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Abstract. We consider the problem of dividing limited resources to individuals arriving 
over T rounds. Each round has a random number of individuals arrive, and individuals can 
be characterized by their type (i.e., preferences over the different resources). A standard 
notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness 
and efficiency. The former is an individual guarantee, requiring that each agent prefers the 
agent’s own allocation over the allocation of any other; in contrast, efficiency is a global prop-
erty, requiring that the allocations clear the available resources. For divisible resources, when 
the number of individuals of each type are known up front, the desiderata are simultane-
ously achievable for a large class of utility functions. However, in an online setting when the 
number of individuals of each type are only revealed round by round, no policy can guaran-
tee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as 
to approximately satisfy the two properties. We show that, in the online setting, the two 
desired properties (envy-freeness and efficiency) are in direct contention in that any algo-
rithm achieving additive counterfactual envy-freeness up to a factor of LT necessarily suffers 
an efficiency loss of at least 1=LT. We complement this uncertainty principle with a simple 
algorithm, GUARDED-HOPE, which allocates resources based on an adaptive threshold policy 
and is able to achieve any fairness–efficiency point on this frontier. Our results provide 
guarantees for fair online resource allocation with high probability for multiple resource and 
multiple type settings. In simulation results, our algorithm provides allocations close to the 
optimal fair solution in hindsight, motivating its use in practical applications as the algorithm 
is able to adapt to any desired fairness efficiency trade-off.
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1. Introduction
Our work here is motivated by a problem faced by a col-
laborating food bank (Food Bank for the Southern Tier of 
New York (FBST; https://www.foodbankst.org/) in oper-
ating its mobile food pantry program. Recent demands 
for food assistance have climbed at an enormous rate, and 
an estimated 14 million children are not getting enough 
food because of the COVID-19 epidemic in the United 
States (Bauer 2020, Kulish 2020). With sanctions on oper-
ating in-person stores, many food banks have increased 
their mobile food pantry services. In these systems, the 
mobile food pantry must decide on how much food to 
allocate to a distribution center on arrival without knowl-
edge of demands in future locations. This model also 
extends as a representation of broader stockpile allocation 

problems (such as vaccine and medical supply allocation) 
and reservation mechanisms.

As a simplified example (see Section 3 for the full 
model, including multiple resources and individual 
types), every day, the mobile food pantry uses a truck to 
deliver B units of food supplies to individuals over T 
rounds (each round can be thought of as a distribution 
location: soup kitchens, pantries, nursing homes, etc.). 
When the truck arrives at a site t (or round t), the operator 
observes Nt individuals and chooses how much to allo-
cate to each individual (Xt ∈ RNt) before moving to the 
next round. The number of people assembling at each site 
changes from day to day, and the operator typically does 
not know the number of individuals at later sites (but has 
a sense of the distribution based on previous visits).
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In off-line problems, in which the number of individuals 
at each round (Nt)t∈[T] is known to the principal in 
advance, there are many well-studied notions of fair alloca-
tion of resources. One guarantee, envy-freeness, requires 
that each individual prefers the individual’s own allocation 
over the allocation of any other. In contrast, efficiency is a 
global property, requiring that the allocations clear the 
available resources. For divisible resources, these desider-
ata are simultaneously achievable for a large class of utility 
functions with multiple resources and easily computed 
(via a convex program) by maximizing the Nash social 
welfare (NSW) objective subject to allocation constraints 
(Eisenberg 1961, Varian 1974). As an example, in this (sim-
plified) setting, the fair allocation is easily computed 
by allocating Xopt � B=N to each individual, where N �
P

t∈[T]Nt is the total number of individuals across all 
rounds. This allocation is clearly envy-free (as each individ-
ual receives an equal allocation) and is efficient (as all of the 
resources are exhausted); it’s also easy to see that this is 
the only allocation that satisfies these two properties 
simultaneously.

Many practical settings, however, operate more akin 
to the FBST mobile food pantry, in which the principal 
makes allocation decisions online with incomplete know-
ledge of the demand for future locations. However, these 
principals do have access to historical data allowing 
them to generate histograms over the number of individ-
uals for each round (or potentially just first moment 
information). Designing good allocation algorithms in 
such settings necessitates harnessing the Bayesian infor-
mation of future demands to ensure equitable access to 
the resource and also adapting to the online realization of 
demands as they unfold to ensure efficiency.

Satisfying any one of these properties is trivially achiev-
able in online settings. The solution that allocates Xt � 0 to 
each individual satisfies hindsight envy-freeness as each 
individual is given an equal allocation. The solution that 
allocates X1 � B=N1 to individuals at the first location and 
Xt � 0 for t ≥ 2 satisfies efficiency as the entire budget is 
exhausted at the first location. Another difficult challenge 
in this setting is achieving low counterfactual envy, ensur-
ing that the allocations made by the algorithm (Xt) are 
close to what each individual should have received with 
the fair solution in hindsight (B/N). More meaningful is 
understanding how these different criteria interact. Here, 
we tackle these important challenges by defining mean-
ingful notions of approximately fair online allocations and 
develop algorithms that are able to utilize distributional 
knowledge to achieve allocations that strike a balance 
between the competing objectives of envy and efficiency.

1.1. Overview of Our Contributions
In sequential settings, one way to measure the (un)fairness 
of any online allocation (Xalg) is in terms of its count-
erfactual distance (for both envy and efficiency) when 
compared with the optimal fair allocation in hindsight 

(i.e., off-line allocation Xopt). Another measure is hind-
sight envy (when compared only to allocations made by 
the algorithm). In particular, we define counterfactual envy 
as ∆EF � ‖u(Xopt

θ ,θ)� u(Xalg
θ ,θ)‖∞ to be the maximum 

difference in utility between the algorithm’s 
allocation and the off-line allocation when agents are 
characterized by their type θ�and define hindsight envy as 

ENVY � maxt,t′,θ,θ′u(Xalg

t′,θ′ ,θ)� u(Xalg
t,θ,θ) to be the maxi-

mum difference between the utility individuals would 
receive if given someone else’s allocations and let 

∆efficiency � B �

P

t,θNt,θX
alg
t,θ�be the algorithm’s total left-

over resources. These are all very stringent metrics, akin to 
the notion of regret in online decision-making settings.

In these settings with competing objectives, practition-
ers often resort to ad hoc rules of thumb, heuristics, and 
trial-and-error adjustments of the system to attempt to 
manage the balance between objectives. How these crite-
ria interact and trade off among one another is often not 
well-understood or characterized, and furthermore, there 
typically does not exist a single best “ranking” or a clear 
single objective function that determines which trade-offs 
are better than others. In fact, minimizing some combina-
tion of (∆EF, ENVY,∆efficiency) can be formulated as a Mar-
kov decision process (MDP). However, as these metrics 
depend on the entire allocation, the complexity of finding 
the optimal policy is exponential in the number of rounds 
and may be difficult to interpret (Manshadi et al. 2021). 
Moreover, it is much harder to use MDP formulations to 
explore the trade-off between the objectives.

Our main technical contribution is to provide a com-
plete characterization of the achievable pairs of (∆EF, 
ENVY,∆efficiency). Our results hold in expectation and with 
high probability under multiple divisible resources and 
with a finite set of individual types with linear utilities. 
In particular, we show the following informal theorem 
(see Figure 1 for a graphic representation).

Informal Theorem 1 (See Sections 4 and 7 for Full Ver-
sions). Under mild regularity conditions on the distribution of 
Nt, we have the following (� ignores problem-dependent con-
stants, logarithmic factors of T, and o(1) factors): 

1. (Statistical uncertainty principle) Any online allocation algo-
rithm must suffer counterfactual envy of at least ∆EF�1=

ffiffiffiffi

T
√

.

2a. (Counterfactual envy-efficiency uncertainty principle) 
Any online allocation algorithm necessarily suffers ∆efficiency� 

min{
ffiffiffiffi

T
√

, 1=∆EF}:
2b. (Hindsight envy-efficiency uncertainty principle) Any 

online allocation algorithm necessarily suffers ∆efficiency� 

min{
ffiffiffiffi

T
√

, 1= ENVY}.
3. (Upper Bound via GUARDED-HOPE) For any choice of LT, 

with probability at least 1 � δ, GUARDED-HOPE with parameter 
LT achieves

ENVY ≤ LT ∆EF�max{1=
ffiffiffiffi

T
√

, LT}

∆efficiency�min{
ffiffiffiffi

T
√

, 1=LT}:
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In short, our results show that envy and waste must 
be inversely proportional to one another such that dec-
reasing envy requires increasing waste and vice versa. 
The lower bounds (1 and 2) are established using anti-
concentration arguments alongside understanding the 
fundamental gap in ensuring enough resources to allo-
cate close to the estimated optimal solution while simul-
taneously trying to eliminate waste.

Furthermore, we provide a simple algorithm, GUARDED- 
HOPE, which achieves the correct trade-off between envy 
and waste, matching the lower bound in terms of T up to 
logarithmic factors. Given an input of LT, our algorithm sat-
isfies a hindsight envy bound of ENVY�LT and counterf-
actual envy bound of ∆EF�max{1=

ffiffiffiffi

T
√

, LT} with waste 
bounded by ∆efficiency�max{

ffiffiffiffi

T
√

, 1=LT}. Our algorithm 
achieves this using novel concentration arguments on 
the optimal Nash social welfare solution, utilizing a sen-
sitivity argument on the solution to the optimization 
problem instead of the objective (as commonly used for 
competitive ratio guarantees) to learn a lower guardrail 
on the optimal solution in hindsight. Given this, we con-
struct an upper guardrail to satisfy the desired ∆EF and 
ENVY bound. We then achieve the proper trade-off 
by carefully balancing allocating the established lower 
guardrail with the upper guardrail and simultaneously 
ensuring the algorithm never runs out of budget.

To get some intuition into the envy-efficiency uncer-
tainty principle, consider the simple food bank example 
described for a single resource (with arrivals Nt in each 
location and Xopt � B=N, where N �Pt∈[T]Nt). For con-
venience, we temporarily assume that each agent’s util-
ity is directly proportional to the agent’s allocation (i.e., 
u(X,θ) � X). Consider allocation X1 at the first location: 

via standard concentration arguments, one can find a 
high probability lower confidence bound for B/N with a 
half-width on the order of 1=

ffiffiffiffi

T
√

. Now, it’s not hard to 
argue that allocating according to the lower confidence 
bound at all locations achieves counterfactual envy 
of ∆EF ≈ 1=

ffiffiffiffi

T
√

, ENVY � 0, and ∆efficiency ≈
ffiffiffiffi

T
√

. This cor-
responds to the cusp of the efficiency-envy trade-off 
curves in Figure 1.

Now, if we relax the ∆EF or ENVY constraint to 
≈ 1=T1=3 and use the naive static policy of always allocat-
ing via the now looser lower confidence bound, we get a 
waste of T ·T�1=3 � T2=3. Our algorithm instead takes a 
different approach, using the lower confidence bound of 

order 1=
ffiffiffiffi

T
√

as the lower guardrail allocation, and sets 
the upper guardrail allocation to be the lower one plus 
the desired bound on ∆EF or ENVY. If we establish that 
the algorithm always allocates within the guardrails, we 
automatically have the desired bound on ∆EF and ENVY. 
The main additional factor in achieving the trade-off for 
∆efficiency is ensuring we properly allocate according to the 

upper threshold and ensure we do not run out of budget 
to ensure the lower threshold allocation. With this, 
GUARDED-HOPE achieves ∆efficiency ≈ T1=3, which further-
more is the best possible. Moreover, we complement our 
theoretical results with experiments highlighting the 
empirical performance of different algorithms (on both 
synthetic settings as well as a data set based on mobile 
food pantry operations), which shows that GUARDED- 
HOPE has much lower waste and envy compared with 
static under-allocation as well as other certainty equiva-
lence based heuristics Bertsekas (2012).

Whereas fairness in resource allocation is well-studied 
in off-line and adversarial settings, fairness metrics for 

Figure 1. (Color online) Graphic Representation of the Major Contributions (Theorem 1) 

(a) (b)

Notes. Here, the x-axis denotes ∆EF or ENVY, and the y-axis denotes ∆efficiency, the remaining resources. The dotted line represents the impossibility 
resulting from statistical uncertainty in the optimal allocation, and the region below the solid line represents the impossibility resulting from the 
envy-efficiency uncertainty principle. (a) ∆EF � ∆efficiency. (b) ENVY � ∆efficiency.
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the sequential stochastic setting are poorly understood 
(especially when individuals are arriving online). Our 
proposed metrics and results give a novel way of extend-
ing Varian’s definitions of fairness to the sequential 
setting. Moreover, ours is the first result to provide guar-
antees for fair online resource allocation with high prob-
ability for multiple-resource and multiple-type settings. 
Most existing work aims to show competitive ratio or 
additive guarantees on the Nash social welfare objective 
(Banerjee et al. 2020) or focus on the max-min objective 
(Lien et al. 2014, Manshadi et al. 2021). Such guarantees 
are dangerously misleading in that the resultant alloca-
tions may exhibit clear unfairness in hindsight. Similarly, 
an ex ante or probabilistic guarantee may also be per-
ceived as unfair; both allocating one unit with certainty 
and allocating 10 units with probability 1/10 give the 
same ex ante guarantee. In contrast, our chosen metrics 
and theoretical results provides a firm basis for counter-
factual and ex post individual fairness guarantees. Whereas 
we do not believe our work gives a final answer in the theo-
retical and practical understanding of fairness in online allo-
cation, we hope it adds to the conversation of incorporating 
ethics into sequential AI algorithms. More discussion on the 
advantages and disadvantages of our proposed fairness 
metrics is in Online Appendix A.

1.2. Other Motivating Examples
In addition to the mobile food pantry allocation problem 
that forms the focus of our work, we believe our ideas 
can prove useful in several other settings:

1.2.1. Stockpile Allocation. In many healthcare systems 
or resource allocation problems, government mecha-
nisms decide how to allocate critical resources to states, 
individuals, or hospitals. For example, the U.S. federal 
government was tasked with distributing Remdesivir, 
an antiviral drug used early in the pandemic for COVID- 
19 treatment (Lupkin 2020). More recently relevant, 
states and government organizations are deciding how 
to allocate COVID-19 (or influenza) vaccines to various 
population demographics across several rounds (Jaberi- 
Douraki and Moghadas 2014, Yi and Marathe 2015). In 
these scenarios, on a monthly basis, each state is given a 
fixed amount of the resource (say COVID-19 vaccina-
tions) and is tasked with distributing these to individuals 
across various distribution locations. Whereas the primary 
goal is to develop efficient allocations, an alternative ob-
jective may be to ensure equitable access to the resource 
(Donahue and Kleinberg 2020, Shadmi et al. 2020, 
Manshadi et al. 2021).

1.2.2. Reservation Mechanisms. These are key for oper-
ating shared high-performance computing (HPC) systems 
(Ghodsi et al. 2011). Cluster centers for HPC receive num-
erous requests online with varying demands for CPUs 
and graphics processing units (GPUs). Algorithms must 

allocate resources to incoming jobs with only distribu-
tional knowledge of future resource demands. Impor-
tant to these settings is the large number of resources 
(number of GPUs, RAM, etc., available at the center), 
requiring algorithms that scale to higher dimensi-
onal problems.

2. Related Work
Fairness in resource allocation and the use of Nash 
social welfare was pioneered by Varian in his seminal 
works (Varian 1974, 1976). Since then, researchers have 
investigated fairness properties for both off-line and 
online allocation in settings with divisible or indivisible 
resources and when either the individuals or resources 
arrive online. We now briefly discuss some related 
works; see Aleksandrov and Walsh (2020) for a compre-
hensive survey. What distinguishes our setting from 
many of the previous works is that we consider the 
online Bayesian setting with a known distribution. 
Many previous works are either limited to off-line or 
nonadaptive algorithms or consider adversarial online 
arrivals. Trade-offs between various fairness metrics is 
also considered previously in the literature but for 
classification-based fairness metrics on protected attrib-
utes instead of allocation-based ones (Kleinberg et al. 
2016).

2.1. Food Bank and Healthcare Operations
There is a growing body of work in the operations 
research literature addressing logistics and supply chain 
issues in the area of humanitarian relief, healthcare, and 
food distribution (Jaberi-Douraki and Moghadas 2014, 
Yi and Marathe 2015, Orgut et al. 2016, Sengul Orgut 
et al. 2017, Alkaabneh et al. 2020). The research focuses 
on designing systems that balance efficiency, effective-
ness, and equity. In Eisenhandler and Tzur (2019), they 
study the logistical challenges of managing vehicles with 
limited capacity to distribute food and provide routing 
and scheduling protocols. In Lien et al. (2014) and Man-
shadi et al. (2021), they consider sequential allocation 
with an alternative objective of maximizing the mini-
mum utility (also called the leximin in the literature; 
Moulin 2004). We instead consider sequential allocation 
of resources under the objectives of achieving approxi-
mate fairness notions with regards to envy and efficiency.

2.2. Cake Cutting
Cake cutting serves as a model for dividing a continu-
ous object (whether that be a cake, advertisement space, 
land, etc.) (Brams and Taylor 1995, Procaccia 2013). 
Under this model, prior work considers situations in 
which individuals arrive and depart during the process 
of dividing a resource, and the utility of an agent is a 
set function on the interval of the resource received. 
Researchers analyze the off-line setting to develop algorithms 
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to allocate the resource with a minimal number of cuts 
(Brams and Taylor 1996) or online under adversarial arriv-
als (Walsh 2011). Our model instead imposes stochastic 
assumptions on the number of arriving individuals 
and characterizes probabilistic instead of sample-path fair-
ness criteria.

2.3. Online Resources
One line of work considers the resource (here, to be 
thought of as the units of food, processing power, etc.) is 
online and the agents are fixed (Aleksandrov et al. 2015; 
Mattei et al. 2017, 2018; Benade et al. 2018; Aleksandrov 
and Walsh 2019; Banerjee et al. 2020; Bansal et al. 2020; 
Bogomolnaia et al. 2022). In Zeng and Psomas (2020), 
they study the trade-offs between fairness and efficiency 
when items arrive under several adversarial models. 
Another common criterion is designing algorithms that 
are envy-free up to one item, for which researchers 
design algorithms that can reallocate previously allo-
cated items but try to minimize these adjustments (Aziz 
et al. 2016, He et al. 2019). These problems are in contrast 
to our model in which, instead, the resources are fixed 
and depleting over time and individuals arrive online.

2.4. Online Individuals
The other setting more similar to our work considers 
agents as arriving online and the resources as fixed. In 
Kalinowski et al. (2013), they consider this setting in 
which the resources are indivisible with the goal of maxi-
mizing utilitarian welfare (or the sum of utilities), which 
provides no guarantees on individual fairness. Another 
approach in Gerding et al. (2019) considers a scheduling 
setting in which agents arrive and depart online. Each 
agent has a fixed and known arrival time, departure 
time, and demand. The goal then is to determine a 
schedule and allocation that is Pareto-efficient and envy- 
free. Another line of work (Cole et al. 2013; Friedman 
et al. 2015, 2017) considers fair division with minimal 
disruptions on previous allocations. Their fairness ratio 
can be viewed as a competitive ratio form of our counter-
factual envy definition (Definition 2).

2.5. Nonadaptive Allocations
A separate line of research considers fairness questions 
for resource allocations in a similar setting in which the 
utilities across groups are drawn from known probabil-
ity distributions (Elzayn et al. 2019, Donahue and Klein-
berg 2020). They investigate probabilistic versions of 
fairness, in which the goal is to quantify the discrepancy 
between the objectives of ensuring the expected utiliza-
tion of the resources is large (ex ante Pareto-optimal), 
whereas the probability of receiving the resource is pro-
portional across groups (ex ante proportional). How-
ever, they consider algorithms that decide on the entire 
allocation for each agent up front before observing the 
demand rather than adaptive policies.

2.6. Adaptive Allocations
In contrast, we consider a model in which the principal 
makes decisions on the amount of resources after wit-
nessing the number of individuals in a round. Most simi-
lar to our work is recent work analyzing a setting in 
which individuals arrive over time and do not depart so 
that the algorithm can allocate additional resources to 
individuals who arrived in the past (Kash et al. 2014). 
We instead consider a stochastic setting in which indi-
viduals arrive and depart in the same step with the goal 
of characterizing allocations that cannot reallocate to pre-
vious agents. Other papers either seek competitive ratios 
in terms of the Nash social welfare objective (Azar et al. 
2010, Banerjee et al. 2020, Bateni et al. 2022) or derive 
allocation algorithms that perform well in terms of max- 
min (Lien et al. 2014, Manshadi et al. 2021). Our work dif-
fers from these in that we impose additional distribution 
assumptions (notably that the variance of the demand is 
on a smaller order than its mean, more common in real- 
world scenarios). The results in Manshadi et al. (2021) 
can be viewed as highlighting a trade-off between effi-
ciency and the max-min objective although achieving 
efficiency of zero is trivial in that setting as the algorithm 
designer is not penalized for giving all leftover resources 
at the last location. In contrast, under our setting, elimi-
nating the resources at the final round penalizes the algo-
rithm in terms of both ∆EF and ENVY, requiring a more 
nuanced discussion on the trade-off between efficiency 
and envy.

3. Preliminaries
We use R+ to denote the set of nonnegative reals, ‖X‖∞ �
maxi,j|Xi,j| to denote the matrix maximum norm, and cX 
to denote entry-wise multiplication for a constant c. 
When comparing vectors, we use X ≤ Y to denote that 
each component Xi ≤ Yi.

3.1. Model and Assumptions
A principal is tasked with dividing K divisible resources 
among a population of individuals who are divided 
between T distinct rounds; these can represent T loca-
tions visited sequentially by the principal (for example, 
food distribution sites visited by a mobile pantry) or T 
consecutive time periods (for example, days over which 
a hospital must stretch some limited medical supply 
before it is restocked).

Each resource k ∈ [K] has a fixed initial budget Bk that 
the principal can allocate across these rounds. Each 
round has a (possibly random) set of distinct individuals 
arriving to request a share of the resources. Individuals 
are characterized by their type θ ∈Θ, corresponding to 
their preferences over the K resources, in which individ-
uals of type θ�receive utility u(x,θ) : RK ×Θ→ R for an 
allocation x. We henceforth assume that the set of possi-
ble types has finite cardinality |Θ| and denote (Nt,θ)θ∈Θ�

Sinclair et al.: Sequential Fair Allocation 
Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS 5 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
2
8
.8

4
.1

2
6
.2

5
3
] 

o
n
 0

1
 A

u
g
u
st

 2
0
2
3
, 
at

 1
3
:5

3
 .
 F

o
r 

p
er

so
n

al
 u

se
 o

n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



to be the vector containing the number of arrivals of each 
type in round t, the demand Nt,θ�denotes the number of 
type-θ�arrivals. (Nt,θ)θ∈Θ,t≤T is drawn from some known 
distribution F ; note that these distributions across 
rounds need not be identical.

In the ex post or off-line setting, the number of individ-
uals per round (Nt,θ)t∈[T],θ∈Θ�is known in advance and 
can be used by the principal to choose allocations X ∈
RT×|Θ|×K for individuals in each round t of type θ. In the 
online setting, the principal considers each round seq-
uentially in a fixed order t � 1, : : : , T, is informed of the 
number of individuals (Nt,θ)θ∈Θ�in that round, and choo-

ses allocation X
alg
t ∈ R|Θ|×K before continuing on to the 

next round in which X
alg
t,θ,k denotes the allocation of 

resource k earmarked for each of the Nt,θ�individuals of 
type θ�in that round. This assumption includes not only 
independent and identically distributed (i.i.d.) demands, 
but can also be extended to distributions that arise from 
Markov chains or latent variable models (see Section 7
for more details). We impose the additional assumption 
that the algorithm allocates the same allocation to each 
of the Nt,θ�individuals of type θ. This is without loss of 
generality as one of the primary goals of the paper is to 
investigate envy, whereby one out of any two individuals 
of type θ�in round t envies the other unless their allocations 
are the same. Allocation decisions are irreversible and 
must obey the overall budget constraints.

3.1.1. Assumptions. We assume that, for every t ∈ [T]
and θ ∈Θ, Nt,θ ≥ 1 almost surely. We also assume that 
Nt,θ�are independent with variance Var[Nt,θ] � σt,θ > 0 
and mean absolute deviation |Nt,θ � E[Nt,θ]| � ρt,θ <∞
almost surely. We additionally denote σ2

min � mint,θσ
2
t,θ, 

σ2
max � maxt,θσ

2
t,θ�and µmax � maxt,θE[Nt,θ] and assume 

that σ2
min,σ2

max,µmax are given constants. These assump-
tions are for ease of notation and clarity of presentation; 
in particular, our results only depend on mild conditions 
on the expectation and tails of the sums of future arrivals 
P

t′>tNt′,θ�of each type. Extensions are discussed in 
Section 7. We define βavg � B=Pθ∈Θ

P

t∈[T]E[Nt,θ] ∈ Rk as 

the average resource per individual; for ease of under-
standing, βavg can be viewed as being a constant, but our 

results hold for any βavg.

We also focus on utility functions that are linear, that 
is, for which u(x,θ) � 〈wθ, x〉, where the latent individ-
ual type θ�is characterized by wθ ∈ RK

≥0 as a vector of 
preferences over each of the different resources. For 
example, the type θ�could refer to a “vegetarian” type 
with preferences [2, 0, 1] over the set of resources [ pro-
duce, meat, canned soup] indicating a marginal utility of 
zero for any allocated meat and increased preference for 
produce. The relative scale of the weights help indicate 
preference for one food resource over another.

The assumption that agents’ preferences over resour-
ces are linear is limiting in that it does not account for 
settings in which resources exhibit complementarities 
(modeled via, e.g., Leontief, or filling, utilities) in addi-
tion to omitting popular utility functions in the extant lit-
erature (e.g., Cobb–Douglas utilities). Our algorithmic 
techniques naturally extend to more general utility func-
tions (so long as the Eisenberg–Gale (EG) program can 
be solved efficiently). However, we leave understanding 
both the upper and lower bounds on the achievable 
envy and efficiency pairs to future work. More details on 
modeling individual utilities for the experiments are in 
Online Appendix C.

Finally, we assume that our resources are divisible, in 
that allocations can take values in RK

+. In our particular 
regimes of interest in which we scale the number of 
rounds and budgets, this is easy to relax to integer alloca-
tions with vanishing loss in performance.

3.1.2. Additional Notation. We use B � (B1, : : : , BK) to 
be the budget vector. For any location t and type θ, we 
use N≥t,θ�to denote 

P

t′≥tNt′,θ. If the subscript t is omit-

ted, we use Nθ �
PT

t�1 Nt,θ�to denote the total number of 

individuals of type θ. We additionally let ρ̄≥t,θ � 1
T�t 

P

t′≥tρt,θ�and similarly for σ̄2
≥t,θ�and µ̄≥t,θ. A table with all 

our notation is provided in the online appendix.

3.1.3. Limitations and Extensions. The assumption 
that latent types Θ�are finite is common in decision- 
making settings as, in practice, the set of possible types is 
approximated from historical data. One limiting ass-
umption is that, in the online setting, the principal only 
knows the number of individuals from one location at a 
time. In reality, the principal could have some additional 
information about future locations, for example, via call-
ing ahead, that could be incorporated in deciding an 
allocation. Our algorithmic approach naturally incorpo-
rates such additional information. Additionally, we ass-
ume a distinct set of individuals across each round and 
consider the rounds t as fixed and distinct locations.

3.2. Fairness and Efficiency in Off-line 
Allocations

To define an ex post fair allocation, that is, with a known 
number of individuals (Nt,θ)t∈[T],θ∈Θ�across rounds in 
[T], we adopt an approach proposed by Varian (1974) 
(commonly referred to as “Varian fairness”), which is 
widely used in the operations research and economics lit-
erature. We refer to this as “fairness” for brevity; for a 
more detailed discussion on the advantages and limitations 
of this model, see Sugden (1984) or Online Appendix A.

Definition 1 (Fair Allocation). Given types Θ, a number 
of individuals of each type (Nt,θ)t∈[T],θ∈Θ, and utility 
functions (u(·,θ))θ∈Θ, an allocation X � {Xt,θ ∈ RK

+|
PT

t�1 
P

θ∈ΘNt,θXt,θ ≤ B} is said to be fair if it simultaneously 
satisfies the following: 
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1. Envy-freeness (EF): For every pair of rounds t, t′

and types θ,θ′, we have u(Xt,θ,θ) ≥ u(Xt′,θ′ ,θ).
2. Pareto efficiency (PE): For any allocation Y ≠ X 

such that u(Yt,θ,θ) > u(Xt,θ,θ) for some round t and 
type θ, there exists some other round t′ and type θ′ such 
that u(Yt′,θ′ ,θ

′) < u(Xt′,θ′ ,θ
′).

3. Proportional (Prop): For any round t, type θ, we 
have u(Xt,θ,θ) ≥ u(B=N,θ), where N �PT

t�1

P

θ∈ΘNt,θ.
Whereas the three properties form natural desiderata 

for a fair allocation, the power of this definition lies in 
that asking for them to hold simultaneously rules out 
many natural (but unfair) allocation policies. In parti-
cular, allocation rules based on maximizing a global 
function, such as utilitarian welfare (sum of individual 
utilities) or egalitarian welfare (the maximin allocation 
or, more generally, the leximin allocation; Bogomolnaia 
and Moulin 2001, Lien et al. 2014, Manshadi et al. 2021) 
are Pareto efficient, but tend to violate individual envy- 
freeness as they focus on global optimality rather than 
per-individual guarantees. A remarkable exception to 
this, however, is the Nash social welfare, whose maximi-
zation leads to an allocation that is Pareto-efficient, envy- 
free, and proportional and, hence, fair.

Proposition 1 (Theorem 2.3 in Varian 1974). For alloca-
tion X, the Nash social welfare is

NSW(X) �
 

Y

t∈[T]

Y

θ∈Θ
u(Xt,θ,θ)Nt, θ

!1=
P

t,θ Nt,θ

: (1) 

Under linear utilities, an allocation X that maximizes NSW(X) 
is Pareto-efficient, envy-free, and proportional.

In addition to simultaneously ensuring PE, EF, and 
Prop properties, the NSW maximizing solution can also 
be efficiently computed via the following convex pro-
gram called the EG program (Eisenberg 1961), obtained 
by taking the logarithm of the Nash social welfare:

max
X∈RT×Θ×K

+

X

T

t�1

X

θ∈Θ
Nt,θlog(u(Xt,θ,θ))

s:t:
X

T

t�1

X

θ∈Θ
Nt,θXt,θ ≤ B: (2) 

Important to note in our setting is that the optimal fair 
allocation in hindsight, which solves Equation (2) with a 
given number of individuals of each type across all 
rounds (Nt,θ)t∈[T],θ∈Θ, does not depend on round t. 
Indeed, any envy-free allocation can be formulated so 
Xt,θ � Xt′,θ�(by setting Xθ � 1

t

P

tXt,θ), and so we can in-
stead consider the solution to

max
X∈RΘ×K

+

X

θ∈Θ
Nθlog(u(Xθ,θ)) s:t:

X

θ∈Θ
NθXθ ≤ B, (3) 

where we use Nθ �
P

t∈[T]Nt,θ�to denote the total num-
ber of individuals across all rounds of type θ. The fact 
that the optimal solution in hindsight does not depend 
on the round t forms the basis for our algorithm 
GUARDED-HOPE.

3.3. Approximate Fairness and Efficiency in 

Online Allocations
Recall that, in our online setting, the principal allocates 
resources across each round in a fixed order t � 1, : : : , T, 
whereupon, at round t, the principal sees (Nt,θ)θ∈Θ�and 
decides on an allocation before continuing to the next 
round. A natural (albeit naive) approach in this setting 
could be to try and obtain allocations that satisfy Pareto- 
efficiency and envy-freeness on all sample paths. However, 
such an approach is not feasible even in the simplest online 
setting as the optimal solution in hindsight is often a 
unique function of the realized number of individuals 
across each round.

Proposition 2. For T � 2 rounds, |Θ| � 1 type, single 
resource, and linear utilities, for any nontrivial distribution 
F 2, no online algorithm can guarantee ex post envy-freeness 
and Pareto-efficiency almost surely.

Proof of Proposition 2. Let F 2 ~ 1+BERNOULLI(p) with 
p ∈ (0, 1). For any value of N1 with probability p, the opti-
mal solution is Xopt � B=(N1 + 1), else Xopt � B=(N1 + 2). 
As any algorithm must decide how much to allocate at 
round t � 1 without knowledge of N2, no algorithm can 
match the ex post fair solution almost surely. w

Proposition 2 shows that trying to simultaneously 
achieve ex post envy-freeness and Pareto-efficiency is 
futile, and hence, we need to consider approximate fair-
ness notions. To this end, we define counterfactual envy, 
hindsight envy, and efficiency.

Definition 2 (Counterfactual Envy, Hindsight Envy, 
and Efficiency). Given individuals with types Θ, sizes 
(Nt,θ)t∈[T],θ∈Θ, and resource budgets (Bk)k∈[K], for any 
online allocation (Xalg

t,θ)t∈[T],θ∈Θ ∈ Rk, we define 
• Counterfactual envy: The counterfactual distance of 

Xalg to envy-freeness as

∆EF¢ max
t∈[T],θ∈Θ

�

�

�

�u(Xalg
t,θ,θ) � u(Xopt

t,θ ,θ)
�

�

�

�

∞, 

where Xopt is the optimal fair allocation in hindsight, 
that is, the solution to Equation (3) with true values 
(Nt,θ)t∈[T],θ∈Θ.

• Hindsight envy: The hindsight distance of Xalg to 
envy-freeness as

ENVY¢ max
t, t′∈[T]2,θ,θ′∈Θ2

u
�

X
alg

t′,θ′ ,θ
�

� u
�

X
alg
t,θ,θ

�

:

• Efficiency: The distance to efficiency as

∆efficiency¢
X

k∈K

 

Bk �

X

t∈[T]

X

θ∈Θ
Nt,θX

alg
t,θ,k

!

:

Our algorithm also provides ex post guarantees on 

hindsight proportionality defined via ∆prop¢maxt,θu 

B
P

t,θNt,θ
,θ

� �

� u
�

X
alg
t,θ,θ

�

:

Sinclair et al.: Sequential Fair Allocation 
Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS 7 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
2
8
.8

4
.1

2
6
.2

5
3
] 

o
n
 0

1
 A

u
g
u
st

 2
0
2
3
, 
at

 1
3
:5

3
 .
 F

o
r 

p
er

so
n

al
 u

se
 o

n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



These approximate fairness definitions are motivated 
by the problems faced by the FBST. Hindsight envy 
measures the algorithm’s ability to ensure individuals 
are not envious of the allocations given to any other. 
Whereas this might serve as a natural first step toward a 
definition, an algorithm achieving low hindsight envy 
does not necessarily imply that individuals are eager to 
participate. In particular, the algorithm that allocates 
Xt,θ � 0 for all t and θ�trivially achieves hindsight envy 
of zero (suffering from large efficiency). Another consid-
eration is ensuring allocations are close to what they 
should have been given based on observed information 
along the trajectory. Our measure of counterfactual 
envy addresses that, penalizing allocation algorithms 
based on how close they were at addressing individu-
al’s utility versus the optimal solution in hindsight. In 
fact, this metric is considered in the literature in a com-
petitive ratio instead of additive sense (Friedman et al. 
2015, 2017). Finally, efficiency is a natural yardstick for 
measuring an algorithm in order to ensure all of the 
resources that can be utilized are used.

We also note that all of these metrics are much stron-
ger than the existing metrics in the literature because we 
provide hindsight guarantees that hold with high proba-
bility with respect to the distribution as opposed to 
weaker ex ante guarantees that only hold in expectation. 
Moreover, most approaches in the literature focus on 
defining a single optimization problem with a specified 
objective embodying “fairness” that attempts to capture 
desired goals. This is fundamentally flawed as the defini-
tion of the objective or choice of metric itself biases the 
outcomes toward a particular point along the trade-off 
curve between different criteria. The important chal-
lenge in this setting then is considering meaningful 
trade-offs between these metrics in the online setting 
(see Figure 1) and designing algorithms that achieve any 
point along the trade-off curve.

As highlighted earlier, the definition of counterfactual 
envy and efficiency are related. By using the fact that the 
optimal solution in hindsight Xopt is efficient, we can 
naively bound ∆efficiency using ∆EF,

∆efficiency �
X

t∈[T]

X

θ∈Θ

X

k∈K

Nt,θ

�

X
opt
t,θ,k � X

alg
t,θ,k

�

≤ TK∆EF

‖w‖min

X

θ∈Θ
Nθ:

This naive bound is loose with unnecessary dependence 
on the number of locations T (see the counterfactual 
envy-efficiency uncertainty principle in Section 4).

4. Uncertainty Principles
In this section, we show parts (1), (2a), and (2b) from 
Theorem 1 concerning a lower bound on the achiev-
able ∆EF and the relationship between ∆EF, ENVY, and 
∆efficiency resulting from the envy-efficiency uncertainty 
principle. In all of these proofs, we consider the case of 
a single resource and single type, and assume that 

u(X,θ) � X for brevity and clarity in the presentation. 
However, the proofs extend directly to multiple resour-
ces in which one considers the setting with |Θ| � K and 
each type θ�desires a unique resource.

We begin with part (1), the statistical uncertainty princi-
ple on the optimal fair allocation in hindsight, showing 
that no online algorithm is able to achieve counterfactual 
envy smaller than order 1=

ffiffiffiffi

T
√

. This arises because of the 
uncertainty in the number of individuals arriving in the 
future, forcing the algorithm to make a nontrivial decision 
on the allocation made to individuals in the first round.

Theorem 1 (Statistical Uncertainty Principle). Let α�be a 

constant with α+Cρmax=σ
3
min

ffiffiffiffi

T
√

< 1=2, where C is an abso-

lute constant. Then, with probability at least α, any online algo-
rithm must incur

∆EF ≥ βavg

3Φ�1
�

1 � α�
Cρmax

σ3
min

ffiffiffi

T
√
�

σmin

4
ffiffiffiffi

T
√ :

Proof of Theorem 1. We use the generalized Berry– 
Esseen theorem (Berry 1941). Recall that, for all t, 
Var[Nt] � σt > 0 and E[|Nt � E[Nt]|] � ρt <∞, and more-
over, X

opt
t � B=N for all t, where N �Pt∈[T]Nt. Let us 

denote σ̄2 � 1
T

P

t∈[T]σ
2
t and ρ̄ � 1

T

P

t∈[T]ρt and let Φ�be 
the cumulative distribution function of a standard normal. 
Using Berry–Esseen, it holds that, for an absolute constant 
C, for all z ∈ R,

Φ(z)� Cρ̄

σ̄3
ffiffiffiffi

T
√ ≤ P Xopt ≥

B

E[N] + zσ̄
ffiffiffiffi

T
√

 !

≤Φ(z) + Cρ̄

σ̄3
ffiffiffiffi

T
√ :

Taking z �� y and using the lower bound, we have that, 
with probability at least Φ(� y)� Cρ̄

σ̄3
ffiffiffi

T
√ ,

Xopt ≥ B

E[N]� yσ̄
ffiffiffiffi

T
√ ≥ B

E[N] 1+ yσ̄
ffiffiffiffi

T
√

E[N]

 !

:

Taking z � y and using the upper bound, we have that, 
with probability at least Φ(� y)� Cρ̄

σ̄3
ffiffiffi

T
√ ,

Xopt ≤ B

E[N] + yσ̄
ffiffiffiffi

T
√ ≤ B

E[N] 1 �

yσ̄
ffiffiffiffi

T
√

2E[N]

 !

:

Note that these intervals are nonoverlapping for y > 0. 

As the algorithm must decide on a value X
alg
1 to allocate 

for the first round, then with probability at least Φ(� y)�
Cρ̄

σ̄3
ffiffiffi

T
√ ≥Φ(� y)� Cρmax

σ3
min

ffiffiffi

T
√ ,

‖Xalg
� Xopt‖∞ ≥ min

x∈R
max

B

E[N] 1 �

yσ̄
ffiffiffiffi

T
√

2E[N]

 !

� x

�

�

�

�

�

�

�

�

�

�

,

 

B

E[N] 1+ yσ̄
ffiffiffiffi

T
√

E[N]

 !

� x

�

�

�

�

�

�

�

�

�

�

!

� B

E[N]
3yσ̄

ffiffiffiffi

T
√

4E[N] :
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Taking y � Φ�1
�

1 � α�
Cρmax

σ3
min

ffiffiffi

T
√
�

, which is positive, then 

we get with probability at least α�that

‖Xalg
� Xopt‖∞ ≥ B

E[N]
3Φ�1

�

1 � α�
Cρmax

σ3
min

ffiffiffi

T
√
�

σ̄

4E[N]

≥ βavg

3Φ�1

�

1 � α�
Cρmax

σ3
min

ffiffiffi

T
√
�

σmin

4
ffiffiffiffi

T
√ : w 

We next show the first part of the envy-efficiency uncer-
tainty principle (2a), highlighting that any online algo-
rithm that achieves a factor of LT on counterfactual envy 
necessarily suffers efficiency of at least 1=LT. This result 
follows from the statistical uncertainty in the number of 
individuals arriving in the final L�2

T rounds and the fact 
that ensuring a bounded envy requires any online algo-
rithm to save enough budget to allocate a minimum allo-
cation to all future arriving individuals.

Theorem 2 (Counterfactual Envy-Efficiency Uncertainty 
Principle). Let α < 1=8 be a constant such that 3α+Cρmax=

σ3
min

ffiffiffiffi

T
√

< 1=2 for an absolute constant C. Any online algo-
rithm that achieves ∆EF ≤ LT � o(1) with probability at least 

1 � α�must also incur waste ∆efficiency ≥ C̃ min{
ffiffiffiffi

T
√

, 1=LT}, where 

C̃ � (βavg � o(1))2
Φ

�1

�

1 � 3α�
Cρmax

σ3
min

ffiffiffi

T
√
�2

σ2
min

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T=α)

p

µmax 

with probability at least 1=12 � o(1).
Proof of Theorem 2. In order for the algorithm to guar-
antee that ∆EF � ‖Xalg

� Xopt‖∞ ≤ LT with probability at 
least 1 � α, it must limit all allocations made to the interval 
[B

N � LT, B
N + Lt] as Xopt � B=N. Moreover, a straight for-

ward application of Hoeffding’s inequality shows 
that |N � E[N]| ≤ c̃

ffiffiffiffi

T
√

with probability 1 � α, where 

c̃ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T=α)

p

. Using this, algebraic manipulations, 

and simplifying, one can show that the following event:

D �
\

t∈[T]
X

alg
t ∈ B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT,
B

E[N] +
2c̃

ffiffiffiffi

T
√

E[N] + LT

" #( )

occurs with probability at least 1 � 2α. We interpret 
these lower and upper thresholds on allocations made 
by the algorithm as guardrails.

Recall that we use the notation B
alg
t to denote the bud-

get remaining for the algorithm at the start of round t. We 
begin by defining three events for a fixed round t ≤ T and 

constant z �Φ�1
�

1 � 3α�
Cρmax

σ3
min

ffiffiffi

T
√
�

> 0:

A � {N≥t ≤ E[N≥t]}
B � {N≥t ≥ E[N≥t] + zσ̄≥t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t+ 1
√

}

C � B
alg
t ≥ B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !(

�

E[N≥t] + zσ̄≥t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t+ t
√

�

)

:

By the Berry–Esseen theorem (Berry 1941), we know that 

P(A) ≥ 1
2 �

Cρ̄≥t

σ̄3
≥t

ffiffiffiffiffiffiffiffiffiffi

T�t+1
√ ≥ 1

2 �
Cρmax

σ3
min

ffiffiffi

T
√ and P(B) ≥ Φ(� z)�

Cρ̄≥t

σ̄3
≥t

ffiffiffiffiffiffiffiffiffiffi

T�t+1
√ ≥ 3α�by choice of z.

We first show that ¬C ∩ B implies ¬D (or, equiva-
lently, by taking the contrapositive that D implies that B 

implies C), which gives us that P(¬C ∩ B) ≤ P(¬D). These 
two conditions (D and B) dictate that the algorithm must 
have a lot of budget by allocating within the guardrails 
based on the number of individuals arriving in the future 
being small. Indeed, under events D and B we have

B
alg
t ≥

X

t′≥t

Nt′X
alg
t′ ≥ N≥t

B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !

≥
�

E[N≥t] + zσ̄≥t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t+ 1
√

� B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !

:

Moreover, because the algorithm is nonanticipatory, we 
know that the events C and B are independent. Thus, we 
have that P(¬C ∪ B) � P(¬C)P(B). Using the bound on 
P(B) and the fact that P(¬C ∪ B) ≤ P(¬D) ≤ 2α, we get 
that P(¬C) ≤ 2

3.
Now, we consider the event C ∩ A ∩ D. Using that the 

allocations must be bounded by event D, we have that 
the waste is at least

∆efficiency � B �

X

T

i�1

X
alg
i Ni � B

alg
t �

X

i≥t

X
alg
i Ni

≥ (E[N≥t] + zσ̄≥t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t+ 1
√

) B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !

�

B

E[N] +
2c̃

ffiffiffiffi

T
√

E[N] + LT

 !

E[N≥t]

≥ B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !

zσ̄≥t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t+ 1
√

� 3 LT +
c̃
ffiffiffiffi

T
√

E[N]

 !

E[N≥t]:

The inequality follows from lower bounding B
alg
t with 

the amount required to be reserved up to location t (i.e., 
event C), and upper bounding the maximum amount of 
budget that can be expended for locations i ≥ t when 
N≥t ≤ E[N≥t] (i.e., event A).

Recall that E[N≥t] � (T � t+ 1)µ̄≥t so that, whereas 
the first term increases with (T � t+ 1), the second term 
decreases with (T � t+ 1). Solving for the maximum 
value in terms of t yields

∆efficiency ≥
1

12

B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !2
z2σ̄2

>t
�

LT + c̃
ffiffiffi

T
√

E[N]

�

µ̄≥t

≥ 1

12

B

E[N]�
c̃
ffiffiffiffi

T
√

E[N]� LT

 !2
z2σ2

min

(LT + c̃=
ffiffiffiffi

T
√

)µmax

:
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The probability of this event is lower bounded by P(C ∩
A ∩ D) ≥ P(C ∩ A)� P(¬D) ≥ P(C)P(A)� 2α ≥ (1 �

2
3)

�

1
2 �

Cρmax

σ3
min

ffiffiffi

T
√
�

� 2α ≥ 1
12 � o(1). Plugging in the value of z and 

simplifying terms yields the final result. w

Finally we show the second part of the envy-efficiency 
uncertainty principle (2b), highlighting that any online 
algorithm that achieves a factor of LT on hindsight envy 

necessarily suffers efficiency of at least min{
ffiffiffiffi

T
√

, 1=LT}. 
This result follows from the previous lower bound (2a), 
combined with an almost sure relationship between ∆EF 

and ENVY. We start with this brief lemma relating the 
two notions of envy.

Lemma 1 (Relation Between Envy and ∆EF). For any 
valid online allocation algorithm, we have the following almost 
surely:

∆EF �
1

N
∆efficiency ≤ ENVY ≤ 2∆EF:

Proof of Lemma 1. The upper bound follows imm-
ediately from applying the triangle inequality around 
Xopt � B

N. For the lower bound, we instead show that 
1
N∆efficiency ≥ ∆EF � ENVY. Here, we set L � miniXi and 
U � maxiXi to be the maximum and minimum alloca-
tions given out by the algorithm. Note that ENVY � U � L 
and ∆EF � max

�

�

B
N � U

�

�,
�

�

B
N � L

�

�

� �

. First notice no algo-
rithm can have L > B

N because of the feasibility of alloca-
tions made by the algorithm. Thus, we get that ∆EF �
max

�

�

B
N � U

�

�, B
N � L

� �

. We show the inequality breaking 
into cases on the side that achieves the max. 

Case 1: ∆EF � B
N � L.

In this setting, we have that ∆EF � B
N � L, ENVY � U � L. 

Using this, we can show

∆efficiency � B �

X

i

NiXi �
X

i

Ni

�

B

N
� Xi

�

≥
X

i

Ni

�

B

N
� U

�

� N

�

B

N
� U

�

� N(∆EF � ENVY):
Case 2: ∆EF � | B

N � U|.
This implies that L ≤ B

N ≤ U as otherwise the maximum 

would be achieved by B
N � L. Thus, we get that ∆EF �

ENVY � U �

B
N � (U � L) � L �

B
N, which is negative, so 

the inequality is trivially true. w

Using this, we are able to show (2b) in the envy- 
efficiency uncertainty principle, relating the necessary 
trade-off between ENVY and ∆efficiency.

Theorem 3 (Hindsight Envy-Efficiency Uncertainty Prin-
ciple). Let α < 1

8 be a constant such that 3α+ Cρmax

σ3
min

ffiffiffi

T
√ < 1

2 for an 

absolute constant C. Any online algorithm that achieves 
ENVY ≤ LT � o(1) with probability at least 1 � α�must also 

incur waste ∆efficiency ≥ C̃ min{
ffiffiffiffi

T
√

, 1=LT}� o(1), where C̃ is 
as in Theorem 2 with probability at least 1

12 � o(1).
Proof of Theorem 3. Suppose the online algorithm 
achieves ENVY ≤ LT with probability at least 1 � α. How-
ever, using Lemma 1, we get that ∆EF �

1
N∆efficiency ≤

ENVY ≤ LT. Hence, we have that ∆EF ≤ LT + 1
N∆efficiency 

with probability at least 1 � α. Denote by C̃ as the terms 
on the right-hand side of Theorem 2, and applying the 
result there for the case when the 1=LT term attains the 
minimum, we get that ∆efficiency ≥ C̃ 1

LT+1
N∆efficiency

: Rearranging 

the inequality gives us that ∆efficiency ≥ N
2

ffiffiffiffiffiffiffiffi

4C̃
N +

q

�

L2
T � LT

�

:

The final bound comes from taking the first term of the 
Taylor series about infinity with the additional o(1) 
factor. w

5. Sensitivity and Concentration on 
Counterfactual Optimal Fair Allocation

The lower bounds presented in Section 4 highlight a key 
facet of algorithm design in this setting: generating lower 
and upper guardrail allocations. Suppose we were able 
to construct envy-free allocations (Xθ)θ∈Θ�and (Xθ)θ∈Θ�
such that ‖Xθ � Xθ‖∞�LT for a given parameter LT. If 
the algorithm was able to ensure that all of the alloca-
tions made to individuals of type θ�are within [Xθ, Xθ], 
it is not difficult to show that ENVY�LT. However, if we 
additionally desire a bound of ∆EF�LT, the same philos-
ophy requires that we are able to establish that, with 
high probability,

u(Xθ,θ) ≤ u(Xopt
θ ,θ) ≤ u(Xθ,θ)

∀θ ∈Θ with LT�1=
ffiffiffiffi

T
√

: (4) 

Motivated by these two use cases, we turn our attention 
to sensitivity and concentration properties on solutions 
to the Eisenberg–Gale program. Unfortunately, the true 
EG program for the counterfactual optimal fair alloca-
tion depends on the unknown vector of number of 
individuals of each type (Nt,θ)t∈[T],θ∈Θ. As such, our algo-
rithms are motivated by solving information-relaxed 
versions of the EG program, appealing to sensitivity and 
concentration on the optimizers of the program instead 
of the objective value as is typically done in competitive 
ratio analysis.

For the time being, we assume that we are given con-
centration inequalities of the following form: with proba-
bility at least 1 � δ, we have that, for every t and θ, 
|E[N>t,θ]� N>t,θ| ≤ CONFt,θ. As this concentration only 
depends on the assumptions on the variables Nt,θ, we 
include a simple form of CONFt,θ�scaling as 

ffiffiffiffiffiffiffiffiffiffiffi

T � t
√

using 
Hoeffding’s inequality in Lemma EC.3, but see Section 7
for extensions.

Consider the Eisenberg–Gale program from Section 3
with multiple types θ�and K resources as specified in 
Equation (3). Recall that the dual variables corresponding 
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to the budget feasibility constraint pk can be thought of 

as prices for the corresponding resources (Nisan et al. 

2007). We start with a lemma showing properties of the 

optimal solution to the Eisenberg–Gale program with var-

ious numbers of individuals of each type vector (Nθ)θ∈Θ.

Lemma 2 (Sensitivity of Solutions to the Eisenberg–Gale 
Program). Let x((Nθ)θ∈Θ) and p((Nθ)θ∈Θ) denote the opti-
mal primal and dual solution to the Eisenberg–Gale program 

(Equation (3)) for a given vector of individuals of each type 
(Nθ)θ∈Θ. Then, we have 

1. Scaling: If Ñθ � (1+ ζ)Nθ�for every θ ∈Θ�and ζ ≥ 0, 
then we have that

x((Ñθ)θ∈Θ) �
x((Nθ)θ∈Θ)

1+ ζ�

p((Ñθ)θ∈Θ) � (1+ ζ)p((Nθ)θ∈Θ)

u(x((Nθ)θ∈Θ)θ,θ)� u(x((Ñθ)θ∈Θ)θ,θ)

� 1 �

1

1+ ζ

� �

max
k

wθ,k

p((Nθ)θ∈Θ)k

:

2. Monotonicity: If Nθ ≤ Ñθ�for every θ ∈Θ, then we have

p((Ñθ)θ∈Θ) ≥ p((Nθ)θ∈Θ)
u(x((Ñθ)θ∈Θ)θ,θ) ≤ u(x((Nθ)θ∈Θ)θ,θ) ∀θ ∈ Θ :

These Lipschitz properties follow from the Fisher mar-

ket interpretation of the Eisenberg–Gale optimum, 

which corresponds to market-clearing allocations in a 

setting with |Θ| agents, each with an endowment or 

budget of Nθ. The second property is a generalization 

of the competitive monotonicity property Devanur et al. 

(2002). See Online Appendix E for the full proof.
Recall that our goal is to construct lower and upper 

threshold allocations about Xopt � x((Nθ)θ∈Θ), where Nθ �
P

tNt,θ�is the true (random) number of individuals of type 
θ�arriving over all rounds. First suppose we were able to 
construct nθ ≥ Nθ�for all θ�and set nθ � (1 � γ)nθ�for 
some constant γ�chosen based on LT. Setting the guardrails 
as Xθ � x((nθ)θ∈Θ) and Xθ � x((nθ)θ∈Θ) are envy free (by 
Proposition 1) and, for the correct value of γ, satisfy the 
bounds needed to ensure ENVY�LT (by part (1) of Lemma 
2). However, for a large enough γ�(or, equivalently, a large 
enough LT), we can additionally ensure that nθ ≤ Nθ�and 
appeal to the monotonicity property (2) of Lemma 2 to 
ensure Equation (4). This assumption includes not only 
i.i.d. demands, but also demand distributions that arise 
from Markov chains, latent variable models, or known 
cumulative sums from different Chernoff style arguments 
(see Section 7 for more details). The following lemma 
shows the final construction of our guardrails by appropri-
ately choosing nθ�and nθ�and appealing to Lemma 2.

Theorem 4 (Construction of Guardrail Allocations). Let 
Xopt � x((Nθ)θ∈Θ) denote the optimal solution to the Eisenberg– 
Gale program for a given vector of individuals of each type 
(Nθ)θ∈Θ. Further suppose that, with probability at least 1 � δ, 
we have for all θ ∈Θ�|Nθ � E[Nθ]| ≤ CONFθ. Given any 
LT ≥ 0 and setting

nθ � E[Nθ] 1+max
θ

CONFθ

E[Nθ]

� �

nθ � E[Nθ](1 � c) for 

c �
‖w‖min‖βavg‖min

‖w‖2
∞

LT 1+max
θ

CONFθ

E[Nθ]

� �

�max
θ

CONFθ

E[Nθ]
, 

then almost surely we have that 
1. u(x((nθ)θ∈θ)θ,θ)� u(x((nθ)θ∈θ)θ,θ) ≤ LT:

2. ‖x((nθ)θ∈Θ)� x((nθ)θ∈θ)‖∞ ≥ LT
‖βavg‖

2
min‖w‖min

‖w‖∞ :

3. ‖x((nθ)θ∈Θ)� x((nθ)θ∈θ)‖∞ ≤ LT
‖B‖∞‖βavg‖min‖w‖min

‖w‖∞ :

If, in addition, LT ≥ 2 ‖w‖2
∞

‖w‖min‖βavg‖min
maxθ

CONFθ

E[Nθ], then with prob-

ability at least 1 � δ, we have
4. nθ ≤ Nθ ≤ nθ,
5. u(x((nθ)θ∈θ)θ,θ) ≤ u(Xopt

θ ,θ) ≤ u(x((nθ)θ∈θ)θ,θ):
See Online Appendix E for the full proof. Using a 
straightforward application of Hoeffding’s inequality, 
we notice that this construction ensures that we are able 
to guarantee a bound of LT on the difference in utilities 

for any LT ≥ 2 ‖w‖2
∞

‖w‖min‖βavg‖min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

T

q

:

6. Guarded-Hope
Here, we define our algorithm GUARDED-HOPE. The algo-
rithm takes as input a budget B, expected number of 
each type (E[Nθ])θ∈Θ, confidence terms (CONFt,θ)θ∈Θ, 
and a desired bound LT on the ∆EF and ENVY. Assuming 
the lower and upper threshold allocations are con-
structed such that we can guarantee the results from 
Section 5, our algorithm is able to achieve any envy- 
efficiency trade-off as developed in Theorem 1. The algo-
rithm relies on two main components, both of which we 
believe to be necessary in developing an algorithm to 
achieve the envy-efficiency uncertainty principle (as 
removing any one of them leads to breakdowns as is 
discussed in Section 7). We start by describing the 
high-level ideas needed in the algorithm before describ-
ing the pseudocode (with full algorithm description in 
Algorithm 1). The proof that GUARDED-HOPE achieves the 
desired bounds is deferred to Section 7.

6.1. Guardrails on Optimal Fair Allocation 
in Hindsight

As a result of Theorem 1, we see that no online algorithm 

can guarantee ∆EF�
1
ffiffiffi

T
√ . Moreover, the proof highlights 
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that any algorithm that satisfies a bound on ∆EF or 
ENVY�LT must limit allocations based on guardrails 
with high probability. As such, our algorithm uses the 
construction from Section 5 to obtain estimates X �
x((nθ)θ∈Θ) and X � x((nθ)θ∈Θ), which are both envy-free 

and satisfy that maxt,θ|u(Xt,θ,θ)� u(Xt,θ,θ)| ≤ LT: If, in 

addition, LT�1=
ffiffiffiffi

T
√

, we have that u(Xθ,θ) ≤ u(Xopt
θ ,θ) ≤

u(Xθ,θ).
The allocations Xθ�and Xθ�are used by the algorithm 

as guardrails, for which all allocations made by the algo-
rithm for a type θ�are forced to fall within {Xθ, Xθ}. 
With this requirement, on sample paths when we do not 
run out of budget, then we trivially have an upper 
bound on ENVY�LT and ∆EF ≤ max{1=

ffiffiffiffi

T
√

, LT}. Thus 
“accepting” the first round loss in envy-freeness allows 
us to limit all future allocations to the guardrails gener-
ated by that uncertainty.

6.2. Minimizing Waste via Online 
Stochastic Packing

Once the guardrails Xθ�and Xθ�are found to verify a 
bound on the approximate envy up to a factor of LT, we 
change the focus to instead try and minimize the loss of 
efficiency. Thanks to our guardrails, we develop the 
algorithm to match a clairvoyant benchmark policy that 
minimizes the resource waste with the knowledge of 
(Nt,θ)t∈[T],θ∈Θ�and simultaneously limits the allocations 
to lie between {Xθ, Xθ}. This can be thought of as solving 
an online stochastic packing problem (whose objective is 
to minimize efficiency loss) with the addition of guard-
rail constraints (i.e., our minimum and maximum alloca-
tion constraints). In this setting, after writing down the 
stochastic packing optimization program, a competitive 
algorithm arises naturally by ensuring that the budget 
remaining for the algorithm is enough to satisfy a high- 
probability bound on the resources required to allocate 
X to every individual arriving in the future. This idea is 
formalized in Section 7 and takes motivation in recent 
developments on Bayesian prophet benchmarks for online 
bin packing problems (Vera and Banerjee 2019).

6.3. Algorithm Description
Let B

alg
t,k denote the budget remaining to the principal for 

resource k at iteration t, that is, Bk �
P

t′<t

P

θNt′,θXt′,θ,k. 
Assume the algorithm is given the expected demands 
(E[Nθ])θ∈Θ�and confidence terms CONFt,θ�such that 
|N>t,θ � E[N>t,θ]| ≤ CONFt,θ�with high probability. Let 

γ � maxθ
Conf0,θ
E[N≥1,θ]. Given a desired bound on envy LT, the 

algorithm computes the guardrails by

X � x((nθ)θ∈Θ) for nθ � 1+max
θ

CONFθ

E[Nθ]

� �

E[Nθ]

X � x((nθ)θ∈Θ) for nθ � (1�c)E[Nθ]

for c �
‖w‖min‖βavg‖min

‖w‖2
∞

LT 1+max
θ

CONFθ

E[Nθ]

� �

�max
θ

CONFθ

E[Nθ]
:

Here, x(·) denotes the solution to Equation (3). Note that, 

as long as LT�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(|Θ|T=δ)=T
p

, the utility of the opti-

mal allocation is sandwiched by the utilities of X and X 
according to Section 5.

Our algorithm allocates to type θ�according to these 
thresholds Xθ�and Xθ�in order to ensure the guarantee 
of ∆EF of at most LT, and simultaneously trying to elimi-
nate as much waste as possible. At each time t, for each 
resource k ∈ [K], 

1. (Insufficient budget) If B
alg
t,k ≤ Nt,θXθ,k, then divide 

the resources equally among all remaining individuals 
for this round.

2. (Sufficient budget to promise lower threshold) If 

B
alg
t,k ≥ Xθ,kNt,θ +Xθ,k(E[N>t,θ] + CONFt,θ), then set X

alg
t,θ,k �

Xθ,k for each θ ∈Θ.
3. (Insufficient budget to promise lower threshold) 

Otherwise, set X
alg
t,θ,k � Xθ,k for each θ ∈Θ.

Our algorithm is easy to implement in practice; in 
particular, it requires solving the Eisenberg–Gale pro-
gram Equation (3) only twice to obtain X and X. In 
contrast, other versions of certainty equivalence algo-
rithms require frequent resolves of the Eisenberg–Gale 
(see Online Appendix B). This allows GUARDED-HOPE to 
scale easily to multiple resources and a larger number of 
types (as it only involves solving for the “optimistic” and 
“pessimistic” allocation rules, which are done off-line 
with historical data). Moreover, it allows practitioners to 
leverage work on poly-time algorithms for solving the 
Eisenberg–Gale program (Devanur et al. 2002). It also 
extends easily to more complex information structures 
(see Section 7 for a discussion).

7. Envy and Efficiency Bound for 
Guarded-Hope

We are now ready to show the bound on ∆EF, ENVY 

and ∆efficiency for GUARDED-HOPE, relying on the con-
struction of Xθ�and Xθ�from Section 5. We note that 
these guarantees match the envy-efficiency uncertainty 
principles from Section 4 up to problem-dependent con-
stants and logarithmic terms in T. Afterward, we com-
ment on extending the distributional assumptions on Nt,θ�

to more robust settings.

Theorem 5. Given budget B, expected number of types 
(E[Nθ])θ∈Θ, and confidence terms (CONFt,θ)θ∈Θ�such that, 
with probability at least 1 � δ, |N>t,θ � E[N>t,θ]| ≤ CONFt,θ�

for all t ∈ [T], θ ∈Θ, GUARDED-HOPE with parameter LT 

is able to achieve with probability at least 1 � δ�(where � 
drops poly-logarithmic factors of T, o(1) terms, and abso-
lute constants)

ENVY ≤ LT ∆EF�max
�

1=
ffiffiffiffi

T
√

, LT

�

∆efficiency�min
�
ffiffiffiffi

T
√

, 1=LT

�

∆prop�max
�

1=
ffiffiffiffi

T
√

, LT

�

:
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Proof of Theorem 5. Define the event E � {∀t ∈ [T], 
∀θ ∈Θ : |N≥t,θ � E[N≥t,θ]| ≤ CONFt�1,θ}. By assumption, 
we know that P(E) ≥ 1 � δ. The following lemma shows 
that the algorithm ensures it has enough budget to allo-
cate according to the lower threshold for everyone arriv-

ing in the future. Recall that B
alg
t,k denotes the budget 

remaining at the start of round t for resource k.

Lemma 3. Under the event E, for every resource k and time 
t ∈ [T] it follows that

B
alg
t,k ≥

X

θ∈Θ
N≥t,θXθ,k:

As a result, the algorithm is able to guarantee that, at every 
iteration, X

alg
t,θ,k is either Xθ,k or Xθ,k.

Proof of Lemma 3. We show the first statement 
by induction on t. The second statement follows 
immediately.

Base Case t 5 1
Here, we have that B

alg
1 � B, and by construction of 

Xθ, we have that

B
alg
1,k ≥

X

θ∈Θ
nθXθ,k (by feasibility) ≥

X

θ∈Θ
NθXθ,k (by event E):

Step Case t21fit
We split into two cases based on the allocation. If 

X
alg
t�1,θ,k � Xθ,k, then by the induction hypothesis, B

alg
t,k �

B
alg
t�1,k �

P

θ∈ΘNt�1,θXθ,k ≥
P

θ∈ΘN≥t,θXθ,k: If X
alg
t�1,θ,k �

Xθ,k, then

B
alg
t,k � B

alg
t�1,k �

X

θ∈Θ
Nt�1,θX

alg
t�1,θ,k 

≥
(a)X

θ∈Θ
Xθ,k(E[N≥t,θ] + CONFt�1,θ) ≥

(b)X

θ∈Θ
N≥t,θXθ,k:

Here, (a) holds by the condition for allocating Xθ,k, and 
(b) holds under event E. w

The next lemma shows that the algorithm is ad-
aptively cautious, that is, after some point, GUARDED- 
HOPE switches to allocating according to the lower 
threshold.

Lemma 4. For each resource k, let t0,k be the last time that 
X

alg
t,θ,k ≠ Xθ,k (or else zero if the algorithm always allocates 

according to Xθ,k). Then, under the event E for some c � Θ̃(1), 
we have that, for all k, t0,k ≥ max{0, T � 2cL�2

T }.

Proof of Lemma 4. We show the result by contradic-
tion (for the setting when T � 2cL�2

T > 0). For some 
resource k, assume that 0 < t0,k < T � 2cL�2

T . By defini-
tion of t0,k, it must be that the algorithm allocated Xθ,k at 
time t0,k and allocated Xθ,k for all subsequent times.

Given the assumption, it must be that, for any t > t0,k,
X

θ

Xθ,k (E[N>t,θ] + CONFt,θ)

≤
(a)

B
alg
t,k �

X

θ

Nt,θXθ,k 

�(b)Balg
t0,k

�

X

θ

Xθ,kNt0,θ �

X

θ

Xθ,k

X

t

i�t0,k+1

Ni,θ�

<
(c)X

θ

Xθ,k(E[N>t0,k,θ] +CONFt0,k,θ)

+
X

θ

(Xθ,k � Xθ,k)Nt0,k ,θ �

X

θ

Xθ,k

X

t

i�t0,k+1

Ni,θ, 

where (a) follows from the condition in the algorithm 
for X

alg
t,θ,k � Xθ,k, (b) follows from the definition of t0,k 

and the choice of t > t0,k, and (c) follows from the con-
dition in the algorithm for X

alg
t0,k ,θ,k � Xθ,k. By rearrang-

ing the inequality, we get that
X

θ

Xθ,kN(t0,k,t],θ�

<
X

θ

(Xθ,k � Xθ,k)Nt0,k,θ +
X

θ

Xθ,kE[N(t0,k,t],θ]

+
X

θ

Xθ,k(CONFt0,k,θ � CONFt,θ)

⇐⇒
X

θ

Xθ,k(N(t0,k,t],θ � E[N(t0,t],θ])

<
X

θ

(Xθ,k � Xθ,k)(Nt0,k,θ � E[N(t0,k,t],θ])

+
X

θ

Xθ,k(CONFt0,k,θ � CONFt,θ):

Using the fact that Xθ,k � Xθ,k ≤ LT
‖B‖∞‖βavg‖min‖w‖min

‖w‖∞ , and 

plugging in an upper bound for the demand at time t0,k, 
a lower bound on the expected demand, and the confi-
dence terms from Lemma EC.3, the right-hand side of 
the inequality can be bounded above by

LT

‖B‖∞‖βavg‖min‖w‖min

‖w‖∞
|Θ|(ρmax +µmax)

� LT

‖B‖∞‖βavg‖min‖w‖min

‖w‖∞
|Θ|(t � t0,k)

+ ‖B‖∞|Θ|
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

q

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t0,k

p

�

ffiffiffiffiffiffiffiffiffiffiffi

T � t
√

):
Moreover, the left-hand side can be bounded below 
under event E via
X

θ

Xθ,k(N(t0,k,t],θ � E[N(t0,t],θ])

≥� ‖βavg‖∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(TΘ|=δ)(t � t0,k)

q

:

Plugging in the value of t � T � cL�2
T and by assu-

mption that t0,k < T � 2cL�2
T , it follows that, for ξ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

p

, ζ � ‖B‖∞‖βavg‖min‖w‖min

‖w‖∞ ,

� ‖βavg‖∞ξ
ffiffiffiffiffiffiffiffiffiffi

cL�2
T

q

≤ LT |Θ|ζ(ρmax +µmax)� LT |Θ|ζcL�2
T 

+ ‖B‖∞|Θ|ξ
�

ffiffiffiffiffiffiffiffiffiffiffiffi

2cL�2
T

q

�

ffiffiffiffiffiffiffiffiffiffi

cL�2
T

q

�

:
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Relabeling x �
ffiffi

c
√

to show a contradiction we need to 
find a value of x such that � a1

LT
x2 + a2

LT
x+ a3LT ≤ 0: Not-

ing that the cusp of the quadratic is at a2

a1
, we see that tak-

ing the constant

c �
‖B‖∞|Θ|ξ+ ‖βavg‖∞ξ

|Θ|ζ�
(independent of LT) suffices to show the contradiction 
(⇒⇐). w

The main result follows from these two lemmas. 
We start by giving the upper bound on ∆efficiency. Fol-
lowing from Lemma 4, which states that, if t0,k denotes 
the last time that X

alg
t,θ,k ≠ Xθ,k, then for all k, t0,k ≥

max{0, T � 2cL�2
T } with high probability. This implies 

that, for all k,

∆efficiency �
X

k

 

Bk �

X

t∈[T]

X

θ

X
alg
t,θ,kNi,θ

!

�
X

k

 

B
alg
t0,k

�

X

t≥t0,k

X

θ∈Θ
Nt,θX

alg
t,θ,k

!

�(a)
X

k

B
alg
t0,k,k �

X

θ

 

Xθ,kNt0,k,θ +
X

t>t0,k

Xθ,kNt,θ

!

<
(b)X

k

X

θ

(Xθ,k(E[N>t0,k,θ] +CONFt0,k,θ � N>t0,k,θ)

� (Xθ,k � Xθ,k)(N>t0,k,θ � Nt0,k,θ)), 

where (a) follows from the fact that, by the definition 
of t0,k, the algorithm allocated the lower allocation at 
time t0,k and the upper allocation for all t > t0,k, and (b) 
follows from the condition in the algorithm for allo-
cating the lower allocation at time t0,k, which upper 
bounds B

alg
t0,k,k.

However, under E, we know that E[N>t0,k,θ]�
N>t0,k,θ ≤ 2 CONFt0,k,θ. Plugging in the definition of 
CONFt0,k,θ�and the bound on (Xθ,k � Xθ,k) from Theorem 4, 
we have

∆efficiency ≤ 2
X

k

X

θ

Xθ,k CONFt0,k,θ +Nt0,k,θ(Xθ,k � Xθ,k)

≤ 2‖B‖1

X

k

X

θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
max(T � t0)log(T|Θ|=δ)

q

+ (µmax + ρmax)
2‖B‖∞‖βavg‖

2
min‖w‖minmaxθ‖wθ‖1

‖w‖∞
LT:

Taking this and plugging in the value of t0,k we get that

∆efficiency ≤ 2‖B‖1K|Θ|
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

p

min{
ffiffiffiffi

T
√

,
ffiffiffiffiffi

2c
√

=LT}

+
2(µmax + ρmax)‖B‖∞‖βavg‖

2
min‖w‖minmaxθ‖wθ‖1

‖w‖∞
LT:

Note that L2
T � o(1) such that the second term is domi-

nated by the first.
Next, we show the desired bound on ENVY. Consider 

an arbitrary t,θ, t′,θ′. Then, we have that

u
�

X
alg

t′,θ′ ,θ
�

� u(Xalg
t,θ,θ)

� u(Xalg

t′,θ′ ,θ)� u(Xθ′ ,θ) + u(Xθ′ ,θ)� u(Xθ,θ)

+ u(Xθ,θ)� u(Xalg
t,θ,θ)

≤
(a)

u(Xalg

t′,θ′ ,θ)� u(Xθ′ ,θ) + u(Xθ,θ)� u(Xalg
t,θ,θ)

≤
(b)
‖wθ′‖1‖X

alg

t′,θ′ � Xθ′‖ + ‖wθ‖1‖X
alg
t,θ � Xθ‖

≤
(c)

2 max
θ

‖wθ‖1‖X � X‖∞

≤
(d)2‖B‖∞‖βavg‖

2
min‖w‖minmaxθ‖wθ‖1

‖w‖∞
LT, 

where in (a) we use that X is envy-free, we know the 
second pair is bounded above by zero, (b) we use the 
definition of the utilities and (c) the fact that the algo-
rithm allocates according to guardrails, and (d) the 
bound in Theorem 4. Taking max over t, t′,θ,θ′ gives 
the result.

Next, we show the bound on ∆EF. First, consider the 

setting when LT ≥ 2 ‖w‖2
∞

‖w‖min‖βavg‖min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

T

q

such that 

we satisfy properties 4 and 5 of Theorem 4. Using that 

the algorithm always allocates according to Xθ�or Xθ�
with probability at least 1 � δ, we get

|u(Xalg
t,θ,θ)� u(Xopt

θ ,θ)| ≤ |u(Xθ,θ)� u(Xθ,θ)| ≤ LT:

However, even for the case that LT < 2
‖w‖2

∞
‖w‖min‖βavg‖min 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

T

q

, then for any θ, we have either u(Xθ,θ) ≤
u(Xopt

θ ,θ) ≤ u(Xθ,θ) as in property 5, or u(Xθ,θ) ≤
u(Xθ,θ) ≤ u(Xopt

θ ,θ). If the first case holds, then

|u(Xalg
t,θ,θ)� u(Xopt

θ ,θ)| ≤ |u(Xθ,θ)� u(Xθ,θ)| ≤ LT:

Otherwise, then we can consider X̃θ�to be the upper 
guardrail solution via the construction from Section 5

with LT � 2
‖w‖2

∞
‖w‖min‖βavg‖min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

T

q

. There, we have

|u(Xalg
t,θ,θ)� u(Xopt

θ ,θ)|

≤ |u(X̃θ,θ)� u(Xθ,θ)| ≤ 2
‖w‖2

∞
‖w‖min‖βavg‖min 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2
maxlog(T|Θ|=δ)

T

r

:

Finally, we show the bound on ∆prop. Recall that 

GUARDED-HOPE satisfies that ∆EF�max{1=
ffiffiffiffi

T
√

, LT}. How-
ever, by definition of ∆EF, this ensures that, for any 
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round t and type θ�that |u(Xalg
t,θ,θ)� u(Xopt

θ ,θ)|�max 

{1=
ffiffiffiffi

T
√

, LT}. Using this and the fact that Xopt is propor-
tional, we see that

u(βavg,θ)� u(Xalg
t,θ,θ)

� u(βavg,θ)� u(Xopt
θ ,θ) + u(Xopt

θ ,θ)� u(Xalg
t,θ,θ)

�max{1=
ffiffiffiffi

T
√

, LT}:

Taking the max over t and θ�gives the desired bound on 
∆prop. w

7.1. Randomization and the Convex Envelope
As stated in Theorems 2, 3, and 5, the given upper and 
lower bounds are precise up to o(1) factors. Recall that 
the performance guarantee on GUARDED-HOPE with par-
ameter LT is ∆efficiency�min{

ffiffiffiffi

T
√

, 1=LT}. We can improve 
the performance of the algorithm for values of LT ∈
[0, 1=

ffiffiffiffi

T
√

] by randomization. Indeed, let πLT denote the 
GUARDED-HOPE allocation policy with parameter LT. Con-
sider π(α) to be the allocation policy that picks π0 with 
probability (1 � α) and π1=

ffiffiffi

T
√ with probability α, playing 

that policy once chosen across all rounds. It is easy to see 
that this policy achieves expected metrics

ENVY(π(α)) � αffiffiffi
T

√ and ∆efficiency(π(α)) � (1�α)
ffiffiffi

T
√

+ αffiffiffi
T

√ :

This improves the performance on ∆efficiency for values of 
LT smaller than 1=

ffiffiffiffi

T
√

.

7.2. Generalizing Distributional Assumptions
Theorem 5 considers the setting when Nt,θ ~ F t is inde-
pendent across θ�and a time-dependent process with 
bounded mean absolute deviation and finite variance. 
However, it is simple to see that the proofs only require 
a bound on the following event:

\

t,θ
Et,θ where

Et,θ � {|N>t,θ�E[N>t,θ|N≤t,θ]| ≤ CONFt,θ(N≤t,θ)}
with the scaling of CONFt,θ�being on the order of 
ffiffiffiffiffiffiffiffiffiffiffi

T � t
√

. The main modification to GUARDED-HOPE is to 
condition on the observed sequence of N≤t,θ�thus far, 
particularly in step two of the algorithm:

(Sufficient budget to promise lower threshold) If B
alg
t,k 

≥ Xθ,kNt,θ + Xθ,k(E[N>t,θ | N≤t,θ] + CONFt,θ(N≤t,θ)), then 

set X
alg
t,θ,k � Xθ,k ∀θ ∈Θ.

The concentration arguments and scaling of CONFt,θ�

are used in three different sections: 
1. Construction of the lower and upper guardrails (Xθ�

and Xθ). This uses concentration of E[Nθ], which is 
given by CONF0,θ.

2. Ensuring the algorithm doesn’t run out of budget 
by saving resources to allocate Xθ�to every individual 
(as in Lemma 3). This utilizes the confidence intervals on 
N>t,θ, which would be given by CONFt,θ(N≤t,θ) now con-
ditional on the observed N≤t,θ�values.

3. Construction of the time point after which GUARDED- 
HOPE switches to allocating to the lower threshold (as in 
Lemma 4) uses the scaling of CONFt,θ�as 

ffiffiffiffiffiffiffiffiffiffiffi

T � t
√

.
Each of these steps is given by ∩t,θEt,θ, and so our 

approach works under distributional assumptions that 
yield Chernoff bounds on each event Et,θ: 

• Nt,θ ~ F t is a time-dependent process in which each 
Nt,θ�has bounded mean absolute deviation and finite 
variance (as in Lemma EC.3).

• Nt,θ ~ F t is a time-dependent process in which each 
Nt,θ�is sub-Gaussian.

• Nt,θ�are conditionally independent and sub-Gaussian 
given a latent variable Z. This model naturally en-
compasses dependence on the weather, other local 
events, etc.

• Nθ �
P

tNt,θ�is known for each θ. In this setting, the 
algorithm can simply take E[N>t,θ|N≤t,θ] + CONFt,θ�

(N≤t,θ) � Nθ � N≤t,θ.
• Each Nt,θ�evolves independently across θ�according 

to different ergodic Markov chains. Concentration bou-
nds for these processes can be constructed using recent 
work on Chernoff–Hoeffding bounds for Markov chains 
(theorem 3.1 in Chung et al. 2012).

8. Conclusion
In this paper, we consider the problem of dividing lim-
ited resources to individuals arriving over T rounds, and 
each round can be thought of a distribution location. In 
the off-line setting (in which the number of individuals 
arriving to each location is known), achieving a fair allo-
cation scheme is found by maximizing the Nash social 
welfare objective subject to budget constraints. How-
ever, in online settings, no online algorithm can achieve 
fairness properties ex post. We instead consider the 
objective of minimizing ∆EF (the maximum difference 
between the utility individuals receive from the alloca-
tion made by the algorithm and the counterfactual opti-
mal fair allocation in hindsight), ENVY (the maximum 
difference between the utility individuals receive from 
the allocation made by the algorithm and the allocation 
given to a different individual), and ∆efficiency (the additive 
excess of resources).

We show that this objective leads to the envy-efficiency 
uncertainty principle, an exact characterization between 
the achievable (∆EF, ENVY,∆efficiency) pairs. In particular, 
our result shows that envy and efficiency must be inversely 
proportional to one another. With this analysis, we show 
that it leads to a simple algorithm, GUARDED-HOPE, which is 

Sinclair et al.: Sequential Fair Allocation 
Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS 15 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
2
8
.8

4
.1

2
6
.2

5
3
] 

o
n
 0

1
 A

u
g
u
st

 2
0
2
3
, 
at

 1
3
:5

3
 .
 F

o
r 

p
er

so
n

al
 u

se
 o

n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



obtained by solving the Eisenberg– Gale program with 
unknown quantities replaced with their expectation to 
generate guardrails used in the allocation, combined 
with an adaptive algorithm aimed at minimizing waste. 
Through experiments, we show that GUARDED-HOPE is able 
to obtain allocations that achieve any fairness–efficiency 
trade-off with desirable fairness properties compared with 
several benchmarks.

Several open questions remain, including extending 
the analysis to more general utility functions (including 
homothetic, another common model of preferences over 
resources). We also believe much of the theoretical 
results apply to settings in which the budget B is instead a 
stochastic process, accounting for external donations and 
depletions of the resources independent of the allocations 
made by the algorithm. Moreover, we leave the question of 
matching the upper and lower bounds in terms of problem 
dependent constants and the issue of determining the 
schedule to visit locations as future work.
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Nisan N, Roughgarden T, Tardos É, Vazirani VV, eds. (2007) Algorith-
mic Game Theory (Cambridge University Press, Cambridge, UK).

Orgut IS, Brock LG III, Davis LB, Ivy JS, Jiang S, Morgan SD, Uzsoy 
R, Hale C, Middleton E (2016) Achieving equity, effectiveness, 
and efficiency in food bank operations: Strategies for feeding 
America with implications for global hunger relief. Advances in 
Managing Humanitarian Operations (Springer), 229–256.

Procaccia AD (2013) Cake cutting: Not just child’s play. Comm. 
ACM. 56(7):78–87.

Sengul Orgut I, Ivy J, Uzsoy R (2017) Modeling for the equitable 
and effective distribution of food donations under stochastic 
receiving capacities. IISE Trans. 49(6):567–578.

Shadmi E, Chen Y, Dourado I, Faran-Perach I, Furler J, Hangoma P, 
Hanvoravongchai P, et al. (2020) Health equity and COVID-19: 
Global perspectives. Internat. J. Equity Health 19(1):1–16.

Sugden R (1984) Is fairness good? A critique of Varian’s theory of 
fairness. Nous 18(3):505–511.

Varian HR (1974) Equity, envy, and efficiency. J. Econom. Theory 
9(1):63–91.

Varian HR (1976) Two problems in the theory of fairness. J. Public 
Econom. 5(3–4):249–260.

Vera A, Banerjee S (2019) The Bayesian prophet: A low-regret 
framework for online decision making. Performance Evaluation 
Rev. 47(1):81–82.

Walsh T (2011) Online cake cutting. Internat. Conf. Algorithmic Deci-
sion Theory (Springer), 292–305.

Yi M, Marathe A (2015) Fairness vs. efficiency of vaccine allocation 
strategies. Value Health 18(2):278–283.

Zeng D, Psomas A (2020) Fairness-efficiency tradeoffs in dynamic 
fair division. Proc. 21st ACM Conf. Econom. Comput. (Association 
for Computing Machinery, New York), 911–912.

Sean R. Sinclair is a graduate student in the school of operations 
research and information engineering at Cornell University, working 
on developing algorithms for data-driven sequential decision making 
in societal applications.

Gauri Jain is a graduate student in computer science at Harvard 
University.

Siddhartha Banerjee is an associate professor in the school of opera-
tions research and information engineering at Cornell University, 
working on topics at the intersection of data-driven decision making, 
network algorithms, and market design.

Christina Lee Yu is an assistant professor at Cornell University in 
the school of operations research and information engineering.

Sinclair et al.: Sequential Fair Allocation 
Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS 17 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
2
8
.8

4
.1

2
6
.2

5
3
] 

o
n
 0

1
 A

u
g
u
st

 2
0
2
3
, 
at

 1
3
:5

3
 .
 F

o
r 

p
er

so
n

al
 u

se
 o

n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 

https://www.npr.org/sections/health-shots/2020/08/19/903946857/how-feds-decide-on-remdesivir-shipments-to-states-remains-mysterious
https://www.npr.org/sections/health-shots/2020/08/19/903946857/how-feds-decide-on-remdesivir-shipments-to-states-remains-mysterious
https://www.npr.org/sections/health-shots/2020/08/19/903946857/how-feds-decide-on-remdesivir-shipments-to-states-remains-mysterious
https://dx.doi.org/10.2139/ssrn.3775895
https://dx.doi.org/10.2139/ssrn.3775895

	Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Trade-off Curve
	Introduction
	Related Work
	Preliminaries
	Uncertainty Principles
	Sensitivity and Concentration on Counterfactual Optimal Fair Allocation
	Guarded-Hope
	Envy and Efficiency Bound for Guarded-Hope
	Conclusion


