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Effects of global climate mitigation on regional air quality and health
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Climate mitigation can bring air quality and health co-benefits. How these health impacts
might be distributed across countries remains unclear. Here we use a coupled climate-
energy-health model to assess the country-varying health effects of a global carbon price
across nearly 30,000 future states of the world (SOWSs). As a carbon price lowers fossil
fuel use, our analysis suggests consistent reductions in ambient fine particulate matter
(PMz2.5) levels and associated mortality risks in countries that currently suffer most from
air pollution. For a few less polluted countries, however, a carbon price can increase the
mortality risks under some of the considered SOWSs, due to emissions increases from
bioenergy use and land-use changes. These potential health co-harms are largely driven
in our model by the scale and method of deforestation. A robust and quantitative
understanding of these distributional outcomes requires improved representations of
relevant deep uncertainties, country-specific characteristics, and cross-sector

interactions.
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Reducing fossil fuel combustion decreases emissions of carbon dioxide as well as toxic
air pollutants. As a result, climate mitigation efforts are expected to bring health co-
benefits by improving air quality’. However, the distribution of these health impacts across
countries remains poorly understood. Globally, the pollution and health impacts are
already unevenly distributed at present. Half of all deaths attributable to fine particulate
matter (technically PM25) currently occur in China and India?, due to high pollution levels
combined with the large size of the exposed population. The future health burden in these
countries may decrease as air pollution control policies are further tightened to reduced
pollution, but may also increase if ageing trends increase the population's vulnerability to

air pollution34.

The air quality and health implications of climate mitigation depend on a range of country-
specific characteristics in the energy and social aspects. Reducing fossil fuel combustion
often lowers pollution exposure’®, but the magnitude of the air quality co-benefits is
affected by the energy mixes. For instance, coal currently accounts for 60% of primary
energy use (by EJ) in China, but only 12% in the US®, leading to greater health benefits
from coal phase-out in China than US”38. In addition, the health effects are influenced by
socio-demographic patterns that determine the size and vulnerability of the exposed
population. For instance, the elderly population (age 65 or greater, which is more
vulnerable to air pollution exposure) is 131 million in China (9.5% of the national total
population), as compared to 47 million in the US (15%)3. Understanding the differential
regional health impacts of climate mitigation thus requires careful consideration of the

energy and sociodemographic trends in each region’?.

Another factor complicating the relationship between climate mitigation and reduced
mortality is the potential emergence of new sources of air pollution’®. For example, climate
mitigation pathways may involve large-scale production and consumption of bioenergy*.
This can increase the emissions of PM2.5 from biomass combustion in end-use sectors'?
and the emissions of ammonia from upstream agricultural activities to produce bioenergy
crops'314, Besides the direct emissions from bioenergy production and consumption,

bioenergy-heavy futures may also result in increased land competition'®, leading to
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indirect emissions from land use changes (e.g., organic carbon emissions from burning
forests'®). This illustrates the complexities resulting from the multi-sector and multi-

regional linkages of the global socioeconomic systems.

How will global climate mitigation affect regional air quality and health in the 21st century?
A central challenge in tackling this question is that changes in energy and socioeconomic
patterns, which drive future pollution exposure and population vulnerability, are highly
complex and uncertain (see Figure 1a for a generic illustration of the complex system
dynamics). These uncertainties pose conceptual and methodological difficulties for
assessing future air pollution effects and identifying key conditions that result in more or
less equitable impact distributions. Here we address this challenge by considering many
plausible future states of the world (SOWSs) through an exploratory modelling approach'’.
We use a coupled energy-climate-health modelling framework, linking a leading
integrated assessment model (Global Change Analysis Model, GCAM'8) with a reduced-
form air pollution model'® and a country-level health impact assessment module?, to
assess the effects of a global carbon price in nearly 30,000 potential SOWs from 2015 to
2100. We use a carbon price as a proxy for climate mitigation action because it is the
most economically efficient way to achieve global decarbonization?' and has been
adopted by many countries and subnational regions to mitigate sectoral or economy-wide

emissions?2,

This study advances the previous literature in three main ways. First, we use an
exploratory ensemble approach?32* to sample a wide range of socioeconomic and
technological uncertainties and to characterize how these uncertainties propagate
through a highly interconnected, multisector system to impact air quality and health. We
expand on the prior use of a small number of narrative-based scenarios (e.g., the Shared
Socioeconomic Pathways?®) to drastically increase the combinations of uncertain factors
being considered. By evaluating a wider range of potential future SOWSs, our a posteriori,
ensemble-based exploratory approach could achieve a clearer picture of the full range of
the plausible health outcomes?326:27_ |t also facilitates the identification of factors (or

combinations of factors) which consistently contribute to health co-benefits and co-harms.
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Second, we demonstrate possible pathways by which carbon pricing could result in
unintended health co-harms under certain SOWs (Figure 1b). Many studies have already
demonstrated the direct air quality-related health co-benefits from lowering fossil fuel uses
to mitigate climate change®2%2°. However, climate mitigation may induce changes in
emerging low-carbon technologies and land uses through indirect mechanisms,
potentially counteracting the health benefits from lowering fossil fuels. These plausible
pathways for health co-harms have not been identified in previous studies which focus on
a relatively limited number of scenarios. Our large-scale ensemble approach enables a
more careful analysis of potential locations and future conditions where co-harms might

OocCcur.

Third, we expand on prior co-benefit studies by focusing on the distributional outcomes
across countries. Shifting from aggregate impacts to distributions is crucial to analysing
potential inequities and incorporating equity considerations into the global efforts to
address climate change, air pollution, and health challenges. Here we focus on the
regional distributions of health-relevant metrics, including pollution exposure, mortality
risks, and the improvements from carbon pricing. By developing an integrated modelling
framework, we trace how a carbon price might drive the future distributional outcomes in
health, considering the complex interactions of energy system changes, land use

changes, air pollutant emissions, human exposure, and vulnerability.

Climate change mitigation lowering health risks

We impose an increasing carbon price trajectory on global energy sector CO2 emissions
to approximate a moderate ambition level for climate action: $28, $69, and $117/ton CO2
in 2030, 2050 and 2100, respectively (Figure 2a). The near-term price level broadly
reflects the global policy ambition for the next decade by adding up countries’ existing
Nationally Determined Contributions3°-32, The longer-term price level considers only a

moderate increase over time and is set at the same magnitude as the highest carbon
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price that has been observed so far (i.e., $103/ton in Sweden and Switzerland, inflation-

adjusted??).

Compared to the SOWs with no carbon price, we estimate that this carbon price trajectory
reduces the global average temperature by 0.1°C (based on ensemble median; range
0.1-0.2°C across the considered SOWSs) in 2050 and by 0.6°C (range: 0.4—-1.1°C) in 2100
(Figure 2b). It suggests that even moderate global mitigation contributes to reduced
warming and climate damage. However, with the considered carbon price, the ensemble
median end-of-century global mean temperature is estimated to be 2.8°C (range: 2.2—
4.3°C; N=14,180) higher than the pre-industrial level (or radiative forcing level at 4.9W/m?;
range: 3.6—8.0W/m?). It indicates that achieving 2-degree or stricter climate targets would

require more stringent global action beyond current ambitions.

Consistent with prior studies®2829:33 we find that pricing carbon improves global air quality
and reduces average PM2 s-attributable death rates. Globally, imposing this carbon price
reduces the ensemble median PM2s-attributable death rate by 7% (or 69 deaths per
million people; range: 38—108) in 2050 and 11% (or 137 deaths per million people; range:
35-358) in 2100 (Figure 2c). This corresponds to 0.4 (range: 0.2—0.7) million avoided
deaths in 2050 and 0.9 (range: 0.2—-2.9) million avoided deaths in 2100, or an annual
average reduction of 0.5 (range: 0.2—-1.1) million deaths from 2015 to 2100. Our findings
are broadly consistent with prior studies, though many of them considered more ambitious
climate mitigation scenarios and therefore found a larger magnitude of the co-benefits
(broad range across studies: 0.8—1.8 million)%2829, In addition, our assessment of future
PMz2.s concentrations (and the associated health impacts) only consider the changes in
precursor air pollutant emissions, but not the effects of changing meteorological

conditions under a changing climate.

Reduced PM:.s-related health inequities across regions

Cross-country inequity can be defined and operationalized in different ways. Here we

define the distribution of impacts as equitable when people in all regions face similar
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health outcomes. A policy action, such as pricing carbon, is equity-improving when it
brings increased benefits to regions that currently suffer worse health outcomes than
other regions. The results in the main text focus on one metric for the health outcome,
i.e., PM2s-attributable death rates, which measures the health risks. The results for the
other health outcomes (e.g., PM25 exposure level and the number of PM2s-attributable
deaths) and other equity definitions (e.g., based on country income and age groups) are
presented in Supplemental Figures S3-6.To demonstrate how the distributional effects
may evolve over time, the main results below are for mid-century (e.g., year 2050); see
Supplemental Figures S7-8 for results for more near-term (e.g., year 2030) and longer-

term (e.g., year 2100) time periods.

Across all considered SOWSs, regional inequities in pollution and health persist throughout
the century (Figure 3a). The future PMzs-attributable death rate remains higher in
developing countries and emerging economies that are currently exposed to higher levels
of air pollution. For example, in the SOWSs without a carbon price, India and other South
Asian nations have the highest PM2.s-attributable death rates in 2050, with an ensemble
median exceeding 1,500 deaths per million people. In contrast, the lowest projected death
rates occur in Australia, Canada, and Northern Europe, with an ensemble median less

than 200 PM2s-attributable deaths per million people.

Pricing carbon reduces, but does not eliminate, the regional inequities (Figure 3b). The
health benefits associated with the considered carbon price trajectory are generally
greater for regions where the PMz s-attributable death rates are presently high (Figure 2d
and Figure 3). For instance, based on the 2050 ensemble median, pricing carbon lowers
the PMzs-attributable death rate by 113-293 deaths per million per year (or 9.3—-12.5%)
in India and other South Asian nations. In comparison, for regions with lower health risk
at present, the reduction is only 0.7-0.9 PM2.s-attributable deaths per million per year (or
0.2-0.4%) in Australia, the United States, and Northern Europe.

Our results suggest that pricing carbon provides a promising avenue to narrowing current

pollution and health inequities. This core insight holds for all considered future time
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periods (see Supplementary Figures S7-8 for 2030 and 2100 results). It also holds for
alternative health outcomes are used such as PM2z.s exposure level and PM2.s-attributable
deaths (Supplementary Figures S3—4). In addition, considering other definitions for equity,
we find supporting evidence that pricing carbon is likely to improve distributional equity
by bringing greater health benefits to lower-income countries and to elderly populations

(Supplementary Figures S5-6).

Competing health pathways from carbon pricing

What causes these differential regional health effects of a global carbon price? Our
analysis framework models conceptual pathways through which a carbon price could
result in both co-benefits and co-harms (Figure 1a and 1b). Health co-benefits can be
driven by a reduction in air pollutant emissions from fossil fuel combustion, which is the
dominant impact in regions that currently suffer from high pollution and health risks.
Health co-harms can result from increasing emissions from bioenergy use and land use
changes associated with bioenergy production, which is more prominent in the regions
with cleaner air at present but may expand bioenergy production in the future. Comparing
the SOWs in our ensemble, the relative importance of these two pathways contributes to
the regional variations in how a global carbon price affects regional emissions and

pollution exposure. We discuss these linkages in turn.

First, imposing the carbon price lowers fossil fuel combustion and increases renewable
and bioenergy uses across all world regions (Figure 4a). Yet, the extent of these changes
depends on the current energy structures and projected technology costs. For instance,
in 2050, the carbon price lowers the share of coal in the primary energy mix by 14
percentage points in India (reducing from 53% to 39% based on ensemble median; range
across all SOWs: 11-17 percentage points), but only 5 percentage points in Canada
(reducing from 12% to 7% based on ensemble median; range across all SOWs: 3-7
percentage points). This is consistent with the observation that India currently relies more
heavily on coal®*. The carbon price hence leads to a greater reduction in coal use in the

model. In comparison, we find the increases in bioenergy shares are comparable across
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countries (e.g., increases by 2-5 percentage points across the eight selected world
regions, based on the ensemble medians). Here, the small regional variations are largely
driven by limited cross-region differences in bioenergy shares in current energy mixes, as

well as in future bioenergy supply curves assumed in the model.

How the changes in energy use affect air pollutant emissions depends on which sectors
are affected and the stringency of pollution regulation in relevant sectors (Figure 4b). For
instance, carbon pricing leads to similar percentage reductions in coal share in Southeast
Asia and the United States. Yet, the resulting reduction in per capita sulphur dioxide (SOz2)
emissions is smaller in the US due to more stringent pollution control policies on existing

coal facilities®>.

Several types of precursor emissions collectively influence the concentrations of ambient
PMzs. In most countries, the substantial reduction in SO2 and NOx emissions from fossil
fuel uses is the dominant factor contributing to lower PM2.5 concentrations, despite the
slight increases in PM2.5 emissions from the combustion of bioenergy. However, in some
countries (e.g., Canada and Russia), we find a substantial increase in organic carbon
(OC) emissions during the time frame of 2030—2060 under most of the considered SOWs,
leading to a net increase in PM2s concentrations (See Supplementary Figure S21). The
elevated OC emissions are an outcome of increased biomass production that intensifies
land competition and increases the deforestation of the unmanaged forests (see per
capita land use changes in Figure 5a). These co-harms pathway results depend on a
range of model assumptions related to bioenergy supply chain, energy-land interactions,

and deforestation practices (discussed in the next section).

Finally, regional socio-demographic characteristics affect population vulnerability,
influencing health outcomes. For instance, imposing a carbon price results in larger
relative increases in Canadian PM2s-attributable death rates than the associated PM2s
exposure levels. This is consistent with the combined effect of two factors. First, the
nonlinear concentration-response relationships result in greater increases in mortality

risks, from one unit increase in PM2.s exposure, in locations like Canada where the air is
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already relatively clean (see PMz2s concentrations without the carbon price in
Supplementary Figure S15). Second, the increased population ageing in advanced
economies like Canada drives an increase in elderly population that are more vulnerable
to pollution exposure (see Supplementary Table S9 for the projected age structures in

each region).

Drivers of potential health co-harms

Health co-harms can arise through changes in bioenergy production and the induced
changes in land use and deforestation. To understand key factors and model
assumptions that drive the modelled co-harms, we perform a model diagnostic analysis
to systematically assess the model behaviours and the realism of key assumptions. Below
we summarize the key insights related to the magnitude, location, and timing of the health
co-harms. A detailed assessment of all relevant model assumptions is presented in
Supplementary Table S3. A simple feasibility check of key technology-related model

outcomes is shown in Supplementary Section 5.

First, the deforestation method assumed in the model is a key assumption driving the OC
emission increases from deforestation and therefore the magnitude of health co-harms
(Figure 5). The model applies historical emission factors for global deforestation based
on the Global Fire Emissions Database (GFED)%, implicitly assuming most future
deforestation would occur through slash-and-burn and thus emit substantial amounts of
OC. Yet, other methods of deforestation, such as clearcutting, have become more
prevalent and may be the preferred method to convert forests into bio-crop land®’. We
therefore conduct a sensitivity analysis on deforestation method by evaluating an extreme
case where all deforestation activities occur through clear-cutting and emit no OC. This
assumption would avoid the increase in OC emissions from land use and deforestation,
eliminating the health co-harms under all SOWs considered in our ensemble (Figure 5c).
This sensitivity analysis identifies that the deforestation method is a key factor in

determining the magnitude of the potential health co-harms.
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Second, location of the health co-harms is primarily affected by the model assumptions
on bioenergy supply chain and energy-land interactions. Imposing a carbon price
increases bioenergy use in most world regions. Yet, to meet the rising global demand,
where bioenergy production would increase the most depends on two key model
assumptions. First, biomass is largely assumed in the model to be globally traded (see
more in Supplementary Figure S16). This assumption allows bioenergy to be produced
in and exported from countries where it is cheapest to do so. Yet the real-world bioenergy
markets are much more fragmented due to a range of logistical and market challenges®.
Second, the land competition between bioenergy, food, and forest is modelled based on
the expected profitability of raising and selling bio-crops relative to other land-use options.
Since countries like Canada and Russia are assumed to have large areas of unmanaged
forests in the model (Supplementary Figure S17), converting forests to bioenergy land in

these countries is more economically attractive compared to other countries (Figure 5a).

Finally, the health co-harms are likely to be a more relevant concern for the first half of
the century than the second half. For most countries with potential co-harms, we find the
proportion of SOWs with health co-harms gradually increases from now to mid-century,
but then slowly disappears towards the end of the century. For example, we observe
health co-harms (a higher PM2.5-attributable death rate associated with carbon pricing)
in 20% of all SOWs for Canada in 2025 and 15% of all SOWs for Russia in 2035. These
proportions increase to 98% and 50% in 2050, then gradually decrease to 5% and <1%
in 2100, respectively (see more in Supplementary Figure S22). The increase in the first
half of the century is largely a result of increasing bioenergy use and production over time.
The decrease in the second half of the century is largely an outcome of reduced land use
competition. Especially in the SOWs that assume large agricultural productivity
improvements, less cropland is needed to meet food demand in the long-term future,
lessoning the land competition between food and bioenergy as well as the scale and

emissions impacts from deforestation.

Discussion

10
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Our analysis highlights the complexity of the system dynamics through which global
climate mitigation can influence the regional distribution of pollution and health effects.
While the direct health co-benefits from reducing fossil fuel use are well documented’,
we demonstrate possible ways climate mitigation might increase air pollutant emissions
and health risks in some regions®. The key pathway for co-harms identified in our study
is that carbon pricing can increase PMz2s emissions, both from direct bioenergy
combustion and, in a handful of countries, also from indirect land use changes such as
deforestation. Prior studies have also found intensified land use competition in future
mitigation scenarios that rely heavily on bioenergy'®. While those studies demonstrated
emerging risks for food security*® and water stress*!, our results suggest that unintended
consequences can also occur for air quality and health. It underscores the importance of
comprehensive assessment for the sustainability implications of large-scale mitigation

responses to climate change.

Examining the pathways for health co-harms are particularly relevant for countries that
have reduced their coal dependence and where bioenergy might be pursued as a key
decarbonization strategy. Prior studies have shown that the potential for health co-
benefits from fossil reduction is often smaller in advanced economies than in the Global
South countries due to already stringent pollution standards on existing fossil-based
facilities3>42. Considering the potential energy-land interactions, our analysis suggests
that health co-benefits from fossil reduction will become less prominent as countries
advance towards decarbonization, while the potential health co-harms from the mitigation

actions will become increasingly important.

Across all considered SOWSs, we consistently find greater decreases in PM2.s-attributable
death rates in countries facing higher health risks, such as China and India. For countries
that may experience potential co-harms such as Canada, Russia, and United States, our
analysis also identifies possible strategies (e.g., changing deforestation method) that can
eliminate the negative health impacts. This demonstrates that pricing carbon can improve
global air quality while simultaneously reducing the current health inequity across

countries. Such equity-improving outcomes can be expected under a wide range of
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plausible futures that vary in socioeconomic trends, energy demand and technology

costs, as well as agricultural and land-use patterns.

Our analysis of how pricing carbon could affect health risks samples future uncertainties
by considering a large ensemble of future SOWSs. However, the links between large-scale
climate mitigation, air pollution, and the distribution of associated health impacts are still
shrouded in considerable uncertainties not considered in this analysis. Our study does
not resolve the effects of a wide range of additional uncertainties relating to model
parameterization and structure*®. For example, assuming that deforestation occurs
through clearcutting, rather than burning, effectively eliminates co-harms from our
ensemble. Due to the complexity of the coupled multi-region, multi-sector system, our
exploratory study takes a crucial initial step towards identifying the model assumptions
and combination of uncertainties that might bias the conclusions about the health
implications and distributional outcomes. Fruitful avenues for future research include an
exploratory ensemble approach combined with scenario discovery methods and
additional sensitivity analyses to identify future conditions or development trajectories
resulting in a higher likelihood of health co-harms?%27. These methods can improve our
understanding of failure modes of potential mitigation strategies and help to identify policy

portfolios that are more robust to complex dynamics and deep uncertainties.

Our study is still silent on many important questions. For example, how can more refined
strategies help to better navigate the complex landscape of climate, economics, and
health? A globally uniform carbon price has been used widely in models to represent
climate policy, largely due to its simplicity and the appealing theoretical advantage as the
most economically efficient way to achieve global decarbonization. However, real-world
policies are more diverse and fragmented*4. Regulations and sector-based measures are
widely and typically adopted and nearly everywhere have a bigger impact on emission
abatement than directly pricing carbon*546. Representing various types and combinations
of policy instruments is particularly important in today’s climate policy context, as
hundreds of countries now experiment with ways to reach net-zero emissions by mid-

century. We hypothesize that these different policy designs would have different
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distributional consequences. For instance, compared to a subsidy on rooftop solar
systems, electrifying the transport sector may bring greater benefits to populations living
near major roads, who are often disproportionately minorities and people of lower
socioeconomic status*’. In addition, the health co-harms identified in our analysis may
also be mitigated by imposing land conservation policies along with a carbon price on

energy-sector emissions*®.

A second open question is how much-needed improvements in the representations of
health drivers, exposures, and outcomes impact the conclusion. For instance, bioenergy
is an important technology driver for the health co-harms observed in our study. Yet, our
modelling approach only considers 12 land types for 384 land regions worldwide. A
detailed, subnational representation of land-use patterns is essential to identify suitable
land for bioenergy production and model the competition between different land-use
purposes?®°0, Assessing the disparities across socio-demographic groups, both for
exposure and health outcomes, also requires fine-scale pollution simulation and health
impact assessment. While some studies are moving in this direction®'%2, research that
quantifies these linkages at decision-relevant resolutions is still largely in its infancy.
These efforts can help in the search for decarbonization strategies that can

simultaneously reduce adverse health impacts and associated inequities.

Our study lays the foundation for future efforts to address these open questions and
advance our scientific understanding of the coupled energy-land-energy systems. Our
work also has important policy implications. We assess the key drivers for the country-
varying health effects of climate mitigation and identify potential cross-sector linkages
(e.g., between energy and land) that may lead to different distributional impacts. These
insights are critically important, both for the international community and individual
countries, to incorporate health and equity considerations into their climate mitigation
efforts.

13
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Methods

Construction of state of the world ensemble

We construct a large-scale exploratory ensemble of plausible future states of the world
(SOWSs) using a leading global-scale, process-based integrated assessment model,
GCAM v5.4'8 (Supplementary Table S1). GCAM is a multi-sector model with technology-
rich representations of five systems and their interactions: energy, water, agriculture and
land use, economy, and climate systems'®. Based on varying input assumptions on
socioeconomic drivers, technology costs, and policy actions, GCAM simulates the
behaviours and interactions between these systems and projects future patterns at five-
year intervals in a partial equilibrium economic modelling framework. For the GCAM
version used in this study (v5.4), the energy and economy sectors are modelled for 32
world regions; the land system is divided into 384 subregions; and the climate/physical

Earth system is simulated by a reduced-form climate model, Hector®3, at the global scale.

For the representation of the decision lever, we consider a simple policy design, i.e.,
whether a globally uniform carbon price trajectory (Figure 2a) is implemented from 2020—
2100. This policy representation reflects the most economically efficient way to reach
global decarbonization. Pricing carbon through a tax or a cap-and-trade system has also
been widely adopted in many countries and regions to mitigate CO2 emissions?2. Our
near-term carbon price levels are broadly consistent with the stringency of current carbon
markets. We are aware that the real-world climate ambition and carbon price levels vary
greatly across regions. For instance, the current carbon prices are $9.20/ton in China’s
national emissions trading system (ETS), $13.89 in the Regional Greenhouse Gas
Initiative (RGGI), $30.82/ton in California, and $86.53/ton the EU ETS?2. Meanwhile, most
low-income and lower-to-middle-income countries do not have carbon prices?%. In
addition, the recent policy pledges from major economies to reach net-zero emissions by
mid-century could substantially strengthen policy stringency in the decades to come. An
improved representation of realistic policy choices is therefore an important area for future

work>425,
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In this study, we sample seven broad categories of future uncertainties in socioeconomic,
technological, and land-use aspects (more details in the Supplemental Table S1),
including: 1) Population and GDP, since demographics and economic development are
fundamental drivers of future human activities, carbon emissions, and health burdens; 2)
Price elasticity of energy demand, since the demand for energy influences GHG and air
pollutant emissions from end-use and energy supply sectors; 3) Agricultural productivity
and income elasticity for food, since food demand and agricultural activities are key
determinants for future land use change and related emissions; 4) Fossil fuel extraction
costs, since they affect the effectiveness of carbon price in driving down the demand; 5)
Low-emissions energy costs, since they affects the competitiveness of low-carbon energy
relative to fossil-based technologies; 6) Carbon capture and sequestration (CCS)
deployment costs, since they determine the scale of CCS deployment and associated
emissions under a carbon price; 7) Water resource availability, since it is a key limiting
factor for energy and agricultural activities and therefore affects relevant GHG and air

pollutant emissions.

We use a full factorial experimental design across these seven factors to encompass a
wide range of plausible futures?3. Among the seven, the first four (i.e., socioeconomics,
energy demand, agricultural and land use, fossil fuel extraction costs) are sampled by
considering five sets of assumptions that reflect the storylines of Shared Socioeconomic
Pathways (SSPs)%. For the other three factors, we sample the future water runoffs using
varying levels of groundwater level and reservoir capacity; and we sample the future
competitiveness of low-emission energy technologies and cost of CCS technology using
varying levels of projected costs. The quantitative assumptions for different SSPs and

technology costs are reported in Lamontagne et al. 2018232 and Calvin et al. 20175%".

Combining one decision lever and seven types of uncertainties, we experimented with
30,000 SOWs (i.e., 15,000 pairs with/without a carbon price). However, some SOWs do
not yield feasible solutions. For example, the socioeconomic assumption following SSP5

(fossil-fuelled development) is not compatible with AGLU assumption following SSP3
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(regional rivalry). This is because SSP3 assumptions for AGLU include low agricultural
technology development, restricted trade, lack of land use regulations, but low agricultural
productivity are formidable obstacles to achieving high-level socioeconomic
developments in SSP5. As a result, we have 14,526 model-solved SOWs without a
carbon price and 14,180 model-solved SOWs with a carbon price. Between these two
groups, we further pair up the SOWSs with the same assumptions for other uncertainties
and identify 13,936 pairs of SOWSs that only differ in the decision lever. The
Supplementary Table S2 provides a comprehensive list of the numbers of solved SOWs

categorized by the decision lever (carbon price) and each ensemble design factor.

Since GCAM is an open-source model (download: http://jgcri.github.io/gcam-

doc/index.html), here we only include a short description of key energy and land use

assumptions that are particularly relevant for this study. In GCAM, the global trade of
agricultural commodities is modelled using the Armington approach®®, which assumes
that products are differentiated by source and consumers treat goods from different
countries as imperfect substitutes. The competition between imports and domestic
production is governed by a logit sharing function in each regional market. Global trades
of fossil fuels and bioenergy are also modelled using the Armington approach. To avoid
unrestricted land conversion to bioenergy production, we apply the default GCAM
assumption that protects 90% of all non-commercial lands (i.e., non-commercial pasture
and forest, grassland and shrubland) in each geographic land unit (GLU)®°. Renewable
technologies, such as wind, solar, and geothermal, are not traded. The market shares of
different fuels/technologies are governed by their relative or absolute cost difference
through logit formulations®6'. The share weight parameters in the logit functions are

resource-specific and calibrated using historical data.

Projection of GHG emissions

We project future emissions of annual total GHGs for 32 GCAM regions, by technology
and fuel choice. We estimate CO2 emissions from fossil fuel and limestone uses by

multiplying GCAM-projected production and consumption activities with the technology-
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specific emission factors estimated from the Carbon Dioxide Information Analysis Center
(CDIAC, which is a global inventory of historical carbon emissions from 1751 to 201762).
CO2 emissions from land-use and land-cover change are estimated based on the areas

of land use change and the carbon intensity of each land use type®3.

When a carbon price is imposed, higher-carbon technologies become more expensive
whereas lower-carbon technologies become more cost-competitive. This cost difference
(along with other non-cost related assumptions) determine the relative contribution of
these technologies and fuel choices in meeting the demand in each economic sectors

such as electricity, transport, industry, residential and agricultural sectors.

We also calculate the emissions of non-CO2 GHGs, including methane, nitrous oxide, and
fluorinated gases by multiplying relevant activities with the emission factors from EPA
2019%. When the carbon price is imposed, the changes in non-CO2 greenhouse gas
emissions are proportional to the changes in activity level, except for the reductions in
emission intensity that are adjusted based on the exogenously assumed marginal
abatement cost curves:
E, = A, - EF, - (1 — MAC(Eprice,)),

where t stands for a five-year-period, E; is the non-CO2 GHG emissions, A: is the activity
level, EF: is emissions factor, MAC is the marginal abatement cost curve, and Eprice; is
the carbon price level. The regional MAC curves consider a wide range of various

technologies and are derived based on the EPA 2019 database®.
Assessment of air pollutant emissions

We estimate the emissions of five types of air pollutants, including ammonia (NHs),
nitrogen oxides (NOx), sulphur dioxide (SOz2), black carbon (BC), and organic carbon (OC),
for 32 GCAM regions, by technology and fuel choice. The emissions are calculated by
multiplying relevant activities projected by the model with the respective emission factors
derived from historical data'®. To account for the tightening of air pollution control policies

over time, the future emission factors are adjusted based on a declining trend with
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increasing income®. The technology mix is also adjusted over time by assuming a higher
penetration rate of less polluting units5”-%5. Both adjustments vary across five SSPs.
Specifically. For each pollutant emitted from each activity type:

E, =A;-EF,- (1 — EmCtrl(pcGDP,))
where t stands for a five-year period, E; is the air pollutant emissions, A; is the activity
level, EF: is activity-specific emission factor. EmCtrl represents the percent reduction in
emission factor as a result of emissions control, which is a function of per capita GDP,
pcGDP: :

1

steepness

EmCtrl, =1 —

1+

where steepness is a technology- and air pollutant species-specific exogenous factor
based on empirical evidence that determines the extent to which the changes in per capita

GDP affect the stringency of emissions controls.

Assessment of climate outcomes

We model the climate system using the Hector model®® which interacts with the other
parts of GCAM at every five-year time step. Hector is a reduced-form global climate
carbon-cycle model, representing the most essential global-scale Earth system
processes. The inputs to Hector are global total GHG emissions aggregated across all
GCAM sectors and regions. Then, Hector reports global average radiative forcing and

temperature changes.

Assessment of ambient PM2.5 concentrations

To assess the ambient PM2.5 concentrations from precursor emissions, we use the TM5-
FASST model'®, a reduced-form source-receptor model for 56 world regions. TM5-
FASST is derived from TM5-CTM, a full chemical transport model for which the non-linear

changes in pollution formation and wind transport is being considered®®. The performance
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of TM5-FASST was evaluated in a prior publication?® and demonstrates satisfying model

capabilities in estimating ambient PM2.5 concentrations.

To map from GCAM to TM5-FASST regions, we first downscale the emissions for 32
GCAM regions to 178 countries (see Supplementary Table S4 for GCAM sector mapping),
by sector and for 5 types of precursor emissions, using the country-to-region ratios based
on the Emission Database for Global Atmospheric Research (EDGAR) data®’ (see
Supplementary Table S5 for EDGAR sector mapping). We then re-aggregate country-
level emissions to the 56 TM5-FASST regions.

For each year and SOW, we estimate the PM2.5 concentrations using the changes relative
to 2000, as the base year, assuming linear relationship between emissions and PM2s
concentrations as well as additivity across all types of emissions and regions. Specifically,

the following equation is used:

ny ng
COD = Crase®) + ) Y Ailx,y] - [Bi0) = Eipase )]
where C(y) and Cp 4. (y) are the amt;Cienlt PM2zs concentration in receptor region y in a
future year of interest and in 2000, respectively. E;(x) and E; p45.(x) are the emissions of
the air pollutant type i from a source region x in a future year of interest and in 2000,
respectively. 4;[x,y] is the source-receptor coefficient, capturing how the emissions of
precursor air pollutant type i in source region x would influence the ambient PM2s
concentrations in receptor region y. n, is the total number of source regions whose
emissions affect the ambient PM2.5 concentration in receptor region y, plus two additional
sources, shipping, and aviation, that are not tied to a particular location. i is the index for
the type of precursor emissions, which include ammonia (NHs), nitrogen oxides (NOx),
sulphur dioxide (SOz2), black carbon (BC), and particulate organic matter (POM) that are
estimated from GCAM. n; is the total number of precursors that form ambient PMz5. The

unit of the PM2.5 concentration is ug/m3, and the units of the emissions are kTonne/year.

Since TM5-FASST model uses the year 2000 as the base year, the values for E; 5. (x)

are taken from the Representative Concentration Pathway (RCP) database for the year
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2000 at 1° x 1° resolution'?; using 2000 emissions as input, Cp4..(v) is estimated using a
full chemical transport model TM5-CTM®8, also at a global 1° x 1° resolution. The values
in the source-receptor matrix A are derived from a series of perturbation runs that
increase the precursor emissions by 20%, by precursor type and source region, and

assess the implications on PM2.5 concentrations in each receptor region.

Although the simplicity of the TM5-FASST model enables our assessment of nearly
30,000 SOWs for many years, there are caveats when using this model for assessing
future pollution levels. For instance, it does not consider how a changing climate might
influence the pollution formation and transport in the future. It also assumes linear
relationships between precursor emissions and resulting PM2.5 concentrations which
simplifies the chemical and physical processes in the atmosphere. To evaluate the
performance of TMS5-FASST for modelling future pollution levels, we compare the
projected PM2.s concentrations and health risks using TM5-FASST with the results from
the Earth System Model Version 4.1 (ESM4), a high-resolution chemistry-carbon-climate
model developed by Geophysical Fluid Dynamics Laboratory. The results from the two
models are broadly consistent with each other, suggesting that the TM5-FASST model
produces reasonable estimates for PMz.s concentrations (see more in Supplementary
Section 1.4).

Assessment of PMz.s-attributable deaths

Following the approach in the Global Burden of Disease Study?, we consider six diseases
that have been found to be associated with long-term exposure to ambient PM2.5, namely
chronic obstructive pulmonary disease (COPD), diabetes mellitus type Il (DB), ischemic

heart disease (IHD), lung cancer (LC), lower respiratory infections (LRI), and stroke.

For each of the five-year age group from 0 to 95+ in each of the 178 countries, we
calculate the premature deaths attributable to each of the considered six diseases using

the following equation:
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AMort =y, - AF(c) - Pop,
where y, is age- and disease-specific the baseline mortality rate; Pop is the size of the

exposed population in each age group; AF is the attributable fraction, which changes with

varying exposure levels to PM2.s5 concentration (c) in each region.

Below we describe the data source and calculation methods for each parameter. More

detailed information about the input data is provided in the Supplementary Table S6.

For population (Pop), we use age-specific population projections from the IIASA SSP
database®. The population projections are at country level, with five-year intervals from
2010 to 2100, and vary across the five SSPs.

For baseline mortality rates (y,), we use the age-specific baseline mortality rates for each
country projected by the International Futures (IFs) model v7.64%8, which also vary across
the five SSPs. The baseline mortality rates from IFs are projected based on the GDP per
capita and education attainment level and calibrated using the GBD 2004 data for
cardiovascular diseases, diabetes, malignant neoplasms, respiratory diseases, and
respiratory infections. We map IF-reported rates onto the six considered diseases: For
IHD and stroke, we use the rates for total cardiovascular disease from IF and multiply by
the shares of IHD and stroke in total cardiovascular-disease-related deaths; for LC, we
use the rates for malignant neoplasms; for COPD, we use the rates for respiratory disease;
for LRI, we use the rates for respiratory infections, and for DB, we use the rates for
diabetes. To check the validity of this mapping method, we compared the disease-specific
baseline mortality rates calculated using our methods with the rates reported by the GBD
study and found them to be largely consistent (see Supplementary Table S7 for the

comparison).

For attributable fraction (AF), we calculate the attributable fractions for each disease and

age group using the following equation:

RR(c)—1

AF(c) = RR()
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where c is the annual mean PM2s concentration in each country and RR is the disease-
specific relative risk. The annual mean PMz.5 concentration c is simulated by TM5-FASST
for 56 regions. We further assume all countries within the same TM5-FASST region have
the same exposure level. The relative risks are obtained from the GBD study 20192 and
derived from the Integrated Exposure—Response (IER) model?®® for the six types of
diseases for the PM2.5 exposure levels from 0 to 600 ug/m3. The RRs are age-specific for
IHD and stroke (from 25 to 95+ at five-year intervals) and are for all age-groups for the

other four diseases.

Assessment of the distributional and equity implications

We consider different measurements of equitable distribution and equity-improving
distribution that vary in two dimensions, the metric of health outcomes and the definition
of health equity. Below we include a brief summary, with more details summarized in

the Supplementary Table S8.

Regarding the metric of health outcomes, our main results focus on health risks
measured by the PM2s-attributable death rate. We also consider two alternative metrics:
health exposure measured by PM2.s concentrations (Supplementary Figure S3) and

health burden measured by PM2s-attributable deaths (Supplementary Figure S4).

Regarding the definition of health equity, our main results focus on regional variations
and consider “equity-improving” outcome as regions that currently face higher health
risks benefit more from carbon pricing. We further consider two alternative definitions
that focus on variations across different country income groups and global age groups.
Here “equity-improving” outcome requires lower-income regions or elderly populations,
as more vulnerable regions/groups, benefit more from carbon pricing (Supplemental
Figures 5 and 6). To operationalize these definitions, for each metric of health
outcomes, we perform an ordinary least square (OLS) regression to statistically
evaluate whether the targeted regions/groups indeed benefit more from implementing
the global carbon price.
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Data availability Statement

The dataset generated during and analysed in the current study is available from a
public zenodo repository (https://doi.org/10.5281/zenodo.6975580). All input data are
available in the repository. The output of the GCAM ensemble is not available due to
limited space, but the required outputs for the analysis and the production of the tables

and the figures in this study are available in the repository.

Code availability Statement

The GCAM model is available for download from https://github.com/JGCRI/gcam-core.
Detailed model documentation is available online at http://jgcri.github.io/gcam-
doc/index.html. The TM5-FASST model is available at http://tm5-fasst.jrc.ec.europa.eu/.
Python (v3.6) and R(v3.6) are used for data analysis. The codes we use to process the
data, calculate the health impacts, and make the plots are available from a public
zenodo repository (https://doi.org/10.5281/zenodo.6975580).
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Figure 1. Pathways for a global carbon price to influence climate, health, and equity
outcomes. a: Conceptual mental model of relevant influences, feedbacks, and system
interactions. b: Pathways captured by our integrated climate-energy-health model and the
uncertainties sampled in our exploratory ensemble. We use the GCAM model'® to sample future
states of the world (SOWs) and implement the carbon price (total ensemble size: N=28,706). We

estimate the effects of air pollutant emissions on ambient PM2 s concentrations using the TM5-
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FASST model'. The health impact assessment further uses the projected population and age
structure from the IIASA database®® and the baseline mortality rates from the International Futures

model®. More details are presented in the Method section.
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Figure 2. Impacts of a global carbon price on future global average temperature and
regional distribution of PM.s-attributable death rates. a: The carbon price trajectory from 2015
to 2100 considered in this study; the black dot highlights the price level in 2050 ($69/ton CO,). b
and c: The global average temperature increase relative to the 1850 level and the global annual
PM. s-attributable death rates, including the median and ranges of the states of the world (SOWs)
with and without a carbon price (N=14,180 and 14,526, respectively; the different sample sizes

are because some combinations of input assumptions result in infeasible solutions, more in
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Supplementary Information Section 1.2). The borders of the belts are the ranges across all SOWs
in each projected year. The box plots on the far right show the ensemble distributions in 2050 and
2100. d, Changes in PMzs-attributable death rate in 2050 due to the carbon price (N=13,936;
limiting to the pairs of SOWs that have feasible solutions in both cases). “Consistent effects”
indicate the same direction of effects (i.e., co-benefits or co-harms) across all the SOWs, whereas
“Potential effects” show mixed effects across SOWSs. The thicker borderlines show the 32 GCAM
regions (except Antarctica) for which the energy/land activities and associated emissions are
simulated, whereas the lighter borderlines show 178 regions and countries for which the health
impact assessments are performed®. See Supplementary Figures S9-S10 for the spatial
distribution for 2030 and 2100.
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Figure 3. Distribution of PM2s-attributable death rates across regions in 2050. a: PM2s-
attributable death rates without a carbon price. b: Changes in the PMzs-attributable death rates
as a result of a carbon price. The circles and error bars represent the ensemble medians and
ranges for 31 world regions consistent with GCAM regions (excluding Taiwan due to lack of data;
N=13,936 for a and b). The grey dashed lines represent the ordinary least square regression line
of ensemble medians across regions. In both panels, from left to right, regions are ranked from
low to high PM_ s-attributable death rates in 2015. See Supplementary Figure S7-8 for the results
for 2030 and 2100.
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Figure 4. Regional changes in the health drivers, exposures, and risks in response to the
considered global carbon price in 2050. a: the changes (by percentage points) in shares of
coal, biomass, and renewables in the primary energy mix (See Supplementary Figure S18 for
global regional-level distributions). b: the changes in organic carbon (OC) and sulphur dioxide
(SO2) emissions per capita per year (see Supplementary Figure S19 for global regional-level
distributions). c: the changes in annual average PM2 s concentrations (see Supplementary Figure
S20 for global regional-level distributions). d: the changes in PM2s-attributable death rates. The
box plots show the ensemble median, quartiles, and range (N=13,936 pairs of states of the world).
As representative regions, we include two emerging markets that suffer from the highest pollution

and health risks at present (China and India), two lower-income regions that may experience rapid
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economic growth and increasing pollution risks in the future (Sub-Saharan Africa and Southeast

Asia), two middle-income regions with vast areas of forest resources (Russia and Brazil), and two

developed countries with cleaner air and large land areas (the United States and Canada). See
Supplementary Figure S11-12 for the results for 2030 and 2100.
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Figure 5. Regional changes in land use, organic carbon emissions, and health risks as a

result of the considered global carbon price in 2050. a: Changes in land use types (by

percentage points). b: Changes in organic carbon emissions in the residential sector and the

agriculture and land use sectors. ¢: Changes in PM_s-attributable death rates. In b and ¢, we

show the sensitivity analysis assuming deforestation occurring through opening burning versus
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clearcutting. The box plots show the ensemble median, quartiles, and range (N=13,936 pairs of
states of the world). As representative regions, we include two emerging markets that suffer from
the highest pollution and health risks at present (China and India), two lower-income regions that
may experience rapid economic growth and increasing pollution risks in the future (Sub-Saharan
Africa and Southeast Asia), two middle-income regions with vast areas of forest resources
(Russia and Brazil), and two developed countries with cleaner air and large land areas (the United

States and Canada). See Supplementary Figure S13—14 for the results for 2030 and 2100.
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