**Title Page** 1 2 3 Title: 4 Loss of mitochondrial performance at high temperatures is correlated with upper thermal 5 tolerance among populations of an intertidal copepod 6 7 Authors: 8 Timothy M. Healy<sup>a</sup> and Ronald S. Burton<sup>a</sup> 9 10 Author affiliation: 11 <sup>a</sup>Marine Biology Research Division, Scripps Institution of Oceanography, University of 12 California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA 13 14 Corresponding author (current address): 15 Timothy Healy 16 Molecular Genetics, Pacific Biological Station, Fisheries and Oceans Canada 17 3190 Hammond Bay Road, Nanaimo, BC, Canada, V9T 6N7 18 (250) 739-2497 19 healy.timothy.m@gmail.com 20 21 *Keywords*: 22 Tigriopus californicus, critical thermal maxima, local adaptation, ATP synthesis, latitudinal, thermal performance curve 23

## Abstract

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Environmental temperatures have pervasive effects on the performance and tolerance of ectothermic organisms, and thermal tolerance limits likely play important roles underlying biogeographic ranges and responses to environmental change. Mitochondria are central to metabolic processes in eukaryotic cells, and these metabolic functions are thermally sensitive; however, potential links between mitochondrial function, thermal tolerance limits and local thermal adaptation in general remain unresolved. Loss of ATP synthesis capacity at high temperatures has recently been suggested as a mechanistic association between mitochondrial function and upper thermal tolerance limits. Here we used a common-garden experiment to assess genetically based variation in thermal performance curves for maximal ATP synthesis rates in mitochondria isolated from intertidal copepods (Tigriopus californicus) from seven locally adapted populations than are distributed across approximately 21.5° latitude. These thermal performance curves displayed substantial variation among populations with higher ATP synthesis rates at lower temperatures (20-25 °C) in northern populations than in southern populations. In contrast, mitochondria from southern populations maintained ATP synthesis rates at higher temperatures than the temperatures that caused loss of ATP synthesis capacity in mitochondria from northern populations. Furthermore, there was a tight correlation between the thermal limits of ATP synthesis and previously determined variation in upper thermal tolerance limits among populations. Together, our data indicate that mitochondria play a key role in latitudinal thermal adaptation in T. californicus, and suggest that there is likely a mechanistic connection between loss of mitochondrial performance and whole-organism thermal tolerance limits in this ectotherm.

Temperature has pervasive effects on the performance and survival of ectothermic organisms (Somero et al., 2017), and in aquatic ectotherms thermal tolerance limits likely influence both latitudinal ranges and shifts in range limits as a result of increasing environmental temperatures (Sunday et al., 2012). Consequently, resolving the biochemical and physiological mechanisms underlying thermal tolerance limits is key to understanding not only current biogeographic distributions, but also impacts of climate change. Several possible mechanisms have been linked to variation in upper thermal tolerance in aquatic species including molecular chaperone expression (Tomanek, 2008; Gleason & Burton, 2015), neural function (Miller & Stillman, 2012), aerobic metabolism (Pörtner, 2002; Eliason et al., 2011) and mitochondria function (Christen et al., 2018; Iftikar & Hickey, 2013; Iftikar et al., 2014; Michaelsen et al., 2021). However, the general roles of each of these mechanisms in setting tolerance limits are not fully resolved.

Originally, loss of mitochondrial performance was overlooked a possible mechanism underlying upper thermal tolerance, because capacities for oxidative phosphorylation were maintained at temperatures beyond whole-organism tolerance limits (e.g., state III respiration, Somero et al., 1996; Somero, 2002; Pörtner, 2002). Yet, latitudinal variation in mitochondrial genotype may be affected by natural selection (Camus et al., 2017), and many aspects of mitochondrial function are thermally sensitive (Chung & Schulte, 2020), including traits that are often plastic when organisms are exposed to different environmental temperatures (e.g., Chung & Schulte, 2015; Chung et al., 2017a, b, 2018; Bryant et al., 2018). Although there are limited available data, the synthesis of ATP, a key function of mitochondria in eukaryotic cells, may be impaired at temperatures that are similar to whole-organism thermal tolerance limits (Iftikar & Hickey, 2013; Iftikar et al., 2014; Harada et al., 2019; Healy et al., 2019). Therefore, it is

possible that loss of the capacity to generate ATP contributes to setting acute thermal tolerance limits at higher levels of biological organization.

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

The intertidal copepod *Tigriopus californicus* inhabits supralittoral tidepools along the Pacific coast of North America from Baja California, Mexico to Alaska, USA, and there is essentially no migration between distinct rocky outcrops (Burton & Feldman, 1981). This species has short generation times (~1 month) and is easily cultured in a laboratory, creating an ideal system for the study of local thermal adaptation. Even after many generations of laboratory rearing, previously published work has consistently resolved latitudinal variation in upper thermal tolerance among *T. californicus* populations with a significant correlation between tolerance and variation in maximum habitat air temperatures (Willett, 2010; Kelly et al., 2012; Pereira et al., 2017; Leong et al., 2018; Willett & Son, 2018; Healy et al., 2019). Population differences in tolerance have been most clearly linked with differences in the expression of molecular chaperones, such as heat-shock proteins, during and following heat stress (Schoville et al., 2012; Kelly et al., 2017; Graham & Barreto, 2019; Tangwancharoen et al., 2018, 2020; Healy et al., 2019; Harada & Burton, 2019), and knockdown of heat-shock protein beta 1 reduces the maximum temperature that these copepods can tolerate (Barreto et al., 2015). In addition to the important role of molecular chaperones, recent studies have proposed that loss of mitochondrial ATP synthesis capacity at high temperatures may also be associated with tolerance limits in T. californicus (Harada et al., 2019; Healy et al., 2019). However, these studies examined copepods from at most three populations spanning only a small portion of the species range (~4.2° latitude), which limits both the predictive power of this association and the potential relevance to latitudinal thermal adaptation overall. Thus, our current study examines the relationships between mitochondrial ATP synthesis, thermal tolerance limits and latitudinal adaptation in

seven populations of *T. californicus* spanning ~21.5° latitude. We assess thermal performance curves (TPCs) for maximal ATP synthesis rate (i.e., change in synthesis rate across temperatures) in mitochondria isolated from these copepods after several generations of common-garden laboratory rearing.

Adult *T. californicus* were collected from supralittoral tidepools from San Roque, Mexico (SR; 27° 10′ 48″ N, 114° 23′ 52″ W), La Bufadora, Mexico (BF; 31° 43′ 25″ N, 116° 43′ 19″ W), San Diego, USA (SD; 32° 44′ 41″ N, 117° 15′ 19″ W), Bird Rock, USA (BR; 32° 48′ 51″ N, 117° 16′ 24″ W), Santa Cruz, USA (SC; 36° 56′ 58″ N, 122° 02′ 47″ W), Pescadero Beach, USA (PE; 37° 15′ 35″ N, 122° 24′ 51″ W) and Pacific Crest, Canada (PC; 48° 49′ 48″ N, 125° 09′ 06″ W). Copepods were maintained in several population-specific 250 mL laboratory cultures at Scripps Institution of Oceanography (La Jolla, CA, USA) made up with filtered seawater (35 psu; 0.44 µm pore size), and held at 20 °C and a 12 h:12 h light:dark photoperiod. Powdered spirulina (Salt Creek, Inc., South Salt Lake City, UT, USA) and ground TetraMin Tropical Flakes (Spectrum Brands Pet LLC, Blacksburg, VA, USA) were added to the cultures weekly as a food source, and copepods also consumed natural algal growth in the cultures. These conditions were maintained for at least seven months (~7 generations) prior to the start of experiments.

TPCs for *in vitro* maximal ATP synthesis rates were determined from 20 to 36 °C for mitochondria isolated from copepods of each population using protocols similar to Harada et al. (2019) and Healy et al. (2019). Based on preliminary tests, 11 haphazardly selected adults were held without food overnight, pooled and homogenized by hand with a Teflon-on-glass homogenizer in 800 μL of ice-cold buffer (400 mmol L<sup>-1</sup> sucrose, 100 mmol L<sup>-1</sup> KCl, 70 mmol L<sup>-1</sup> HEPES, 6 mmol L<sup>-1</sup> EGTA, 3 mmol L<sup>-1</sup> EDTA, 1% w/v BSA, pH 7.6). Homogenates were

centrifuged at 1,000 g and 4 °C for 5 min. The supernatants were collected, and were centrifuged again at 11,000 g and 4 °C for 10 min. The second set of supernatants were removed, and the pelleted mitochondria were resuspended in 275  $\mu$ L of buffer (560 mmol L<sup>-1</sup> sucrose, 100 mmol L<sup>-1</sup> KCl, 70 mmol L<sup>-1</sup> HEPES, 10 mmol L<sup>-1</sup> KH<sub>2</sub>PO<sub>4</sub>, pH 7.6) for the ATP synthesis assays. Each ATP synthesis trial included a pool of mitochondria from each of the seven populations, and six trials were conducted in total (i.e., n = 6 per population).

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

ATP synthesis rates under saturating concentrations of electron transport system (ETS) complex I and II substrates (5 mmol L<sup>-1</sup> pyruvate, 2 mmol L<sup>-1</sup> malate, 10 mmol L<sup>-1</sup> succinate and 1 mmol L<sup>-1</sup> ADP) were measured at 20, 25, 30, 32, 34 and 36 °C, and 25  $\mu$ L of each mitochondrial isolation were added to 0.2 mL polymerase chain reaction tubes for each assay temperature. Assays were initiated by the addition of substrates, and were conducted for 10 min at the desired temperatures. ATP synthesis was stopped at the end of the assays by the addition 25 μL of CellTiter-Glo (Promega, Madison, WI, USA), which also enables ATP concentration to be measured. Separate 25-µL aliquots of the mitochondrial isolations had 25 µL of CellTiter-Glo added immediately prior to ATP quantification to determine the initial concentrations of ATP in the assays. These preparations and assay solutions were incubated with CellTiter-Glo in the dark for 10 min. After incubation, luminescence was quantified with a Fluroskan Ascent® FL (Thermo Fisher Scientific, Waltham, MA, USA), and ATP concentrations were assessed by comparisons to a standard curve (5 to 10,000 nmol L<sup>-1</sup> ATP). Synthesis rates were calculated by subtraction of the initial ATP concentrations from the final concentrations followed by division by 10 (min).

Variation in log-transformed ATP synthesis rates was tested with a mixed-effect linear model implemented with the *lmerTest* package v3.1.3 (Kuznetsova et al., 2017) in *R* v4.2.0 (R

Core Team, 2022) with population and temperature as fixed factors, and replicate as a random factor ( $\alpha$  = 0.05). Separate models within each population and each assay temperature were fit to examine effects of these factors further, as well as potential overall differences between two latitudinal groupings of the populations (southern, warm-adapted: SR, BF, SD and BR; northern, cold-adapted: SC, PE and PC; e.g., Tangwancharoen et al., 2018). To compare loss of ATP synthesis capacity at high temperatures to variation in upper thermal tolerance among populations, critical thermal maximum ( $CT_{max}$ ) data for the seven populations in the current study were obtained from a previously published study investigating effects of developmental plasticity on thermal tolerance (Healy et al., 2019).

Across the temperature range in the current study, there was clearly variation in ATP synthesis rate among populations (p = 0.0081) and temperatures ( $p < 2.2 \times 10^{-16}$ ; Fig. 1); there was also a significant population by temperature interaction ( $p = 1.4 \times 10^{-10}$ ). The thermal sensitivities for ATP synthesis were generally low ( $Q_{10} = 1.47 \pm 0.34$ ,  $\mu \pm \sigma$ , from 20 to 30 °C), which may be a consequence of the portion of the TPC examined (i.e., no assay temperatures below 20 °C). However, temperature significantly affected ATP synthesis within every population ( $p \le 1.9 \times 10^{-4}$ ), and there was variation among populations at all temperatures except for 36 °C ( $p \le 0.017$ ). Furthermore, there were overall differences between populations from southern or northern latitudes at 20 and 25 °C (p = 0.035 for both) with populations from northern latitudes generally tending to have higher ATP synthesis rates than populations from southern latitudes.

Since the absolute maximum ATP synthesis rate achieved across all temperatures varies among *T. californicus* populations, Healy et al. (2019) suggested that the proportional loss of synthesis capacity at high temperatures may be a key factor linking mitochondrial performance

and upper thermal tolerance in this species. Within most populations, the maximum synthesis rates were observed at 30 or 32 °C (Fig. 1), and this variation among populations did not group by latitude (30 °C: BR, PE and PC, and 32 °C: BF, SD and SC). The southernmost population (SR), which has recently been proposed to potentially represent a different species (T. bajaensis; Barreto et al., 2018; Phillips, 2020), displayed maximal ATP synthesis at 25 °C. However, synthesis rates were relatively insensitive to temperature from 25 to 30 °C in this population ( $\le$  3.5% variation, on average). Normalization to the maximal ATP synthesis rate detected for each population (Fig. 2A) revealed that the synthesis rates for the different populations appeared to separate by latitude at high temperatures (latitudinal group  $p \le 0.022$  at 34 and 36 °C, and population p = 0.0021 at 36 °C) with southern populations maintaining ATP synthesis rates to greater degrees than northern populations, whereas at lower temperatures ( $\le$  32 °C) there was no variation among the populations (latitudinal group  $p \ge 0.42$ , and population  $p \ge 0.43$ ).

To index loss of ATP synthesis capacity at high temperatures, we used linear approximations between 34 and 36 °C to determine the temperature at which ATP synthesis rate was half of the maximal rate for each population. We then compared these temperatures to previously published  $CT_{max}$  values for adults from the same laboratory cultures and holding conditions as those in the current study (Healy et al., 2019). Average temperatures resulting in a 50% loss of maximal ATP synthesis rate were highly correlated with upper thermal tolerance limits among the seven *Tigriopus* populations ( $r^2 = 0.93$ ,  $p = 3.9 \times 10^{-4}$ ; Fig. 2B).

The general role of metabolic processes, particularly aerobic metabolism and aerobic scope, in setting organismal thermal limits is the subject of much debate (Pörtner et al., 2017, 2018; Jutfelt et al., 2018). Regardless, mitochondrial performance is sensitive to temperature (e.g., Chung & Schulte, 2020), and variation in mitochondrial function across temperatures may

studies have indicated that loss of the ability to synthesize ATP at high temperatures may occur at similar temperatures to upper thermal limits in some species (Iftikar & Hickey, 2013; Iftikar et al., 2014), including *T. californicus* (Harada et al., 2019; Healy et al., 2019). However, Harada et al. (2019) resolved this relationship across only three populations from a small region of the latitudinal species range (southern to central California), and Healy et al. (2019) observed parallel changes in the limits of tolerance and ATP synthesis between copepods developed at two different temperatures. In the current study, we confirm the pattern proposed by Harada et al. (2019), and demonstrate that there is a tight correlation between genetically based variation in the upper thermal limits of organismal tolerance and ATP synthesis capacity across seven populations spanning the majority of *T. californicus*' latitudinal range. It is possible this pattern is the result of parallel selection on the two traits as a result of temperature differences among populations, but the strength of relationship observed implies a mechanistic link between the two traits may be more likely.

The correlation between losses of ATP synthesis capacity at high temperatures and upper thermal limits in *T. californicus* adds an additional mechanism of thermal adaptation to the substantial evidence linking heat-shock protein (hsp) expression and function with upper thermal tolerance in this species. Expression levels of many hsps increase as a result of acute heat stress in laboratory-reared *T. californicus* from both within- and between-population crosses (Schoville et al., 2012; Kelly et al., 2017), and variation in the extent of hsp induction during heat stress has been positively associated with upper thermal limits among populations (Schoville et al., 2012; Graham & Barreto, 2019; Tangwancharoen et al., 2018, 2020). Similarly, variation in upper thermal tolerance due to differences in rates of warming during acute temperature exposures or

in developmental temperatures are also positively associated with variation in hsp expression (Harada & Burton, 2019; Healy et al., 2019). Furthermore, RNAi knockdown of hsp beta 1 (hspb1) results in decreased tolerance of high temperatures (Barreto et al., 2015), and Hspb1 proteins from a warm-adapted population (SD) perform better than Hspb1 proteins from a coldadapted population (SC) in thermal protection assays (Tangwancharoen et al., 2020). Variation in hsp expression among populations is primarily observed after exposure to thermal stress (Schoville et al., 2012), so it is unlikely that these differences impact the performance of isolated mitochondria in the current study. Thus, ATP synthesis capacity and hsp expression may independently contribute to mechanisms underlying variation in tolerance in T. californicus, and the tight correlation between mitochondrial function and CT<sub>max</sub> observed here may partially relate to the locomotory end point of CT<sub>max</sub> measurements in this species. However, CT<sub>max</sub> and lethal metrics of upper thermal tolerance typically resolve similar patterns of variation among T. californicus populations (Pereira et al., 2017; Harada et al., 2019; Healy et al., 2019), suggesting the correlation between losses of ATP synthesis capacity and tolerance limits would hold regardless of methodology.

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

An alternative possibility is that hsps and mitochondrial function may interact to determine organismal thermal tolerance in *T. californicus*. For instance, hsps have the potential to buffer mitochondrial proteins against denaturation at high temperatures (Martin et al., 1992), and maintenance of ATP supply during heat stress may be necessary to support effective heat-shock responses (Zhang & Dong, 2021). The greater induction of hsps in warm-adapted populations compared to cold-adapted populations of *T. californicus* (Schoville et al., 2012; Tangwancharoen et al., 2018), and the larger changes in CT<sub>max</sub> than in the thermal limits of ATP synthesis capacity among populations are consistent with the expectations of these potential

interactions. However, although increased expression of hsp mRNA can occur rapidly in *T. californicus* (Harada & Burton, 2019), the total time of a CT<sub>max</sub> trial (~1.5 h) may be too short to produce substantial increases in the hsp protein pool (e.g., Tomanek, 2008), particularly compared to the longer time periods (~3 d) that are used to assess lethal metrics of thermal tolerance following an abrupt heat stress in this species (Willett, 2010; Kelly et al., 2012; Leong et al., 2018). Regardless of these different possibilities for a mechanistic link between ATP synthesis capacity and upper thermal tolerance, our data clearly show that the two traits are associated among populations. Given the latitudinal variation in upper thermal tolerance in this species is thought to be adaptive (e.g., Pereira et al., 2017), our data also suggest that local thermal adaptation of mitochondrial function is pervasive in *T. californicus*.

Although ATP synthesis rates were not assessed at temperatures below 20 °C in the current study, the shapes of the TPCs for ATP synthesis among populations were consistent with potential tradeoffs between mitochondrial performance at cold and warm temperatures. In general, maximal ATP synthesis rates were higher in northern populations than in southern populations at low temperatures (20 and 25 °C). This countergradient pattern may compensate for the slowing thermodynamic effect of cold on biological reaction rates (Conover & Schultz, 1995). Thus, it is possible that selection to maintain the structural flexibility required for function at low temperatures (Somero et al., 2017) reduces the resilience of ATP synthesis capacity at high temperatures in northern populations. Given the intimate reliance of ATP synthesis and ETS function on the inner mitochondrial membrane, a role for variation in membrane fluidity and phospholipid composition (Hazel, 1984; Chung et al., 2018) in these effects is a reasonable hypothesis that merits further investigation. Harada et al. (2019) found that ATP synthesis fueled through ETS complex II was less resilient to high temperatures than synthesis fueled through

complex I. Therefore, variation in the effects of high temperatures on the interactions between these complexes and the other proteins of the ETS or the phospholipids of the inner mitochondrial membrane is also an intriguing possibility.

Taken together, our results demonstrate that mitochondrial performance has likely been shaped by local thermal adaptation across latitudes in *T. californicus*. The genetic basis of this adaptation is evident from the common-garden approach used in this study; despite multiple generations of culture under laboratory conditions, isolated mitochondria retained population-specific TPCs that reflect expected patterns for known variation in air temperatures among habitats. Loss of ATP synthesis capacity occurs at similar temperatures to whole-organism thermal tolerance limits with a strong association between the two traits among populations, which is consistent with a possible mechanistic role for loss of mitochondrial performance in determining maximum tolerated temperatures in this ectothermic species.

## References

268269

- Barreto, F.S., Schoville, S.D., Burton, R.S., 2015. Reverse genetics in the tide pool: knock-down
- of target gene expression via RNA interference in the copepod *Tigriopus californicus*. Mol. Ecol.
- 272 Resour. 15, 868-879.

273

- Barreto, F.S., Watson, E.T., Lima, T.G., Willett, C.S., Edmands, S., Li, W., Burton, R.S., 2018.
- 275 Genomic signatures of mitonuclear coevolution across populations of *Tigriopus californicus*.
- 276 Nat. Ecol. Evol. 2, 1250-1257.

277

- Burton, R.S., Feldman, M.W., 1981. Population genetics of *Tigriopus californicus*. II.
- 279 Differentiation among neighboring populations. Evolution 35, 1192-1205.

280

- 281 Bryant, H.J., Chung, D.J., Schulte, P.M., 2018. Subspecies differences in thermal acclimation of
- 282 mitochondrial function and the role of uncoupling proteins in killifish. J. Exp. Biol. 221,
- 283 jeb186320.

284

- 285 Camus, M.F., Wolff, J.N., Sgrò, C.M., Dowling, D.K., 2017. Experimental support that natural
- selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian
- 287 Drosophila melanogaster. Mol. Biol. Evol. 34, 2600-2612.

288

- 289 Christen, F., Desrosiers, V., Dupont-Cyr, B.A., Vandenberg, G.W., Le François, N.R., Tardif,
- J.C., Dufresne, F., Lamarre, S.G., Blier, P.U., 2018. Thermal tolerance and thermal sensitivity of
- 291 heart mitochondria: mitochondrial integrity and ROS production. Free Radic. Biol. Med. 116,
- 292 11-18.

293

- 294 Chung, D.J., Schulte, P.M., 2015. Mechanisms and costs of mitochondrial thermal acclimation in
- a eurythermal killifish (*Fundulus heteroclitus*). J. Exp. Biol. 218, 1621-1631.

296

- 297 Chung, D.J., Schulte, P.M., 2020. Mitochondria and the thermal limits of ectotherms. J. Exp.
- 298 Biol. 223, jeb227801.

299

- 300 Chung, D.J., Bryant, H.J., Schulte, P.M., 2017a. Thermal acclimation and subspecies-specific
- 301 effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus
- 302 heteroclitus). J. Exp. Biol. 220, 1459-1471.

303

- Chung, D.J., Morrison, P.R., Bryant, H.J., Jung, E., Brauner, C.J., Schulte, P.M., 2017b.
- Intraspecific variation and plasticity in mitochondrial oxygen binding affinity as a response to
- and environmental temperature. Sci. Rep. 7, 1-10.

307

- 308 Chung, D.J., Sparagna, G.C., Chicco, A.J., Schulte, P.M., 2018. Patterns of mitochondrial
- membrane remodeling parallel functional adaptations to thermal stress. J. Exp. Biol. 221,
- 310 jeb174458.

- Conover, D.O., Schultz, E.T., 1995. Phenotypic similarity and the evolutionary significance of
- 313 countergradient variation. Trends Ecol. Evol. 10, 248-252.

- Eliason, E.J., Clark, T.D., Hague, M.J., Hanson, L.M., Gallagher, Z.S., Jeffries, K.M., Gale,
- 315 M.K., Patterson, D.A., Hinch, S.G., Farrell, A.P., 2011. Differences in thermal tolerance among
- 316 sockeye salmon populations. Science 332, 109-112.

317

- Gleason, L.U., Burton, R.S., 2015. RNA-seq reveals regional differences in transcriptome
- response to heat stress in the marine snail *Chlorostoma funebralis*. Mol. Ecol. 24, 610-627.

320

- Graham, A.M., Barreto, F.S., 2019. Novel microRNAs are associated with population divergence
- in transcriptional response to thermal stress in an intertidal copepod. Mol. Ecol. 28, 584-599.

323

- Harada, A.E., Burton, R.S., 2019. Ecologically relevant temperature ramping rates enhance the
- protective heat shock response in an intertidal ectotherm. Physiol. Biochem. Zool. 92, 152-162.

326

- Harada, A.E., Healy, T.M., Burton, R.S., 2019. Variation in thermal tolerance and its relationship
- 328 to mitochondrial function across populations of *Tigriopus californicus*. Front. Physiol. 10, 213.

329

- Hazel, J.R., 1984. Effects of temperature on the structure and metabolism of cell membranes in
- fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R460-R470.

332

- Healy, T.M., Bock, A.K., Burton, R.S., 2019. Variation in developmental temperature alters
- adulthood plasticity of thermal tolerance in *Tigriopus californicus*. J. Exp. Biol. 222, jeb213405.

335

- 336 Iftikar, F.I., Hickey, A.J., 2013. Do mitochondria limit hot fish hearts? Understanding the role of
- mitochondrial function with heat stress in *Notolabrus celidotus*. PLoS One 8, e64120.

338

- 339 Iftikar, F.I., MacDonald, J.R., Baker, D.W., Renshaw, G.M., Hickey, A.J., 2014. Could thermal
- sensitivity of mitochondria determine species distribution in a changing climate?. J. Exp. Biol.
- 341 217, 2348-2357.

342

- Jutfelt, F., Norin, T., Ern, R., Overgaard, J., Wang, T., McKenzie, D.J., Lefevre, S., Nilsson,
- 344 G.E., Metcalfe, N.B., Hickey, A.J., Brijs, J., 2018. Oxygen-and capacity-limited thermal
- tolerance: blurring ecology and physiology. J. Exp. Biol. 221, jeb169615.

346

- Kelly, M.W., Sanford, E., Grosberg, R.K., 2012. Limited potential for adaptation to climate
- change in a broadly distributed marine crustacean. Proc. R. Soc. B: Biol. Sci. 279, 349-356.

349

- Kelly, M.W., Pankey, M.S., DeBiasse, M.B., Plachetzki, D.C., 2017. Adaptation to heat stress
- reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398-406.

352

- Kuznetsova, A., Brockhoff, P.B., Christensen, R.H., 2017. lmerTest package: tests in linear
- mixed effects models. J. Stat. Softw. 82, 1-26.

355

- Leong, W., Sun, P.Y., Edmands, S., 2018. Latitudinal clines in temperature and salinity tolerance
- in tidepool copepods. J. Hered. 109, 71-77.

- Martin, J., Horwich, A.L., Hartl, F.U., 1992. Prevention of protein denaturation under heat stress
- 360 by the chaperonin Hsp60. Science 258, 995-998.

361

- Michaelsen, J., Fago, A., Bundgaard, A., 2021. High temperature impairs mitochondrial function
- in rainbow trout cardiac mitochondria. J. Exp. Biol. 224, jeb242382.

364

- 365 Miller, N.A., Stillman, J.H., 2012. Neural thermal performance in porcelain crabs, genus
- 366 Petrolisthes. Physiol. Biochem. Zool. 85, 29-39.

367

- Pereira, R.J., Sasaki, M.C., Burton, R.S., 2017. Adaptation to a latitudinal thermal gradient
- within a widespread copepod species: the contributions of genetic divergence and phenotypic
- 370 plasticity. Proc. R. Soc. B: Biol. Sci. 284, p.20170236.

371

- Phillips, B.C., 2020. 'Reproductive Isolation, and the Evolution of Sex Determination
- 373 Mechanisms in the Copepod *Tigriopus Californicus*', PhD thesis, University of Southern
- 374 California, Los Angeles.

375

- Pörtner, H.O., 2002. Climate variations and the physiological basis of temperature dependent
- biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem.
- 378 Physiol. A Mol. Integr. Physiol. 132, 739-761.

379

- Pörtner, H.O., Bock, C., Mark, F.C., 2017. Oxygen-and capacity-limited thermal tolerance:
- bridging ecology and physiology. J. Exp. Biol. 220, 2685-2696.

382

- Pörtner, H.O., Bock, C., Mark, F.C., 2018. Connecting to ecology: a challenge for comparative
- 384 physiologists? Response to 'Oxygen-and capacity-limited thermal tolerance: blurring ecology
- and physiology'. J. Exp. Biol. 221, jeb174185.

386

- 387 R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for
- 388 Statistical Computing, Vienna, Austria. https://www.R-project.org

389

- 390 Schoville, S.D., Barreto, F.S., Moy, G.W., Wolff, A., Burton, R.S., 2012. Investigating the
- 391 molecular basis of local adaptation to thermal stress: population differences in gene expression
- across the transcriptome of the copepod *Tigriopus californicus*. BMC Evol. Biol. 12, 1-17.

393

- 394 Somero, G.N., 2002. Thermal physiology and vertical zonation of intertidal animals: optima,
- limits, and costs of living. Integr. Comp. Biol. 42, 780-789.

396

- 397 Somero, G.N., Dahlhoff, E., Lin, J.J., 1996. Stenotherms and eurytherms: mechanisms
- establishing thermal optima and tolerance ranges. In: Johnston, I.A., Bennett, A.F. (Eds.),
- 399 Animals and Temperature; Phenotypic and Evolutionary Adaptation, Cambridge University
- 400 Press, Cambridge, pp. 55-78.

- 402 Somero, G.N., Lockwood, B.L., Tomanek, L., 2017. Biochemical Adaptation: Response to
- Environmental Challenges, from Life's Origins to the Anthropocene. Sinauer Associates, Inc.,
- 404 Sunderland, MA.

405 406 Sunday, J.M., Bates, A.E., Dulvy, N.K., 2012. Thermal tolerance and the global redistribution of 407 animals. Nat. Clim. Change 2, 686-690.

408

Tangwancharoen, S., Moy, G.W., Burton, R.S., 2018. Multiple modes of adaptation: regulatory and structural evolution in a small heat shock protein gene. Mol. Biol. Evol. 35, 2110-2119.

411

Tangwancharoen, S., Semmens, B.X., Burton, R.S., 2020. Allele-specific expression and evolution of gene regulation underlying acute heat stress response and local adaptation in the copepod *Tigriopus californicus*. Journal of Heredity, 111(6), pp.539-547.

415

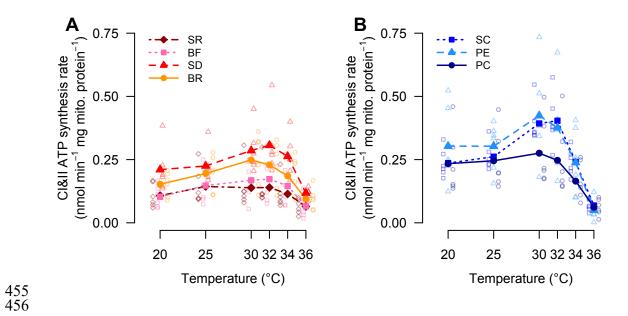
Tomanek, L., 2008. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response. Physiol. Biochem. Zool. 81, 709-418 717.

419

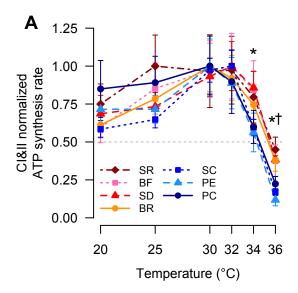
Willett, C.S., 2010. Potential fitness trade-offs for thermal tolerance in the intertidal copepod *Tigriopus californicus*. Evolution 64, 2521-2534.

422

Willett, C.S., Son, C., 2018. The evolution of the thermal niche across locally adapted
populations of the copepod *Tigriopus californicus*. Bull. South. Calif. Acad. Sci., 117, 150-156.


425

Zhang, W., Dong, Y., 2021. Membrane lipid metabolism, heat shock response and energy costs
mediate the interaction between acclimatization and heat-hardening response in the razor clam
*Sinonovacula constricta*. J. Exp. Biol. 224, jeb243031.


## Figure legends

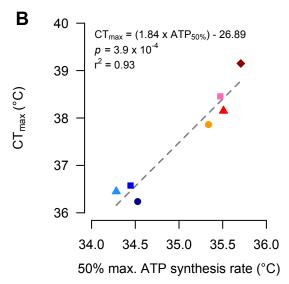

Fig. 1. Thermal performance curves for maximal complex I and II (CI&II)-fueled ATP synthesis rates in mitochondria isolated from four warm-adapted southern populations (A – San Rogue [SR]: dark red, diamonds, dotted-dashed line; La Bufadora [BF]: pink, squares, dotted line; San Diego [SD]: red, triangles, dashed line; Bird Rock [BR]: orange, circles, solid line) and three cold-adapted northern populations (B – Santa Cruz [SC]: blue, squares, dotted line; Pescadero Beach [PE]: light blue, triangles, dashed line; Pacific Crest [PC]: navy, circles, solid line) of *T. californicus*. Filled symbols show population means, and smaller empty background symbols display individual data points.

Fig. 2. Maximal complex I and II (CI&II)-fueled ATP synthesis rates in seven populations of *T. californicus* normalized to the maximum value measured across 20 to 36 °C (A), and the relationship between critical thermal maxima (CT<sub>max</sub>) from Healy et al. (2019) and the high temperatures resulting in 50% maximal ATP synthesis rate among populations (B). Populations: San Rogue (SR: dark red, diamonds, dotted-dashed line), La Bufadora (BF: pink, squares, dotted line), San Diego (SD: red, triangles, dashed line), Bird Rock (BR: orange, circles, solid line), Santa Cruz (SC: blue, squares, dotted line), Pescadero Beach (PE: light blue, triangles, dashed line) and Pacific Crest (PC: navy, circles, solid line). A: asterisks – significant difference between southern and northern populations (SR, BF, SD and BR vs SC, PE and PC), dagger – significant difference among populations, dotted light grey line – 50% threshold for ATP synthesis rate. B: dashed dark grey line – line of best fit for significant correlation between CT<sub>max</sub> and the temperature of 50% maximal ATP synthesis rate.



457 Figure 1 





464 Figure 2