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Abstract. We consider the problem of dividing limited resources to individuals arriving
over T rounds. Each round has a random number of individuals arrive, and individuals can
be characterized by their type (i.e., preferences over the different resources). A standard
notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness
and efficiency. The former is an individual guarantee, requiring that each agent prefers the
agent’s own allocation over the allocation of any other; in contrast, efficiency is a global prop-
erty, requiring that the allocations clear the available resources. For divisible resources, when
the number of individuals of each type are known up front, the desiderata are simultane-
ously achievable for a large class of utility functions. However, in an online setting when the
number of individuals of each type are only revealed round by round, no policy can guaran-
tee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as
to approximately satisfy the two properties. We show that, in the online setting, the two
desired properties (envy-freeness and efficiency) are in direct contention in that any algo-
rithm achieving additive counterfactual envy-freeness up to a factor of Ly necessarily suffers
an efficiency loss of at least 1/Ly. We complement this uncertainty principle with a simple
algorithm, Guarbep-Hor, which allocates resources based on an adaptive threshold policy
and is able to achieve any fairness—efficiency point on this frontier. Our results provide
guarantees for fair online resource allocation with high probability for multiple resource and
multiple type settings. In simulation results, our algorithm provides allocations close to the
optimal fair solution in hindsight, motivating its use in practical applications as the algorithm
is able to adapt to any desired fairness efficiency trade-off.
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1-0094].

Supplemental Material: The online appendix is available at https: //doi.org/10.1287 /opre.2022.2397.

Keywords: online resource allocation «

Varian fairness « Nash social welfare « model-predictive control

1. Introduction

problems (such as vaccine and medical supply allocation)
and reservation mechanisms.

Our work here is motivated by a problem faced by a col-
laborating food bank (Food Bank for the Southern Tier of
New York (FBST; https: //www .foodbankst.org/) in oper-
ating its mobile food pantry program. Recent demands
for food assistance have climbed at an enormous rate, and
an estimated 14 million children are not getting enough
food because of the COVID-19 epidemic in the United
States (Bauer 2020, Kulish 2020). With sanctions on oper-
ating in-person stores, many food banks have increased
their mobile food pantry services. In these systems, the
mobile food pantry must decide on how much food to
allocate to a distribution center on arrival without knowl-
edge of demands in future locations. This model also
extends as a representation of broader stockpile allocation

As a simplified example (see Section 3 for the full
model, including multiple resources and individual
types), every day, the mobile food pantry uses a truck to
deliver B units of food supplies to individuals over T
rounds (each round can be thought of as a distribution
location: soup kitchens, pantries, nursing homes, etc.).
When the truck arrives at a site  (or round ¢), the operator
observes N; individuals and chooses how much to allo-
cate to each individual (X; € RN') before moving to the
next round. The number of people assembling at each site
changes from day to day, and the operator typically does
not know the number of individuals at later sites (but has
a sense of the distribution based on previous visits).
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In off-line problems, in which the number of individuals
at each round (Ni)iy) is known to the principal in
advance, there are many well-studied notions of fair alloca-
tion of resources. One guarantee, envy-freeness, requires
that each individual prefers the individual’s own allocation
over the allocation of any other. In contrast, efficiency is a
global property, requiring that the allocations clear the
available resources. For divisible resources, these desider-
ata are simultaneously achievable for a large class of utility
functions with multiple resources and easily computed
(via a convex program) by maximizing the Nash social
welfare (NSW) objective subject to allocation constraints
(Eisenberg 1961, Varian 1974). As an example, in this (sim-
plified) setting, the fair allocation is easily computed
by allocating X% = B/N to each individual, where N =
> teqryNt is the total number of individuals across all
rounds. This allocation is clearly envy-free (as each individ-
ual receives an equal allocation) and is efficient (as all of the
resources are exhausted); it’s also easy to see that this is
the only allocation that satisfies these two properties
simultaneously.

Many practical settings, however, operate more akin
to the FBST mobile food pantry, in which the principal
makes allocation decisions online with incomplete know-
ledge of the demand for future locations. However, these
principals do have access to historical data allowing
them to generate histograms over the number of individ-
uals for each round (or potentially just first moment
information). Designing good allocation algorithms in
such settings necessitates harnessing the Bayesian infor-
mation of future demands to ensure equitable access to
the resource and also adapting to the online realization of
demands as they unfold to ensure efficiency.

Satisfying any one of these properties is trivially achiev-
able in online settings. The solution that allocates X; = 0 to
each individual satisfies hindsight envy-freeness as each
individual is given an equal allocation. The solution that
allocates X7 = B/Nj to individuals at the first location and
X; = 0 for t > 2 satisfies efficiency as the entire budget is
exhausted at the first location. Another difficult challenge
in this setting is achieving low counterfactual envy, ensur-
ing that the allocations made by the algorithm (X,) are
close to what each individual should have received with
the fair solution in hindsight (B/N). More meaningful is
understanding how these different criteria interact. Here,
we tackle these important challenges by defining mean-
ingful notions of approximately fair online allocations and
develop algorithms that are able to utilize distributional
knowledge to achieve allocations that strike a balance
between the competing objectives of envy and efficiency.

1.1. Overview of Our Contributions

In sequential settings, one way to measure the (un)fairness
of any online allocation (X“¢) is in terms of its count-
erfactual distance (for both envy and efficiency) when
compared with the optimal fair allocation in hindsight

(i.e., off-line allocation X°’*). Another measure is hind-
sight envy (when compared only to allocations made by
the algorithm). In particular, we define counterfactual envy
as Agr = ||u(szt, 0) — u(X‘gg, 0|l to be the maximum
difference in utility between the algorithm’s
allocation and the off-line allocation when agents are
characterized by their type 6 and define hindsight envy as

ENvVY = maXt/t/lglg’u(X?ng,, 0) — u(X':f %, 0) to be the maxi-
mum difference between the utility individuals would

receive if given someone else’s allocations and let
Aefficiency = B — Et,eNt,GXf,lg be the algorithm’s total left-
over resources. These are all very stringent metrics, akin to
the notion of regret in online decision-making settings.

In these settings with competing objectives, practition-
ers often resort to ad hoc rules of thumb, heuristics, and
trial-and-error adjustments of the system to attempt to
manage the balance between objectives. How these crite-
ria interact and trade off among one another is often not
well-understood or characterized, and furthermore, there
typically does not exist a single best “ranking” or a clear
single objective function that determines which trade-offs
are better than others. In fact, minimizing some combina-
tion of (Agr, ENVY, Agficiensy) can be formulated as a Mar-
kov decision process (MDP). However, as these metrics
depend on the entire allocation, the complexity of finding
the optimal policy is exponential in the number of rounds
and may be difficult to interpret (Manshadi et al. 2021).
Moreover, it is much harder to use MDP formulations to
explore the trade-off between the objectives.

Our main technical contribution is to provide a com-
plete characterization of the achievable pairs of (Agr,
ENVY, Aficiency)- Our results hold in expectation and with
high probability under multiple divisible resources and
with a finite set of individual types with linear utilities.
In particular, we show the following informal theorem
(see Figure 1 for a graphic representation).

Informal Theorem 1 (See Sections 4 and 7 for Full Ver-
sions). Under mild reqularity conditions on the distribution of
N,, we have the following (Z ignores problem-dependent con-
stants, logarithmic factors of T, and o(1) factors):

1. (Statistical uncertainty principle) Any online allocation algo-
rithm must suffer counterfactual envy of at least Agr 2 1/NVT.

2a. (Counterfactual envy-efficiency uncertainty principle)
Any online allocation algorithm necessarily suffers Agiciency 2
mm{\/T, 1/AEF}

2b. (Hindsight envy-efficiency uncertainty principle) Any
online allocation algorithm necessarily suffers Aeficiency 2
min{VT,1/ ENVY}.

3. (Upper Bound via GuARDED-HOPE) For any choice of L,
with probability at least 1 — 6, GUARDED-HOPE with parameter
L achieves

AEF < rnax{l/\/i LT}
Aeﬁciency S mm{ﬁ/ 1/LT}

ENVY < Ly
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Figure 1. (Color online) Graphic Representation of the Major Contributions (Theorem 1)

(a)
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Notes. Here, the x-axis denotes Agr or ENVY, and the y-axis denotes Aeficiency, the remaining resources. The dotted line represents the impossibility
resulting from statistical uncertainty in the optimal allocation, and the region below the solid line represents the impossibility resulting from the
envy-efficiency uncertainty principle. (@) Agr — Afciency- (0) ENVY — Aggiciency -

In short, our results show that envy and waste must
be inversely proportional to one another such that dec-
reasing envy requires increasing waste and vice versa.
The lower bounds (1 and 2) are established using anti-
concentration arguments alongside understanding the
fundamental gap in ensuring enough resources to allo-
cate close to the estimated optimal solution while simul-
taneously trying to eliminate waste.

Furthermore, we provide a simple algorithm, GUARDED-
Horg, which achieves the correct trade-off between envy
and waste, matching the lower bound in terms of T up to
logarithmic factors. Given an input of L7, our algorithm sat-
isfies a hindsight envy bound of ENVY < Lt and counterf-
actual envy bound of Agr < max{l/\/T,LT} with waste
bounded by Agiciency S max{VT,1/Lr}. Our algorithm
achieves this using novel concentration arguments on
the optimal Nash social welfare solution, utilizing a sen-
sitivity argument on the solution to the optimization
problem instead of the objective (as commonly used for
competitive ratio guarantees) to learn a lower guardrail
on the optimal solution in hindsight. Given this, we con-
struct an upper guardrail to satisfy the desired Agr and
ENVY bound. We then achieve the proper trade-off
by carefully balancing allocating the established lower
guardrail with the upper guardrail and simultaneously
ensuring the algorithm never runs out of budget.

To get some intuition into the envy-efficiency uncer-
tainty principle, consider the simple food bank example
described for a single resource (with arrivals N; in each
location and X#* = B/N, where N =}, ;yN:). For con-
venience, we temporarily assume that each agent’s util-
ity is directly proportional to the agent’s allocation (i.e.,
u(X, 0) = X). Consider allocation X; at the first location:

via standard concentration arguments, one can find a
high probability lower confidence bound for B/N with a
half-width on the order of 1/ \/T. Now, it’s not hard to
argue that allocating according to the lower confidence
bound at all locations achieves counterfactual envy
of Apgpx1/ VT, ENVY =0, and Acfficiency ~ VT. This cor-
responds to the cusp of the efficiency-envy trade-off
curves in Figure 1.

Now, if we relax the Agr or ENVY constraint to
~1/T"/ and use the naive static policy of always allocat-
ing via the now looser lower confidence bound, we get a
waste of T-T~1/3 = T?/3. Our algorithm instead takes a
different approach, using the lower confidence bound of

order 1/VT as the lower guardrail allocation, and sets
the upper guardrail allocation to be the lower one plus
the desired bound on Agr or ENVY. If we establish that
the algorithm always allocates within the guardrails, we
automatically have the desired bound on Agr and ENVY.
The main additional factor in achieving the trade-off for
Aeficiency 1S ensuring we properly allocate according to the
upper threshold and ensure we do not run out of budget
to ensure the lower threshold allocation. With this,
Guarpep-Hore achieves Aygiciney ~ T'/3, which further-
more is the best possible. Moreover, we complement our
theoretical results with experiments highlighting the
empirical performance of different algorithms (on both
synthetic settings as well as a data set based on mobile
food pantry operations), which shows that GUARDED-
Hore has much lower waste and envy compared with
static under-allocation as well as other certainty equiva-
lence based heuristics Bertsekas (2012).

Whereas fairness in resource allocation is well-studied
in off-line and adversarial settings, fairness metrics for
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the sequential stochastic setting are poorly understood
(especially when individuals are arriving online). Our
proposed metrics and results give a novel way of extend-
ing Varian’s definitions of fairness to the sequential
setting. Moreover, ours is the first result to provide guar-
antees for fair online resource allocation with high prob-
ability for multiple-resource and multiple-type settings.
Most existing work aims to show competitive ratio or
additive guarantees on the Nash social welfare objective
(Banerjee et al. 2020) or focus on the max-min objective
(Lien et al. 2014, Manshadi et al. 2021). Such guarantees
are dangerously misleading in that the resultant alloca-
tions may exhibit clear unfairness in hindsight. Similarly,
an ex ante or probabilistic guarantee may also be per-
ceived as unfair; both allocating one unit with certainty
and allocating 10 units with probability 1/10 give the
same ex ante guarantee. In contrast, our chosen metrics
and theoretical results provides a firm basis for counter-
factual and ex post individual fairness guarantees. Whereas
we do not believe our work gives a final answer in the theo-
retical and practical understanding of fairness in online allo-
cation, we hope it adds to the conversation of incorporating
ethics into sequential Al algorithms. More discussion on the
advantages and disadvantages of our proposed fairness
metrics is in Online Appendix A.

1.2. Other Motivating Examples

In addition to the mobile food pantry allocation problem
that forms the focus of our work, we believe our ideas
can prove useful in several other settings:

1.2.1. Stockpile Allocation. In many healthcare systems
or resource allocation problems, government mecha-
nisms decide how to allocate critical resources to states,
individuals, or hospitals. For example, the U.S. federal
government was tasked with distributing Remdesivir,
an antiviral drug used early in the pandemic for COVID-
19 treatment (Lupkin 2020). More recently relevant,
states and government organizations are deciding how
to allocate COVID-19 (or influenza) vaccines to various
population demographics across several rounds (Jaberi-
Douraki and Moghadas 2014, Yi and Marathe 2015). In
these scenarios, on a monthly basis, each state is given a
fixed amount of the resource (say COVID-19 vaccina-
tions) and is tasked with distributing these to individuals
across various distribution locations. Whereas the primary
goal is to develop efficient allocations, an alternative ob-
jective may be to ensure equitable access to the resource
(Donahue and Kleinberg 2020, Shadmi et al. 2020,
Manshadi et al. 2021).

1.2.2. Reservation Mechanisms. These are key for oper-
ating shared high-performance computing (HPC) systems
(Ghodsi et al. 2011). Cluster centers for HPC receive num-
erous requests online with varying demands for CPUs
and graphics processing units (GPUs). Algorithms must

allocate resources to incoming jobs with only distribu-
tional knowledge of future resource demands. Impor-
tant to these settings is the large number of resources
(number of GPUs, RAM, etc., available at the center),
requiring algorithms that scale to higher dimensi-
onal problems.

2. Related Work

Fairness in resource allocation and the use of Nash
social welfare was pioneered by Varian in his seminal
works (Varian 1974, 1976). Since then, researchers have
investigated fairness properties for both off-line and
online allocation in settings with divisible or indivisible
resources and when either the individuals or resources
arrive online. We now briefly discuss some related
works; see Aleksandrov and Walsh (2020) for a compre-
hensive survey. What distinguishes our setting from
many of the previous works is that we consider the
online Bayesian setting with a known distribution.
Many previous works are either limited to off-line or
nonadaptive algorithms or consider adversarial online
arrivals. Trade-offs between various fairness metrics is
also considered previously in the literature but for
classification-based fairness metrics on protected attrib-
utes instead of allocation-based ones (Kleinberg et al.
2016).

2.1. Food Bank and Healthcare Operations

There is a growing body of work in the operations
research literature addressing logistics and supply chain
issues in the area of humanitarian relief, healthcare, and
food distribution (Jaberi-Douraki and Moghadas 2014,
Yi and Marathe 2015, Orgut et al. 2016, Sengul Orgut
et al. 2017, Alkaabneh et al. 2020). The research focuses
on designing systems that balance efficiency, effective-
ness, and equity. In Eisenhandler and Tzur (2019), they
study the logistical challenges of managing vehicles with
limited capacity to distribute food and provide routing
and scheduling protocols. In Lien et al. (2014) and Man-
shadi et al. (2021), they consider sequential allocation
with an alternative objective of maximizing the mini-
mum utility (also called the leximin in the literature;
Moulin 2004). We instead consider sequential allocation
of resources under the objectives of achieving approxi-
mate fairness notions with regards to envy and efficiency.

2.2. Cake Cutting

Cake cutting serves as a model for dividing a continu-
ous object (whether that be a cake, advertisement space,
land, etc.) (Brams and Taylor 1995, Procaccia 2013).
Under this model, prior work considers situations in
which individuals arrive and depart during the process
of dividing a resource, and the utility of an agent is a
set function on the interval of the resource received.
Researchers analyze the off-line setting to develop algorithms
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to allocate the resource with a minimal number of cuts
(Brams and Taylor 1996) or online under adversarial arriv-
als (Walsh 2011). Our model instead imposes stochastic
assumptions on the number of arriving individuals
and characterizes probabilistic instead of sample-path fair-
ness criteria.

2.3. Online Resources

One line of work considers the resource (here, to be
thought of as the units of food, processing power, etc.) is
online and the agents are fixed (Aleksandrov et al. 2015;
Mattei et al. 2017, 2018; Benade et al. 2018; Aleksandrov
and Walsh 2019; Banerjee et al. 2020; Bansal et al. 2020;
Bogomolnaia et al. 2022). In Zeng and Psomas (2020),
they study the trade-offs between fairness and efficiency
when items arrive under several adversarial models.
Another common criterion is designing algorithms that
are envy-free up to one item, for which researchers
design algorithms that can reallocate previously allo-
cated items but try to minimize these adjustments (Aziz
etal. 2016, He et al. 2019). These problems are in contrast
to our model in which, instead, the resources are fixed
and depleting over time and individuals arrive online.

2.4. Online Individuals

The other setting more similar to our work considers
agents as arriving online and the resources as fixed. In
Kalinowski et al. (2013), they consider this setting in
which the resources are indivisible with the goal of maxi-
mizing utilitarian welfare (or the sum of utilities), which
provides no guarantees on individual fairness. Another
approach in Gerding et al. (2019) considers a scheduling
setting in which agents arrive and depart online. Each
agent has a fixed and known arrival time, departure
time, and demand. The goal then is to determine a
schedule and allocation that is Pareto-efficient and envy-
free. Another line of work (Cole et al. 2013; Friedman
et al. 2015, 2017) considers fair division with minimal
disruptions on previous allocations. Their fairness ratio
can be viewed as a competitive ratio form of our counter-
factual envy definition (Definition 2).

2.5. Nonadaptive Allocations

A separate line of research considers fairness questions
for resource allocations in a similar setting in which the
utilities across groups are drawn from known probabil-
ity distributions (Elzayn et al. 2019, Donahue and Klein-
berg 2020). They investigate probabilistic versions of
fairness, in which the goal is to quantify the discrepancy
between the objectives of ensuring the expected utiliza-
tion of the resources is large (ex ante Pareto-optimal),
whereas the probability of receiving the resource is pro-
portional across groups (ex ante proportional). How-
ever, they consider algorithms that decide on the entire
allocation for each agent up front before observing the
demand rather than adaptive policies.

2.6. Adaptive Allocations

In contrast, we consider a model in which the principal
makes decisions on the amount of resources after wit-
nessing the number of individuals in a round. Most simi-
lar to our work is recent work analyzing a setting in
which individuals arrive over time and do not depart so
that the algorithm can allocate additional resources to
individuals who arrived in the past (Kash et al. 2014).
We instead consider a stochastic setting in which indi-
viduals arrive and depart in the same step with the goal
of characterizing allocations that cannot reallocate to pre-
vious agents. Other papers either seek competitive ratios
in terms of the Nash social welfare objective (Azar et al.
2010, Banerjee et al. 2020, Bateni et al. 2022) or derive
allocation algorithms that perform well in terms of max-
min (Lien et al. 2014, Manshadi et al. 2021). Our work dif-
fers from these in that we impose additional distribution
assumptions (notably that the variance of the demand is
on a smaller order than its mean, more common in real-
world scenarios). The results in Manshadi et al. (2021)
can be viewed as highlighting a trade-off between effi-
ciency and the max-min objective although achieving
efficiency of zero is trivial in that setting as the algorithm
designer is not penalized for giving all leftover resources
at the last location. In contrast, under our setting, elimi-
nating the resources at the final round penalizes the algo-
rithm in terms of both Agr and ENVY, requiring a more
nuanced discussion on the trade-off between efficiency
and envy.

3. Preliminaries

We use R, to denote the set of nonnegative reals, ||X||,, =
max; ;| X;,| to denote the matrix maximum norm, and cX
to denote entry-wise multiplication for a constant c.
When comparing vectors, we use X <Y to denote that
each component X; <Y;.

3.1. Model and Assumptions

A principal is tasked with dividing K divisible resources
among a population of individuals who are divided
between T distinct rounds; these can represent T loca-
tions visited sequentially by the principal (for example,
food distribution sites visited by a mobile pantry) or T
consecutive time periods (for example, days over which
a hospital must stretch some limited medical supply
before it is restocked).

Each resource k € [K] has a fixed initial budget By that
the principal can allocate across these rounds. Each
round has a (possibly random) set of distinct individuals
arriving to request a share of the resources. Individuals
are characterized by their type 0 € O, corresponding to
their preferences over the K resources, in which individ-
uals of type 0 receive utility u(x, 0) : R* x ® — R for an
allocation x. We henceforth assume that the set of possi-
ble types has finite cardinality |®| and denote (N} ¢)geo
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to be the vector containing the number of arrivals of each
type in round ¢, the demand N; ¢ denotes the number of
type-0 arrivals. (Nt g)geg <7 is drawn from some known
distribution F; note that these distributions across
rounds need not be identical.

In the ex post or off-line setting, the number of individ-
uals per round (N} g)ejr0co i known in advance and
can be used by the principal to choose allocations X €
RTIOMK for individuals in each round t of type 6. In the
online setting, the principal considers each round seq-
uentially in a fixed order t =1,...,T, is informed of the
number of individuals (N} )y in that round, and choo-

ses allocation Xflg € RI®™K pefore continuing on to the
next round in which X?,lglk denotes the allocation of
resource k earmarked for each of the N; ¢ individuals of
type 0 in that round. This assumption includes not only
independent and identically distributed (i.i.d.) demands,
but can also be extended to distributions that arise from
Markov chains or latent variable models (see Section 7
for more details). We impose the additional assumption
that the algorithm allocates the same allocation to each
of the N;¢ individuals of type 0. This is without loss of
generality as one of the primary goals of the paper is to
investigate envy, whereby one out of any two individuals
of type 0 in round t envies the other unless their allocations
are the same. Allocation decisions are irreversible and
must obey the overall budget constraints.

3.1.1. Assumptions. We assume that, for every t € [T]
and 0 € ©, N;g > 1 almost surely. We also assume that
Ny are independent with variance Var[N;g] = 0,9 >0
and mean absolute deviation |[N;g — E[N;g]| = Pro <
almost surely. We additionally denote 07, = min; o7,
02 = Max; g0, and p,. = max;gE[N;g] and assume
that 02,,, 0%, H,,, ar€ given constants. These assump-
tions are for ease of notation and clarity of presentation;
in particular, our results only depend on mild conditions
on the expectation and tails of the sums of future arrivals
> #-tNro of each type. Extensions are discussed in

Section 7. We define ﬁavg = B/ZHEGZte[T]E[Nt,Q] € RF as

the average resource per individual; for ease of under-

standing, 8, can be viewed as being a constant, but our

results hold forany f,..

We also focus on utility functions that are linear, that
is, for which u(x, ) = (wg, x), where the latent individ-
ual type 0 is characterized by wg € RX; as a vector of
preferences over each of the different resources. For
example, the type O could refer to a “vegetarian” type
with preferences [2,0,1] over the set of resources [ pro-
duce, meat, canned soup] indicating a marginal utility of
zero for any allocated meat and increased preference for
produce. The relative scale of the weights help indicate
preference for one food resource over another.

The assumption that agents’ preferences over resour-
ces are linear is limiting in that it does not account for
settings in which resources exhibit complementarities
(modeled via, e.g., Leontief, or filling, utilities) in addi-
tion to omitting popular utility functions in the extant lit-
erature (e.g., Cobb-Douglas utilities). Our algorithmic
techniques naturally extend to more general utility func-
tions (so long as the Eisenberg-Gale (EG) program can
be solved efficiently). However, we leave understanding
both the upper and lower bounds on the achievable
envy and efficiency pairs to future work. More details on
modeling individual utilities for the experiments are in
Online Appendix C.

Finally, we assume that our resources are divisible, in
that allocations can take values in RX. In our particular
regimes of interest in which we scale the number of
rounds and budgets, this is easy to relax to integer alloca-
tions with vanishing loss in performance.

3.1.2. Additional Notation. We use B=(By,...,Bk) to
be the budget vector. For any location ¢ and type 0, we
use N to denote ), Ny o. If the subscript ¢ is omit-

ted, we use Ny = Zthl N ¢ to denote the total number of
individuals of type 6. We additionally let p,, =75
> i51Py o and similarly for 52, 5 and fi., 5. A table with all
our notation is provided in the online appendix.

3.1.3. Limitations and Extensions. The assumption
that latent types © are finite is common in decision-
making settings as, in practice, the set of possible types is
approximated from historical data. One limiting ass-
umption is that, in the online setting, the principal only
knows the number of individuals from one location at a
time. In reality, the principal could have some additional
information about future locations, for example, via call-
ing ahead, that could be incorporated in deciding an
allocation. Our algorithmic approach naturally incorpo-
rates such additional information. Additionally, we ass-
ume a distinct set of individuals across each round and
consider the rounds t as fixed and distinct locations.

3.2. Fairness and Efficiency in Off-line
Allocations

To define an ex post fair allocation, that is, with a known
number of individuals (N g)e()0ee across rounds in
[T], we adopt an approach proposed by Varian (1974)
(commonly referred to as “Varian fairness”), which is
widely used in the operations research and economics lit-
erature. We refer to this as “fairness” for brevity; for a
more detailed discussion on the advantages and limitations
of this model, see Sugden (1984) or Online Appendix A.

Definition 1 (Fair Allocation). Given types ©, a number
of individuals of each type (Nio);r}9e0, and utility
functions (u(-, 0))geo, an allocation X ={X;¢ € Rf |ZtT:1
> 0coNLoXt o < B} is said to be fair if it simultaneously
satisfies the following:
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1. Envy-freeness (EF): For every pair of rounds t,t’
and types 0, 6, we have u(Xy ¢, 0) > u(Xy ¢, 0).

2. Pareto efficiency (PE): For any allocation Y # X
such that u(Y;,60) > u(X;g,0) for some round ¢ and
type 0, there exists some other round ' and type 6" such
thatu(Yy ¢, 0") <u(Xy ¢, 0").

3. Proportional (Prop): For any round t, type 0, we
have u(X;p,0) > u(B/N, 0), where N = Zt 12 0eoNto-

Whereas the three properties form natural desiderata
for a fair allocation, the power of this definition lies in
that asking for them to hold simultaneously rules out
many natural (but unfair) allocation policies. In parti-
cular, allocation rules based on maximizing a global
function, such as utilitarian welfare (sum of individual
utilities) or egalitarian welfare (the maximin allocation
or, more generally, the leximin allocation; Bogomolnaia
and Moulin 2001, Lien et al. 2014, Manshadi et al. 2021)
are Pareto efficient, but tend to violate individual envy-
freeness as they focus on global optimality rather than
per-individual guarantees. A remarkable exception to
this, however, is the Nash social welfare, whose maximi-
zation leads to an allocation that is Pareto-efficient, envy-
free, and proportional and, hence, fair.

Proposition 1 (Theorem 2.3 in Varian 1974). For alloca-
tion X, the Nash social welfare is

NSW(X) = (H T uxi0.0)™°

te[T] 6@

/5216 Nio
) @
Under linear utilities, an allocation X that maximizes NSW(X)
is Pareto-efficient, envy-free, and proportional.

In addition to simultaneously ensuring PE, EF, and
Prop properties, the NSW maximizing solution can also
be efficiently computed via the following convex pro-
gram called the EG program (Eisenberg 1961), obtained
by taking the logarithm of the Nash social welfare:

T

max Z Z N plog(u(Xt,0))

TxOxK
= )
T

st )Y NiypXip<B. )

t=1 0e®

Important to note in our setting is that the optimal fair
allocation in hindsight, which solves Equation (2) with a
given number of individuals of each type across all
rounds (Nt0)eqr)pc0, does not depend on round t.
Indeed, any envy-free allocation can be formulated so
X9 = Xp 0 (by setting Xg =13",X, ), and so we can in-
stead consider the solution to

max ZNglog(u(Xg, 0)) s.t. ZN@X@ <B, (3

XeRYY 96 0e
where we use Ng = }_,11N1 to denote the total num-
ber of individuals across all rounds of type 6. The fact
that the optimal solution in hindsight does not depend
on the round t forms the basis for our algorithm
GUARDED-HOPE.

3.3. Approximate Fairness and Efficiency in
Online Allocations

Recall that, in our online setting, the principal allocates
resources across each round in a fixed order t =1,...,T,
whereupon, at round ¢, the principal sees (N;g)gee and
decides on an allocation before continuing to the next
round. A natural (albeit naive) approach in this setting
could be to try and obtain allocations that satisfy Pareto-
efficiency and envy-freeness on all sample paths. However,
such an approach is not feasible even in the simplest online
setting as the optimal solution in hindsight is often a
unique function of the realized number of individuals
across each round.

Proposition 2. For T = 2 rounds, |©|=1 type, single
resource, and linear utilities, for any nontrivial distribution
F>, no online algorithm can guarantee ex post envy-freeness
and Pareto-efficiency almost surely.

Proof of Proposition 2. Let 7, ~ 1 + BernouLLI(p) with
p € (0,1). For any value of N; with probability p, the opti-
mal solution is X' = B/(N; + 1), else X% = B/(N; +2).
As any algorithm must decide how much to allocate at
round t = 1 without knowledge of N,, no algorithm can
match the ex post fair solution almost surely. O

Proposition 2 shows that trying to simultaneously
achieve ex post envy-freeness and Pareto-efficiency is
futile, and hence, we need to consider approximate fair-
ness notions. To this end, we define counterfactual envy,
hindsight envy, and efficiency.

Definition 2 (Counterfactual Envy, Hindsight Envy,
and Efficiency). Given individuals with types ©, sizes
(N16)serT) 00, and resource budgets (Bt)kejk, for any
online allocatlon (Xt Q)tE T)0c0 € RF, we deflne

o Counterfactual envy: The counterfactual distance of
X8 to envy-freeness as

Ig opt
Apr max [u(X{5.0) — u(X/,

where X" is the optimal fair allocation in hindsight,
that is, the solution to Equation (3) with true values

(Ny0)ieiT) 0c0-
° Hlnd31ght envy: The hindsight distance of X% to

envy-freeness as

ENVY £ max u(Xalg 6) — u(Xalg 6).

b relTR,0,0e0? N 07
o Efficiency: The distance to efficiency as
Ae[ﬁciencyéz <Bk - Z ZNtG t9k>
keK T] 0€®

Our algorithm also provides ex post guarantees on
hindsight proportionality defined via Ay, £max;gu

(s5:/0) ~u(x50).
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These approximate fairness definitions are motivated
by the problems faced by the FBST. Hindsight envy
measures the algorithm’s ability to ensure individuals
are not envious of the allocations given to any other.
Whereas this might serve as a natural first step toward a
definition, an algorithm achieving low hindsight envy
does not necessarily imply that individuals are eager to
participate. In particular, the algorithm that allocates
Xi9 =0 for all t and 0 trivially achieves hindsight envy
of zero (suffering from large efficiency). Another consid-
eration is ensuring allocations are close to what they
should have been given based on observed information
along the trajectory. Our measure of counterfactual
envy addresses that, penalizing allocation algorithms
based on how close they were at addressing individu-
al’s utility versus the optimal solution in hindsight. In
fact, this metric is considered in the literature in a com-
petitive ratio instead of additive sense (Friedman et al.
2015, 2017). Finally, efficiency is a natural yardstick for
measuring an algorithm in order to ensure all of the
resources that can be utilized are used.

We also note that all of these metrics are much stron-
ger than the existing metrics in the literature because we
provide hindsight guarantees that hold with high proba-
bility with respect to the distribution as opposed to
weaker ex ante guarantees that only hold in expectation.
Moreover, most approaches in the literature focus on
defining a single optimization problem with a specified
objective embodying “fairness” that attempts to capture
desired goals. This is fundamentally flawed as the defini-
tion of the objective or choice of metric itself biases the
outcomes toward a particular point along the trade-off
curve between different criteria. The important chal-
lenge in this setting then is considering meaningful
trade-offs between these metrics in the online setting
(see Figure 1) and designing algorithms that achieve any
point along the trade-off curve.

As highlighted earlier, the definition of counterfactual
envy and efficiency are related. By using the fact that the
optimal solution in hindsight X%" is efficient, we can
naively bound Agicienc, using Ag,

ejﬁcxency Z Z Z Nio (X(;‘lg k X?lg k) e Z No.

T] 0c0 kek el 65

This naive bound is loose with unnecessary dependence
on the number of locations T (see the counterfactual
envy-efficiency uncertainty principle in Section 4).

4. Uncertainty Principles

In this section, we show parts (1), (2a), and (2b) from
Theorem 1 concerning a lower bound on the achiev-
able Agr and the relationship between Agr, ENVY, and
Aeficiency resulting from the envy-efficiency uncertainty
principle. In all of these proofs, we consider the case of
a single resource and single type, and assume that

u(X,0) = X for brevity and clarity in the presentation.
However, the proofs extend directly to multiple resour-
ces in which one considers the setting with |©| = K and
each type 0 desires a unique resource.

We begin with part (1), the statistical uncertainty princi-
ple on the optimal fair allocation in hindsight, showing
that no online algorithm is able to achieve counterfactual
envy smaller than order 1//T. This arises because of the
uncertainty in the number of individuals arriving in the
future, forcing the algorithm to make a nontrivial decision
on the allocation made to individuals in the first round.

Theorem 1 (Statistical Uncertainty Principle). Let a be a
constant with a + Cp, /03, NT < 1/2, where C is an abso-

lute constant. Then, with probability at least ., any online algo-
rithm must incur

0% NT

T

Proof of Theorem 1. We use the generalized Berry—
Esseen theorem (Berry 1941). Recall that, for all ¢,
Var[N;] = 0; > 0 and E[IN; — E[N;]|] = p, < 0, and more-
over, X"p —B/N for all t, where N =}, 7 N;. Let us
denote 6% =1>",07 and p =530, and let @ be
the cumulative distribution function of a standard normal.
Using Berry-Esseen, it holds that, for an absolute constant
C forallzeR,

3(1)— (1 —a— Cpum )Gmin
AEF 2 ﬁavg :

Cp B
@ -7 <t (XO”’* “EINI+ z&ﬁ)
<P(z)+ Cp

VT
Taking z =— y and using the lower bound we have that,
with probability at least O(— y) — = ‘/_,

xvs>_ B, B <1 ymﬁ)

" E[N] -y5VT E[N] E[N]

Taking z = y and using the upper Epund, we have that,
. <1 _ _ 7})
with probability at least &(— y) VT

XOpt B < B 1 _ yé"/—’f .
" E[N]+ysVT ~ E[N] 2E([N]

Note that these intervals are nonoverlapping for y > 0.

As the algorithm must decide on a value X % to allocate
for the first round, then with probability at least D(—y) —

> ®(~y) — o
B 1_ ya\/‘
E[N] 2E[N]

B (1 ya\/_> XD_ B 3y5VT

E[N]\ " E[N] E[N] 4E[N]

,3\/—

Opin

7

[IX98 — XP|., > minmax(
xeR
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Taking y =@ (1 —a-—2P m\“/‘_) which is positive, then

mm

we get with probability at least a that

- Puae | 5
B 30 (1 —a— a,m‘ﬁ)‘j

X — Xl 2

E[N] 4E[N]
3¢t (1 —a— Cp’i?—)omm
> ﬁavg s . O

We next show the first part of the envy-efficiency uncer-
tainty principle (2a), highlighting that any online algo-
rithm that achieves a factor of L on counterfactual envy
necessarily suffers efficiency of at least 1/Lr. This result
follows from the statistical uncertainty in the number of
individuals arriving in the final L7 rounds and the fact
that ensuring a bounded envy requires any online algo-
rithm to save enough budget to allocate a minimum allo-
cation to all future arriving individuals.

Theorem 2 (Counterfactual Envy-Efficiency Uncertainty
Principle). Let o« < 1/8 be a constant such that 3a+Cp,,,./

0> NT < 1/2 for an absolute constant C. Any online algo-
rithm that achieves Agr < L = o(1) with probability at least

1 — o must also incur waste Aggoney > C in{VT,1/Lr}, where

2

-1 P 2
D (1 —3a — ﬁ) min

24.\/2p2 log(T/a),,..
with probability at least 1/12 — o(1).
Proof of Theorem 2. In order for the algorithm to guar-
antee that Agr = ||X78 — X%||, < Lt with probability at
least 1 — a, it must limit all allocations made to the interval
[Z — L, &+ L] as X%" = B/N. Moreover, a straight for-

ward application of Hoeffding’s inequality shows
that [N — E[N]| <&VT with probability 1 —a, where

¢ =+/2p?%, log(T/a). Using this, algebraic manipulations,
and simplifying, one can show that the following event:

B K B VT B 2tNT
b= Q]{X?g € &N T EINT S EIN RN +LT] }

C = (B —0(1))’

occurs with probability at least 1 —2a. We interpret
these lower and upper thresholds on allocations made
by the algorithm as guardrails.

Recall that we use the notation B, ‘8 to denote the bud-
get remaining for the algorithm at the start of round t. We
begin by defining three events for a fixed round t < T and
constantz = @ (1 —30(—@—"\"7_> >0:

min

A ={Nx <E[Nx]}
B={Ns; 2 E[Ns] +255VT — t+1}

al B ENT
C:{Bf32<m‘m‘“>

(E[N»t] + 26 VT — t+t)}

By the Berry—Esseen theorem (Berry 1941), we know that

C_> C Max.
PA) 25— 2~ oap and P(B)2®(-z2) -

min

=

CIE)ZI
& NT—t+1

We first show that =C N B implies =D (or, equiva-
lently, by taking the contrapositive that D implies that B
implies C), which gives us that P(—=C N B) < P(=D). These
two conditions (D and B) dictate that the algorithm must
have a lot of budget by allocating within the guardrails
based on the number of individuals arriving in the future
being small. Indeed, under events D and B we have

B eNT
B >SN Ny X > Ny [ - — L
"2 N2 N i N

Zﬁmg+ﬁﬁﬁtta(ﬁ%_§g_h)

> 3a by choice of z.

Moreover, because the algorithm is nonanticipatory, we
know that the events C and B are independent. Thus, we
have that P(=C U B) = P(=C)P(B). Using the bound on
P(B) and the fact that P(—C U B) <P(=D) < 2a, we get
that P(~C) < 2

Now, we consider the event C N /A N D. Using that the
allocations must be bounded by event D, we have that
the waste is at least

Aficiency = B — ZX”’gN B — " XEN;

i>t

> (E[Nai] + 26T — £+ 1) (ﬁ - I;[—f] - LT)
- (ﬁ + ?{«;[\1{; + LT) [Nx]

> (E[BN] - é[‘g] - LT> 265 NT —t+1
-3ty v

The inequality follows from lower bounding Bflg with
the amount required to be reserved up to location ¢ (i.e.,
event C), and upper bounding the maximum amount of
budget that can be expended for locations i >t when
Ns; < E[Ns] (i.e., event A).

Recall that E[Ny;] = (T —t+1)i,, so that, whereas
the first term increases with (T — ¢ + 1), the second term
decreases with (T —t+1). Solving for the maximum
value in terms of ¢ yields

1 B C\/”T z°0%
AE‘CiEVl 2_ —___L 7 - =\
,WW,QQW]EW] Q<h+ .

E[N]

1( B T T 2a,
> (— Y. ) %
12\E[N] E[N] (L1 4/ VTt



Downloaded from informs.org by [128.84.126.253] on 01 August 2023, at 13:53 . For personal use only, all rights reserved.

10

Sinclair et al.: Sequential Fair Allocation
Operations Research, Articles in Advance, pp. 1-17, © 2022 INFORMS

The probability of this event is lower bounded by P(C N
AND)=PCNA) —P(=D)=>PC)P(A) —2a>(1-3)

(% — %) — 2a > {5 — o(1). Plugging in the value of z and

simplifying terms yields the final result. O

min

Finally we show the second part of the envy-efficiency
uncertainty principle (2b), highlighting that any online
algorithm that achieves a factor of L on hindsight envy
necessarily suffers efficiency of at least min{VT,1/Lr}.
This result follows from the previous lower bound (2a),
combined with an almost sure relationship between Agr
and ENVY. We start with this brief lemma relating the
two notions of envy.

Lemma 1 (Relation Between Envy and Agr). For any
valid online allocation algorithm, we have the following almost
surely:

1
Agr — N Aeficiency < ENVY < 2Apf.

Proof of Lemma 1. The upper bound follows imm-
ediately from applying the triangle inequality around
X"pt . For the lower bound, we instead show that

Aeﬁmmy > Apr — ENVY. Here, we set L = min;X; and
U = max;X; to be the maximum and minimum alloca-
tions given out by the algorithm. Note that ENVY = U — L
and Agr =max{|& — U|,|£ — L|}. First notice no algo-
rithm can have L > £ because of the feasbility of alloca-
tions made by the algorithm. Thus, we get that Agr =
max{|£ — U|, £ — L}. We show the inequality breaking
into cases on the side that achieves the max.

Case 1: Agr =2 — L.
In this setting, we have that Agr =& — L, ENvy = U — L.

Using this, we can show

Aeﬂiciency =B - ZNiXi = ZN1<% — Xi)
i i
()2

= N(Agr — ENVY).

Case 2: Agr = |2 — UI.

This implies that L < £ < U as otherwise the maximum
would be achieved by % B_1. Thus, we get that Agr —
ENVY=U — £ — (U —L)=L — £, which is negative, so
the mequahty is trivially true. O

Using this, we are able to show (2b) in the envy-
efficiency uncertainty principle, relating the necessary
trade-off between ENVY and Aiciency-

Theorem 3 (Hindsight Envy-Efficiency Uncertamty Prin-
ciple). Let o < } be a constant such that 3+ p"j}*_ <3 foran

O nin

absolute constant C. Any online algorithm that achieves
ENVY < Lt = o(1) with probability at least 1 — a must also

incur waste Aficiency > C min{VT,1/Lr} — o(1), where C is
as in Theorem 2 with probability at least 75 — o(1).

Proof of Theorem 3. Suppose the online algorithm
achieves ENVY < L with probability at least 1 — a. How-
ever, using Lemma 1, we get that Agr — %Aeﬁqdmcy <
ENVY < L7. Hence, we have that Agr < Lt + 3 Agficiency
with probability at least 1 — a. Denote by C as the terms
on the right-hand side of Theorem 2, and applying the
result there for the case when the 1/ LT term attains the
minimum, we get that A gz, > C m Rearranging

the inequality gives us that Aicenq, > 5 {\ Ay 12— LT} .

The final bound comes from taking the first term of the
Taylor series about infinity with the additional o(1)
factor. O

5. Sensitivity and Concentration on

Counterfactual Optimal Fair Allocation
The lower bounds presented in Section 4 highlight a key
facet of algorithm design in this setting: generating lower
and upper guardrail allocations. Suppose we were able
to construct envy-free allocations (Xg)gee and (Xo)geo
such that || Xy — Xg|l, SL7 for a given parameter Lr. If
the algorithm was able to ensure that all of the alloca-
tions made to individuals of type 6 are within [X, Xo],
it is not difficult to show that ENVY < L. However, if we
additionally desire a bound of Agr < Lt, the same philos-
ophy requires that we are able to establish that, with
high probability,

u(Xo,0) <u(Xy',0) < u(Xo,0)
VOe®with Ly 21/VT. (4

Motivated by these two use cases, we turn our attention
to sensitivity and concentration properties on solutions
to the Eisenberg—Gale program. Unfortunately, the true
EG program for the counterfactual optimal fair alloca-
tion depends on the unknown vector of number of
individuals of each type (N:,0),c1} 0co- As such, our algo-
rithms are motivated by solvmg information-relaxed
versions of the EG program, appealing to sensitivity and
concentration on the optimizers of the program instead
of the objective value as is typically done in competitive
ratio analysis.

For the time being, we assume that we are given con-
centration inequalities of the following form: with proba-
bility at least 1 — 6, we have that, for every t and 0,
|E[N>to] — Not ol < ConFgg. As this concentration only
depends on the assumptions on the variables N; g, we
include a simple form of CoNF; ¢ scaling as VT — t using
Hoeffding’s inequality in Lemma EC.3, but see Section 7
for extensions.

Consider the Eisenberg—Gale program from Section 3
with multiple types 0 and K resources as specified in
Equation (3). Recall that the dual variables corresponding
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to the budget feasibility constraint p, can be thought of
as prices for the corresponding resources (Nisan et al.
2007). We start with a lemma showing properties of the
optimal solution to the Eisenberg-Gale program with var-
ious numbers of individuals of each type vector (Ng)geo-

Lemma 2 (Sensitivity of Solutions to the Eisenberg—Gale
Program). Let x((No)geo) and p((No)geo) denote the opti-
mal primal and dual solution to the Eisenberg—Gale program
(Equation (3)) for a given vector of individuals of each type
(No)geo- Then, we have

1. Scaling: If Ng = (1+ )N for every 0 € ® and L >0,
then we have that

x((No)geo)
1+C

p(No)geo) = (1 + Op((No)geo)
u(x((No)geo)o, 0) — u(x((NG)HeG))@r 0)

X(No)geo) =

—(1__l_>nmx__3@£__
1+C) & p((No)geo )
2. Monotonicity: If Ng < N for every 0 € ©, then we have

P(No)geo) = p(No)geo)

u(x((No)oeo)o, ) < u(x((No)oeo)o, 0) VO € O.
These Lipschitz properties follow from the Fisher mar-
ket interpretation of the Eisenberg-Gale optimum,
which corresponds to market-clearing allocations in a
setting with |@| agents, each with an endowment or
budget of Ny. The second property is a generalization
of the competitive monotonicity property Devanur et al.
(2002). See Online Appendix E for the full proof.

Recall that our goal is to construct lower and upper
threshold allocations about X% = x((Ng)gce), where Ny =
>Ny g is the true (random) number of individuals of type
0 arriving over all rounds. First suppose we were able to
construct 79 > Ny for all 6 and set ng = (1 — y)ng for
some constant y chosen based on Lr. Setting the guardrails
as Xo = x((7g)peo) and Xg = x((11g)gep) are envy free (by
Proposition 1) and, for the correct value of y, satisfy the
bounds needed to ensure ENVY < Lt (by part (1) of Lemma
2). However, for a large enough y (or, equivalently, a large
enough Lt), we can additionally ensure that 119 < Ng and
appeal to the monotonicity property (2) of Lemma 2 to
ensure Equation (4). This assumption includes not only
iid. demands, but also demand distributions that arise
from Markov chains, latent variable models, or known
cumulative sums from different Chernoff style arguments
(see Section 7 for more details). The following lemma
shows the final construction of our guardrails by appropri-
ately choosing 77 and 11y and appealing to Lemma 2.

Theorem 4 (Construction of Guardrail Allocations). Let
X' = x((Ng)geo) denote the optimal solution to the Eisenberg—
Gale program for a given vector of individuals of each type
(Ng)geo- Further suppose that, with probability at least 1 — 0,
we have for all 0 € ® |Ng — E[Ng]| < Conrg. Given any
Lt > 0 and setting

_ CoNFg
g =E[Np] (1 + mng[Ne])

no=E[Nol(1—¢) for

1201 118 e i CONF

0g 0
o i Wagg Ty (1 + max

: l[el[2, T( 0 E[N6]>

~ max CoONFg
0 E[N@] !

then almost surely we have that
L u(x((n6)geo)o, 0) — u(x((1o)ge)o, ) < Lr-

_ 1B gl el
2. [|x((6)gee) — x((16)geo)llco = LT‘”T

_ Bl il
3.[Ix((7T0)pee) — X((10)oco)lleo < Lt ——frqr.——

: " lleli2, Conrg ; _
If, in addition, Lt > 2 ooy X0 BN then with prob

ability at least 1 — 6, we have
4.n9 < Ng <7y, ,
5. u(x((0)gep)o, 0) < u(X(g] ,0) < u(x((16)geg)g, 0)-

See Online Appendix E for the full proof. Using a
straightforward application of Hoeffding’s inequality,
we notice that this construction ensures that we are able
to guarantee a bound of L on the difference in utilities

lell3, /203 108(T181/0)
”ZU”min“:BngHmin T ’

6. Guarded-Hope

Here, we define our algorithm Guarpep-Hork. The algo-
rithm takes as input a budget B, expected number of
each type (E[Ng])geo, confidence terms (CONF:g)geq,
and a desired bound Lt on the Agr and ENVY. Assuming
the lower and upper threshold allocations are con-
structed such that we can guarantee the results from
Section 5, our algorithm is able to achieve any envy-
efficiency trade-off as developed in Theorem 1. The algo-
rithm relies on two main components, both of which we
believe to be necessary in developing an algorithm to
achieve the envy-efficiency uncertainty principle (as
removing any one of them leads to breakdowns as is
discussed in Section 7). We start by describing the
high-level ideas needed in the algorithm before describ-
ing the pseudocode (with full algorithm description in
Algorithm 1). The proof that Guarpep-HopE achieves the
desired bounds is deferred to Section 7.

forany Lt > 2

6.1. Guardrails on Optimal Fair Allocation

in Hindsight
As aresult of Theorem 1, we see that no online algorithm
can guarantee Agr < % Moreover, the proof highlights
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that any algorithm that satisfies a bound on Agr or
ENVY < Ly must limit allocations based on guardrails
with high probability. As such, our algorithm uses the
construction from Section 5 to obtain estimates X =
x((10)geo) and X = x((119)geo), which are both envy-free
and satisfy that max; g|u(X;0,0) — u(X;p,0)| < Lr. If, in
addition, Lt = 1/VT, we have that u(Xy, 0) < u(Xcépt, 0) <
u(Yg ’ 6)

The allocations Xy and Xy are used by the algorithm
as guardrails, for which all allocations made by the algo-
rithm for a type O are forced to fall within {Xg, X¢}.
With this requirement, on sample paths when we do not
run out of budget, then we trivially have an upper
bound on ENVY <Lt and Agr <max{1/\/— Lr}. Thus

“accepting” the first round loss in envy-freeness allows
us to limit all future allocations to the guardrails gener-
ated by that uncertainty.

6.2. Minimizing Waste via Online
Stochastic Packing

Once the guardrails Xp and Xy are found to verify a
bound on the approximate envy up to a factor of Ly, we
change the focus to instead try and minimize the loss of
efficiency. Thanks to our guardrails, we develop the
algorithm to match a clairvoyant benchmark policy that
minimizes the resource waste with the knowledge of
(N16)tefr),0e0 and simultaneously limits the allocations
to lie between {Xg, X¢}. This can be thought of as solving
an online stochastic packing problem (whose objective is
to minimize efficiency loss) with the addition of guard-
rail constraints (i.e., our minimum and maximum alloca-
tion constraints). In this setting, after writing down the
stochastic packing optimization program, a competitive
algorithm arises naturally by ensuring that the budget
remaining for the algorithm is enough to satisfy a high-
probability bound on the resources required to allocate
X to every individual arriving in the future. This idea is
formalized in Section 7 and takes motivation in recent
developments on Bayesian prophet benchmarks for online
bin packing problems (Vera and Banerjee 2019).

6.3. Algorlthm Description

Let B tf denote the budget remaining to the principal for
resource k at iteration t, that is, By — >, ;> oNr o Xy o k-
Assume the algorithm is given the expected demands
(E[Nog])peo and confidence terms Conr;g such that
IN>to — E[Nsto]l < ConF g with high probability. Let

Y =maxg E[Nﬁ’ .. Given a desired bound on envy Ly, the
algorithm computes the guardrails by
_ _ Co
X =x((1p)gep) for g = (1 + ma IE[N ])E[NG]
X =x((n6)gep) for ng = (1—c)]E[N9]
||w||min”.3avg“min CONFQ CONF@
=——°> I 1+max —max .
ol T( E[Ne]> 6 E[No]

Here, x(-) denotes the solution to Equation (3). Note that,

as long as Lt 2 /log(|®|T/6)/T, the utility of the opti-
mal allocation is sandwiched by the utilities of X and X
according to Section 5.

Our algorithm allocates to type 0 according to these
thresholds X and Xj in order to ensure the guarantee
of Agr of at most Ly, and simultaneously trying to elimi-
nate as much waste as possible. At each time ¢, for each
resource k € [K],

1. (Insufficient budget) If Bf,‘f < NioXok, then divide
the resources equally among all remaining individuals
for this round.

2. (Sufficient budget to promise lower threshold) If

B”lg > XgxNio + Xox(E[Nstg] + CONFyp), then set Xt ok =

X foreach 0 € ©.

3. (Insufficient budget to promise lower threshold)
Otherwise, set Xf,lgrk = Xg, foreach 0 € ©.

Our algorithm is easy to implement in practice; in
particular, it requires solving the Eisenberg-Gale pro-
gram Equation (3) only twice to obtain X and X. In
contrast, other versions of certainty equivalence algo-
rithms require frequent resolves of the Eisenberg-Gale
(see Online Appendix B). This allows GuarpeED-HOPE to
scale easily to multiple resources and a larger number of
types (as it only involves solving for the “optimistic” and
“pessimistic” allocation rules, which are done off-line
with historical data). Moreover, it allows practitioners to
leverage work on poly-time algorithms for solving the
Eisenberg-Gale program (Devanur et al. 2002). It also
extends easily to more complex information structures
(see Section 7 for a discussion).

7. Envy and Efficiency Bound for
Guarded-Hope

We are now ready to show the bound on Agr, ENVY
and Aficiency for GUarDED-HOPE, relying on the con-
struction of Xy and Xy from Section 5. We note that
these guarantees match the envy-efficiency uncertainty
principles from Section 4 up to problem-dependent con-
stants and logarithmic terms in T. Afterward, we com-
ment on extending the distributional assumptions on N g
to more robust settings.

Theorem 5. Given budget B, expected number of types
(E[Ng])geo, and confidence terms (CONF; g)ge@ Such that,
with probability at least 1 — 6, |Nst9 — E[Nst ]| < CONFg
forallt € [T], O € ®, GuarRDED-HOPE with parameter Ly
is able to achieve with probability at least 1 — 6 (where <
drops poly-logarithmic factors of T, o(1) terms, and abso-
lute constants)

AEF max{l/\/_ LT}
Aefficiency S min{\/f, 1/LT} Aprop < max{l/ﬁ, LT}

ENVY < Ly
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Proof of Theorem 5. Define the event £ = {Vt€[T],
VO € ®:|Ns 9 — E[N5; 0]l < CoNF_1,¢}. By assumption,
we know that P(€) > 1 — 6. The following lemma shows
that the algorithm ensures it has enough budget to allo-
cate according to the lower threshold for everyone arriv-

ing in the future. Recall that B';/If denotes the budget
remaining at the start of round ¢ for resource k.

Lemma 3. Under the event &, for every resource k and time
t € [T] it follows that

ul
tlf > ZN>t 0Xo k-
0c®

As a result, the algorithm is able to guarantee that, at every
iteration, Xf g , 1s either X 0 0r Xo-

Proof of Lemma 3. We show the first statement
by induction on f. The second statement follows
immediately.

Base Caset=1
Here, we have that B‘ldg =B, and by construction of
Xp, we have that

”]g > Z X oy (by feasibility) > ZNQX@ « (by event &).
0e® 0c®

Step Case t—1—t
We split into two cases based on the allocation. If

Xy lgl ox = Xo then by the induction hypothesis, B”lg =

I
?glk > 0coNt-10Xo0k = > geoN>t0Xok If Xa Z1Lox =
X@rk,thel’l

Bnlg alg

th — t 1,k ZNf 19Xt 1,0,k

6e®

@ ()
> Xox(E[Nzr o]+ CoNFr10) 2 Y NatoXop.
0O 0e®

Here, (a) holds by the condition for allocating X, and
(b) holds underevent£. O

The next lemma shows that the algorithm is ad-
aptively cautious, that is, after some point, GUARDED-
Hore switches to allocating according to the lower
threshold.

Lemma 4. For each resource k, let toy be the last time that
X’:IG  # Xox (or else zero if the algorithm always allocates
accordmg to X x). Then, under the event & for some c = ©(1),

we have that, for all k, to, > max{0, T — 2cL;2}.

Proof of Lemma 4. We show the result by contradic-
tion (for the setting when T — 2cL;?>0). For some
resource k, assume that 0 < to; <T — 2cL72. By defini-
tion of £y, it must be that the algorithm allocated X at
time tox and allocated Xg for all subsequent times.

Given the assumption, it must be that, for any ¢ > t(,

ZXe,k (E[Ns:0] + CONF;g)

alg ZNtGXHk
2 ?(fgk ZXQthOQ_ZXGk Z Nieo

i=ty+1

Zng(E Nety 0l + CONFtDk 0)

+Z(X6k — Xo0,)Nty,0 — erk Z Nio,

i=to+1
where (a) follows from the condition in the algorithm
for X8 Lok = = Xgy, (b) follows from the definition of #y
and the choice of t > tyx, and SC) follows from the con-
dition in the algorithm for X ok = = Xg. By rearrang-
ing the inequality, we get that

Z Xo Nty 1,0
0

<> (Xox = Xox)Ni0+ > XoxE[N,, 10l
5 0

+Z Xox(Conry, 9 — CONFy )
0

&> Xox(Ngy,n0 — E[N110))
0
< Z(Ye,k — Xox)(Niy,0 — E[Nty 1,61
0

+Z Xok(ConFy,, 9 — CONFy ).
[¢]

~ B 00 1P gue lmin min
Using the fact that Xpr — Xgx < LT7” el , and

llevlleo

plugging in an upper bound for the demand at time #(,
a lower bound on the expected demand, and the confi-
dence terms from Lemma EC.3, the right-hand side of
the inequality can be bounded above by

[1Blloo 1B g i 201

g min min

T ”ZU” |®|(pmux + “max)
oo

[1Blloo 1B o i 1201

0 g | lmin min

T OI(t — fo)
l[20]]oo

+[1Bllol®ly /202, 108(TI61/6)(\/T — toje — VT — #).

Moreover, the left-hand side can be bounded below
under event £ via

ZXQk(N(tOkt]Q E[N,,0])
>~ [[Buglloy/ 203 0B(TOI/B)(E — o).
Plugging in the value of t=T —cL;? and by assu-

mption that tox <T — 2cL7?, it follows that, for & =
(1198 e 5
V202 Tog(TIO1/5), ¢ = el il

lleelleo

= IBreglls / €LT? < LrlOIC(P, g + Hypay) — LrlOICCL?

+IIBll1OlE (\/chTz - \/CLTZ).
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Relabeling x = v/c to show a Contradiction we need to
find a value of x such that — - x + ”; x+asLt <0. Not-
ing that the cusp of the quadratlc is at 2, we see that tak-
ing the constant

IBIGIOIE + 18,5l
) eI

(independent of Ly) suffices to show the contradiction
(<) O

The main result follows from these two lemmas.
We start by giving the upper bound on Agiienc,. Fol-
lowing from Lemma 4, which states that, if ¢); denotes
the last time that Xf b # Xok then for all k, tox >
max{0, T — 2cL;2} with high probability. This implies
that, for all k,

Ay = (Bk WAV )
k te[T]

=Z(B‘:;izthext@k)
k t>t) x OO

2 Z B ?égk k Z <X9,kN o0 + Z Ye,th,e))

>t

(b)
<D > (Xox(E[N>t, 0] + CONFy,y0 — Ny 0)
Ko

— (Xox — Xox)(N>ty,0 — Nig0)),

where (a) follows from the fact that, by the definition
of fyx, the algorithm allocated the lower allocation at
time ¢y, and the upper allocation for all t > ¢y, and (b)
follows from the condition in the algorithm for allo-
cating the lower allocation at time fq, which upper
bounds B'l‘i -

However, under &, we know that E[N., ] —
N-t,,,0 <2 CoNFy, 9. Plugging in the definition of
Conry, , 0 and the bound on (X ok — Xox) from Theorem 4,
we have

Aqﬁagmy<2zzxek CONFt0k6+Nt0k6(X6k —ng)

<2||B||1ZZ¢2p2 (T — to)log(TI®/5)

2
2{|BlloolB gog i 011Xl s
+(u

Taking this and plugging in the value of t, we get that
Aeﬁciency < 2”B”1K|®| V Zp%mxlog(ﬂ@l/é)mm{\fi \/Z_C/LT}

2
+2(#mx + Py |IBllco 1B g i 1201 i maxglfwoly

llwlles

+ 0ye) T
e [Ie]] oo

T-

Note that L2 = 0(1) such that the second term is domi-
nated by the first.

Next, we show the desired bound on ENVY. Consider
anarbitrary t,0,t',0’. Then, we have that

(Xf/lge"e) u(Xffg,e)
=u(X(%,,0) — u(Xg,0) + u(Xy, 0) — u(Xo, 0)
+1(Xe, 0) — u(X[$,0)
CU(XE,0) — u(Xyr, 0) + u(Xo,0) — u(X25,0)
< g LK, — Xl + ol X7 — Xol

(c) _
< 2max|lwell,[1X — Xllo

) 211Blle 1B g il llinmaxollewolly
llwlloo

where in (2) we use that X is envy-free, we know the
second pair is bounded above by zero, (b) we use the
definition of the utilities and (c) the fact that the algo-
rithm allocates according to guardrails, and (d) the
bound in Theorem 4. Taking max over t,t’,0, o gives
the result.

Next, we show the bound on Agr. First, consider the

, lwlf, . /20 dop(TIOY)
setting when Ly 2 2 s 7 such that

we satisfy properties 4 and 5 of Theorem 4. Using that
the algorithm always allocates according to Xy or Xy
with probability at least 1 — 6, we get

[u(X;5,0) — u(Xg", 0)] < [u(Xo, 0) ~ u(Xp,0)| < L1.

2
However, even for the case that Ly < p | -
Hmein”.Bm;g”min

A/ w, then for any 6, we have either u(Xg, 0) <

u(Xy',0) <u(Xp,0) as in property 5, or u(Xg,0) <
u(Xo,0) < u(Xq",6). If the first case holds, then

(X7, 0) — u(Xy",0)| < [u(Xo, 0) — u(Xe, 0)| < Lr.

I/\&

T,

Otherwise, then we can consider Xj to be the upper
guardrail solution via the construction from Section 5

withLy =2 [ /2 18 TOV0) There we have
(20l 1B g i T : 4

u(X}%,0) — u(xy",0)
< [u(Xg,0) — u(Xe,0)| <2

202, log(T|B|/0)
\/ e

Finally, we show the bound on Ayg. Recall that

GuarpED-HOFE satisfies that Agr < max{1/ VT, Lr}. How-
ever, by definition of Agr, this ensures that, for any

2
llwllss

||w”m1'n | |ﬁgvg | |mi7’l
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round t and type O that |u(X?/I§, 0) — u(szt,6)|Smax

{1/NT,Lr}. Using this and the fact that X%*" is propor-
tional, we see that

u(ﬁuvg’ 0) - M(X?,Ig, 0)
= 11(B g, 0) — u(XY", 0) + u(Xy",0) — u(X}3, 0)
B max{l/\/f, Lt}.

Taking the max over t and 0 gives the desired bound on
Aprop. O

7.1. Randomization and the Convex Envelope

As stated in Theorems 2, 3, and 5, the given upper and
lower bounds are precise up to o(1) factors. Recall that
the performance guarantee on GUARDED-HOPE with par-
ameter Lt is Aficiency S min{VT,1 /Lt}. We can improve
the performance of the algorithm for values of Lt €
[0,1/ T ] by randomization. Indeed, let 77, denote the
Guarpep-Hore allocation policy with parameter L. Con-
sider m(«r) to be the allocation policy that picks 7y with
probability (1 — a) and 7, 7 with probability a, playing
that policy once chosen across all rounds. It is easy to see
that this policy achieves expected metrics

ENVY((@)) = —=  and  Aggeoney((e)) = (1—) VT + =

VT VT

This improves the performance on A,ficienc, for values of
Ly smaller than 1/ VT.

7.2. Generalizing Distributional Assumptions
Theorem 5 considers the setting when N, g ~ F; is inde-
pendent across 0 and a time-dependent process with
bounded mean absolute deviation and finite variance.
However, it is simple to see that the proofs only require
abound on the following event:

ﬂ Ep  where
t,0

Ero ={IN.1p—E[N>1oIN ol < ConFro(N<to)}

with the scaling of CoNnF g being on the order of
VT — t. The main modification to GUARDED-HOPE is to
condition on the observed sequence of N ¢ thus far,
particularly in step two of the algorithm:

(Sufficient budget to promise lower threshold) If Bfllf
> XgiNio + Xor(E[N>t0 | N<to] + CONF;o(N<t ), then
set X[, =Xox VO €O,

The concentration arguments and scaling of CONF; g
are used in three different sections:

1. Construction of the lower and upper guardrails (X
and Xjy). This uses concentration of E[Ng], which is
given by CONFg g.

2. Ensuring the algorithm doesn’t run out of budget
by saving resources to allocate Xy to every individual
(as in Lemma 3). This utilizes the confidence intervals on
N9, which would be given by Cong; g(N<;¢) now con-
ditional on the observed N ¢ values.

3. Construction of the time point after which GuARDED-
Hork switches to allocating to the lower threshold (as in
Lemma 4) uses the scaling of CoNF; g as VT — t.

Each of these steps is given by N;¢&: ¢, and so our
approach works under distributional assumptions that
yield Chernoff bounds on each event &; o:

o N; g ~ F; is a time-dependent process in which each
N;p has bounded mean absolute deviation and finite
variance (as in Lemma EC.3).

o N; g ~ F; is a time-dependent process in which each
N, ¢ is sub-Gaussian.

e N, ¢ are conditionally independent and sub-Gaussian
given a latent variable Z. This model naturally en-
compasses dependence on the weather, other local
events, etc.

o Ny =>",N; ¢ is known for each 0. In this setting, the
algorithm can simply take E[N,;g|N< o]+ CONFg
(N<t0) =No — Nt -

e Each N; ¢ evolves independently across 0 according
to different ergodic Markov chains. Concentration bou-
nds for these processes can be constructed using recent
work on Chernoff-Hoeffding bounds for Markov chains
(theorem 3.1 in Chung et al. 2012).

8. Conclusion

In this paper, we consider the problem of dividing lim-
ited resources to individuals arriving over T rounds, and
each round can be thought of a distribution location. In
the off-line setting (in which the number of individuals
arriving to each location is known), achieving a fair allo-
cation scheme is found by maximizing the Nash social
welfare objective subject to budget constraints. How-
ever, in online settings, no online algorithm can achieve
fairness properties ex post. We instead consider the
objective of minimizing Agr (the maximum difference
between the utility individuals receive from the alloca-
tion made by the algorithm and the counterfactual opti-
mal fair allocation in hindsight), ENVY (the maximum
difference between the utility individuals receive from
the allocation made by the algorithm and the allocation
given to a different individual), and Agicienc, (the additive
excess of resources).

We show that this objective leads to the envy-efficiency
uncertainty principle, an exact characterization between
the achievable (Agr, ENVY, Agiieney) pairs. In particular,
our result shows that envy and efficiency must be inversely
proportional to one another. With this analysis, we show
that it leads to a simple algorithm, Guarpbep-Horg, which is
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obtained by solving the Eisenberg—Gale program with
unknown quantities replaced with their expectation to
generate guardrails used in the allocation, combined
with an adaptive algorithm aimed at minimizing waste.
Through experiments, we show that GUARDED-HOPE is able
to obtain allocations that achieve any fairness—efficiency
trade-off with desirable fairness properties compared with
several benchmarks.

Several open questions remain, including extending
the analysis to more general utility functions (including
homothetic, another common model of preferences over
resources). We also believe much of the theoretical
results apply to settings in which the budget B is instead a
stochastic process, accounting for external donations and
depletions of the resources independent of the allocations
made by the algorithm. Moreover, we leave the question of
matching the upper and lower bounds in terms of problem
dependent constants and the issue of determining the
schedule to visit locations as future work.
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