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Abstract

Background: Understanding the geographic distribution of Rickettsia montanensis infections in
Dermacentor variabilis is important for tick-borne disease management in the United States, as
both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial
diseases. Two previous studies modeled niche suitability for D. variabilis with and without R.
montanensis, from 2002-2012, indicating that the D. variabilis niche overestimates the infected

niche. This study updates these, adding data since 2012.

Methods: Newer surveillance and testing data were used to update Species Distribution Models
(SDMs) of D. variabilis, and R. montanensis infected D. variabilis, in the United States. Using

random forest (RF) models, found to perform best in previous work, we updated the SDMs and
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compared them with prior results. Warren’s | niche overlap metric was used to compare

between predicted suitability for all ticks and ‘R. montanensispathogen positive niche’ models

across datasets.

Results: Warren’s | indicated <2% change in predicted niche, and there was no change in order
of importance of environmental predictors, for D. variabilis or R. montanensis positive niche.
The updated D. variabilis niche model overpredicted suitability compared to the updated R.
montanensis positive niche in key peripheral parts of the range, but slightly underpredicted
through the northern and midwestern parts of the range. This reinforces previous findings of a

more constrained pathogenR. montanensis-positive niche than predicted by D. variabilis records

alone.

Conclusions: The consistency of predicted niche suitability for D. variabilis in the United
States, with the addition of nearly a decade of new data, corroborates this is a species with
generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low
suitability, included more southern areas, pointing to a need for continued and extended
monitoring and surveillance. This further underscores the importance of revisiting vector and

vector-borne disease distribution maps.

Keywords: Dermacentor variabilis, Rickettsia montanensis, Species distribution modeling, Tick-

borne disease
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Introduction

Species distribution models (SDMs) are increasingly utilized to estimate the geographic
distribution of infectious diseases, particularly those caused by agents transmitted by arthropod
vectors. The basic methodology for constructing SDMs (or ecological niche models) consists of
combining species occurrence data with continuous layers of environmental predictor variables,
which are fed into a modeling algorithm (Elith and Franklin, 2013; Franklin, 2010; Peterson and
Soberon, 2012). The resulting model is projected onto a defined study area, yielding spatially
continuous habitat suitability estimates for areas of the landscape that were not originally
sampled. Species distribution modeling is an intuitive approach to delineating vector-borne
disease ranges that is logistically feasible, particularly when surveillance programs or capacity
for pathogen testing are limited. When faced with multiple unknowns (e.g., unknown
transmission cycles, emerging novel pathogens, etc.), the distribution of vectors on the
landscape are sometimes used in a public health context to approximate risk of exposure to
pathogens (Lippi et al., 2021b, 2021c). Yet, it is important to differentiate between the
distribution of the vectors and that of the pathogens they transmit. Vector presence is not in
itself sufficient for pathogen transmission to occur. Precise delineation of geographic risk
facilitates the development of targeted health policies, educational campaigns, and interventions

with the potential to avert the misallocation of limited resources.

The need for geographically conservative assessments of transmission risk is perhaps most
evident with cosmopolitan vectors, whose broad geographic ranges may far exceed the limits of
known transmission to humans. The American dog tick (Dermacentor variabilis) is a medically
important arthropod vector of several zoonotic pathogens, including the causative agents of
Rocky Mountain spotted fever (RMSF) (Rickettsia rickettsii) (Brumpt; Rickettsiales:
Rickettsiaceae) and tularemia (Francisella tularensis) (Dorofe'ev; McCoy and Chapin;

Thiotrichales: Francisellaceae). Both of these diseases can be fatal without medical
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intervention, perhaps justifying medical advisories that equate risk of tick exposure with
transmission risk, particularly when surveillance data are scarce, or in cases where ticks
themselves act as reservoir hosts (CDC, 2022). In addition to RMSF, D. variabilis also transmits
other spotted fever group (SFG) rickettsial agents, as-wel-asand R. montanensis (Rickettsiales:
Rickettsiaceae), a rickettsial group agent that-is-suspected of causing nonfebrile rashes in

humans, and which has caused clinical symptoms in an animal model (McQuiston et al. 2012;

Snellgrove et al. 2021). Although not included in the case definition for SFG pathogens, it is
likely that R. montanensis infections may account for some of the recent increases in SFG
reporting, as immunological cross-reactivity between rickettsial pathogens is frequently

observed with commonly used serologic tests (Abdad et al. 2018). Of note, a species split has

recently been proposed for the vector, D. variabilis, has-recently-been-proposed-to-be-split-into

two-species;-with a western portion of the population as a distinct species, D. similis (Lado et al.,

2021); however, we do not have the opportunity to differentiate between them in this study.

Determining the geographic risk of D. variabilis infection with R. montanensis has profound
implications for the management of tick-borne diseases in the United States, as both a tick-
borne agent of interest and a potential confounder in the surveillance of other Rickettsial
diseases. A model of the distribution of D. variabilis and R. montanensis positive samples was
published by St John et al. in 2016, using MaxEnt modeling to describe and predict
environmental suitability in the United States, based on data obtained through the Department
of Defense (DoD) Human Tick Test Kit Program, now called the Military Tick
Identification/Infection Confirmation Kit Program (MilTICK). These data were available at the
time through the VectorMap online data platform (http://vectormap.si.edu/dataportal/) (St John
et al., 2016). The MIITICK data were human-biting ticks submitted from U.S. military installations
as part of a tick-testing program; test results were reported back to the bitten individuals, and

the data were also used as passive vector surveillance. In 2021, Lippi et al. re-examined the
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distribution of D. variabilis and the R. montanensis infected niche in the USA, both to
understand whether predicted risk of suitability for tick encounters or infected tick encounters
were distinct, and to explore and compare multiple modeling approaches for assessing the
distribution of this tick vector (Lippi et al., 2021a). The 2021 study was-able-to-leveraged the
original dataset used in the 2016 study, and used a refined set of environmental predictors to
compare a suite of Species Distribution Model (SDM) approaches. Lippi et al. found support for
an “infected niche” within the broader distribution of D. variabilis which was largely consistent
across models, though the Random Forests (RF) approach (Breiman, 2001) provided the best
performing models, given the available data (Lippi et al., 2021a). Though somewhat limited in
terms of the full geographic distribution of D. variabilis ticks (i.e., few locations were reported
from the tick’s southern extent), the dataset used-in-these-studies-provided a rare opportunity to

directly assess the distribution of pathegens-infectious agents within vectors, as every individual

tick collected had been tested for R. montanensis as part of an extensive passive surveillance
network. Both of these prior studies demonstrated that D. variabilis ticks infected with R.
montanensis had estimated geographic distributions that were considerably restricted compared
to that of D. variabilis alone, thus supporting an “infected niche” that exists as a subset of the

vector’s full range.

In the current study, we revise the D. variabilis distribution maps using occurrence data updated
with novel surveillance points collected since 2012, and further refine the environmental
variables according to current best practices using the RF approach (Escobar et al., 2014;
Valavi et al., 2021). We explore whether the additional data impact the estimated suitability
distribution, the relative importance of environmental input variables, and mapped prediction

outputs.

Methods
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Tick Surveillance Data — Two previous studies on D. variabilis in the United States were
conducted using occurrence locations recorded in the continental United States from 2002 to
2012, where ticks were tested for R. montanensis as part of MilTICK, and are described in St
John et al. (2016) and Lippi et al. (2021) (Lippi et al., 2021a; St John et al., 2016).
Georeferenced data were openly available through VectorMap
(http://vectormap.si.edu/dataportal/), a project of the Walter Reed Bioinformatics Unit (WRBU),
housed at the Smithsonian Institution Washington DC (St John et al., 2016). All ticks submitted
through MIITICK are tested for rickettsial infectionspathegens via PCR as previously described
(Milholland et. al., 2021, Stromdahl et al., 2011), providing information on infection status (i.e.,
true presence or absence) for the entire dataset. Exposure locations were determined by asking
MIITICK participants to self-report where the tick bite was most likely acquired, accounting for
travel history. If no separate information on tick-bite location was submitted, ticks were assumed

to be acquired on or near the military installation from which the tick was submitted.

New records of D. variabilis reported and tested for R. montanensis through MilTICK since 2012
through 2021 were made available for this study. These data were de-identified, and though
general locality data were provided (e.g., military installation where reported, or towns and cities
where ticks were collected), positional coordinates were not provided. New surveillance data
were manually georeferenced for this study, following the general protocol reported in the
metadata of the original dataset (i.e., 2002-2012 records) georeferenced for TickMap by the
WRBU. Geographic coordinates (i.e., latitude and longitude) were assigned to records, taking
the centroid of named locations found in Google Maps. Spatial uncertainty for points was
established based on the spatial extent of reported locations (e.g., municipal boundaries,
reported area of military installations, etc.). We excluded records where the spatial uncertainty
exceeded 10km, ensuring that the spatial resolution of the St. John et al. (2016) and Lippi et al.

(2021) studies was matched for all analyses.
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We removed duplicate records and records without pathegen-rickettsial infection testing results

(n=14). Data thinning on the remaining species occurrence points was performed via the
‘spThin’ package in R (ver. 4.1.2) (R Core Team 2019), which uses a spatial thinning algorithm
to randomly remove excess occurrence locations within a specified distance threshold (Aiello-
Lammens et al., 2015). This was performed for both the original data in the Lippi et al. 2021
study and the updated dataset to reduce susceptibility to geographic sampling bias, for
example, when overrepresented locations erroneously drive species environmental associations
due to repeated observations at discrete locations. Due to the passive nature of the tick
surveillance program, it was deemed necessary to thin occurrences and minimize the potential
effect of sampling bias, where locations near medical facilities and military installations may be
inherently overrepresented. This process resulted in one unique, randomly selected location per
10km, and was performed on the full dataset of tick records, and on the subset of ticks that

tested positive for R. montanensis.

The original dataset used to build the distribution models reported in Lippi et al. 2021 was then
compared to an updated dataset, reflecting new surveillance data. Because new surveillance
data consisted of fewer records compared to the original study, the updated dataset was
comprised of both original surveillance data and new surveillance records. Following the
framework of Lippi et al. 2021, we estimated separate geographic distributions of D. variabilis,
and the subset of records that tested positive for R. montanensis infections, for both the original
and updated tick surveillance records. Environmental data layers used in modeling consisted of
interpolated bioclimatic (bioclim) layers from WorldClim (ver. 2), and gridded soil variables (Ocm
standard depth) taken from International Soil Reference Information Centre (ISRIC) SoilGrids
(Fick and Hijmans, 2017; Hengl et al., 2017). Gridded environmental data inputs were used at
10km resolution to match the scale of tick occurrence data. Bioclim layers with known errors

(i.e., Bio8, Bio9, Bio18, and Bio19) were removed a priori, and Variance Inflation Factors-(VIF)
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was-were used to control for collinearity in the remaining variables, with an exclusion threshold

of 10 ({th=10) (Escobar et al., 2014). The final set of variables used to build models included
annual mean temperature (Bio1), mean diurnal range (Bio2), temperature seasonality (Bio4),
precipitation of wettest month (Bio13), precipitation of driest month (Bio14), precipitation
seasonality (Bio15), soil organic carbon density (OCDENS), available soil water capacity until

wilting point (WWP), and soil pH (PHIHOX).

Random forests (RF) modeling, implemented in R with the package ‘sdm’, was used to estimate

tick distributions, following recommendations for settings and parameters described in Valavi et
al 2021 (Valavi et al., 2021). We ran 500 RF model replicates for each dataset of occurrence

points (i.e., original and updated records for all D. variabilis, and original and updated records

for only D. variabilis infected with R. montanensis), averaging projected model output to produce

four estimated distributions. Average model accuracy metrics for each experiment were
calculated to assess the predictive accuracy of SDMs against a random holdout of 25% data
from each dataset, respectively. Four measures were calculated to assess model accuracy, the
receiver operator characteristic (ROC) curve with area under the curve (AUC), true skill statistic
(TSS), model deviance, and mean omission (i.e., false negatives). We quantified the niche
overlap between averaged models with the Warren’s | index, calculated in R with the package
‘spatialEco’ (Warren et al., 2008). The | statistic is an indicator of the similarity between two
distributions, with values ranging from O (i.e., no overlap in the niche) to 1 (i.e., the niche is
identical). A difference map to assess agreement in suitability predictions between the updated
full dataset and infected dataset models was generated in R using the packages Raster and

RasterVis by taking the difference of model output rasters and plotting them.

Results
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Updated input surveillance data increased our sample sizes for the full dataset (original n=432,
updated n=525), and for the ticks positively identified for R. montanensis infection (original
n=44, updated n=63). We found that updating the input data increased the spatial extent of
predicted suitability for both the full dataset of all ticks (Figure 1 A (original) and B (updated))
and for the infected dataset (Figure 1 C (original) and D (updated)). Although we made no
distinction for potential records of the newly described species D. similis, a few occurrence
points were from the Western United States (original n=10, updated n=21). Model accuracy
metrics for averaged RF models across the four datasets are presented in Table 1. Accuracy
metrics across models indicated generally good performance, with AUC values exceeding 0.90,
and TSS values greater than 0.64. Though comparable in output, averaged models made with
updated data performed lower than models made with original datasets, indicated by lower AUC
and TSS values, and higher deviance and omission. A Warren’s | index comparison of the
original and updated dataset suitability predictions for the full and infected niche, showed they

differed by less than 2% each (full dataset: full dataset =0.981, positive dataset: positive dataset

=0.986).

The updated R. montanensis positive ticksks, as in the original analyses, are predicted to have
a niche which is a subset of the full predicted niche (Figure 1D). The Warren’s | comparisons of
the ‘infected niche’ and the full datasets for original (full:infected =0.950), and updated datasets
(full:infected = 0.968) suggest that these are not dissimilar predicted niche distributions where

they overlap, yet they are not capturing fully identical distributions.
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The importance of variables underlying model predictions varied across datasets, although
precipitation seasonality (Bio15) was the top contributing environmental predictor in all models
(Fig. 2). Mean diurnal range (Bio2) and precipitation of driest month (Bio14) were also relatively
important variables in models of both the original and updated full tick datasets, though these
variables did not contribute highly to the models of infected tick distributions. Temperature

seasonality (Bio4), was-net-a-high-contributingwhile not identified as a highly important variable

across models, but-did-contributed more to infected tick distributions, relative to the full tick

models.

To visualize the difference in predicted suitability for all ticks and that predicted for-the

pathegen-positive ticks, we visualized the difference in mapped suitability estimates from
updated models (Fig. 3). The resulting map highlights the overprediction (redder colors) or
underprediction (darker blue colors) of a model trained on all surveilled ticks, compared to one
trained on R. montanensis positive ticks. Infected ticks are overpredicted by the model of all
ticks along the southeastern and western peripheries of the infected tick distribution, and
underpredicted to a lesser degree, along the northern border and through parts of the mid-

Atlantic to midwestern states (Figure 3).
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Discussion

A number of factors exist that influence SDM output, including sampling bias, choice of
environmental predictors, modeling algorithm, and other user-specified inputs (Araujo et al.,
2019; Valavi et al., 2021). In this study, we updated previously published RF models of D.
variabilis and D. variabilis infected with R. montanensis. This update was made possible by the
addition of surveillance and testing data to the original dataset used. We thus explored what
impact the additional data had on predictions found previously, via modeling both datasets and
comparing predicted suitability with a niche overlap metric, Warren’s |, and presenting the
mapped output of modeled predictions using the original and updated datasets. We additionally
presented a visualization of agreement, highlighting areas of over and underprediction of the

infected niche by the overall niche prediction.

Models made with both datasets were generally high-performing, and overlap indices showed
that suitability predictions varied-changed only slightly with the inclusion of novel surveillance
data. The estimated range of D. variabilis primarily extends throughout the eastern United
States, with the highest predicted probabilities spanning areas in the Midwest, Mid-Atlantic, and
Northeast regions. The southern boundary of D. variabilis occurrence was not well captured in
Lippi et al. 2021, owing to limited data points from this region in the original MilTICK dataset.
Although records of ticks from southern locations (e.g. Texas and peninsular Florida) exist in
online repositories, these records were not included in efforts to directly compare distributions of

ticks of known infection status. Notably, the predicted geographic distribution for D. variabilis
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extends further South in the updated model, indicated by higher probabilities of suitability in

Texas and Florida.

The updated model set showed similar patterns of variable importance, with the overall tick

distribution having higher importance on variables capturing the climatic variability, than the

constrained infected niche, in several variables. There were no striking shifts in these patterns,

and the relative weightings were quite consistent, but it is notable that the role of ‘seasonality’ as

captured by Bioclim variables was more important for updated ticks when it was precipitation,

and more important for the updated infected ticks, when it was temperature. This points to the

interesting roles of the components of climate in shaping the niche for these vectors.

The predicted suitability distribution of D. variabilis infected with R. montanensis, or infected
niche, is geographically constrained, compared to the full predicted suitability distribution of D.
variabilis, regardless of data inputs. Areas of range disagreement, highlighted by the difference
map, are most prominent along the southern and western peripheries of the full D. variabilis
range in the eastern US, as well as on the west coast. A potential explanation for this kind of
pattern is that in the more established parts of the range - i.e. the more central parts of predicted
range - there may be higher R. montanensis exposure risk. For different tick-borne pathogens,
and even for different species of ticks, evidence of patterns of expansion by both the vector and
the pathogen, together or temporally lagged have varied (Burrows et al., 2021; Dahlgren et al.,
2016; Fornadel et al., 2011). This highlights the limitations inherent in using vector distribution
maps as proxies for transmission risk maps directly; incorporating pathogen testing results into
this type of distribution modeling can help constrain the area most likely to be important for
disease transmission exposure risk. This is particularly germane for a generalist vector such as
D. variabilis, where the presence of the pathogen in question may be patchily distributed.

Disagreement among model outputs along the West coast may also be influenced by the

inclusion of D. variabilis records from California, Oregon, and Washington. The western
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population of D.variabilis has recently been proposed as a new species (Dermacentor similis),

and thus may have fundamentally different habitat suitability requirements (Lado et al., 2021).

Dermacentor ticks are receiving increasing attention as significant vectors of zoonotic
pathogens, and there have been recent calls for closer monitoring of understudied species
(Lippi et al., 2021c; Martin et al., 2022). Species distribution modeling offers a framework for
rapidly estimating potential distributions of vectors when ample occurrence data are available.
Yet, there are considerable ramifications that may arise if models are put into public health
practice without thorough assessment (Erdemir et al., 2020). It is therefore necessary to
periodically review estimates of risk as new data or methods become available. However, in this
study we found that an additional nine years of passive surveillance data resulted in negligible
differences in distribution estimates. This points to the benefit of augmenting existing
surveillance to target undersampled areas, and highlights the need to expand pathogen testing

capabilities to other existing networks. We limited ourselves in our previous study (Lippi et al.,

2021a) to building models with tick occurrence data from the MilTICK surveillance program

because our analysis hinged on knowing the infection status of each tick. Yet, future modeling

efforts could include targeted surveillance datasets from undersampled-additional locations,

provided that analogous testing data for infection status are available. Widespread, county-level

surveillance for D. variabilis in the United States is currently limited (Lehane et al., 2019).
Pathogens with low detection rates may particularly benefit from targeted, active surveillance
strategies to delineate risk. In this study, updated passive surveillance data yielded only 19
novel spatially unique records of infected ticks after thinning. To contrast, a recent study that
targeted a discrete area in Northern Wisconsin, an area of low predicted suitability in our
models, successfully detected R. montanensis in D. variabilis (Vincent and Hulstrand, 2022).
Focused testing efforts, particularly in locations bordering areas of range disagreement, may

help resolve the limits of exposure risk and facilitate targeted monitoring efforts.
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In conclusion, infected ticks are predicted to have a distribution that is a subset of the full vector
range, a finding which is consistent across original and updated data inputs. For a generalist
vector such as D. variabilis, ascertaining the key areas of pathogen exposure risk within such a
large range of predicted suitability, is an important potential tool for future surveillance and
monitoring. Revisiting the estimation of tick distributions is a necessary endeavor, particularly as
we gain more information on tick-borne transmission cycles through surveillance and laboratory
studies. There are few occurrence records that establish D. variabilis at the county level
throughout our predicted suitability range in the contiguous United States, pointing to a general
need for increased surveillance activities (Lehane et al., 2019). Yet, placing emphasis solely on
new data collection for the refinement of spatial risk assessments may not yield dramatic gains
in information. This is perhaps most evident in the passive surveillance of pathogens with low
detection rates. Additionally, we suggest that there is a great need to validate the data in areas
identified as high risk through active surveillance, particularly where passive surveillance is
lacking. Moving forward, efforts to further refine geographic risk estimates of tick-borne

pathogens will benefit from targeted surveillance to resolve distributional boundaries.
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Tables

Table 1. Average model accuracy metrics for Random Forest models, using different datasets

of tick occurrences.

Dataset Subset AUC Deviance TSS Omission
Original* All Ticks 0.953 0.570 0.769 0.116
Original* Positive Ticks | 0.930 0.690 0.710 0.145
Updated All Ticks 0.918 0.742 0.692 0.154
Updated Positive Ticks [ 0.905 0.812 0.643 0.179

*data used in Lippi et al. 2021

Figures

Figure 1: Predicted habitat suitability from average output of 500 random forest models

for the original (A, C) and updated (B, D) datasets for all D. variabilis data (A, B), and D.

variabilis infected with R. montanensis (C, D) — darker/purple colors denote low suitability, and

yellow colors indicate areas of high suitability.

Figure 2: Relative variable importance from average output of 500 random forest models for the

original and updated datasets for all D. variabilis data, and D. variabilis infected with R.

montanensis.

Figure 3: Assessing differences in predicted suitability for an average of 500 Random Forest

models for D. variabilis and those infected with R. montanesis - redder colors depict

overprediction by a tick-only model, and darker blue colors, underprediction.
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Figure 1: Predicted habitat suitability from average output of 500 random forest models for the original (A,
C) and updated (B, D) datasets for all D. variabilis data (A, B), and D. variabilis infected with R.
montanensis (C, D) - darker/purple colors denote low suitability, and yellow colors indicate areas of high
suitability.
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Figure 3: Assessing differences in predicted suitability for an average of 500 Random Forest models for D.
variabilis and those infected with R. montanesis - redder colors depict overprediction by a tick-only model,
and darker blue colors, underprediction.
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