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13 Abstract 

14 Background: Understanding the geographic distribution of Rickettsia montanensis infections in 

15 Dermacentor variabilis is important for tick-borne disease management in the United States, as 

16 both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial 

17 diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. 

18 montanensis, from 2002-2012, indicating that the D. variabilis niche overestimates the infected 

19 niche. This study updates these, adding data since 2012.

20 Methods: Newer surveillance and testing data were used to update Species Distribution Models 

21 (SDMs) of D. variabilis, and R. montanensis infected D. variabilis, in the United States. Using 

22 random forest (RF) models, found to perform best in previous work, we updated the SDMs and 
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23 compared them with prior results. Warren’s I niche overlap metric was used to compare 

24 between predicted suitability for all ticks and ‘R. montanensispathogen positive niche’ models 

25 across datasets.  

26 Results: Warren’s I indicated <2% change in predicted niche, and there was no change in order 

27 of importance of environmental predictors, for D. variabilis or R. montanensis positive niche. 

28 The updated D. variabilis niche model overpredicted suitability compared to the updated R. 

29 montanensis positive niche in key peripheral parts of the range, but slightly underpredicted 

30 through the northern and midwestern parts of the range. This reinforces previous findings of a 

31 more constrained pathogenR. montanensis-positive niche than predicted by D. variabilis records 

32 alone.

33 Conclusions: The consistency of predicted niche suitability for D. variabilis in the United 

34 States, with the addition of nearly a decade of new data, corroborates this is a species with 

35 generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low 

36 suitability, included more southern areas, pointing to a need for continued and extended 

37 monitoring and surveillance. This further underscores the importance of revisiting vector and 

38 vector-borne disease distribution maps.  

39 Keywords: Dermacentor variabilis, Rickettsia montanensis, Species distribution modeling, Tick-

40 borne disease
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41 Introduction

42 Species distribution models (SDMs) are increasingly utilized to estimate the geographic 

43 distribution of infectious diseases, particularly those caused by agents transmitted by arthropod 

44 vectors. The basic methodology for constructing SDMs (or ecological niche models) consists of 

45 combining species occurrence data with continuous layers of environmental predictor variables, 

46 which are fed into a modeling algorithm (Elith and Franklin, 2013; Franklin, 2010; Peterson and 

47 Soberón, 2012). The resulting model is projected onto a defined study area, yielding spatially 

48 continuous habitat suitability estimates for areas of the landscape that were not originally 

49 sampled. Species distribution modeling is an intuitive approach to delineating vector-borne 

50 disease ranges that is logistically feasible, particularly when surveillance programs or capacity 

51 for pathogen testing are limited. When faced with multiple unknowns (e.g., unknown 

52 transmission cycles, emerging novel pathogens, etc.), the distribution of vectors on the 

53 landscape are sometimes used in a public health context to approximate risk of exposure to 

54 pathogens (Lippi et al., 2021b, 2021c). Yet, it is important to differentiate between the 

55 distribution of the vectors and that of the pathogens they transmit. Vector presence is not in 

56 itself sufficient for pathogen transmission to occur. Precise delineation of geographic risk 

57 facilitates the development of targeted health policies, educational campaigns, and interventions 

58 with the potential to avert the misallocation of limited resources.

59 The need for geographically conservative assessments of transmission risk is perhaps most 

60 evident with cosmopolitan vectors, whose broad geographic ranges may far exceed the limits of 

61 known transmission to humans. The American dog tick (Dermacentor variabilis) is a medically 

62 important arthropod vector of several zoonotic pathogens, including the causative agents of 

63 Rocky Mountain spotted fever (RMSF) (Rickettsia rickettsii) (Brumpt; Rickettsiales: 

64 Rickettsiaceae) and tularemia (Francisella tularensis) (Dorofe'ev; McCoy and Chapin; 

65 Thiotrichales: Francisellaceae). Both of these diseases can be fatal without medical 
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66 intervention, perhaps justifying medical advisories that equate risk of tick exposure with 

67 transmission risk, particularly when surveillance data are scarce, or in cases where ticks 

68 themselves act as reservoir hosts (CDC, 2022). In addition to RMSF, D. variabilis also transmits 

69 other spotted fever group (SFG) rickettsial agents, as well asand R. montanensis (Rickettsiales: 

70 Rickettsiaceae), a rickettsial group agent that is suspected of causing nonfebrile rashes in 

71 humans, and which has caused clinical symptoms in an animal model (McQuiston et al. 2012; 

72 Snellgrove et al. 2021). Although not included in the case definition for SFG pathogens, it is 

73 likely that R. montanensis infections may account for some of the recent increases in SFG 

74 reporting, as immunological cross-reactivity between rickettsial pathogens is frequently 

75 observed with commonly used serologic tests (Abdad et al. 2018). Of note, a species split has 

76 recently been proposed for the vector, D. variabilis, has recently been proposed to be split into 

77 two species, with a western portion of the population as a distinct species, D. similis (Lado et al., 

78 2021); however, we do not have the opportunity to differentiate between them in this study. 

79 Determining the geographic risk of D. variabilis infection with R. montanensis has profound 

80 implications for the management of tick-borne diseases in the United States, as both a tick-

81 borne agent of interest and a potential confounder in the surveillance of other Rickettsial 

82 diseases. A model of the distribution of D. variabilis and R. montanensis positive samples was 

83 published by St John et al. in 2016, using MaxEnt modeling to describe and predict 

84 environmental suitability in the United States, based on data obtained through the Department 

85 of Defense (DoD) Human Tick Test Kit Program, now called the Military Tick 

86 Identification/Infection Confirmation Kit Program (MilTICK). These data were available at the 

87 time through the VectorMap online data platform (http://vectormap.si.edu/dataportal/) (St John 

88 et al., 2016). The MilTICK data were human-biting ticks submitted from U.S. military installations 

89 as part of a tick-testing program; test results were reported back to the bitten individuals, and 

90 the data were also used as passive vector surveillance. In 2021, Lippi et al. re-examined the 
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91 distribution of D. variabilis and the R. montanensis infected niche in the USA, both to 

92 understand whether predicted risk of suitability for tick encounters or infected tick encounters 

93 were distinct, and to explore and compare multiple modeling approaches for assessing the 

94 distribution of this tick vector (Lippi et al., 2021a). The 2021 study was able to leveraged the 

95 original dataset used in the 2016 study, and used a refined set of environmental predictors to 

96 compare a suite of Species Distribution Model (SDM) approaches. Lippi et al. found support for 

97 an “infected niche” within the broader distribution of D. variabilis which was largely consistent 

98 across models, though the Random Forests (RF) approach (Breiman, 2001) provided the best 

99 performing models, given the available data (Lippi et al., 2021a). Though somewhat limited in 

100 terms of the full geographic distribution of D. variabilis ticks (i.e., few locations were reported 

101 from the tick’s southern extent), the dataset used in these studies provided a rare opportunity to 

102 directly assess the distribution of pathogens infectious agents within vectors, as every individual 

103 tick collected had been tested for R. montanensis as part of an extensive passive surveillance 

104 network. Both of these prior studies demonstrated that D. variabilis ticks infected with R. 

105 montanensis had estimated geographic distributions that were considerably restricted compared 

106 to that of D. variabilis alone, thus supporting an “infected niche” that exists as a subset of the 

107 vector’s full range.

108 In the current study, we revise the D. variabilis distribution maps using occurrence data updated 

109 with novel surveillance points collected since 2012, and further refine the environmental 

110 variables according to current best practices using the RF approach (Escobar et al., 2014; 

111 Valavi et al., 2021). We explore whether the additional data impact the estimated suitability 

112 distribution, the relative importance of environmental input variables, and mapped prediction 

113 outputs.    

114 Methods
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115 Tick Surveillance Data – Two previous studies on D. variabilis in the United States were 

116 conducted using occurrence locations recorded in the continental United States from 2002 to 

117 2012, where ticks were tested for R. montanensis as part of MilTICK, and are described in St 

118 John et al. (2016) and Lippi et al. (2021) (Lippi et al., 2021a; St John et al., 2016). 

119 Georeferenced data were openly available through VectorMap 

120 (http://vectormap.si.edu/dataportal/), a project of the Walter Reed Bioinformatics Unit (WRBU), 

121 housed at the Smithsonian Institution Washington DC (St John et al., 2016). All ticks submitted 

122 through MilTICK are tested for rickettsial infectionspathogens via PCR as previously described 

123 (Milholland et. al., 2021, Stromdahl et al., 2011), providing information on infection status (i.e., 

124 true presence or absence) for the entire dataset. Exposure locations were determined by asking 

125 MilTICK participants to self-report where the tick bite was most likely acquired, accounting for 

126 travel history. If no separate information on tick-bite location was submitted, ticks were assumed 

127 to be acquired on or near the military installation from which the tick was submitted. 

128 New records of D. variabilis reported and tested for R. montanensis through MilTICK since 2012 

129 through 2021 were made available for this study. These data were de-identified, and though 

130 general locality data were provided (e.g., military installation where reported, or towns and cities 

131 where ticks were collected), positional coordinates were not provided. New surveillance data 

132 were manually georeferenced for this study, following the general protocol reported in the 

133 metadata of the original dataset (i.e., 2002-2012 records) georeferenced for TickMap by the 

134 WRBU. Geographic coordinates (i.e., latitude and longitude) were assigned to records, taking 

135 the centroid of named locations found in Google Maps. Spatial uncertainty for points was 

136 established based on the spatial extent of reported locations (e.g., municipal boundaries, 

137 reported area of military installations, etc.). We excluded records where the spatial uncertainty 

138 exceeded 10km, ensuring that the spatial resolution of the St. John et al. (2016) and Lippi et al. 

139 (2021) studies was matched for all analyses.
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140 We removed duplicate records and records without pathogen rickettsial infection testing results 

141 (n=14). Data thinning on the remaining species occurrence points was performed via the 

142 ‘spThin’ package in R (ver. 4.1.2) (R Core Team 2019), which uses a spatial thinning algorithm 

143 to randomly remove excess occurrence locations within a specified distance threshold (Aiello-

144 Lammens et al., 2015). This was performed for both the original data in the Lippi et al. 2021 

145 study and the updated dataset to reduce susceptibility to geographic sampling bias, for 

146 example, when overrepresented locations erroneously drive species environmental associations 

147 due to repeated observations at discrete locations. Due to the passive nature of the tick 

148 surveillance program, it was deemed necessary to thin occurrences and minimize the potential 

149 effect of sampling bias, where locations near medical facilities and military installations may be 

150 inherently overrepresented. This process resulted in one unique, randomly selected location per 

151 10km, and was performed on the full dataset of tick records, and on the subset of ticks that 

152 tested positive for R. montanensis.

153 The original dataset used to build the distribution models reported in Lippi et al. 2021 was then 

154 compared to an updated dataset, reflecting new surveillance data. Because new surveillance 

155 data consisted of fewer records compared to the original study, the updated dataset was 

156 comprised of both original surveillance data and new surveillance records. Following the 

157 framework of Lippi et al. 2021, we estimated separate geographic distributions of D. variabilis, 

158 and the subset of records that tested positive for R. montanensis infections, for both the original 

159 and updated tick surveillance records. Environmental data layers used in modeling consisted of 

160 interpolated bioclimatic (bioclim) layers from WorldClim (ver. 2), and gridded soil variables (0cm 

161 standard depth) taken from International Soil Reference Information Centre (ISRIC) SoilGrids 

162 (Fick and Hijmans, 2017; Hengl et al., 2017). Gridded environmental data inputs were used at 

163 10km resolution to match the scale of tick occurrence data. Bioclim layers with known errors 

164 (i.e., Bio8, Bio9, Bio18, and Bio19) were removed a priori, and Variance Inflation Factors (VIF) 
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165 was were used to control for collinearity in the remaining variables, with an exclusion threshold 

166 of 10 ((th=10) (Escobar et al., 2014). The final set of variables used to build models included 

167 annual mean temperature (Bio1), mean diurnal range (Bio2), temperature seasonality (Bio4), 

168 precipitation of wettest month (Bio13), precipitation of driest month (Bio14), precipitation 

169 seasonality (Bio15), soil organic carbon density (OCDENS), available soil water capacity until 

170 wilting point (WWP), and soil pH (PHIHOX).

171 Random forests (RF) modeling, implemented in R with the package ‘sdm’, was used to estimate 

172 tick distributions, following recommendations for settings and parameters described in Valavi et 

173 al 2021 (Valavi et al., 2021). We ran 500 RF model replicates for each dataset of occurrence 

174 points (i.e., original and updated records for all D. variabilis, and original and updated records 

175 for only D. variabilis infected with R. montanensis), averaging projected model output to produce 

176 four estimated distributions. Average model accuracy metrics for each experiment were 

177 calculated to assess the predictive accuracy of SDMs against a random holdout of 25% data 

178 from each dataset, respectively. Four measures were calculated to assess model accuracy, the 

179 receiver operator characteristic (ROC) curve with area under the curve (AUC), true skill statistic 

180 (TSS), model deviance, and mean omission (i.e., false negatives). We quantified the niche 

181 overlap between averaged models with the Warren’s I index, calculated in R with the package 

182 ‘spatialEco’ (Warren et al., 2008). The I statistic is an indicator of the similarity between two 

183 distributions, with values ranging from 0 (i.e., no overlap in the niche) to 1 (i.e., the niche is 

184 identical). A difference map to assess agreement in suitability predictions between the updated 

185 full dataset and infected dataset models was generated in R using the packages Raster and 

186 RasterVis by taking the difference of model output rasters and plotting them.

187 Results
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188 Updated input surveillance data increased our sample sizes for the full dataset (original n=432, 

189 updated n=525), and for the ticks positively identified for R. montanensis infection (original 

190 n=44, updated n=63). We found that updating the input data increased the spatial extent of 

191 predicted suitability for both the full dataset of all ticks (Figure 1 A (original) and B (updated)) 

192 and for the infected dataset (Figure 1 C (original) and D (updated)). Although we made no 

193 distinction for potential records of the newly described species D. similis, a few occurrence 

194 points were from the Western United States (original n=10, updated n=21). Model accuracy 

195 metrics for averaged RF models across the four datasets are presented in Table 1. Accuracy 

196 metrics across models indicated generally good performance, with AUC values exceeding 0.90, 

197 and TSS values greater than 0.64. Though comparable in output, averaged models made with 

198 updated data performed lower than models made with original datasets, indicated by lower AUC 

199 and TSS values, and higher deviance and omission. A Warren’s I index comparison of the 

200 original and updated dataset suitability predictions for the full and infected niche, showed they 

201 differed by less than 2% each (full dataset: full dataset =0.981, positive dataset: positive dataset 

202 =0.986).

203

204 Figure 1: Predicted habitat suitability from average output of 500 random forest models 

205 for the original (A, C) and updated (B, D) datasets for all D. variabilis data (A, B), and D. 

206 variabilis infected with R. montanensis (C, D)

207 The updated R. montanensis positive ticksks, as in the original analyses, are predicted to have 

208 a niche which is a subset of the full predicted niche (Figure 1D). The Warren’s I comparisons of 

209 the ‘infected niche’ and the full datasets for original (full:infected =0.950), and updated datasets 

210 (full:infected = 0.968) suggest that these are not dissimilar predicted niche distributions where 

211 they overlap, yet they are not capturing fully identical distributions.
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212 The importance of variables underlying model predictions varied across datasets, although 

213 precipitation seasonality (Bio15) was the top contributing environmental predictor in all models 

214 (Fig. 2). Mean diurnal range (Bio2) and precipitation of driest month (Bio14) were also relatively 

215 important variables in models of both the original and updated full tick datasets, though these 

216 variables did not contribute highly to the models of infected tick distributions. Temperature 

217 seasonality (Bio4), was not a high contributingwhile not identified as a highly important variable 

218 across models, but did contributed more to infected tick distributions, relative to the full tick 

219 models.

220

221 Figure 2: Relative variable importance from average output of 500 random forest models for the 

222 original and updated datasets for all D. variabilis data, and D. variabilis infected with R. 

223 montanensis. 

224 To visualize the difference in predicted suitability for all ticks and that predicted for the 

225 pathogen-positive ticks, we visualized the difference in mapped suitability estimates from 

226 updated models (Fig. 3). The resulting map highlights the overprediction (redder colors) or 

227 underprediction (darker blue colors) of a model trained on all surveilled ticks, compared to one 

228 trained on R. montanensis positive ticks. Infected ticks are overpredicted by the model of all 

229 ticks along the southeastern and western peripheries of the infected tick distribution, and 

230 underpredicted to a lesser degree, along the northern border and through parts of the mid-

231 Atlantic to midwestern states (Figure 3). 

232
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233 Figure 3: Assessing differences in predicted suitability for an average of 500 Random Forest 

234 models for D. variabilis and those infected with R. montanesis - redder colors depict 

235 overprediction by a tick-only model, and darker blue colors, underprediction. 

236

237 Discussion

238 A number of factors exist that influence SDM output, including sampling bias, choice of 

239 environmental predictors, modeling algorithm, and other user-specified inputs (Araújo et al., 

240 2019; Valavi et al., 2021). In this study, we updated previously published RF models of D. 

241 variabilis and D. variabilis infected with R. montanensis. This update was made possible by the 

242 addition of surveillance and testing data to the original dataset used. We thus explored what 

243 impact the additional data had on predictions found previously, via modeling both datasets and 

244 comparing predicted suitability with a niche overlap metric, Warren’s I, and presenting the 

245 mapped output of modeled predictions using the original and updated datasets. We additionally 

246 presented a visualization of agreement, highlighting areas of over and underprediction of the 

247 infected niche by the overall niche prediction. 

248 Models made with both datasets were generally high-performing, and overlap indices showed 

249 that suitability predictions varied changed only slightly with the inclusion of novel surveillance 

250 data. The estimated range of D. variabilis primarily extends throughout the eastern United 

251 States, with the highest predicted probabilities spanning areas in the Midwest, Mid-Atlantic, and 

252 Northeast regions. The southern boundary of D. variabilis occurrence was not well captured in 

253 Lippi et al. 2021, owing to limited data points from this region in the original MilTICK dataset. 

254 Although records of ticks from southern locations (e.g. Texas and peninsular Florida) exist in 

255 online repositories, these records were not included in efforts to directly compare distributions of 

256 ticks of known infection status. Notably, the predicted geographic distribution for D. variabilis 
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257 extends further South in the updated model, indicated by higher probabilities of suitability in 

258 Texas and Florida.

259 The updated model set showed similar patterns of variable importance, with the overall tick 

260 distribution having higher importance on variables capturing the climatic variability, than the 

261 constrained infected niche, in several variables. There were no striking shifts in these patterns, 

262 and the relative weightings were quite consistent, but it is notable that the role of ‘seasonality’ as 

263 captured by Bioclim variables was more important for updated ticks when it was precipitation, 

264 and more important for the updated infected ticks, when it was temperature. This points to the 

265 interesting roles of the components of climate in shaping the niche for these vectors. 

266 The predicted suitability distribution of D. variabilis infected with R. montanensis, or infected 

267 niche, is geographically constrained, compared to the full predicted suitability distribution of D. 

268 variabilis, regardless of data inputs. Areas of range disagreement, highlighted by the difference 

269 map, are most prominent along the southern and western peripheries of the full D. variabilis 

270 range in the eastern US, as well as on the west coast. A potential explanation for this kind of 

271 pattern is that in the more established parts of the range - i.e. the more central parts of predicted 

272 range - there may be higher R. montanensis exposure risk. For different tick-borne pathogens, 

273 and even for different species of ticks, evidence of patterns of expansion by both the vector and 

274 the pathogen, together or temporally lagged have varied (Burrows et al., 2021; Dahlgren et al., 

275 2016; Fornadel et al., 2011). This highlights the limitations inherent in using vector distribution 

276 maps as proxies for transmission risk maps directly; incorporating pathogen testing results into 

277 this type of distribution modeling can help constrain the area most likely to be important for 

278 disease transmission exposure risk. This is particularly germane for a generalist vector such as 

279 D. variabilis, where the presence of the pathogen in question may be patchily distributed. 

280 Disagreement among model outputs along the West coast may also be influenced by the 

281 inclusion of D. variabilis records from California, Oregon, and Washington. The western 
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282 population of D.variabilis has recently been proposed as a new species (Dermacentor similis), 

283 and thus may have fundamentally different habitat suitability requirements (Lado et al., 2021).

284 Dermacentor ticks are receiving increasing attention as significant vectors of zoonotic 

285 pathogens, and there have been recent calls for closer monitoring of understudied species 

286 (Lippi et al., 2021c; Martin et al., 2022). Species distribution modeling offers a framework for 

287 rapidly estimating potential distributions of vectors when ample occurrence data are available. 

288 Yet, there are considerable ramifications that may arise if models are put into public health 

289 practice without thorough assessment (Erdemir et al., 2020). It is therefore necessary to 

290 periodically review estimates of risk as new data or methods become available. However, in this 

291 study we found that an additional nine years of passive surveillance data resulted in negligible 

292 differences in distribution estimates. This points to the benefit of augmenting existing 

293 surveillance to target undersampled areas, and highlights the need to expand pathogen testing 

294 capabilities to other existing networks. We limited ourselves in our previous study (Lippi et al., 

295 2021a) to building models with tick occurrence data from the MilTICK surveillance program 

296 because our analysis hinged on knowing the infection status of each tick. Yet, future modeling 

297 efforts could include targeted surveillance datasets from undersampled additional locations, 

298 provided that analogous testing data for infection status are available. Widespread, county-level 

299 surveillance for D. variabilis in the United States is currently limited (Lehane et al., 2019). 

300 Pathogens with low detection rates may particularly benefit from targeted, active surveillance 

301 strategies to delineate risk. In this study, updated passive surveillance data yielded only 19 

302 novel spatially unique records of infected ticks after thinning. To contrast, a recent study that 

303 targeted a discrete area in Northern Wisconsin, an area of low predicted suitability in our 

304 models, successfully detected R. montanensis in D. variabilis (Vincent and Hulstrand, 2022). 

305 Focused testing efforts, particularly in locations bordering areas of range disagreement, may 

306 help resolve the limits of exposure risk and facilitate targeted monitoring efforts.
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307 In conclusion, infected ticks are predicted to have a distribution that is a subset of the full vector 

308 range, a finding which is consistent across original and updated data inputs. For a generalist 

309 vector such as D. variabilis, ascertaining the key areas of pathogen exposure risk within such a 

310 large range of predicted suitability, is an important potential tool for future surveillance and 

311 monitoring. Revisiting the estimation of tick distributions is a necessary endeavor, particularly as 

312 we gain more information on tick-borne transmission cycles through surveillance and laboratory 

313 studies. There are few occurrence records that establish D. variabilis at the county level 

314 throughout our predicted suitability range in the contiguous United States, pointing to a general 

315 need for increased surveillance activities (Lehane et al., 2019). Yet, placing emphasis solely on 

316 new data collection for the refinement of spatial risk assessments may not yield dramatic gains 

317 in information. This is perhaps most evident in the passive surveillance of pathogens with low 

318 detection rates. Additionally, we suggest that there is a great need to validate the data in areas 

319 identified as high risk through active surveillance, particularly where passive surveillance is 

320 lacking. Moving forward, efforts to further refine geographic risk estimates of tick-borne 

321 pathogens will benefit from targeted surveillance to resolve distributional boundaries. 
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460 Tables

461 Table 1. Average model accuracy metrics for Random Forest models, using different datasets 

462 of tick occurrences.

Dataset Subset AUC Deviance TSS Omission

Original* All Ticks 0.953 0.570 0.769 0.116

Original* Positive Ticks 0.930 0.690 0.710 0.145

Updated All Ticks 0.918 0.742 0.692 0.154

Updated Positive Ticks 0.905 0.812 0.643 0.179

463 *data used in Lippi et al. 2021

464 Figures

465 Figure 1: Predicted habitat suitability from average output of 500 random forest models 

466 for the original (A, C) and updated (B, D) datasets for all D. variabilis data (A, B), and D. 

467 variabilis infected with R. montanensis (C, D) – darker/purple colors denote low suitability, and 

468 yellow colors indicate areas of high suitability.

469 Figure 2: Relative variable importance from average output of 500 random forest models for the 

470 original and updated datasets for all D. variabilis data, and D. variabilis infected with R. 

471 montanensis. 

472 Figure 3: Assessing differences in predicted suitability for an average of 500 Random Forest 

473 models for D. variabilis and those infected with R. montanesis - redder colors depict 

474 overprediction by a tick-only model, and darker blue colors, underprediction. 
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Figure 1: Predicted habitat suitability from average output of 500 random forest models for the original (A, 
C) and updated (B, D) datasets for all D. variabilis data (A, B), and D. variabilis infected with R. 

montanensis (C, D) – darker/purple colors denote low suitability, and yellow colors indicate areas of high 
suitability. 
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Figure 3: Assessing differences in predicted suitability for an average of 500 Random Forest models for D. 
variabilis and those infected with R. montanesis - redder colors depict overprediction by a tick-only model, 

and darker blue colors, underprediction. 
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