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 11 

Climate mitigation can bring air quality and health co-benefits. How these health impacts 12 

might be distributed across countries remains unclear. Here we use a coupled climate-13 

energy-health model to assess the country-varying health effects of a global carbon price 14 

across nearly 30,000 future states of the world (SOWs). As a carbon price lowers fossil 15 

fuel use, our analysis suggests consistent reductions in ambient fine particulate matter 16 

(PM2.5) levels and associated mortality risks in countries that currently suffer most from 17 

air pollution. For a few less polluted countries, however, a carbon price can increase the 18 

mortality risks under some of the considered SOWs, due to emissions increases from 19 

bioenergy use and land-use changes. These potential health co-harms are largely driven 20 

in our model by the scale and method of deforestation. A robust and quantitative 21 

understanding of these distributional outcomes requires improved representations of 22 

relevant deep uncertainties, country-specific characteristics, and cross-sector 23 

interactions.   24 
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Reducing fossil fuel combustion decreases emissions of carbon dioxide as well as toxic 25 

air pollutants. As a result, climate mitigation efforts are expected to bring health co-26 

benefits by improving air quality1. However, the distribution of these health impacts across 27 

countries remains poorly understood. Globally, the pollution and health impacts are 28 

already unevenly distributed at present. Half of all deaths attributable to fine particulate 29 

matter (technically PM2.5) currently occur in China and India2, due to high pollution levels 30 

combined with the large size of the exposed population. The future health burden in these 31 

countries may decrease as air pollution control policies are further tightened to reduced 32 

pollution, but may also increase if ageing trends increase the population's vulnerability to 33 

air pollution3,4.  34 

 35 

The air quality and health implications of climate mitigation depend on a range of country-36 

specific characteristics in the energy and social aspects. Reducing fossil fuel combustion 37 

often lowers pollution exposure1,5, but the magnitude of the air quality co-benefits is 38 

affected by the energy mixes. For instance, coal currently accounts for 60% of primary 39 

energy use (by EJ) in China, but only 12% in the US6, leading to greater health benefits 40 

from coal phase-out in China than US7,8. In addition, the health effects are influenced by 41 

socio-demographic patterns that determine the size and vulnerability of the exposed 42 

population. For instance, the elderly population (age 65 or greater, which is more 43 

vulnerable to air pollution exposure) is 131 million in China (9.5% of the national total 44 

population), as compared to 47 million in the US (15%)3. Understanding the differential 45 

regional health impacts of climate mitigation thus requires careful consideration of the 46 

energy and sociodemographic trends in each region1,9. 47 

 48 

Another factor complicating the relationship between climate mitigation and reduced 49 

mortality is the potential emergence of new sources of air pollution10. For example, climate 50 

mitigation pathways may involve large-scale production and consumption of bioenergy11. 51 

This can increase the emissions of PM2.5 from biomass combustion in end-use sectors12 52 

and the emissions of ammonia from upstream agricultural activities to produce bioenergy 53 

crops13,14. Besides the direct emissions from bioenergy production and consumption, 54 

bioenergy-heavy futures may also result in increased land competition15, leading to 55 
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indirect emissions from land use changes (e.g., organic carbon emissions from burning 56 

forests16). This illustrates the complexities resulting from the multi-sector and multi-57 

regional linkages of the global socioeconomic systems.  58 

 59 

How will global climate mitigation affect regional air quality and health in the 21st century? 60 

A central challenge in tackling this question is that changes in energy and socioeconomic 61 

patterns, which drive future pollution exposure and population vulnerability, are highly 62 

complex and uncertain (see Figure 1a for a generic illustration of the complex system 63 

dynamics). These uncertainties pose conceptual and methodological difficulties for 64 

assessing future air pollution effects and identifying key conditions that result in more or 65 

less equitable impact distributions. Here we address this challenge by considering many 66 

plausible future states of the world (SOWs) through an exploratory modelling approach17. 67 

We use a coupled energy-climate-health modelling framework,  linking a leading 68 

integrated assessment model (Global Change Analysis Model, GCAM18) with a reduced-69 

form air pollution model19 and a country-level health impact assessment module20, to 70 

assess the effects of a global carbon price in nearly 30,000 potential SOWs from 2015 to 71 

2100. We use a carbon price as a proxy for climate mitigation action because it is the 72 

most economically efficient way to achieve global decarbonization21 and has been 73 

adopted by many countries and subnational regions to mitigate sectoral or economy-wide 74 

emissions22.  75 

 76 

This study advances the previous literature in three main ways. First, we use an 77 

exploratory ensemble approach23,24 to sample a wide range of socioeconomic and 78 

technological uncertainties and to characterize how these uncertainties propagate 79 

through a highly interconnected, multisector system to impact air quality and health. We 80 

expand on the prior use of a small number of narrative-based scenarios  (e.g., the Shared 81 

Socioeconomic Pathways25) to drastically increase the combinations of uncertain factors 82 

being considered. By evaluating a wider range of potential future SOWs, our a posteriori, 83 

ensemble-based exploratory approach could achieve a clearer picture of the full range of 84 

the plausible health outcomes23,26,27. It also facilitates the identification of factors (or 85 

combinations of factors) which consistently contribute to health co-benefits and co-harms. 86 
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 87 

Second, we demonstrate possible pathways by which carbon pricing could result in 88 

unintended health co-harms under certain SOWs (Figure 1b). Many studies have already 89 

demonstrated the direct air quality-related health co-benefits from lowering fossil fuel uses 90 

to mitigate climate change5,28,29. However, climate mitigation may induce changes in 91 

emerging low-carbon technologies and land uses through indirect mechanisms, 92 

potentially counteracting the health benefits from lowering fossil fuels. These plausible 93 

pathways for health co-harms have not been identified in previous studies which focus on 94 

a relatively limited number of scenarios. Our large-scale ensemble approach enables a 95 

more careful analysis of potential locations and future conditions where co-harms might 96 

occur.  97 

 98 

Third, we expand on prior co-benefit studies by focusing on the distributional outcomes 99 

across countries. Shifting from aggregate impacts to distributions is crucial to analysing 100 

potential inequities and incorporating equity considerations into the global efforts to 101 

address climate change, air pollution, and health challenges. Here we focus on the 102 

regional distributions of health-relevant metrics, including pollution exposure, mortality 103 

risks, and the improvements from carbon pricing. By developing an integrated modelling 104 

framework, we trace how a carbon price might drive the future distributional outcomes in 105 

health, considering the complex interactions of energy system changes, land use 106 

changes, air pollutant emissions, human exposure, and vulnerability. 107 

 108 

Climate change mitigation lowering health risks  109 

 110 

We impose an increasing carbon price trajectory on global energy sector CO2 emissions 111 

to approximate a moderate ambition level for climate action: $28, $69, and $117/ton CO2 112 

in 2030, 2050 and 2100, respectively (Figure 2a). The near-term price level broadly 113 

reflects the global policy ambition for the next decade by adding up countries’ existing 114 

Nationally Determined Contributions30–32. The longer-term price level considers only a 115 

moderate increase over time and is set at the same magnitude as the highest carbon 116 
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price that has been observed so far (i.e., $103/ton in Sweden and Switzerland, inflation-117 

adjusted22).  118 

 119 

Compared to the SOWs with no carbon price, we estimate that this carbon price trajectory 120 

reduces the global average temperature by 0.1°C (based on ensemble median; range 121 

0.1–0.2°C across the considered SOWs) in 2050 and by 0.6°C (range: 0.4–1.1°C) in 2100 122 

(Figure 2b). It suggests that even moderate global mitigation contributes to reduced 123 

warming and climate damage. However, with the considered carbon price, the ensemble 124 

median end-of-century global mean temperature is estimated to be 2.8°C (range: 2.2–125 

4.3°C; N=14,180) higher than the pre-industrial level (or radiative forcing level at 4.9W/m2; 126 

range: 3.6–8.0W/m2). It indicates that achieving 2-degree or stricter climate targets would 127 

require more stringent global action beyond current ambitions.  128 

 129 

Consistent with prior studies5,28,29,33, we find that pricing carbon improves global air quality 130 

and reduces average PM2.5-attributable death rates. Globally, imposing this carbon price 131 

reduces the ensemble median PM2.5-attributable death rate by 7% (or 69 deaths per 132 

million people; range: 38–108) in 2050 and 11% (or 137 deaths per million people; range: 133 

35–358) in 2100 (Figure 2c). This corresponds to 0.4 (range: 0.2–0.7) million avoided 134 

deaths in 2050 and 0.9 (range: 0.2–2.9) million avoided deaths in 2100, or an annual 135 

average reduction of 0.5 (range: 0.2–1.1) million deaths from 2015 to 2100. Our findings 136 

are broadly consistent with prior studies, though many of them considered more ambitious 137 

climate mitigation scenarios and therefore found a larger magnitude of the co-benefits 138 

(broad range across studies: 0.8–1.8 million)5,28,29. In addition, our assessment of future 139 

PM2.5 concentrations (and the associated health impacts) only consider the changes in 140 

precursor air pollutant emissions, but not the effects of changing meteorological 141 

conditions under a changing climate.  142 

 143 

Reduced PM2.5-related health inequities across regions 144 

 145 

Cross-country inequity can be defined and operationalized in different ways. Here we 146 

define the distribution of impacts as equitable when people in all regions face similar 147 
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health outcomes. A policy action, such as pricing carbon, is equity-improving when it 148 

brings increased benefits to regions that currently suffer worse health outcomes than 149 

other regions. The results in the main text focus on one metric for the health outcome, 150 

i.e., PM2.5-attributable death rates, which measures the health risks. The results for the 151 

other health outcomes (e.g., PM2.5 exposure level and the number of PM2.5-attributable 152 

deaths) and other equity definitions (e.g., based on country income and age groups) are 153 

presented in Supplemental Figures S3-6.To demonstrate how the distributional effects 154 

may evolve over time, the main results below are for mid-century (e.g., year 2050); see 155 

Supplemental Figures S7-8 for results for more near-term (e.g., year 2030) and longer-156 

term (e.g., year 2100) time periods.  157 

 158 

Across all considered SOWs, regional inequities in pollution and health persist throughout 159 

the century (Figure 3a). The future PM2.5-attributable death rate remains higher in 160 

developing countries and emerging economies that are currently exposed to higher levels 161 

of air pollution. For example, in the SOWs without a carbon price, India and other South 162 

Asian nations have the highest PM2.5-attributable death rates in 2050, with an ensemble 163 

median exceeding 1,500 deaths per million people. In contrast, the lowest projected death 164 

rates occur in Australia, Canada, and Northern Europe, with an ensemble median less 165 

than 200 PM2.5-attributable deaths per million people.  166 

 167 

Pricing carbon reduces, but does not eliminate, the regional inequities (Figure 3b). The 168 

health benefits associated with the considered carbon price trajectory are generally 169 

greater for regions where the PM2.5-attributable death rates are presently high (Figure 2d 170 

and Figure 3). For instance, based on the 2050 ensemble median, pricing carbon lowers 171 

the PM2.5-attributable death rate by 113–293 deaths per million per year (or 9.3–12.5%) 172 

in India and other South Asian nations. In comparison, for regions with lower health risk 173 

at present, the reduction is only 0.7–0.9 PM2.5-attributable deaths per million per year (or 174 

0.2–0.4%) in Australia, the United States, and Northern Europe.  175 

 176 

Our results suggest that pricing carbon provides a promising avenue to narrowing current 177 

pollution and health inequities. This core insight holds for all considered future time 178 
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periods (see Supplementary Figures S7–8 for 2030 and 2100 results). It also holds for 179 

alternative health outcomes are used such as PM2.5 exposure level and PM2.5-attributable 180 

deaths (Supplementary Figures S3–4). In addition, considering other definitions for equity, 181 

we find supporting evidence that pricing carbon is likely to improve distributional equity 182 

by bringing greater health benefits to lower-income countries and to elderly populations 183 

(Supplementary Figures S5–6).  184 

  185 

Competing health pathways from carbon pricing 186 

 187 

What causes these differential regional health effects of a global carbon price? Our 188 

analysis framework models conceptual pathways through which a carbon price could 189 

result in both co-benefits and co-harms (Figure 1a and 1b). Health co-benefits can be 190 

driven by a reduction in air pollutant emissions from fossil fuel combustion, which is the 191 

dominant impact in regions that currently suffer from high pollution and health risks. 192 

Health co-harms can result from increasing emissions from bioenergy use and land use 193 

changes associated with bioenergy production, which is more prominent in the regions 194 

with cleaner air at present but may expand bioenergy production in the future. Comparing 195 

the SOWs in our ensemble, the relative importance of these two pathways contributes to 196 

the regional variations in how a global carbon price affects regional emissions and 197 

pollution exposure. We discuss these linkages in turn.  198 

 199 

First, imposing the carbon price lowers fossil fuel combustion and increases renewable 200 

and bioenergy uses across all world regions (Figure 4a). Yet, the extent of these changes 201 

depends on the current energy structures and projected technology costs. For instance, 202 

in 2050, the carbon price lowers the share of coal in the primary energy mix by 14 203 

percentage points in India (reducing from 53% to 39% based on ensemble median; range 204 

across all SOWs: 11–17 percentage points), but only 5 percentage points in Canada 205 

(reducing from 12% to 7% based on ensemble median; range across all SOWs: 3–7 206 

percentage points). This is consistent with the observation that India currently relies more 207 

heavily on coal34. The carbon price hence leads to a greater reduction in coal use in the 208 

model. In comparison, we find the increases in bioenergy shares are comparable across 209 
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countries (e.g., increases by 2–5 percentage points across the eight selected world 210 

regions, based on the ensemble medians). Here, the small regional variations are largely 211 

driven by limited cross-region differences in bioenergy shares in current energy mixes, as 212 

well as in future bioenergy supply curves assumed in the model.  213 

 214 

How the changes in energy use affect air pollutant emissions depends on which sectors 215 

are affected and the stringency of pollution regulation in relevant sectors (Figure 4b). For 216 

instance, carbon pricing leads to similar percentage reductions in coal share in Southeast 217 

Asia and the United States. Yet, the resulting reduction in per capita sulphur dioxide (SO2) 218 

emissions is smaller in the US due to more stringent pollution control policies on existing 219 

coal facilities35.  220 

 221 

Several types of precursor emissions collectively influence the concentrations of ambient 222 

PM2.5. In most countries, the substantial reduction in SO2 and NOx emissions from fossil 223 

fuel uses is the dominant factor contributing to lower PM2.5 concentrations, despite the 224 

slight increases in PM2.5 emissions from the combustion of bioenergy. However, in some 225 

countries (e.g., Canada and Russia), we find a substantial increase in organic carbon 226 

(OC) emissions during the time frame of 2030–2060 under most of the considered SOWs, 227 

leading to a net increase in PM2.5 concentrations (See Supplementary Figure S21). The 228 

elevated OC emissions are an outcome of increased biomass production that intensifies 229 

land competition and increases the deforestation of the unmanaged forests (see per 230 

capita land use changes in Figure 5a). These co-harms pathway results depend on a 231 

range of model assumptions related to bioenergy supply chain, energy-land interactions, 232 

and deforestation practices (discussed in the next section).  233 

 234 

Finally, regional socio-demographic characteristics affect population vulnerability, 235 

influencing health outcomes. For instance, imposing a carbon price results in larger 236 

relative increases in Canadian PM2.5-attributable death rates than the associated PM2.5 237 

exposure levels. This is consistent with the combined effect of two factors. First, the 238 

nonlinear concentration-response relationships result in greater increases in mortality 239 

risks, from one unit increase in PM2.5 exposure, in locations like Canada where the air is 240 
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already relatively clean (see PM2.5 concentrations without the carbon price in 241 

Supplementary Figure S15). Second, the increased population ageing in advanced 242 

economies like Canada drives an increase in elderly population that are more vulnerable 243 

to pollution exposure (see Supplementary Table S9 for the projected age structures in 244 

each region).  245 

 246 

Drivers of potential health co-harms 247 

 248 

Health co-harms can arise through changes in bioenergy production and the induced 249 

changes in land use and deforestation. To understand key factors and model 250 

assumptions that drive the modelled co-harms, we perform a model diagnostic analysis 251 

to systematically assess the model behaviours and the realism of key assumptions. Below 252 

we summarize the key insights related to the magnitude, location, and timing of the health 253 

co-harms. A detailed assessment of all relevant model assumptions is presented in 254 

Supplementary Table S3. A simple feasibility check of key technology-related model 255 

outcomes is shown in Supplementary Section 5.  256 

 257 

First, the deforestation method assumed in the model is a key assumption driving the OC 258 

emission increases from deforestation and therefore the magnitude of health co-harms 259 

(Figure 5). The model applies historical emission factors for global deforestation based 260 

on the Global Fire Emissions Database (GFED)36, implicitly assuming most future 261 

deforestation would occur through slash-and-burn and thus emit substantial amounts of 262 

OC. Yet, other methods of deforestation, such as clearcutting, have become more 263 

prevalent and may be the preferred method to convert forests into bio-crop land37. We 264 

therefore conduct a sensitivity analysis on deforestation method by evaluating an extreme 265 

case where all deforestation activities occur through clear-cutting and emit no OC. This 266 

assumption would avoid the increase in OC emissions from land use and deforestation, 267 

eliminating the health co-harms under all SOWs considered in our ensemble (Figure 5c). 268 

This sensitivity analysis identifies that the deforestation method is a key factor in 269 

determining the magnitude of the potential health co-harms. 270 

 271 
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Second, location of the health co-harms is primarily affected by the model assumptions 272 

on bioenergy supply chain and energy-land interactions. Imposing a carbon price 273 

increases bioenergy use in most world regions. Yet, to meet the rising global demand, 274 

where bioenergy production would increase the most depends on two key model 275 

assumptions. First, biomass is largely assumed in the model to be globally traded (see 276 

more in Supplementary Figure S16). This assumption allows bioenergy to be produced 277 

in and exported from countries where it is cheapest to do so. Yet the real-world bioenergy 278 

markets are much more fragmented due to a range of logistical and market challenges38. 279 

Second, the land competition between bioenergy, food, and forest is modelled based on 280 

the expected profitability of raising and selling bio-crops relative to other land-use options. 281 

Since countries like Canada and Russia are assumed to have large areas of unmanaged 282 

forests in the model (Supplementary Figure S17), converting forests to bioenergy land in 283 

these countries is more economically attractive compared to other countries (Figure 5a).  284 

 285 

Finally, the health co-harms are likely to be a more relevant concern for the first half of 286 

the century than the second half. For most countries with potential co-harms, we find the 287 

proportion of SOWs with health co-harms gradually increases from now to mid-century, 288 

but then slowly disappears towards the end of the century. For example, we observe 289 

health co-harms (a higher PM2.5-attributable death rate associated with carbon pricing) 290 

in 20% of all SOWs for Canada in 2025 and 15% of all SOWs for Russia in 2035. These 291 

proportions increase to 98% and 50% in 2050, then gradually decrease to 5% and <1% 292 

in 2100, respectively (see more in Supplementary Figure S22). The increase in the first 293 

half of the century is largely a result of increasing bioenergy use and production over time. 294 

The decrease in the second half of the century is largely an outcome of reduced land use 295 

competition. Especially in the SOWs that assume large agricultural productivity 296 

improvements, less cropland is needed to meet food demand in the long-term future, 297 

lessoning the land competition between food and bioenergy as well as the scale and 298 

emissions impacts from deforestation. 299 

 300 

Discussion 301 

 302 
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Our analysis highlights the complexity of the system dynamics through which global 303 

climate mitigation can influence the regional distribution of pollution and health effects. 304 

While the direct health co-benefits from reducing fossil fuel use are well documented1,5, 305 

we demonstrate possible ways climate mitigation might increase air pollutant emissions 306 

and health risks in some regions39. The key pathway for co-harms identified in our study 307 

is that carbon pricing can increase PM2.5 emissions, both from direct bioenergy 308 

combustion and, in a handful of countries, also from indirect land use changes such as 309 

deforestation. Prior studies have also found intensified land use competition in future 310 

mitigation scenarios that rely heavily on bioenergy15. While those studies demonstrated 311 

emerging risks for food security40 and water stress41, our results suggest that unintended 312 

consequences can also occur for air quality and health. It underscores the importance of 313 

comprehensive assessment for the sustainability implications of large-scale mitigation 314 

responses to climate change. 315 

 316 

Examining the pathways for health co-harms are particularly relevant for countries that 317 

have reduced their coal dependence and where bioenergy might be pursued as a key 318 

decarbonization strategy. Prior studies have shown that the potential for health co-319 

benefits from fossil reduction is often smaller in advanced economies than in the Global 320 

South countries due to already stringent pollution standards on existing fossil-based 321 

facilities35,42. Considering the potential energy-land interactions, our analysis suggests 322 

that health co-benefits from fossil reduction will become less prominent as countries 323 

advance towards decarbonization, while the potential health co-harms from the mitigation 324 

actions will become increasingly important.  325 

 326 

Across all considered SOWs, we consistently find greater decreases in PM2.5-attributable 327 

death rates in countries facing higher health risks, such as China and India. For countries 328 

that may experience potential co-harms such as Canada, Russia, and United States, our 329 

analysis also identifies possible strategies (e.g., changing deforestation method) that can 330 

eliminate the negative health impacts. This demonstrates that pricing carbon can improve 331 

global air quality while simultaneously reducing the current health inequity across 332 

countries. Such equity-improving outcomes can be expected under a wide range of 333 
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plausible futures that vary in socioeconomic trends, energy demand and technology 334 

costs, as well as agricultural and land-use patterns.  335 

 336 

Our analysis of how pricing carbon could affect health risks samples future uncertainties 337 

by considering a large ensemble of future SOWs. However, the links between large-scale 338 

climate mitigation, air pollution, and the distribution of associated health impacts are still 339 

shrouded in considerable uncertainties not considered in this analysis. Our study does 340 

not resolve the effects of a wide range of additional uncertainties relating to model 341 

parameterization and structure43.  For example, assuming that deforestation occurs 342 

through clearcutting, rather than burning, effectively eliminates co-harms from our 343 

ensemble. Due to the complexity of the coupled multi-region, multi-sector system, our 344 

exploratory study takes a crucial initial step towards identifying the model assumptions 345 

and combination of uncertainties that might bias the conclusions about the health 346 

implications and distributional outcomes. Fruitful avenues for future research include an 347 

exploratory ensemble approach combined with scenario discovery methods and 348 

additional sensitivity analyses to identify future conditions or development trajectories 349 

resulting in a higher likelihood of health co-harms26,27. These methods can improve our 350 

understanding of failure modes of potential mitigation strategies and help to identify policy 351 

portfolios that are more robust to complex dynamics and deep uncertainties. 352 

 353 

Our study is still silent on many important questions. For example, how can more refined 354 

strategies help to better navigate the complex landscape of climate, economics, and 355 

health? A globally uniform carbon price has been used widely in models to represent 356 

climate policy, largely due to its simplicity and the appealing theoretical advantage as the 357 

most economically efficient way to achieve global decarbonization. However, real-world 358 

policies are more diverse and fragmented44. Regulations and sector-based measures are 359 

widely and typically adopted and nearly everywhere have a bigger impact on emission 360 

abatement than directly pricing carbon45,46. Representing various types and combinations 361 

of policy instruments is particularly important in today’s climate policy context, as 362 

hundreds of countries now experiment with ways to reach net-zero emissions by mid-363 

century. We hypothesize that these different policy designs would have different 364 
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distributional consequences. For instance, compared to a subsidy on rooftop solar 365 

systems, electrifying the transport sector may bring greater benefits to populations living 366 

near major roads, who are often disproportionately minorities and people of lower 367 

socioeconomic status47. In addition, the health co-harms identified in our analysis may 368 

also be mitigated by imposing land conservation policies along with a carbon price on 369 

energy-sector emissions48.  370 

 371 

A second open question is how much-needed improvements in the representations of 372 

health drivers, exposures, and outcomes impact the conclusion. For instance, bioenergy 373 

is an important technology driver for the health co-harms observed in our study. Yet, our 374 

modelling approach only considers 12 land types for 384 land regions worldwide. A 375 

detailed, subnational representation of land-use patterns is essential to identify suitable 376 

land for bioenergy production and model the competition between different land-use 377 

purposes49,50. Assessing the disparities across socio-demographic groups, both for 378 

exposure and health outcomes, also requires fine-scale pollution simulation and health 379 

impact assessment. While some studies are moving in this direction51,52, research that 380 

quantifies these linkages at decision-relevant resolutions is still largely in its infancy. 381 

These efforts can help in the search for decarbonization strategies that can 382 

simultaneously reduce adverse health impacts and associated inequities.  383 

 384 

Our study lays the foundation for future efforts to address these open questions and 385 

advance our scientific understanding of the coupled energy-land-energy systems. Our 386 

work also has important policy implications. We assess the key drivers for the country-387 

varying health effects of climate mitigation and identify potential cross-sector linkages 388 

(e.g., between energy and land) that may lead to different distributional impacts. These 389 

insights are critically important, both for the international community and individual 390 

countries, to incorporate health and equity considerations into their climate mitigation 391 

efforts.   392 
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Methods 393 

 394 

Construction of state of the world ensemble  395 

 396 

We construct a large-scale exploratory ensemble of plausible future states of the world 397 

(SOWs) using a leading global-scale, process-based integrated assessment model, 398 

GCAM v5.418 (Supplementary Table S1). GCAM is a multi-sector model with technology-399 

rich representations of five systems and their interactions: energy, water, agriculture and 400 

land use, economy, and climate systems18. Based on varying input assumptions on 401 

socioeconomic drivers, technology costs, and policy actions, GCAM simulates the 402 

behaviours and interactions between these systems and projects future patterns at five-403 

year intervals in a partial equilibrium economic modelling framework. For the GCAM 404 

version used in this study (v5.4), the energy and economy sectors are modelled for 32 405 

world regions; the land system is divided into 384 subregions; and the climate/physical 406 

Earth system is simulated by a reduced-form climate model, Hector53, at the global scale.  407 

 408 

For the representation of the decision lever, we consider a simple policy design, i.e., 409 

whether a globally uniform carbon price trajectory (Figure 2a) is implemented from 2020–410 

2100. This policy representation reflects the most economically efficient way to reach 411 

global decarbonization. Pricing carbon through a tax or a cap-and-trade system has also 412 

been widely adopted in many countries and regions to mitigate CO2 emissions22. Our 413 

near-term carbon price levels are broadly consistent with the stringency of current carbon 414 

markets. We are aware that the real-world climate ambition and carbon price levels vary 415 

greatly across regions. For instance, the current carbon prices are $9.20/ton in China’s 416 

national emissions trading system (ETS), $13.89 in the Regional Greenhouse Gas 417 

Initiative (RGGI), $30.82/ton in California, and $86.53/ton the EU ETS22. Meanwhile, most 418 

low-income and lower-to-middle-income countries do not have carbon prices22. In 419 

addition, the recent policy pledges from major economies to reach net-zero emissions by 420 

mid-century could substantially strengthen policy stringency in the decades to come. An 421 

improved representation of realistic policy choices is therefore an important area for future 422 

work54,55. 423 
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 424 

In this study, we sample seven broad categories of future uncertainties in socioeconomic, 425 

technological, and land-use aspects (more details in the Supplemental Table S1), 426 

including: 1) Population and GDP, since demographics and economic development are 427 

fundamental drivers of future human activities, carbon emissions, and health burdens; 2) 428 

Price elasticity of energy demand, since the demand for energy influences GHG and air 429 

pollutant emissions from end-use and energy supply sectors; 3) Agricultural productivity 430 

and income elasticity for food, since food demand and agricultural activities are key 431 

determinants for future land use change and related emissions; 4) Fossil fuel extraction 432 

costs, since they affect the effectiveness of carbon price in driving down the demand; 5) 433 

Low-emissions energy costs, since they affects the competitiveness of low-carbon energy 434 

relative to fossil-based technologies; 6) Carbon capture and sequestration (CCS) 435 

deployment costs, since they determine the scale of CCS deployment and associated 436 

emissions under a carbon price; 7) Water resource availability, since it is a key limiting 437 

factor for energy and agricultural activities and therefore affects relevant GHG and air 438 

pollutant emissions.  439 

 440 

We use a full factorial experimental design across these seven factors to encompass a 441 

wide range of plausible futures23. Among the seven, the first four (i.e., socioeconomics, 442 

energy demand, agricultural and land use, fossil fuel extraction costs) are sampled by 443 

considering five sets of assumptions that reflect the storylines of Shared Socioeconomic 444 

Pathways (SSPs)56. For the other three factors, we sample the future water runoffs using 445 

varying levels of groundwater level and reservoir capacity; and we sample the future 446 

competitiveness of low-emission energy technologies and cost of CCS technology using 447 

varying levels of projected costs. The quantitative assumptions for different SSPs and 448 

technology costs are reported in Lamontagne et al. 201823 and Calvin et al. 201757.  449 

 450 

Combining one decision lever and seven types of uncertainties, we experimented with 451 

30,000 SOWs (i.e., 15,000 pairs with/without a carbon price). However, some SOWs do 452 

not yield feasible solutions. For example, the socioeconomic assumption following SSP5 453 

(fossil-fuelled development) is not compatible with AGLU assumption following SSP3 454 
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(regional rivalry). This is because SSP3 assumptions for AGLU include low agricultural 455 

technology development, restricted trade, lack of land use regulations, but low agricultural 456 

productivity are formidable obstacles to achieving high-level socioeconomic 457 

developments in SSP5. As a result, we have 14,526 model-solved SOWs without a 458 

carbon price and 14,180 model-solved SOWs with a carbon price. Between these two 459 

groups, we further pair up the SOWs with the same assumptions for other uncertainties 460 

and identify 13,936 pairs of SOWs that only differ in the decision lever. The 461 

Supplementary Table S2 provides a comprehensive list of the numbers of solved SOWs 462 

categorized by the decision lever (carbon price) and each ensemble design factor.  463 

 464 

Since GCAM is an open-source model (download: http://jgcri.github.io/gcam-465 

doc/index.html), here we only include a short description of key energy and land use 466 

assumptions that are particularly relevant for this study. In GCAM, the global trade of 467 

agricultural commodities is modelled using the Armington approach58, which assumes 468 

that products are differentiated by source and consumers treat goods from different 469 

countries as imperfect substitutes. The competition between imports and domestic 470 

production is governed by a logit sharing function in each regional market. Global trades 471 

of fossil fuels and bioenergy are also modelled using the Armington approach. To avoid 472 

unrestricted land conversion to bioenergy production, we apply the default GCAM 473 

assumption that protects 90% of all non-commercial lands (i.e., non-commercial pasture 474 

and forest, grassland and shrubland) in each geographic land unit (GLU)59. Renewable 475 

technologies, such as wind, solar, and geothermal, are not traded. The market shares of 476 

different fuels/technologies are governed by their relative or absolute cost difference 477 

through logit formulations60,61. The share weight parameters in the logit functions are 478 

resource-specific and calibrated using historical data.  479 

 480 

Projection of GHG emissions  481 

 482 

We project future emissions of annual total GHGs for 32 GCAM regions, by technology 483 

and fuel choice. We estimate CO2 emissions from fossil fuel and limestone uses by 484 

multiplying GCAM-projected production and consumption activities with the technology-485 

http://jgcri.github.io/gcam-doc/index.html
http://jgcri.github.io/gcam-doc/index.html
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specific emission factors estimated from the Carbon Dioxide Information Analysis Center 486 

(CDIAC, which is a global inventory of historical carbon emissions from 1751 to 201762). 487 

CO2 emissions from land-use and land-cover change are estimated based on the areas 488 

of land use change and the carbon intensity of each land use type63.  489 

 490 

When a carbon price is imposed, higher-carbon technologies become more expensive 491 

whereas lower-carbon technologies become more cost-competitive. This cost difference 492 

(along with other non-cost related assumptions) determine the relative contribution of 493 

these technologies and fuel choices in meeting the demand in each economic sectors 494 

such as electricity, transport, industry, residential and agricultural sectors.  495 

 496 

We also calculate the emissions of non-CO2 GHGs, including methane, nitrous oxide, and 497 

fluorinated gases by multiplying relevant activities with the emission factors from EPA 498 

201964. When the carbon price is imposed, the changes in non-CO2 greenhouse gas 499 

emissions are proportional to the changes in activity level, except for the reductions in 500 

emission intensity that are adjusted based on the exogenously assumed marginal 501 

abatement cost curves: 502 

𝐸𝑡 = 𝐴𝑡 ⋅ 𝐸𝐹𝑡 ⋅ (1 − 𝑀𝐴𝐶(𝐸𝑝𝑟𝑖𝑐𝑒𝑡)), 507 

where t stands for a five-year-period, Et is the non-CO2 GHG emissions, At is the activity 503 

level, EFt is emissions factor, MAC is the marginal abatement cost curve, and Epricet is 504 

the carbon price level. The regional MAC curves consider a wide range of various 505 

technologies and are derived based on the EPA 2019 database64.  506 

 508 

Assessment of air pollutant emissions 509 

 510 

We estimate the emissions of five types of air pollutants, including ammonia (NH3), 511 

nitrogen oxides (NOx), sulphur dioxide (SO2), black carbon (BC), and organic carbon (OC), 512 

for 32 GCAM regions, by technology and fuel choice. The emissions are calculated by 513 

multiplying relevant activities projected by the model with the respective emission factors 514 

derived from historical data18. To account for the tightening of air pollution control policies 515 

over time, the future emission factors are adjusted based on a declining trend with 516 
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increasing income65. The technology mix is also adjusted over time by assuming a higher 517 

penetration rate of less polluting units57,65. Both adjustments vary across five SSPs. 518 

Specifically. For each pollutant emitted from each activity type:   519 

𝐸𝑡 = 𝐴𝑡 ⋅ 𝐸𝐹𝑡 ⋅ (1 − 𝐸𝑚𝐶𝑡𝑟𝑙(𝑝𝑐𝐺𝐷𝑃𝑡)) 520 

where t stands for a five-year period, Et is the air pollutant emissions, At is the activity 521 

level, EFt is activity-specific emission factor. EmCtrl represents the percent reduction in 522 

emission factor as a result of emissions control, which is a function of per capita GDP, 523 

pcGDPt : 524 

𝐸𝑚𝐶𝑡𝑟𝑙𝑡 = 1 −
1

1 +
(𝑝𝑐𝐺𝐷𝑃𝑡 − 𝑝𝑐𝐺𝐷𝑃𝑡0)

𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠

 525 

where steepness is a technology- and air pollutant species-specific exogenous factor 526 

based on empirical evidence that determines the extent to which the changes in per capita 527 

GDP affect the stringency of emissions controls. 528 

 529 

 530 

Assessment of climate outcomes  531 

 532 

We model the climate system using the Hector model53 which interacts with the other 533 

parts of GCAM at every five-year time step. Hector is a reduced-form global climate 534 

carbon-cycle model, representing the most essential global-scale Earth system 535 

processes. The inputs to Hector are global total GHG emissions aggregated across all 536 

GCAM sectors and regions. Then, Hector reports global average radiative forcing and 537 

temperature changes.  538 

 539 

 540 

Assessment of ambient PM2.5 concentrations  541 

 542 

To assess the ambient PM2.5 concentrations from precursor emissions, we use the TM5-543 

FASST model19, a reduced-form source-receptor model for 56 world regions. TM5-544 

FASST is derived from TM5-CTM, a full chemical transport model for which the non-linear 545 

changes in pollution formation and wind transport is being considered66. The performance 546 
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of TM5-FASST was evaluated in a prior publication28 and demonstrates satisfying model 547 

capabilities in estimating ambient PM2.5 concentrations.  548 

 549 

To map from GCAM to TM5-FASST regions, we first downscale the emissions for 32 550 

GCAM regions to 178 countries (see Supplementary Table S4 for GCAM sector mapping), 551 

by sector and for 5 types of precursor emissions, using the country-to-region ratios based 552 

on the Emission Database for Global Atmospheric Research (EDGAR) data67 (see 553 

Supplementary Table S5 for EDGAR sector mapping). We then re-aggregate country-554 

level emissions to the 56 TM5-FASST regions.  555 

 556 

For each year and SOW, we estimate the PM2.5 concentrations using the changes relative 557 

to 2000, as the base year, assuming linear relationship between emissions and PM2.5 558 

concentrations as well as additivity across all types of emissions and regions. Specifically, 559 

the following equation is used: 560 

𝐶(𝑦) = 𝐶𝑏𝑎𝑠𝑒(𝑦) + ∑ ∑ 𝐴𝑖[𝑥, 𝑦] ⋅ [𝐸𝑖(𝑥) − 𝐸𝑖,𝑏𝑎𝑠𝑒(𝑥)]

𝑛𝑖

𝑖

𝑛𝑥

𝑥

 561 

where 𝐶(𝑦) and 𝐶𝑏𝑎𝑠𝑒(𝑦) are the ambient PM2.5 concentration in receptor region 𝑦 in a 562 

future year of interest and in 2000, respectively. 𝐸𝑖(𝑥) 𝑎𝑛𝑑 𝐸𝑖,𝑏𝑎𝑠𝑒(𝑥) are the emissions of 563 

the air pollutant type 𝑖 from a source region 𝑥 in a future year of interest and in 2000, 564 

respectively. 𝐴𝑖[𝑥, 𝑦] is the source-receptor coefficient, capturing how the emissions of 565 

precursor air pollutant type 𝑖  in source region 𝑥  would influence the ambient PM2.5 566 

concentrations in receptor region 𝑦 . 𝑛𝑥  is the total number of source regions whose 567 

emissions affect the ambient PM2.5 concentration in receptor region 𝑦, plus two additional 568 

sources, shipping, and aviation, that are not tied to a particular location. 𝑖 is the index for 569 

the type of precursor emissions, which include ammonia (NH3), nitrogen oxides (NOx), 570 

sulphur dioxide (SO2), black carbon (BC), and particulate organic matter (POM) that are 571 

estimated from GCAM. 𝑛𝑖 is the total number of precursors that form ambient PM2.5. The 572 

unit of the PM2.5 concentration is 𝜇g/m3, and the units of the emissions are kTonne/𝑦𝑒𝑎𝑟. 573 

 574 

Since TM5-FASST model uses the year 2000 as the base year, the values for 𝐸𝑖,𝑏𝑎𝑠𝑒(𝑥) 575 

are taken from the Representative Concentration Pathway (RCP) database for the year 576 



20 
 

2000 at 1° × 1° resolution19; using 2000 emissions as input, 𝐶𝑏𝑎𝑠𝑒(𝑦) is estimated using a 577 

full chemical transport model TM5-CTM66, also at a global 1° × 1° resolution. The values 578 

in the source-receptor matrix 𝐴  are derived from a series of perturbation runs that 579 

increase the precursor emissions by 20%, by precursor type and source region, and 580 

assess the implications on PM2.5 concentrations in each receptor region.  581 

 582 

Although the simplicity of the TM5-FASST model enables our assessment of nearly 583 

30,000 SOWs for many years, there are caveats when using this model for assessing 584 

future pollution levels. For instance, it does not consider how a changing climate might 585 

influence the pollution formation and transport in the future. It also assumes linear 586 

relationships between precursor emissions and resulting PM2.5 concentrations which 587 

simplifies the chemical and physical processes in the atmosphere. To evaluate the 588 

performance of TM5-FASST for modelling future pollution levels, we compare the 589 

projected PM2.5 concentrations and health risks using TM5-FASST with the results from 590 

the Earth System Model Version 4.1 (ESM4), a high-resolution chemistry-carbon-climate 591 

model developed by Geophysical Fluid Dynamics Laboratory. The results from the two 592 

models are broadly consistent with each other, suggesting that the TM5-FASST model 593 

produces reasonable estimates for PM2.5 concentrations (see more in Supplementary 594 

Section 1.4).  595 

 596 

 597 

Assessment of PM2.5-attributable deaths  598 

 599 

Following the approach in the Global Burden of Disease Study2, we consider six diseases 600 

that have been found to be associated with long-term exposure to ambient PM2.5, namely 601 

chronic obstructive pulmonary disease (COPD), diabetes mellitus type II (DB), ischemic 602 

heart disease (IHD), lung cancer (LC), lower respiratory infections (LRI), and stroke.  603 

 604 

For each of the five-year age group from 0 to 95+ in each of the 178 countries, we 605 

calculate the premature deaths attributable to each of the considered six diseases using 606 

the following equation:  607 
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𝛥𝑀𝑜𝑟𝑡 = 𝑦0 ⋅ 𝐴𝐹(𝑐) ⋅ 𝑃𝑜𝑝, 608 

where 𝑦0 is age- and disease-specific the baseline mortality rate; 𝑃𝑜𝑝 is the size of the 609 

exposed population in each age group; 𝐴𝐹 is the attributable fraction, which changes with 610 

varying exposure levels to PM2.5 concentration (𝑐) in each region.  611 

 612 

Below we describe the data source and calculation methods for each parameter. More 613 

detailed information about the input data is provided in the Supplementary Table S6. 614 

 615 

For population (Pop), we use age-specific population projections from the IIASA SSP 616 

database56. The population projections are at country level, with five-year intervals from 617 

2010 to 2100, and vary across the five SSPs.  618 

 619 

For baseline mortality rates (𝑦0), we use the age-specific baseline mortality rates for each 620 

country projected by the International Futures (IFs) model v7.6468, which also vary across 621 

the five SSPs. The baseline mortality rates from IFs are projected based on the GDP per 622 

capita and education attainment level and calibrated using the GBD 2004 data for 623 

cardiovascular diseases, diabetes, malignant neoplasms, respiratory diseases, and 624 

respiratory infections. We map IF-reported rates onto the six considered diseases: For 625 

IHD and stroke, we use the rates for total cardiovascular disease from IF and multiply by 626 

the shares of IHD and stroke in total cardiovascular-disease-related deaths; for LC, we 627 

use the rates for malignant neoplasms; for COPD, we use the rates for respiratory disease; 628 

for LRI, we use the rates for respiratory infections, and for DB, we use the rates for 629 

diabetes. To check the validity of this mapping method, we compared the disease-specific 630 

baseline mortality rates calculated using our methods with the rates reported by the GBD 631 

study and found them to be largely consistent (see Supplementary Table S7 for the 632 

comparison). 633 

 634 

For attributable fraction (AF), we calculate the attributable fractions for each disease and 635 

age group using the following equation: 636 

𝐴𝐹(𝑐) =
𝑅𝑅(𝑐)−1

𝑅𝑅(𝑐)
, 637 
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where 𝑐 is the annual mean PM2.5 concentration in each country and 𝑅𝑅 is the disease-638 

specific relative risk. The annual mean PM2.5 concentration 𝑐 is simulated by TM5-FASST 639 

for 56 regions. We further assume all countries within the same TM5-FASST region have 640 

the same exposure level. The relative risks are obtained from the GBD study 20193 and 641 

derived from the Integrated Exposure–Response (IER) model20 for the six types of 642 

diseases for the PM2.5 exposure levels from 0 to 600 μg/m3. The RRs are age-specific for 643 

IHD and stroke (from 25 to 95+ at five-year intervals) and are for all age-groups for the 644 

other four diseases.  645 

 646 

Assessment of the distributional and equity implications  647 

 648 

We consider different measurements of equitable distribution and equity-improving 649 

distribution that vary in two dimensions, the metric of health outcomes and the definition 650 

of health equity. Below we include a brief summary, with more details summarized in 651 

the Supplementary Table S8.   652 

 653 

Regarding the metric of health outcomes, our main results focus on health risks 654 

measured by the PM2.5-attributable death rate. We also consider two alternative metrics: 655 

health exposure measured by PM2.5 concentrations (Supplementary Figure S3) and 656 

health burden measured by PM2.5-attributable deaths (Supplementary Figure S4).  657 

 658 

Regarding the definition of health equity, our main results focus on regional variations 659 

and consider “equity-improving” outcome as regions that currently face higher health 660 

risks benefit more from carbon pricing. We further consider two alternative definitions 661 

that focus on variations across different country income groups and global age groups. 662 

Here “equity-improving” outcome requires lower-income regions or elderly populations, 663 

as more vulnerable regions/groups, benefit more from carbon pricing (Supplemental 664 

Figures 5 and 6). To operationalize these definitions, for each metric of health 665 

outcomes, we perform an ordinary least square (OLS) regression to statistically 666 

evaluate whether the targeted regions/groups indeed benefit more from implementing 667 

the global carbon price.  668 

https://www.zotero.org/google-docs/?1GZwqh
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 708 

Figure 1. Pathways for a global carbon price to influence climate, health, and equity 709 

outcomes. a: Conceptual mental model of relevant influences, feedbacks, and system 710 

interactions. b: Pathways captured by our integrated climate-energy-health model and the 711 

uncertainties sampled in our exploratory ensemble. We use the GCAM model18 to sample future 712 

states of the world (SOWs) and implement the carbon price (total ensemble size: N=28,706). We 713 

estimate the effects of air pollutant emissions on ambient PM2.5 concentrations using the TM5-714 
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FASST model19. The health impact assessment further uses the projected population and age 715 

structure from the IIASA database56 and the baseline mortality rates from the International Futures 716 

model68. More details are presented in the Method section. 717 

 718 

 719 

Figure 2. Impacts of a global carbon price on future global average temperature and 720 

regional distribution of PM2.5-attributable death rates. a: The carbon price trajectory from 2015 721 

to 2100 considered in this study; the black dot highlights the price level in 2050 ($69/ton CO2). b 722 

and c: The global average temperature increase relative to the 1850 level and the global annual 723 

PM2.5-attributable death rates, including the median and ranges of the states of the world (SOWs) 724 

with and without a carbon price (N=14,180 and 14,526, respectively; the different sample sizes 725 

are because some combinations of input assumptions result in infeasible solutions, more in  726 
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Supplementary Information Section 1.2). The borders of the belts are the ranges across all SOWs 727 

in each projected year. The box plots on the far right show the ensemble distributions in 2050 and 728 

2100. d, Changes in PM2.5-attributable death rate in 2050 due to the carbon price (N=13,936; 729 

limiting to the pairs of SOWs that have feasible solutions in both cases). “Consistent effects” 730 

indicate the same direction of effects (i.e., co-benefits or co-harms) across all the SOWs, whereas 731 

“Potential effects” show mixed effects across SOWs. The thicker borderlines show the 32 GCAM 732 

regions (except Antarctica) for which the energy/land activities and associated emissions are 733 

simulated, whereas the lighter borderlines show 178 regions and countries for which the health 734 

impact assessments are performed69. See Supplementary Figures S9–S10 for the spatial 735 

distribution for 2030 and 2100. 736 

 737 

 738 

Figure 3. Distribution of PM2.5-attributable death rates across regions in 2050. a: PM2.5-739 

attributable death rates without a carbon price. b: Changes in the PM2.5-attributable death rates 740 

as a result of a carbon price. The circles and error bars represent the ensemble medians and 741 

ranges for 31 world regions consistent with GCAM regions (excluding Taiwan due to lack of data; 742 

N=13,936 for a and b). The grey dashed lines represent the ordinary least square regression line 743 

of ensemble medians across regions. In both panels, from left to right, regions are ranked from 744 

low to high PM2.5-attributable death rates in 2015. See Supplementary Figure S7–8 for the results 745 

for 2030 and 2100. 746 
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 748 

Figure 4. Regional changes in the health drivers, exposures, and risks in response to the 749 

considered global carbon price in 2050. a: the changes (by percentage points) in shares of 750 

coal, biomass, and renewables in the primary energy mix (See Supplementary Figure S18 for 751 

global regional-level distributions). b: the changes in organic carbon (OC) and sulphur dioxide 752 

(SO2) emissions per capita per year (see Supplementary Figure S19 for global regional-level 753 

distributions). c: the changes in annual average PM2.5 concentrations (see Supplementary Figure 754 

S20 for global regional-level distributions). d: the changes in PM2.5-attributable death rates. The 755 

box plots show the ensemble median, quartiles, and range (N=13,936 pairs of states of the world). 756 

As representative regions, we include two emerging markets that suffer from the highest pollution 757 

and health risks at present (China and India), two lower-income regions that may experience rapid 758 

Share of biomass Share of renewables

Share of coal
−20

−10

0

10

India China Southeast
Asia

Russia USA Sub−Saharan
Africa

Brazil Canada

P
e

rc
e

n
ta

g
e

p
o
in

ts

a) Changes in primary energy mix

OC emissions

SO2 emissions
−10

−5

0

5

10

India China Southeast
Asia

Russia USA Sub−Saharan
Africa

Brazil Canada

P
e
r 

c
a
p

it
a
 e

m
is

s
io

n
s

(k
T

/y
e
a
r)

b) Changes in precursor air pollutant emissions

−12

−8

−4

0

India China Southeast
Asia

Russia USA Sub−Saharan
Africa

Brazil Canada

C
o
n

c
e
n
tr

a
ti
o

n
s

(m
g

m
3
)

c) Changes in ambient PM2.5 concentrations

−300

−200

−100

0

India China Southeast
Asia

Russia USA Sub−Saharan
Africa

Brazil Canada

A
n
n
u

a
l 
d
e
a
th

s
p
e
r 

m
ill

io
n

d) Changes in PM2.5 attributable death rates



29 
 

economic growth and increasing pollution risks in the future (Sub-Saharan Africa and Southeast 759 

Asia), two middle-income regions with vast areas of forest resources (Russia and Brazil), and two 760 

developed countries with cleaner air and large land areas (the United States and Canada). See 761 

Supplementary Figure S11–12 for the results for 2030 and 2100. 762 

 763 

 764 

Figure 5. Regional changes in land use, organic carbon emissions, and health risks as a 765 

result of the considered global carbon price in 2050. a: Changes in land use types (by 766 

percentage points). b: Changes in organic carbon emissions in the residential sector and the 767 

agriculture and land use sectors. c: Changes in PM2.5-attributable death rates. In b and c, we 768 

show the sensitivity analysis assuming deforestation occurring through opening burning versus 769 
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clearcutting. The box plots show the ensemble median, quartiles, and range (N=13,936 pairs of 770 

states of the world). As representative regions, we include two emerging markets that suffer from 771 

the highest pollution and health risks at present (China and India), two lower-income regions that 772 

may experience rapid economic growth and increasing pollution risks in the future (Sub-Saharan 773 

Africa and Southeast Asia), two middle-income regions with vast areas of forest resources 774 

(Russia and Brazil), and two developed countries with cleaner air and large land areas (the United 775 

States and Canada). See Supplementary Figure S13–14 for the results for 2030 and 2100. 776 
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