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ABSTRACT

Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and
regioselective modification of polysaccharide chains can provide many useful natural-based
materials and help us illuminate fundamental structure-property relationships of polysaccharide
derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened
aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for
regioselective decoration such as imine formation. However, all natural polysaccharides, whether
they are branched or not, have only one reducing end per chain, which means that only one
aldehyde-reactive substituent can be added. We introduce a new approach to selective
functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing
ends to each polysaccharide molecule. Herein we reduce the approach to practice using amide
formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react
with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives
with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl
dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-
triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of
monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives
possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-
reducing end polysaccharides (MREPs). This new family of derivatives creates the potential for
designing polysaccharide-based materials with many potential applications, including in

hydrogels, block copolymers, pro-drugs, and as reactive intermediates for other derivatives.
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INTRODUCTION
Nature freely provides us with polysaccharides in great abundance and variety from natural
building blocks like CO2 and water, in the presence of sunlight and oxygen. Polysaccharides are
also attractive since they tend to be benign and are always biodegradable materials.
Polysaccharides and their derivatives support an enormous variety of applications, including in
biomedicine as components of vaccines,"? as functional drug delivery excipients,’ and as tissue
engineering scaffolds.®” Polysaccharides can contribute useful properties by reacting with other
biomacromolecules. For example, solubility, stability, and elimination half-life of protein drugs
can be improved by conjugation with polysaccharides.® However, the lack of regioselectivity of
current methods can lead to non-uniform structures and poor reproducibility, which impede
structure-property understanding, and are adverse for future commercialization.’ Therefore, regio-
and chemoselective chemical modification of polysaccharides is an important but challenging task.
All polysaccharides possess multiple chemically nonequivalent but similar alcohols, and
sometimes other reactive groups (e.g., carboxyls, amines, amides). These characteristics
complicate the task of targeting specific hydroxyls or types of hydroxyls for chemical
modification.'®!" Aldehydes, like that of the anomeric carbon at the reducing end of
polysaccharides, are particularly useful since their reactivity differs from that of all other
polysaccharide carbons. For example, aldehydes can condense with amines to form imines, or can
be reductively aminated to form amines.!? Periodate oxidation is commonly used to create
additional reactive sites on the polysaccharide for reaction, e.g., with amines, by which
polysaccharide vicinal diols are cleaved to dialdehydes, thereby opening monosaccharide rings.

This method is efficient and has been applied to many polysaccharides including cellulose,'*!3
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dextran,'® amylose, xanthan,' glycosaminoglycans, and alginate.?>*® These oxidized
polysaccharides can be further reacted with amines to form imines. This is a convenient method
for conjugating some small functional molecules, such as amino acids or proteins,?* or forming
hydrogels with amine-containing polymers.?> However, periodate oxidation impacts higher order
polysaccharide structure, decreases degree of polymerization (DP), and increases polysaccharide
instability, leading to degraded mechanical properties.?®

Each natural polysaccharide, whether linear or branched, has one and only one reducing end,
with its anomeric carbon that (for aldose-based polysaccharides) is in equilibrium between a ring-
closed hemiacetal and an open-chain aldehyde form. Reducing end modification has been used to
modify many polysaccharides selectively, such as cellulose nanocrystals,’
glycosaminoglycans,?’2° dextran,*'* alginate,** and chitosan.>** However, since there is only
one reducing end per polysaccharide chain, only one substituent per molecule can be attached in
this way. Therefore, to obtain higher degree of substitution (DS) derivatives by regioselective
aldehyde reactions, we considered whether it was possible and practical to introduce additional
reducing ends to the polysaccharide chain, ideally while preserving DP, stability, and desirable
physical properties.

Herein we propose a new method to introduce multiple reducing ends to each polysaccharide
molecule through coupling between carboxylic acids and amines. Carboxylic acid groups are
common features of many natural polysaccharides, particularly those containing uronic acid
monosaccharides, such as alginate, hyaluronic acid, and pectin. Polysaccharide derivatives bearing
carboxylic acid substituents are also common, including carboxymethylated polysaccharides such

as carboxymethyl cellulose (CMC) and carboxymethyl dextran (CMD). D-(+)-Glucosamine and

D-(+)-galactosamine were chosen as models to demonstrate the introduction of reducing ends to
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polysaccharides. We hypothesized that the carboxyl groups of polysaccharides (e.g., alginate,
CMC, or CMD) could react with the 2-deoxy-2-amino groups of glucosamine or galactosamine
assisted by a coupling agent such as 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride (DMTMM), thereby attaching the monosaccharide bearing its added reducing end
through an amide linkage. Because the newly formed amide linkage would be through C2 of the
added monosaccharide, its reducing end (C1) would be introduced intact to the polysaccharide
derivative. This approach would produce a new family of polysaccharide derivatives, which we
propose to describe as multi-reducing end polysaccharides (abbreviated as MREPs). We describe

herein our efforts to prove this hypothesis.

EXPERIMENTAL SECTION

Materials and Chemicals. Carboxymethyl cellulose sodium salt (CMCNa, degree of
substitution of carboxymethyl group DS(CM) 0.84, calculated by 'H NMR (Fig. S1); M =
1.14x10° g/mol, determined by aqueous SEC), was from TCI. Carboxymethyl dextran sodium salt
(CMDNa, DS(CM) 0.22, determined by '"H NMR spectroscopy, Fig. S2; Mn = 1.27x10* g/mol,
determined by aqueous SEC), 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride (DMTMM), and D-(+)-glucosamine hydrochloride (GIcN:HCl) were from Sigma-
Aldrich. D-(+)-Galactosamine hydrochloride (GalN:HCIl) was from Chem-Impex International.
Alginic acid sodium salt (M/G ratio 1.9, determined by 'H NMR spectroscopy, Fig. S3; M =
1.09x10° g/mol, determined by aqueous SEC) and 1, 3, 4, 6-tetra-O-acetyl-D-glucosamine
hydrochloride (acetyl-GlcN:HCI) were from Alfa Aesar. A fluorometric aldehyde assay kit

(MAK141) was obtained from Sigma-Aldrich. DI water (~ 18.2 MQ<*cm) was produced by a

Synergy system from Millipore. All reagents were received and used without further purification.
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Regenerated cellulose dialysis tubing (molecular weight cutoff (MWCO) 3.5 kDa) was from
Fischer Scientific.

General procedure for amide formation between 1, 3, 4, 6-tetra-O-acetyl-D-glucosamine
(acetyl-GlcN) and polysaccharides CMD, alginate, or CMC. The starting polysaccharide was
first dissolved in DI water at room temperature (RT) with magnetic stirring. Specifically: CMDNa
(1.0 g, 1.2 mmol -COONa) was dissolved in 10 mL DI water, alginic acid sodium salt (0.5 g, 2.5
mmol -COONa) was dissolved in 50 mL DI water, and CMCNa (0.5 g, 1.8 mmol -COONa) was
dissolved in 50 mL DI water. Then DMTMM (0.5 g, 1.8 mmol, 1.5 equiv per -COONa for
CMDNa; 0.875 g, 3.2 mmol, 1.3 equiv per -COONa for alginic acid sodium salt; or 0.974 g, 3.5
mmol, 1.9 equiv per -COONa for CMCNa) was added to each solution. After 3 h stirring, 1, 3, 4,
6-tetra-O-acetyl-D-glucosamine (1.38 g, 3.6 mmol, 2.9 equiv per -COONa for CMDNa; 2.42 g,
6.3 mmol, 2.5 equiv per -COONa for alginic acid sodium salt; or 2.7 g, 7.0 mmol, 3.8 equiv per -
COONa for CMCNa) was added and pH was adjusted to 7.5 using saturated aq. NaHCOs. The
solution was stirred at RT for another 24 h. Then the reaction mixture was transferred to a dialysis
tube (cutoff 3.5 kDa) and dialyzed against 0.1 M NacCl for 2 d, then against DI water for 3 d.
Solutions were concentrated by freeze drying to afford the products as white, fibrous materials.

General procedure for amide formation between D-(+)-glucosamine (GIcN) or D-(+)-
galactosamine (GalN) and CMD, alginate, or CMC. The starting polysaccharide was first
dissolved in DI water at a certain temperature (RT, 37 °C, or 50 °C) under magnetic stirring.
Specifically: CMDNa (1.0 g, 1.2 mmol -COONa) was dissolved in 10 mL DI water, alginic acid
sodium salt (0.5 g, 2.5 mmol -COONa) was dissolved in 50 mL DI water, and CMCNa (0.5 g, 1.8
mmol -COONa) was dissolved in 50 mL DI water. Then DMTMM (0.5 g, 1.8 mmol, 1.5 equiv per

-COONa for CMDNa; 1.17 g, 4.2 mmol, 1.7 equiv per -COONa for alginic acid sodium salt; or
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0.974 g, 3.5 mmol, 1.9 equiv per -COONa for CMCNa) was added to the solution. After 3 h stirring
at the desired temperature (RT, 37 °C, or 50 °C), D-(+)-glucosamine or D-(+)-galactosamine
hydrochloride (0.8 g, 3.7 mmol, 3.0 equiv per -COONa for CMDNa; 3.23 g, 15.0 mmol, 6.0 equiv
per -COONa for alginic acid sodium salt; or 1.52 g, 7.0 mmol, 3.8 equiv per -COONa for CMCNa)
was added and the pH was then adjusted to 7.5 using saturated aq. NaHCOs or dilute aq. NaOH.
The solution was stirred for (24 h or 48 h) at the desired temperature (RT, 37 °C, or 50 °C), then
the reaction mixture was transferred to a dialysis tube (cutoff 3.5 kDa) and dialyzed against 0.1 M
NaCl for 2 d, then against DI water for 3 d. The products were obtained by freeze drying to afford
white, fibrous materials. Reaction duration was controlled at 24 or 48 h, and reaction temperature
was controlled at RT, 37 °C, or 47 °C to determine the impact upon conversion. Yields: alginate-
GIcN, 0.32 g, 60 %.

General procedure for silver mirror reaction and hydrogel formation. Silver oxide (0.2 g,
Agx0) was dissolved in 2 mL dilute ag NH4OH (10% w/v) in a test tube. Polysaccharide (30 mg)
was dissolved in 2 mL DI water in a vial, and the polysaccharide solution was added to the test
tube which was then shaken by hand. Finally, the test tube was placed into a 70 °C water bath for
30 min.

For hydrogel formation, 1.0 g poly(ethyleneimine) and 0.05 g multi-reducing-end alginate were
each dissolved in 1 mL DI water in separate 20 mL vials, and the two solutions were combined
and left at room temperature for 24 h.

Quantitative analysis of aldehyde concentration in starting polysaccharides and product
multi-reducing-end polysaccharides using a fluorometric method. A fluorometric aldehyde
assay kit was used. The standard curve of emission fluorometric intensity vs. concentration of

aldehydes was obtained by following the procedure from the kit instructions. Each polysaccharide
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sample was dissolved in DI water at 10 mg/mL. Aliquots (50 pL) of these solutions were added to
wells of a 96-well plate. All samples were tested in duplicate; standard deviations of the results
were below 5%. The fluorescence excitation wavelength was 365 nm while the emission
wavelength was 435 nm.

Characterization. 'H and '3C NMR spectra were obtained on a Bruker Avance 11 500 MHz
spectrometer in deuterated water (D20) at room temperature, using 128 scans for 'H NMR and
10,000 scans for 1*C NMR spectra. "H NMR spectra were referenced to D20 (4.79 ppm). 3C NMR
spectra were referenced to 3-(trimethylsilyl) propionic-2,2,3,3-ds acid, sodium salt (0 ppm).
Diffusion ordered spectroscopy (DOSY) was performed on a Bruker Avance III 400 MHz
spectrometer equipped with a Diff50 diffusion probe. DOSY experiments were run with a 1 ms
gradient pulse duration, 20 ms diffusion encoding time, and 16 steps of the gradient strength, with
64 scans per step. A fluorometric method was used to quantify aldehyde concentration of
polysaccharide samples, employing a fluorometric aldehyde assay kit from Sigma and a micro-
plate reader (TECAN infinite M200 PRO) to read fluorescence. The open chain aldehyde form of
each polysaccharide reducing end will react with a fluorescent dye from the assay kit and emit
strong fluorescence at 435 nm wavelength with excitation wavelength of 365 nm. Size exclusion
chromatography (SEC) was performed using instrumentation consisting of Wyatt Technologies
DAWN 8 light scattering and Optilab refractive index detectors. One Shodex Ohpak LB-806M
column heated to 40 °C was used with a mobile phase consisting of DI water/100 mM NaNOs as
the eluent and a Shimadzu LC-40D with pump operating at 1.0 mL/min. DS(CM) of CMD and
CMC, G/M ratio of alginate, yields, and aldehyde concentrations were calculated according to the

following equations:
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DS(CM) of CMC, based on the 'H NMR spectrum of the hydrolysis product:

(2 protons of CM side chain)/2 (1)
I(H2 — H6 from cellulose backbone) /6

DS(CM) =

The hydrolysis procedure and NMR assignments were based on the previous literature®. Protons
of CM side chain (-OCH2COQ") are from 4.15 - 4.55 ppm. Protons H2 - H6 from cellulose
backbone are from 3.15 — 4.10 ppm.

DS(CM) of CMD, based on the 'H NMR spectrum of CMD:

2 x DS(carboxymethyl group)  1(a) 2)
1 ~I(H1)

I(a) refers to the integral of the CM methylene resonance in the 'H NMR spectrum of CMD (Fig
S2). I(H1) is the integral of the CMD H1 resonance (Fig. S2).
G/M ratio of alginic acid sodium salt, based on the '"H NMR spectrum of partial hydrolyzed

alginate:

M _I(B) +1(0) —1(A) _ o (3)
G 1(A) o

The partial hydrolysis and NMR analysis methods were based on the previous literature®’. I(A),
I(B) and I(C) refer to the integrals of peaks A, B and C in the 'H NMR spectrum of partially
hydrolyzed alginate (Fig. S3).

Yields of products:

moles of product 4)

%Yield =
oYl moles of reactant

Product aldehyde concentration (the equation is from calibration curve of aldehyde concentration

vs. fluorescence intensity Fig. S12):
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Fluoroscence intensity — 26843 (5)
117.4

Aldehyde concentration =

Determination of the DS(GIcN) of alginate-GlcN (based on Fig. 4):

2 x DS(GIcN)  I(aa) + I(da + dB + ) (6)
1 " 1(G1) x (1 + M/G ratio)

Calculation of the aldehyde concentration of alginate-GlcN based on its

DS(GIeN): (7)

m X DS(GIcN)
M(AlginateGIcN) x V

c(GIcN) =

%is 10 mg/mL. c(GIcN) is the concentration of the appended glucosamine (also the aldehyde

concentration). DS(GIcN) is the DS of GlcN of alginate-GlcN. M(AlginateGIcN) is the molecular

weight per AGU of the alginate-GIcN sample analyzed by NMR spectroscopy.

Determination of alginate-GIcN estimated real DS(GIcN) using measured aldehyde concentrations
and NMR value 0.17 (equivalent equation used for alginate-GaIN DS(GalN)):
®)

A(AlginateGlcN)
49.51 uM

DS(GIcN) = 0.17 X

A is aldehyde concentration in Table 1. The numbers 0.17 and 49.51 uM are DS(GIcN) and A of
the alginate-GIcN sample analyzed by NMR. The difference of molecular weight per AGU

between different alginate-GlcN samples was neglected.

Determination of CMD-GIcN estimated real DS(GIcN) using aldehyde concentrations and NMR

value 0.17 (same equation for CMD-GIcN DS(GalN)):

10
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A(CMDGICcN) ~ M(CMD) )
49.51 uM M(AlginateGIcN)

DS(GIcN) = 0.17 x

A is aldehyde concentration in Table 1. The 0.17, 49.51 uM and M(AlginateGlcN) are DS(GIcN),
A and molecular weight per AGU of the alginate-GlcN sample analyzed by NMR. The difference
of molecular weight per CMD-GIcN AGU compared to CMD AGU was neglected. The difference
of molecular weight per alginate-GlcN AGU caused by different DS(GIcN) was neglected.
Determination of CMC-GIcN estimated real DS(GIcN) using aldehyde concentrations and NMR
value 0.17 (same equation for CMC-GlcN DS(GalN)):

(10)

A(CMCGIcN) o M(CMCQC)
49.51 uyM M(AlginateGIcN)

DS(GIcN) = 0.17 x

A is aldehyde concentration in Table 1. The 0.17, 49.51 uM and M(AlginateGlcN) are DS(GIcN),
A and molecular weight per AGU of the alginate-GIcN sample analyzed by NMR. The difference
of molecular weight per CMC-GIcN AGU compared to CMC AGU was neglected. The difference

of molecular weight per alginate-GlcN AGU caused by different DS(GIcN) was neglected.

RESULTS AND DISCUSSION

Reactions of 1, 3, 4, 6-tetra-O-acetyl-D-glucosamine (acetyl-GlcN) with polysaccharides.
We selected acetyl-GIcN as our initial substrate for amide formation, and selected three
commercial carboxyl-containing polysaccharides, CMD, CMC, and alginate (Scheme 1). Acetyl-
GlcN was useful for initial experiments because its acetyl groups have 'H NMR resonances upfield
of the typical polysaccharide backbone region (around 2 ppm), and likewise '*C NMR resonances

upfield (around 20 ppm) of those typical for polysaccharides. These resonances are sharp, readily

11
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distinguished, and (for protons) readily integrated in comparison with the more downfield
backbone resonances of the starting polysaccharides.

We chose to initiate reaction of acetyl-GlcN with CMD using 4-(4,6-dimethoxy-1,3,5-triazin-
2-yl)-4-methylmorpholinium chloride (DMTMM) because it is an efficient, widely used coupling
agent for amide formation.*®*° The reaction (RT, 24 h) afforded a water-soluble product that could
be purified by dialysis and isolated by freeze-drying. In its 'H NMR spectrum (Fig. 1), the sharp
resonance at 2.16 ppm and the small one at 2.11 ppm were assigned to acetyl groups from the
appended monosaccharide acetyl-GlcN. It is noted that some of the acetyl resonances of these
derivatives appeared to be weaker than those of the starting monosaccharide (Fig. S4). There are
two possible reasons for the weaker acetyl signal; one is that the DS of acetyl-GlcN on the CMD
is low, the other is there may be partial acetyl hydrolysis during the alkaline amide formation
reaction conditions. De-acylation of polysaccharide and carbohydrate esters under alkaline
conditions is rapid as has been previously observed, including in work by our group.*'*? These
results were supported by '3C NMR spectroscopy (Fig. 2), where the resonance at 23 ppm was
assigned to the acetyl methyls from the appended monosaccharide acetyl-GIlcN. Successful amide
formation between the acetyl-GIcN amine and CMD carboxyls was further confirmed by
diffusion-ordered NMR spectroscopy (DOSY) experiments (Fig. S14),**** which revealed that all
resonances associated with the polymer chain, including those arising from both acetyl-GIcN and
CMD moieties, exhibited identical self-diffusion coefficients (6.1 X 10! £ 1 x 10> m? s7!). This
strongly supported the conclusion that acetyl-GlcN and CMD were covalently attached to one

another.

12
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O P pH=7.5 JFn
CMD % CMC CMC-acetyl GlcN

CMD-acetyl GIcN

C ONa ONa DMTMM .
HZ
Alginate

Alginate-acetyl GIcN

Scheme 1. Amide-forming reactions of acetyl-GlcN with polysaccharides. A. CMD and acetyl-
GlcN. B. CMC and acetyl-GIcN. C. Alginate and acetyl-GlcN. Note that positions of
carboxymethyl substitution in this and other schemes and figures are not meant to denote

regioselective substitution but are displayed in this way only for simplicity and clarity.

We were also able to demonstrate successful amide formation between acetyl-GIcN and CMC,
as well as with alginate, a natural polysaccharide produced by kelp and bacteria. Each alginate
monosaccharide is a uronic acid (1—4-linked B-D-mannuronic acid (M) or 1—4-linked a-L-
guluronic acid (G)). In the "TH NMR spectrum of the purified amide resulting from coupling CMC
and acetyl GlcN (Fig. S6), the resonance at 2.1 ppm is assigned to the acetyl groups of the

appended monosaccharide. Both "H NMR and '*C NMR spectra of the purified alginate-acetyl
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GlcN product also fully supported successful amide formation, and typical resonances related to
M and G could be identified in the product’s '"H NMR spectrum; they were assigned based on
literature values.* The 'H NMR spectrum of alginate-acetyl GlcN also displayed a prominent,
broad peak at ca. 2.1 ppm which we assigned to the acetyl methyls of the attached monosaccharide
(Fig. 3). Methyl carbons of the acetyl groups (23 ppm) were also observed in the '*C NMR spectra
of alginate-acetyl GlcN (Fig. S7). Covalent attachment of acetylated GlcN to CMC and alginate,
rather than simple mixing, was strongly supported by the similar diffusion coefficients (DOSY) of
resonances arising from acetyl GIcN and the backbone regions of CMC and alginate, respectively

(Fig. S15 and S16).
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Figure 1. 'H NMR spectra. A. CMD-acetyl GIcN, B. CMD.
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268 Reactions of D-glucosamine (GlcN) and D-galactosamine (GalN) with polysaccharides.
269  Having shown successful amide formation between 2-amino-2-deoxymonosaccharide esters and
270  polysaccharide carboxyl groups by using acetyl-GlcN with its "H NMR-prominent ester groups,
271  we examined amide formation between unsubstituted GlcN and GalN and carboxyl-containing
272 polysaccharides (CMD, CMC, and alginates, Scheme 2). In the process, we explored the impact
273  of key reaction parameters upon conversion. Lacking the obvious 'H NMR handles of acetyl
274  methyls, we quantified the reducing ends added upon reaction with amino sugars to form MREPs
275 by a fluorometric method which is commonly used to quantify aldehydes.*®4’
A B
OH
RO 2 OH RO 2
RO/% R%\l COONa OH HO&%MOH
HS&%NOH % o o HO -
RO‘% H, R‘O% HO OH o
RO RO /Léé/ H, ?
o _—
% DMTMM X RO R 7 DMTMM o
" o) pH=7.5 y o) oH=7.5 €0 . o%
HO B
CMD . CMC CMC-GIcN
CMD-GIcN
Cc ONa oy): DMTMM HOS%MOH
9 OH SO 0 HO O)’n PHZTS "o H oga
OOHO ~OH © o 6H OH °© OH q? o HO Oa/
OH Na o OOH @) O n
0~ "ONa Hﬁoéﬁfori 0. /JoH %
H, H OH
07 “ONa HO
Alginate W?.%OH
Alginate-GIcN
OH
R:Hor )OL R Hor i or HO‘&%OH
’ ™ ONa ' ™ ONa HO g
):o
276 :
277 Scheme 2. Reactions of 2-amino-2-deoxymonosaccharides with carboxyl-containing
278  polysaccharides (illustrated using GIcN). Reactions of GIcN with A. CMD, B. CMC, C. Alginate.
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Despite the similar structural features of the aminomonosaccharides and polysaccharides, and
the absence of obvious reporter groups in GlcN or GalN (i.e., acetyl groups), some evidence for
successful amide formation could be found in the NMR spectra of alginate-GlcN. In the '"H NMR
spectrum (Fig. 4), a new resonance was observed at 3.5 ppm, and we speculated that this new
resonance was from specific protons of the newly appended monosaccharide. Heteronuclear
Single-Quantum Correlation Spectroscopy (HSQC) (Fig. S10) of alginate-GlcN was employed to
confirm this hypothesis. We observed correlations of the new 'H resonance at 3.5 ppm with two
13C resonances at 73 and 79 ppm. We examined the simple but structurally similar compound,
GlcNAc, to help support the NMR assignments of product resonances (Fig. S8). In the HSQC
spectrum of GlcNAc (Fig. S11), its 'H resonance at ~3.5 ppm was correlated to '*C resonances at
73 and 79 ppm, which could be assigned to C4 and C5 of the B-anomer of GlcN.*® By analogy, we
assigned the new 'H resonance at 3.5 ppm to the C4 and C5 protons of the B-anomer of the newly
attached glucosamine, shown in Fig. 4. Since the anomeric position of the attached
aminomonosaccharide is unsubstituted, both anomers are observed, with the equatorial anomer
predominant. The DS(GIcN) was calculated based on the integral ratio of the new resonances at
3.5 and 5.2 ppm to the resonances of G1 at 5.0 ppm. Based on integration of the 'H NMR spectrum
(Fig. 4) and equation (6), DS(GIcN) is calculated to be 0.17. We observed that H2-C2 correlation
of the appended GIcN from the alginate-GlcN product (Fig. S10) matched those of the GIcNAc
model (Fig. S11) well, supporting the hypothesis that GlcN was linked to alginate via an amide
bond. Additional evidence of successful linkage was also found in the '*C NMR spectra, shown in
Fig. 5. The C1, C2 and C6 resonances of the appended monosaccharide were clearly observed in
the 1*C NMR spectrum of the final product alginate-GlcN. In addition, we compared the product

'H NMR spectrum with that of GlcN itself (Fig. S9). Resonances at 2.5 ppm (from H2 of GlcN)

17



302

303

304

305

306

307

308

309
310

were absent in the 'H NMR spectrum of the amide alginate-GlcN, indicating that it contained no
free monosaccharide within '"H NMR detection limits.* It was also of interest to examine the loss
of DP that occurred during the conjugation reaction, in the presence of a base. Size exclusion
chromatography of the GIcN adducts of alginate, carboxymethyl dextran, and carboxymethyl
cellulose showed moderate loss of DP, ranging between 25-60%. No attempt was made within the

bounds of the current study to maximize conditions for preservation of DP.
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Study of the relationship between reaction parameters and conversion using a fluorometric
method. To study the relationship between conversion and parameters such as reaction
temperature and time, a fluorometric method was used employing a microplate reader. Amide
conversion was directly proportional to the aldehyde concentration of the MREP amide products.
Aldehyde concentration could be measured by conversion of the aldehydes to fluorescent adducts,
which fluoresce at 435 nm upon 365 nm excitation. By measuring the emission fluorescence
intensity of these adducts at 435 nm and comparing with a standard curve of aldehyde
concentration vs. fluorescence intensity (Fig. S12), the aldehyde concentration of the samples
could be quantified. Reaction parameters and the resulting aldehyde concentrations are shown in
Table 1; each MREP had fluorescence intensity higher than that of the relevant starting
polysaccharide, as expected and further supporting successful introduction of reducing ends by
amide formation with the 2-amino-2-deoxymonosaccharides. Product aldehyde concentration
seemed to be insensitive to changes in aminomonosaccharide type, reaction time, or reaction
temperature. However, by switching the added base (used to neutralize acid from GlcN or GalN,
supplied as HCI salts) from sodium bicarbonate to sodium hydroxide, conversion was improved.
We hypothesize that this was due to reaction of the NaHCO3 neutralization by-product CO2 with
the monosaccharide amine groups, forming carbamic acids and thus interfering with amide
formation.’® This side reaction was circumvented by using NaOH as base.

As stated before, the DS(GIcN) of Alg-GlcN was calculated to be 0.17 based on integration of
the '"H NMR spectrum (Fig. 4). Alg-GlcN with DS(GIcN) 0.17 corresponds to entry 24 in Table
1, where NaOH was used to neutralize the HCl from GlcN. Converting the DS to aldehyde

concentration based on equation (7), the aldehyde concentration should be 7597 uM instead of the

measured 49.51 uM (Table 1). The reason for this large difference is that not all the reducing ends
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337  of the appended monosaccharide are converted to the fluorescent adducts, due to the nature of the
338  reducing end, which is in equilibrium between a ring-closed hemiacetal and an open-chain
339  aldehyde form. The estimated DS (“DS”) of the multi-reducing end polysaccharides in Table 1
340  was calculated based on equations (8), (9) and (10).

341

342 Table 1. Reaction parameters, aldehyde concentration, and DS (GlcN/GalN) of MREPs.

PS Amine | Equiv | DMTMM | Temp. | Time Base A DS
(eq/COy) (°C) (h)

1 | CMD / / / / / / /
2 | CMD | GalN 0.75 0.375 25 24 NaHCOs | 7.77 | 0.02
3 | CMD | GalN 3.0 1.5 25 24 NaHCO; | 11.72 | 0.03
4 | CMD | GalN 3.0 1.5 25 48 NaHCO; | 12.79 | 0.04
5 | CMD | GalN 3.0 1.5 37 48 NaHCO; | 11.73 | 0.03
6 | CMD | GalN 3.0 1.5 50 48 NaHCOs | 11.53 | 0.03
7 | CMD | GleN 3.0 1.5 25 24 NaHCOs; | 11.86 | 0.03
8 | CMD | GIcN 3.0 1.5 25 48 NaHCO; | 12.38 | 0.03
9 | CMD | GleN 3.0 1.5 37 48 NaHCO; | 11.01 | 0.03
10 | CMD | GIeN 3.0 1.5 50 48 NaHCOs | 11.75 | 0.03
11 | CMD | GIeN 3.0 1.5 25 48 NaOH 16 0.04
12 | CMC / / / / / / /
13 | CMC | GIeN 3.8 1.9 25 48 NaHCO; | 22.36 | 0.08
14 | CMC | GIcN 3.8 1.9 37 48 NaHCO; | 22.61 | 0.08
15 | CMC | GalN 3.8 1.9 25 24 NaHCO; | 22.1 0.08
16 | CMC | GalN 3.8 1.9 25 48 NaHCOs | 22.58 | 0.08
17 | Alg / / / / / / /
18 | Alg GIcN 6.0 1.7 25 24 NaHCO; | 39.31 | 0.13
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19 Alg GIcN 6.0 1.7 25 48 NaHCO; | 39.82 | 0.14
20 Alg GlecN 6.0 1.7 37 48 NaHCO; | 39.04 | 0.13
21 Alg GIcN 6.0 1.7 50 48 NaHCOs; | 39.61 | 0.14
22 Alg GIecN 6.0 1.7 25 48 NaOH 48.25 | 0.17
23 Alg GalN 6.0 1.7 25 48 NaHCOs; | 39.63 | 0.14
24 Alg GIecN 6.0 1.7 37 48 NaOH 49.51 | 0.17*

PS: starting polysaccharides; Amine: reacting aminosaccharide; Equiv: equivalents
aminosaccharide/-COONa; DMTMM: coupling agent used (equiv/-COONa); A: aldehyde
concentration (uM) measured by fluorescence. DS: estimated degree of substitution of the
appended monosaccharide calculated based on equation (8), (9) and (10)

* This value was calculated by 'H NMR spectrum (Fig. 4).

Silver mirror reaction and hydrogel formation of multi-reducing-end polysaccharides. To
provide additional evidence for the successful introduction of reducing ends to polysaccharides,
silver mirror reactions were conducted. The silver mirror reaction is a powerful tool to identify
aldehyde groups in polysaccharides and other materials, with higher aldehyde concentration
affording faster silver mirror reaction. Indeed, after 15 minutes at 70 °C (Fig. 6), a beautiful silver
mirror was formed on the surface of the tube for the multi-reducing-end alginate, alginate-GIcN.
In comparison, no silver was observed on the surface using unmodified starting alginate, with its
far lower reducing end content. Similar results were observed for CMD vs. CMD-GIcN (Fig. S13).

In order to demonstrate the potential application of MREPs for making hydrogels, multi-
reducing-end alginate solution was mixed with branched poly(ethylene imine) (PEI) solution.
Equal volumes of 5 wt% multi-reducing-end alginate solution and 50 wt% branched
polyethyleneimine solution in water were mixed, and after 24 h, a hydrogel was formed (Fig. 7).

The appended monosaccharide is in equilibrium between a ring-closed hemiacetal and an open-
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377

chain aldehyde form. The excess amine groups of the branched poly(ethyleneimine) react with
aldehydes of the appended monosaccharides to form Schiff base bonds, and this reaction pushes
the equilibrium to the open-chain aldehyde form. In a control experiment, equal volumes of 5 wt%
alginate solution and 50 wt% branched poly(ethyleneimine) solution in water were mixed at room
temperature. No hydrogel was observed after 24 h. In fact, these mixed control solutions could still
flow after one week. To exclude the possibility that Alg-GlcN/PEI gelation was caused by the
slight pH difference between alginate and alginate-GIcN solution, another control experiment was
conducted. The alginate solution was adjusted using acetic acid to the same pH as the alginate-
GIcN solution. Even after the pH adjustment, no gelation of the alginate/branched PEI mixture
was observed after 24 h. We are actively exploring methods to facilitate and accelerate this gelation

process.

With solvent inside After pouring the solvent out

Figure 6. Silver mirror reaction of alginate (left in each photo) and alginate-GIcN (right in each

photo).
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Figure 7. Hydrogel formation by mixing alginate-GIcN solution (left) and branched poly(ethylene

imine) solution (middle) to form the hydrogel depicted on the (right).

CONCLUSIONS

In this work, a new family of polysaccharides termed multi-reducing-end polysaccharides (MREP)
has been prepared using the synthetic strategy of reacting polysaccharide carboxylic acid groups
with the amines of 2-amino-2-deoxymonosaccharides to form amide linkages, employing
DMTMM as coupling agent. Reactions of carboxymethyl dextran (CMD), carboxymethyl
cellulose (CMC), or alginate with glucosamine (GIcN) or galactosamine (GalN) afforded well-
characterized products in which the 2-amino-2-deoxymonosaccharide was attached to the
polysaccharide through an amide linkage. As a result, each amide-appended monosaccharide had
an intact anomeric position, that is to say its reducing end. Multiple reactive aldehyde groups were
thus appended to each polysaccharide molecule, with no loss of cyclic monosaccharide structure
in the polysaccharide, and thus no introduction of undesired flexibility or chemical instability.
NMR techniques were used to indicate successful linkage to polysaccharides through the 2-amine
groups of the monosaccharides. A fluorometric method was used to confirm aldehyde
concentrations in cases where interpretation of the 'H NMR spectrum and its integration were
difficult, due to resonance overlaps. These aldehyde concentration results enabled us to identify

the insensitivity of reaction conversion to time and temperature within the ranges studied, the
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similar reactivities of GlcN and GalN, and the superior performance of NaOH vs. NaHCOs base.
The silver mirror reaction provided important qualitative, visual evidence for successful MREP
synthesis. The formation of a hydrogel upon reaction of MREP with branched poly(ethylene
imine) illustrated one example of the widespread application potential of these MREPs. Overall,
this work is promising for decorating many types of polysaccharides, including those with natural
carboxylic acid content (those containing uronic acid monosaccharides) and those with carboxyl-
containing substituents (such as carboxymethyl or m-carboxyalkanoyl-substituted polysaccharide
derivatives) with amine-containing monosaccharides to afford multi-reducing-end
polysaccharides. MREPs have promise for many other potential applications, such as conjugating
with proteins or drugs to create prodrugs for targeted or slow-release therapeutics or making all-
polysaccharide hydrogels with chitosan through dynamic Schiff base bonds. Reducing such

concepts to practice is currently underway in our laboratory.
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