there exists a unique A €
Pr-1 (referred to as the parent of B) such that B C A.

Whereas one can construct a hierarchical partition
for any compact metric space, a canonical example to
keep in mind is S = [0,1]%, A = [0,1]* with the infinity
norm D((x,a),(x’,a")) =||(x,a) — (x/,a’)||. Here, one
can simply take P, to be the dyadic partition of S x A
into regions of diameter 2-¢. Moreover, each hierarchical
partition admits a tree, whereby the root corresponds to
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Figure 1. (Color online) Partitioning Scheme for S X A = [01]?
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Notes. (a) Our scheme. Partition 5! is depicted with corresponding tree (showing active balls as leaves, and inactive parents as nodes with
children). The algorithm plays ball BILI in step h — 1, leading to new state X’}j Because (3571) =2, in ADAMB, we store transition estimates
Tﬁfl(~| B’,‘H) for all subsets of S of diameter 272 denoted as S, (depicted via dotted lines). The set of relevant balls RELEVANT}: (Xk) ={By4,B21,B2s}
are highlighted. S(P} ') here would be {[0, 1], [, 3], [3,1]}. (b) The partition PX from one of our synthetic experiments. The scale denotes the true
Q3 values with the diagonal corresponding to higher values. Note that the partition is more refined in areas that have higher Q3.

the node representing S x A, and there is a node for
each region B € P, with an edge to its unique parent,
which is the region A € P,_; such that BCA.

Our algorithm maintains an adaptive partition P%
over the hierarchical partition for each step /1 and k,
which can be thought of as a subtree of the original
hierarchical partition. Originally, we set 7 = {S x A}
for every h. Over time, the partition is refined by add-
ing new nodes to the subtree originating from the hier-
archical partition. The leaf nodes represent the active
balls, and inactive parent balls of B € P} corresponding
to {B’ € PX|B’ > B}; moreover, £(B) is the depth of B in
the tree (with the root at level zero). See Figure 1 for an
example partition and tree generated by the algorithm.
We let CENTER(B) = (%(B), a(B)) be the center of B.

ApaMB requires the induced state partition of the
adaptive partition when maintaining estimates of the
value function and a hierarchical partition over the state
space for maintaining estimates of the transition kernel.
We use the following notation:

S(Pf) := U S(B) and
BePf st IB’ePk, S(B)cS(B)
S(Pe) = {S(B)|B € Pr} ©)

to denote the partition over the state space induced by

the current state-action partition 75 and the hierarchical
partition over the state space at level £. For example, in

Figure 1(a), we have a representation of S(P5 ') and S,.

3.3. Selection Rule
Upon visiting state X} in step h of episode k, the algo-
rithms find all of the relevant balls defined via RELEVANTY

(X¥) = {active B € Pi!|(X},a) € B for some a € A}. The

algorithm then selects the selected ball:
= argmax 62_1 (B).

k(xk
BeReLEVANT (X[)

B

4

Once the selected ball By is chosen, the algorithm plays
either action d(Bﬁ) or any distribution over actions a
such that (X,a) € B.

3.4. Maintaining Estimates
At a high level, for each active ball B € P}, our algo-
rithms maintain the following statistics:

— nZ(B): the number of times the ball B or its ances-
tors in the tree have been selected up to and including
epis@lg k.

— Q,(B): an estimate for Qj(x,a) for points (x,a) € B.

In addition, ADAMB also maintains estimates of the
rewards and transitions via

— T5(B): the empirical reward earned from playing
actions in B and its ancestors.

— T,,(-| B): the empirical fractions of transitions from
playing actions in B and its ancestors to sets in a
27B)_coarse partition of S formed by taking the projec-
tion of the hierarchical partition to the state space
(which we denote as S(Pyg))).

3.4.1. Update Counts. After playing action Af in state
XF at step h, the algorithm transitions to a new state X,
and observes a reward R. Each algorithm then updates
the number of samples collected from the selected ball
Bf viank(Bf) = nf~1(Bf) + 1. Inaddition, AbDAMB updates
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the estimates for the average reward and transition

as follows:

k- 1(BY )T, (BE)+RE
nk(BF)

— Update T],;(-lB’,;) as follows: For each set A in a

2-B)_coarse partition of S denoted by S(P ((8r)), We set

— Update average reward: t} (Bf) =

_ —=k—1
i BT, (AIB) + 1 ca)

nk(BF)

=k
T,(A|Bf) =

This is maintaining an empirical estimate of the transition
kernel for a ball B at a level of granularity proportional
to its diameter. We use this to ensure that the error of the
estimates for a ball B is proportional to its diameter, but
this also serves as an efficient compression of the data
collected so that the algorithm isn’t required to store all
collected samples. Other model-based algorithms forego
this step, suffering from added computational and stor-
age burden by maintaining the full empirical transition
kernel (Shah and Xie 2018, Domingues et al. 2020).

With this in place, we now describe how ApAMB and
ADAQL use these statistics in order to generate esti-

—k
mates for Q,,(B) over the partition.

3.4.2. Compute Estimates—ApaMB. We start by defin-
ing confidence terms according to

Rucsk(B) = 2log(2HK? /)
ucsy,(B) ”—n’;l(B)

log(2HK?/6) ~1/ds
b oy oy i) ™)

if dg >2
4 log(2HK?/6) e log(K)
L) NG

if ds <2
Bias(B) = 4L,diam(B) + Ly/(5Lt + 4)diam(B).

TUCBZ(B) =

Here, c is an absolute constant, and the difference in
definitions of TUCB],;(') comes from the dimension de-
pendence in Wasserstein concentration. The first term
corresponds to the uncertainty in the rewards, the sec-
ond to the uncertainty in the dynamics of the environ-
ment, and the third the biases in the ball resulting from
aggregation. With these in place, we compute the esti-

mate GZ (B) according to
¥ (B) + Rucsf(B) + Bias(B) if h=H
7k . J—
Qy(B) :={ F(B)+ Ruct{(B)+E, 1 [V (A)] (6

+TUCB’,‘,(B) + Bias(B) if h<H.

The value function estimates are computed in a two-

stage process. We first define \7: (A) over the balls A €
S(P§) according to

Vi(A) :=mm{\7ﬁ(A), max 6’;(3)}. )

BePt:S(B)2A
We define V],;(x) to extrapolate the estimate across all
points in the state space in a Lipschitz manner. For each
point x € S, we define
Vi(x)= min (VZ(A’) + LVDS(x,ic(A’)). )
A’eS(PY)
The Lipschitz property is used to show concentration of
expectations over Vﬁ(-) taken with respect to transition
kernel estimates. As the support of T:(-IB) is only over
sets in S(Pyp)), we overload notation to let V]Z(A) =
V’; (¥(A)). We equivalently overload notation so that x ~

TI,;(-lB) refers to sampling over the centers associated to
balls in S('P((B)).

This corresponds to a value iteration step, in which
we replace the true rewards and transitions in the Bell-
man equations (Equation (3)) with their estimates. We
compute full updates instead of one-step updates as in
Efroni et al. (2019) for ease of presentation, but see Sin-
clair et al. (2020) for discussion on the one-step update
procedure.

3.4.3. Compute Estimates—AbaQL. Next, we discuss

the update rule Gi for ApAaQL. Fix an episode k, step F,
and ball B € P’,;. Lett= n’;l(B) be the number of times B
or its ancestors have been selected by the algorithm at
step /1 in episodes up to the current episode k. The confi-
dence terms are defined according to

2
Rucs(B) =2, | W
h
TUCBZ(B) =2, /W
h

Bias(B) = 2Ly diam(B).

The first term corresponds to the uncertainty in the
rewards, the second to the uncertainty in the dynamics
of the environment, and the third the biases in the ball
resulting from aggregation.

Upon visiting state X§ taking action Af with selected
ball Bf = B, we update the estimate for the selected ball

QZ(B ) (leaving all other estimates unchanged) via

Q,(B) = (1 — a)Q, '(B)+a(Rk+ Rucs(B)
+ V(XK )+ Tucs"(B) + Bias(B)),  (9)

I
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where Rﬁ is the observed reward, Xﬁ 41 is the state to
which the agent transitions, a; =%l is the learning
rate, and

k-1 .

V.1 (x) =min (H, max

k-1
BERELEVANT; | (x)

65&(3)) (10)

is our estimate of the expected future reward for being
in a given state. Note that, with this recursive update,

—k
we can equivalently write Q,(B) by unraveling the
recursion. First, denote

t
= [T - ay. (11)
j=i+l
Lemma 4 (Recursive Relationship for AdaQL). For any
h,k € [H] X [K] and ball B € P}, let t = nf(B) be the number
of times that B or its ancestors were encountered during
the algorithm before episode k. Further, suppose that B and its
ancestors were encountered at step h of episodes ki <k
< -+ <k < k. By the update rule of Q, we have that

t
—k e T v
Q,(B) = LjgH+> al (RZ’ + Rucs(BY) + Vi, (x5 )
i=1

+ TUCB’Z"(B’,;") + BIAS(B;;’)) .

Proof of Lemma 4. We show the claim by induction
on t = nf(B).

First suppose that t = 0, that is, that the ball B has
not been encountered before by the algorithm. Then,
initially 62(3) =H=1p-gH.

Now, for the step case, we notice that QZ(B) was
last updated at episode k;. k; is either the most recent
episode when ball B was encountered or the most
recent episode when its parent was encountered if B
was activated and not yet played. In either case, by
the update rule (Equation (9)), we have

~F ki1 t t t
QB =(1-a)Q) '(B)+a (Rﬁ + Rucs(BY)
+V2t+1 X )+ Tucs!(BY) + BIAS(B’,;*))
-1
=(1-aal  H+(1-a)d af (Rﬁf + Rucsl(BY)
i=1
+V:;1(Xﬁ;1)+ Tucs}(B}') + BIAS(Bﬁ"))

+ay (R’,‘l‘ + V];’Jrl(X’;” )+ Tucs} (Bf') + BIAS(B;?))

+

by the induction hypothesis
t
s N
= Lol + > _af (R + Rucs(Bf) + V}, (4f,,)
i=1
+ TUCBﬁ"(BIZ’) + BIAS(BZ’))

by definition of af. O

3.5. Splitting Rule

To refine the partition over episodes, we split a ball
when the confidence in its estimate is smaller than its
bias. Formally, because of the Lipschitz property on the
Q function from the assumption, we know that the bias
in the estimates is proportional to the diameter of the

ball. In episode k, step &, we split the selected ball By if
ConFf (BF) < diam(BY). (12)

Here, CONFZ(BZ) =C/ n’,;(B)“ is the dominating term of
RUCBE(B) and Tucs}(B) for some polylogarithmic con-
stant C. In particular, we take

CONF;‘I(B)

3 2
4 wADAQL : a:l
15 (B) 2
2
i={ 4Lyc log(zkHiK/é)ADAMB ds<2: a=—
1,(B) 2

ALvey/IogRHKA/O) \  \ip o0 a= L

nk(B)'/% ds

This splitting rule differs from previous analysis of
adaptive discretization for RL (Sinclair et al. 2019, 2020;
Cao and Krishnamurthy 2020) and is key for achieving
the proper instance-dependent guarantees. By taking
the splitting threshold to depend explicitly on the dom-
inating term in the confidence bounds, we are able to
upper bound the bias of the ball (proportional to the
diameter) by these confidence terms as we later see in
the regret analysis.

In episode k step 1, if we need to split B"" = Bf, then we
add the child nodes in the hierarchical partition immedi-
ately under Bf to form P%. Each child ball then inherits all
estimates and counts from its parent ball in the adaptive
partition with the exception of the estimate of the transi-
tion distribution in AbAMB .

Recall that Tf,(-|BP‘”) defines a distribution over
S(Py), whereas T) (| B) for children B of B should
define a distribution over S(Pyp). As a result, for
ADAMB, we need to additionally update the transi-
tional kernel estimates to map to a distribution over
S(Pys)) by splitting the mass equally over subregions
according to

T)(AIB) =2 T, (4" |B"™),
where B is the parent of B and A is the parent of
A, that is, the unique element in S(Pygw)) such that

A C AP Each element is weighted by 2% to split the

mass evenly as each element of S(Pyp)) has 2% chil-
dren in S(Pyp)).



Downloaded from informs.org by [128.84.126.253] on 01 August 2023, at 13:51 . For personal use only, all rights reserved.

12

Sinclair, Banerjee, and Yu: Adaptive Discretization in Online RL
Operations Research, Articles in Advance, pp. 1-17, © 2022 INFORMS

4. Main Results

In this section, we outline the main results for our paper.
We provide guarantees for ADAMB and ApAQL on all
three aspects of the trifecta for RL in OR, including regret
bounds, storage requirements, and computational com-
plexity for the algorithms. We refer the readers to Table
1 for a summary of the main results.

4.1. Regret Minimization Guarantees
We start by providing instance-dependent bounds on
the regret for ADAMB and ApaQL. These bounds explic-
itly depend on the zooming dimension as outlined in
Section 2.4 measuring the complexity of a problem in-
stance instead of the ambient dimension.

Theorem 1. Let z, be the step h zooming dimension and ds
be the covering dimension of the state space. Then, the
regret of ADAMB and ApaQL for any sequence of starting
states {XXY\, is upper bounded with probability at least
1—36 by

H zp+dg—1
HY2R+LY K ¥ ApAMB :ds > 2
h=1

H zp+1
Recrer(K) S § HY2VK+LY Ko?  ApAMB :ds <2

h=1
H zh+l
LH3/2Z K#7  ApaQL
h=1

where L=1+L, + Ly + LyLr and < omits poly-logarithmic
factors of % ,H,K, d and any universal constants.

4.1.1. Comparison Between Model-Free and Model-
Based Methods. Aswe see from Theorem 1, the bounds
for ADAMB have better dependence on the number of
steps H. This is expected as current analysis for model-
free and model-based algorithms under tabular settings
shows that model-based algorithms achieve better de-
pendence on the horizon. However, under the Lipschitz
assumptions, the constant L scales with H, so the true
dependence is masked (see Lemma 1). When we com-
pare the dependence on the number of episodes K, we
see that the dependence is worse for AbAMB, primarily
because of the additional factor of ds, the covering
dimension of the state space. This discrepancy arises as
model-based algorithms maintain an estimate of the
transition kernel, whose worst case statistical complexity
for Wasserstein concentration depends on ds when
ds > 2. In Online Appendix G we give improved bounds
for AbAMB under additional assumptions on the transi-
tion distribution that match the performance of ADAMB.

4.1.2. Metric-Specific Guarantees. Our guarantees scale
with respect to the zooming instead of the ambient di-
mension of the metric space. As the zooming dimension

can be much smaller than the ambient dimension (see
Lemma 2), our adaptive discretization algorithms are
able to achieve exponentially better regret guarantees
than other nonparametric algorithms. Moreover, in the
final regret bound in Online Appendix E, we provide
more fine-tuned metric-dependent guarantees.

4.1.3. Comparison with Other Nonparametric Meth-
ods. Current state-of-the-art model-based algorithms
achieve regret scaling such as H3K?#/24+1) (Domingues
etal. 2020). We achieve better scaling with respect to both
H and K, and our algorithm has lower time and space
complexity. However, we require additional oracle as-
sumptions on the metric space to be able to construct
packings and coverings efficiently, whereas KERNEL-
UCBVI uses the data and the metric itself. Better depend-
ence on H and K is achieved by using recent work on
concentration for the Wasserstein metric and by showing
zooming dimension guarantees. These guarantees allow
us to construct tighter confidence intervals that are inde-
pendent of H, obviating the need to construct a covering
of H-uniformly bounded Lipschitz functions as in prior
work (see Online Appendix B).

In addition, KerNeL-UCBVI uses a fixed bandwidth
parameter in the kernel interpolation. We instead keep
an adaptive partition of the space, helping our algo-
rithm maintain a smaller and more efficient discretiza-
tion and adapting to the zooming dimension of the
space instead of the ambient dimension.

4.1.4. Policy-ldentification Guarantees. Using similar
arguments from Jin et al. (2018), it is straightforward to
show sample complexity guarantees on learning a pol-
icy of a desired quality in the probably approximately
correct guarantee framework for learning RL policies
(Watkins 1989).

4.2. Lower Bounds

Existing work for the contextual bandit literature shows
that the worst case regret scales exponentially with
respect to the zooming dimension (Slivkins 2014). This
construction can be modified directly to obtain a lower
bound for the RL setting as follows.

Theorem 2. Let (S,Ds) and (A, D) be arbitrary metric
spaces and D be the product metric. Fix an arbitrary time
horizon K and number of steps H. There exists a distribu-
tion Z over problem instances on (S X A, D) such that, for
any algorithm,

H zh+1
Ez[Recrer(K)] > Q (Z Ko /log(K))
h=1

This builds on the lower bounding technique from
(Jaksch et al. 2010, Slivkins 2014, Kleinberg et al. 2019) by
using a needle-in-the-haystack example. The haystack



Downloaded from informs.org by [128.84.126.253] on 01 August 2023, at 13:51 . For personal use only, all rights reserved.

Sinclair, Banerjee, and Yu: Adaptive Discretization in Online RL
Operations Research, Articles in Advance, pp. 1-17, © 2022 INFORMS

13

consists of several actions with an expected payoff of 1
and the needle an action whose expected payoff is slightly
higher. In fact, the construction from Slivkins (2014) can
be used directly by developing a problem instance of
length H that is a sequence of H contextual bandit
problems.

4.2.1. Comparison with Lower Bounds. Comparing our
regret bounds to the lower bound, we see that ADAQL
and ApaMB (for ds <2) match the lower bound with
respect to the instance dependent zooming dimension
zp. However, AbDAMB when ds > 2 has the additionally
factors of ds as a result of maintaining the explicit esti-
mate of the transition kernel.

4.2.2. Exponential Scaling on Episodes. The regret is
always upper bounded by HK. In order for Theorem 1
to give a nontrivial regret guarantee, then the number
of episodes needs to be on the order of H*»+. This expo-
nential dependence is a fundamental factor in all esti-
mation problems with nonparametric statistics. Our
work focuses on improving on the exponent by show-
ing exponential sample complexity gains from scaling
with the zooming dimension instead of the ambient
dimension. Moreover, the algorithms require no prior
knowledge of the zooming dimension in order to ac-
hieve these regret bounds. Theoretically speaking, the
value of these results is limited when the dimension of
the space starts to grow. However, experimental results
show the value of nonparametric algorithms in practice
(Ipek et al. 2008; Aratjo et al. 2020a, b).

4.3. Space and Time Complexity Guarantees
Next, we consider the storage and time complexity of
both of our algorithms. In particular, we are able to
show the following.

Theorem 3. The storage and time complexity for ADAMB
and ApAQL can be upper bounded via
HK ApaMB :ds>2

d+dg

HK#s2  ApAMB :ds <2
HK#  ApaQL

d+2dg

HK®s  ApaMB :dg > 2

d+dg+2
TivE(K) S ¢ HK 5 ApaMB - ds <2
HKlog,(K) ApaQL.

Space(K) <

4.3.1. Comparison Between Model-Free and Model-
Based Methods. As we can see, both the storage and
time complexity for ADAQL are uniformly better than
that of AbAMB. This should not come as a surprise as,
even in the tabular setting, model-free algorithms have
better storage and computational requirements than

model-based ones as they forego maintaining and using
explicit estimates of the transition kernel.

4.3.2. Comparison with Other Nonparametric Meth-
ods. As seen in Table 1, our bounds are uniformly bet-
ter for both storage and time complexity than other
nonparametric algorithms. These gains are primarily a
result of using the discretization to maintain an efficient
compression of the data and statistical accuracy and uti-
lizing quantizing techniques to speed up the algorithms.

4.3.3. Monotone Increasing Runtime and Storage Com-
plexity. The runtime and storage complexity guarantees
presented are monotonically increasing with respect to
the number of episodes K. However, to get sublinear
minimax regret in a continuous setting for nonparamet-
ric Lipschitz models, the model complexity must grow
over episodes. In practice, one runs our adaptive discre-
tization algorithms until running out of space, and our
experiments show that the algorithms use resources
(storage and computation) much better than a uniform
discretization.

4.3.4. Comparison with Lower Bounds. To the best of
our knowledge, there are no existing results showing
storage or computational lower bounds for an RL algo-
rithm in continuous spaces.

5. Proof Sketch

We start with giving the proof sketch of Theorem 1
before going into the proof of Theorem 3 in Section 5.4.
The high-level proof of Theorem 1 is divided into three
sections. First, we show concentration, clean events,
and optimism under which our estimates constitute
upper bounds on their relevant quantities. Afterward,
we show a regret decomposition with clipping, which
upper bounds the difference between the estimated
value and the value accumulated by the algorithm as a
function of the confidence terms. This uses the clipping
operator first introduced in Simchowitz and Jamieson
(2019) for obtaining instance-dependent regret guaran-
tees in tabular settings. Finally, we use an argument to
bound the sum of confidence terms, which is used for
the final regret bound. We include a brief discussion
here on each of the three parts, but the full details are
included in the online appendix.

5.1. Concentration, Clean Events, and Optimism
(Online Appendices B and C)

ADAMB explicitly maintains estimates ¥} (B) and T],;(-| B)

for the unknown rewards and transitions of the under-

lying MDP. Similarly, ADAQL implicitly maintains esti-

mates for the rewards and transitions; the rewards are

taken via ZtaiRZ" and the transitions are taken using
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old estimates of Vﬁi instead of V:. In order to ensure
that the one-step value iteration update in Equations
(6) and (9) concentrates, we need to verify that these
estimates provide good approximations to their true
quantities. In particular, we show that

ApAMB:

{ |7 (B)—73,(x, )| < Rucs(B) + L,diam(B)

dw(Th(1B)—Ty(x,a)) < Tucsk(B) + LyLrdiam(B),
AdaQL:

t
Zai(R’;" —1y(x,a)) < RUCB’;(B)

< TUCB’,i(B).

ki
t( 1+1(Xh+1) Ey T(|X Ak [Vh+1(Y)]

—k
However, recall that our estimates for Q,(B) are con-
structed via

Q'(B) = #(B) + Rucsi(B) + T"(V,.(B))
+ TUCB’;(B)+ Bias(B),

where 7 and T vary for the two different algorithms.
As such, the concentration results leads to upper and

lower bounds on @IZ(B) via the bonus terms of the fol-
lowing form.

Informal Theorem 2. For any (h,k) € [H] x [K], B€ P}
and (x,a) € B, we have that

0<Q)(B) ~ Qjx,a) < Contf(B) + Buss(B) + s,
where ff,, is an algorithm-dependent term depending on the
estimates at step h + 1.

5.2. Upper Bound via Clipping (Online
Appendix D)

We use an argument based on the clipping operator first
introduced in Simchowitz and Jamieson (2019) for ob-
taining instance-dependent regret guarantees for tabular
reinforcement learning. We define cue[u|v]= pljsy).
The value of this function is zero until y > v, and after-
ward, it takes on the value of . We use this operator to
bound the regret at step /1 in episode k in two terms. The
first part corresponds to the clipped bonus terms and the
bias of the estimate using concentration and Lipschitz
properties of the estimation procedure. The second term
is fF. |, the algorithm-dependent quantity measuring the
downstream effects of errors at the next time step.

In particular, consider the ball B! selected by the
algorithm in step / of episode k. Letting (X, A¥) be the

state—action pair played at that time step, we note that

GAPh(Bh) = mm GAPy(x,a) < GAPh(Xh,A )
(x,a)e

= V;(X) — Q5 A7)
<Qh (B ) — Qr(XF, A¥) < Conr ' (Bf)
+ Bias(BY) + fFL.

Via some simple algebraic manipulations, we are able
to show that this gives

Q, ' (BY) — Qi(xh, A

< cup CONFh 1(B )+ Bias (B )|

h(Bh)] (1 +1> ey
H )
(13)

This expression can be thought of as bounding the one-
step regret of the algorithm by a term scaling with re-
spect to the confidence in the estimates and a second
term scaling with the downstream misestimation errors.

5.3. Regret Bound via the Splitting Rule (Online
Appendix E)

Finally, we use the previous equation to develop a final

regret bound for the algorithm. In particular, consider

the quantity Af = vl,;_l(XZ) — VI (xk). Via optimism
and the greedy selection rule, we have that

K
Recrer(K) = > Vi(X5) — VI (x5)
k=1

K K
k-1
<V - vEED) =D AL
k=1 k=1

We use the bound on Q,l (B ) — Qh(Xk,Ak) and the
definition of f{, ;! to show that, for each algorithm,

iA Z CLIP [CONFh 1(B )+ Bia (B ) GAPh(B )]

+ ( )Zélﬁ—l +ZAh+1f

where £}, is an algorithm-dependent martingale dif-
ference sequence. Using this and recursing backward,
we have that

REGRET(K)

H K
522 CLIP [CONFh Y(BX) + Bias(B)

h=1 k=1

GAPh(B h)}

+ lower order terms.

By properties of the splitting rule for Bf, diam(Bf) <
CONFh 1(B ) <4diam(B}). Moreover, the Bias(B) is of
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the form C diam(Bf) for some Lipschitz-dependent
constant C;. Thus, we get that the term inside of the
clipping operator can be upper bounded by (Cr +1)
Conre, 1 (B) < 4(Cp + 1)diam(Bf).

By definition of the clip operator, we only need to

. . K\~ GAP,(BY)
consider when 4(Cp + 1)diam(Bj) > —7*. However,

this implies that cap,(Bf) <4(H +1)(Cp, + 1)diam(Bf).
Letting (x., a.) denote the center of BF, we can show
using the Lipschitz assumption that

Gapy(xe,a.) < Gapy(Bf) + 2Lydiam(Bf)
< (4(H +1)(C +1) + 2Ly)diam(B})
< Cr(H +1)diam(BY),

and so (x,, a.) lies in the set Zj for r = diam(Bf) by rede-
fining the constant C;. The final regret bound follows
by replacing the clipping operator with the indicator
that the center of the ball lies in the near-optimal set
and considering the scaling of the confidence terms.

This regret derivation for our adaptive discretization
algorithm serves in contrast to typical guarantees seen
for “zooming algorithms” in contextual bandits (Sliv-
kins 2014). In particular, in contextual bandits, we can
show that a ball B is sampled proportional to its diame-
ter for action elimination (essentially eliminating the
second term in Equation (13)). However, in RL, we
have to account for downstream uncertainty, requiring
a more nuanced analysis using the clipping argument
for the final regret bound.

5.4. Bound on Time and Storage Complexity
(Online Appendix F)

We use properties of the splitting rule in order to gener-
ate bounds on the size of the partition that are needed
for the time and space complexity guarantees. In partic-
ular, we formulate these quantities as a linear program
(LP) in which the objective function is to maximize a
sum of terms associated with a valid adaptive partition
(represented as a tree) constructed by the algorithm.
The constraints follow from conditions on the number
of samples required before a ball is split into subse-
quent child balls. To derive an upper bound on the
value of the LP, we find a tight dual feasible solution.
This argument can be more broadly useful and modi-
tied for problems with additional structures by includ-
ing additional constraints into the LP. Start by defining
a quantity n.(£(B)) as an upper bound of the number
of times a ball at level ¢(B) is sampled before it is
split (which we call the splitting thresholds). Based on
the splitting rule, we have that n,({(B)) = diam(B) /¢,
where a is determined by the dominating term of the
bonus terms (see Section 3.4). However, noting that

diam(B) ~ 27® we get that n, (¢(B)) = 27B).

Lemma 5. Consider any partition P}, for any k € [K],h €
[H] induced with splitting thresholds n.({(B)) =¢2V“3)
and consider any “penalty” vector {a} ey, that satisfies
ape1 2 ar 20 and 2ap.1 Jap < ny(€) /m (€ — 1) for all € € Ny.
Define ¢* = inf{£|2""Vn, (¢ — 1) > k}. Then,

i Z WSZWW*

(=0 Bepf:((B)=t

One immediate corollary of Lemma 5 is a bound on the
size of the partition 7§ for any / and k by taking a, = 1
for every ¢. In particular, one can show the following.

d
Corollary 1. For any h and k, we have that |73’,j| <44 (k) d+y

¢
and U* < 75 log, (k/§) +2.

These results are used to bound the storage and time
complexity of the algorithms by noting the dominating
complexity terms in the algorithm description, writing
the total accumulation by formulating them as an LP
and applying the result from Lemma 5.

6. Conclusion

In this paper, we present a unified analysis of model-
based and model-free reinforcement learning algorithms
using adaptive discretization. In worst case instances,
we show regret bounds for our algorithms with expo-
nential improvements over other online nonparametric
RL algorithms (i.e., the underlying model is Lipschitz
continuous with a known metric of the space). This
is partially a result of our instance-dependent regret
bounds, exhibiting how the discretization and regret
scales with respect to the zooming dimension of the
problem instead of the ambient dimension. We pro-
vided simulations comparing model-based and model-
free methods using adaptive and fixed discretizations of
the space on several canonical control problems. Our
experiments show that adaptive partitioning empirically
performs better than fixed discretizations in terms of
both faster convergence and lower memory.

One future direction for this work is analyzing the dis-
crepancy between model-based and model-free meth-
ods in continuous settings as model-based algorithms so
far have suboptimal dependence on the dimension of
the state space. Whereas in Online Appendix G, we give
specific instances in which the regret of AbAMB matches
ApAQL, in general, the regret has additional dependence
on dg because of uniform Wasserstein concentration on
the state space. Moreover, we are interested in deriving
the “optimal” space and time complexity for an algorithm
in continuous settings. We also believe that new hard-
ware techniques can help improve the complexities of
implementing these adaptive discretization algorithms in
practice.
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