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Overcoming Challenges to Continuous
Integration in HPC

Todd Gamblin ., Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA

Daniel S. Katz ®, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

Continuous integration (Cl) has become a ubiquitous practice in modern software
development, with major code hosting services offering free automation on popular
platforms. Cl offers major benefits, as it enables detecting bugs in code prior to committing
changes. While high-performance computing (HPC) research relies heavily on software,
HPC machines are not considered “common” platforms. This presents several challenges
that hinder the adoption of Cl in HPC environments, making it difficult to maintain bug-free
HPC projects, and resulting in adverse effects on the research community. In this article,
we explore the challenges that impede HPC CI, such as hardware diversity, security,
isolation, administrative policies, and nonstandard authentication, environments, and job
submission mechanisms. We propose several solutions that could enhance the quality of
HPC software and the experience of developers. Implementing these solutions would
require significant changes at HPC centers, but if these changes are made, it would

ultimately enable faster and better science.

igh-performance computing is a key enabler

H for developing scientific understanding and

knowledge. “High performance” typically refers

to computing that requires large-scale resources, e.g.,

those on the Top500 list of the world's fastest machines.!

HPC sites range from universities with smaller clusters of

commodity machines to large, GPU-accelerated super-
computers at national computing facilities.

HPC systems need application software to be use-
ful. Since around the 1940s, HPC applications have
spanned the computational science domains: simula-
tions and modeling in climate, physics, chemistry, engi-
neering, and so on. More recently, the field grew to
include applications in data analysis and machine
learning. All of these applications rely on other soft-
ware, from operating systems to libraries (e.g., for com-
munications and math), and still more software is
needed in the development process: compilation, test-
ing, packaging, and distribution.
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Historically, staff at HPC sites developed their own
applications, with the vendor of the HPC system pro-
viding the operating system, compilers, and math
libraries. Export controls and other data-sensitivity
concerns limit access to a large number of HPC appli-
cations. Because of these and more general security
concerns, HPC sites only grant access to a set of
known account holders. However, a large fraction of
today's software is developed on social coding plat-
forms like GitHub and GitLab, which allow a commu-
nity to perform collaborative planning, development,
maintenance, and testing. These sites not only provide
infrastructure for working on code but offer a large
number of free cloud CPU cycles for continuous inte-
gration (CI). Under the Cl model, tests run when devel-
opers suggest changes, and the tests ensure that code
is correct before it is accepted. Developers can thus
have high confidence that the code will work correctly.

While Cl is standard practice for developers who
can use common cloud environments, HPC environ-
ments introduce challenges to this practice. Technical,
security, and political issues all make it extremely diffi-
cult to integrate externally developed open source
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SOFTWARE ENGINEERING-

software with internal applications and machines. Even purposes. A number of build-time dependencies like
though many HPC software projects are developed in compilers and testing frameworks are also included.

the open, they must run on closed HPC resources, and Even though 30 core components of ARES are
it is increasingly difficult to ensure that the vast major- LLNL-proprietary, the other 85 packages are open
ity of modern open source applications will run reliably source. Of these, 12 are publicly developed by LLNL on
on HPC systems. GitHub, and the remaining 71 packages are open

source packages developed by others. This situation is
not unusual; most modern software leverages and

MODERN SOFTWARE IS depends on open source components. Reimplement-
COMPLEX ing all the capabilities provided by the modern open

Modern software applications are not monolithic; they source software ecosystem would be impossible or at

integrate packages written by many authors on differ- least impractically expensive for a single organization.

ent project teams, and they rely heavily on publicly Software reuse comes with a cost: integration com-
available open source software. Figure 1shows the soft- plexity. In a project developed by a single team, develop-
ware packages used by ARES, a proprietary multiphy- ers commit code to a common repository, maintaining

sics application used on HPC machines at Lawrence project consistency. In large integrated systems, how-
Livermore National Laboratory (LLNL). These packages ever, different teams may work on individual compo-
include core scientific libraries and utility libraries for nents, and developers are responsible for ensuring that
logging, math, input-output, programming models, per- all versions of the components are compatible. Unfor-
formance portability, memory management, and other tunately, most open source developers lack access to

Types of Packages

LLNL, Internal

External, Open Source
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FIGURE 1. Dependencies of the ARES multiphysics code: Thirty-one are internal proprietary packages, 13 are open source pack-

ages developed at LLNL, and together these rely on 72 external open source software packages.

NovAuttieszevidicenseduze fimited to: University of lllinois. Downloaded on August 01,2025 a1 20:a9 #6 $£TENren®l ERG iXpleren Pestrictions apply. 55



SOFTWARE ENGINEERING

HPC resources, and even if they have it, many lack the
time to manually test their packages in HPC-like envi-
ronments. HPC developers who leverage open source
software must be prepared to perform extensive porting
and integration testing to ensure that the open compo-
nents work seamlessly on closed systems.

HPC systems are typically designed and built to meet
specific local requirements, balancing expected work-
load characteristics, hardware options (e.g., number
and type of CPUs, GPUs, and other accelerators, inter-
nal networking, storage), packaging, cooling, external
networking, energy usage, cost, and so on. Key compo-
nents of the local software stack are often bespoke for
each system. For example, proprietary message pass-
ing interface (MPI) implementations like Cray MPI can
only run on Cray systems. In this case, the Cray MPI
license disallows inclusion in containers or other soft-
ware distributions that can run in the cloud. The same
is true for math libraries and compilers in the Cray envi-
ronment. Moreover, filesystem organization is not stan-
dardized. Paths to tools, libraries, home, and temporary
directories are system dependent. Finally, authoriza-
tion and access may be set by site policies that are
often developed locally.

Open source developers are now accustomed to widely
available compute cycles for Cl. Major code hosting
sites (GitHub, GitLab, Bitbucket) as well as third-party
paid services that integrate with these sites offer free
Cl services. Developers can attach workflows to their
repositories that run tests concurrently across Linux,
macOS, and Windows, and if they need to test in
custom environments, they can bring their own con-
tainerized test environments. In HPC settings, however,
a number of hurdles prevent adoption of automated
code building and testing.

HPC Environments Are Hard to
Replicate

Due to ubiquitous cloud computing, Cl is the norm out-
side of HPC. It has never been easier to set up auto-
mated testing in widely used software environments.
But, as discussed previously, HPC environments are, by
definition, special. For example, it is seldom possible to
reliably test optimized CPU builds in cloud CI, as the
fleet of test systems used by cloud virtual machines
(VMs) is often heterogeneous and one cannot request
that a test be run on a specific microarchitecture. So
far, there is no (free) cloud-based Cl for GPUs.

Testing scientific workflow systems is even harder.
Each workflow system is essentially a distributed appli-
cation, and testing a workflow system requires access
to the job submission interface. This access can include
authentication and authorization from remote systems,
local environments and configurations, batch scheduler
parameters, and so on. Because resource managers are
used to run the Cl system itself, it is difficult to vary and
test system software and resource managers within
the Cl system. In this case, we need to see how the sys-
tem is set up in practice, and not completely isolate
from it. We also need interfaces and abstractions that
allow us to test that the system works across different
schedulers and configurations. Without the ability to
replicate the software environment of popular HPC sys-
tems, it is very difficult to ensure that open source soft-
ware will continue working on them.

Security Challenges

HPC machines are large, shared computing systems
like clouds, and one obvious way to replicate the HPC
environment in cloud CI would be to offer cycles on a
local HPC system to run Cl jobs for sites like GitHub or
GitLab. However, most HPC sites disallow users from
running jobs on behalf of external systems.

Consider the open source Cl model, where an
unknown user (or at least a user who is unknown to
the HPC center) submits a pull request (PR) to a pro-
ject. The PR triggers jobs that build and test the
changed code in cloud environments. Developers and
maintainers often want to instead trigger jobs on a set
of HPC platforms. While the cloud allows users to pro-
vision isolated VMs and even isolated virtual networks
for Cl jobs, most HPC systems lack this level of isola-
tion. HPC sites implement security at the facility
boundary, allowing only trusted users in. Once on the
system, all users can access the shared filesystem and
can connect to compute nodes over the cluster net-
work. A privilege escalation in this environment could
give a user access to other users' files, which may be
export-controlled or otherwise sensitive. HPC security
teams therefore disallow setting up ClI to run arbitrary
code, as it opens the site to such attacks.

Running code from protected branches, e.g., the
maintainer-approved main branch of a popular open
source project, may be allowed, but doing this loses
the benefits of testing changes before they are inte-
grated into the project. When the PR is still open, con-
tributors are motivated to fix issues that come out in
testing because they want their changes to be merged.
If fixes are made after the fact, it can be very difficult to
keep fast-moving projects working for HPC.
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Administrative and Political
Challenges

A number of administrative and political reasons can
hinder progress on solutions to the previous problems.
First, HPC sites do not typically prioritize build or test
cycles because this is perceived to reduce cycles avail-
able for production science runs, which is typically
their raison d'étre. Cl jobs tend to be small and numer-
ous, as opposed to the more traditional larger, longer-
running HPC jobs, and queuing policies that support
this type of work are not well understood, especially for
heavily utilized systems with mostly larger jobs. When
asked how many cycles are needed for testing, users
often reply with large numbers and the need to test at
scale. Facilities are reluctant to provide any one project
with a large testing allocation.

The tradeoff between using cycles for testing and
saving cycles on production code that may fail is not
easy to quantify, but if public Cl systems are any
benchmark, a large fraction of the benefit of Cl can be
realized through short-running builds and smoke tests.
Cloud ClI services impose strict limits on job runtimes
and resource usage—typically just a few hours and
one or two CPUs per job. All but the largest codes can
be built and tested for correctness within this footprint,
at least at a coarse granularity. Providing separate
queues with similar policies on HPC systems would
require only a small fraction of overall system CPU
hours, and while this approach would not detect bugs
that only appear at massive scale, it would still prevent
many production cycles from being wasted.

Because HPC sites are very focused on production
jobs and production job performance, very little inter-
est has emerged in the HPC community for compute
or network virtualization. This is unfortunate, because
these technologies would provide the type of resource
flexibility needed to run isolated, secure CI jobs. Infini-
band, the most popular HPC network, has very limited
support for traffic isolation (eight or so isolated chan-
nels—not enough for thousands of users), and most
HPC systems still run applications on bare metal
instead of in VMs. Meanwhile, clouds have developed
very lightweight, secure VM solutions (e.g.,, Amazon
Web Service’s Nitro hypervisor) with almost no virtuali-
zation overhead.

Finally, HPC center leadership has limited under-
standing of modern development workflows. It is diffi-
cult to grasp the extent to which open source software
has spread throughout the scientific software ecosys-
tem, the rate at which modern software is developed,
and the interdependence of packages. The idea that
key science applications rely on externally developed
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software, that helping external software projects test
on HPC machines could be beneficial to internal proj-
ects, and that many internal projects are actually
hosted and developed externally still needs socializing
in order to broaden understanding of the needs of
modern software developers.

Building and testing software on HPC systems has
always been hard, but some solutions to the challenges
presented previously have recently begun to emerge.

Wisdom of the Crowds

Systems like Spack? and EasyBuild® have made building
on HPC systems easier by crowd-sourcing institutional
build knowledge. These systems include curated reposi-
tories of build scripts that aggregate and preserve insti-
tutional knowledge of different machine environments
and make HPC software easier to build. While the proj-
ects themselves require extensive Cl, changes are only
checked automatically with cloud ClI, not on a diverse
set of HPC resources. Without immediate, automated
testing of contributions, builds still frequently break
and tests still frequently fail in these environments.

Jacamar and Secure Cl

For internal, trusted projects at HPC centers, projects
like Jacamar CI* solve some of the security problems.
They allow users to run Cl jobs as themselves on HPC
machines, preserving the OS-level security boundaries
that HPC centers require users to adhere to. With Jaca-
mar, one user cannot access and steal another user's
data through the Cl system. While internal projects can
pull in trusted versions of external software (e.g., recent
releases), integration testing is still difficult. Internal
teams cannot easily test changes from PRs, because
the changes in a PR cannot be attributed to any trusted
HPC center user. Without the ability to test PRs, incom-
patibilities or bugs can be introduced through depen-
dencies. Either the site must attribute every PR to a
known user, which is often not possible, or they must
isolate the untrusted code in its own environment.

Separate Resources for Cl

HPC sites are considering setting up separate resour-
ces for open source Cl. One of the authors has been
involved in such an effort at LLNL, to set up an isolated
cluster without sensitive data, where public Cl jobs can
run with little risk to the main HPC resources. The chal-
lenge with this approach is that it duplicates effort—
HPC system administrators are a scarce resource,
and maintaining an additional machine in a different
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network zone requires redundant work. It is also diffi-
cult to ensure that the separate machine stays up to
date with the main systems.

Vendor and Cloud Support

As customers have come to rely on an increasing
volume of open source software, HPC vendors have
shown more interest in ensuring that this software
works well on the platforms they offer. At the same
time, more cloud vendors are producing their own HPC
offerings, and users can easily set up clusters in the
cloud to run HPC jobs. These clusters can even use a
wide range of resource managers, like SLURM and
PBS. Such environments are not free, of course.

HPC vendors may begin to provide free, public
cloud Cl resources that open source developers could
use to test their software. For large projects like Spack,
cycles can be donated in one place, but scaling the
approach to support the many smaller, independent
HPC development projects that need Cl is a much
larger effort that requires more cooperation between
major HPC vendors and cloud platforms.

HPC ADMINISTRATORS WILL NEED
TO LEAN INTO A CULTURE OF
AUTOMATION.

Containerized Environments

In lieu of hardware resources, HPC vendors could also
begin to provide containerized versions of their soft-
ware stack for building and testing in Cl. Some vendors
have begun testing this approach, for example with
Cray's containerized programming environment (CPE).
Unfortunately, the container is currently only licensed
to run on HPC resources, so its versatility for build and
test use cases is limited. It cannot be run in the cloud,
where adequate isolation and cycles are available.

For commodity clusters, it may be easier to provide
containerized reproductions of the production HPC
environment, as there are not as many licensing issues
involved. Since most HPC sites are still administered
very manually, HPC administrators will need to lean
into a culture of automation. If the site can provision
the production environment automatically, they can
reliably provide a container with exactly the same soft-
ware that the main HPC site runs.

The idea of building containers based on produc-
tion HPC environments is not new; one of this article’s
authors proposed it with his colleagues to National

Science Foundation's (NSF's) XD solicitation® in 2008. The
proposal ultimately became part of NSF's Extreme Sci-
ence and Engineering Discovery Environment (XSEDE),
which operated between 2011 and 2022, but the contain-
erization component did not make it into the final, funded
project.

More recently, NASA Ames® has successfully provi-
sioned cloud-bursting capabilities allowing users to
build, test, and run codes in small allocations in cloud
environments before running them unmodified on the
production Pleiades HPC cluster. They leverage porta-
ble container workflows and abstract differences bet-
ween cloud and onsite resources through the MPI
interface. This pioneering effort to create “reproducible”
HPC infrastructure still has security limitations. Even in
NASA’'s environment, the cloud resources are provi-
sioned in the same logical network as HPC onsite
resources. They cannot run untrusted code without risk
to onsite data.

More Virtualization and Infrastructure
as a Service (laaS)

The solution that likely makes most sense for HPC Cl is
to move toward a less trusting, more isolated security
model that would allow HPC systems to function more
like clouds. Flexible, isolated allocations for either inter-
nal or external Cl jobs would eliminate the duplication
of effort required by many of the potential approaches
mentioned previously. Isolated allocations also enable
laaS within the HPC site, which would allow sites to
mock entire distributed resource manager environ-
ments and services. With this capability, developers
could test entire workflow systems in much more real-
istic scenarios.

We will need to work with vendors to develop and
provide HPC environments with network and OS sup-
port for isolation. In general, the only integrators cur-
rently providing these capabilities widely are clouds,
and there are not good on-premises solutions. HPC
sites will need to either start working with clouds more
closely or push HPC vendors to provide like capabilities
for HPC centers. It will likely be a long time before truly
“converged” infrastructure becomes widespread.

Clis indispensable for most software development and
maintenance today, including for scientific software.
However, Cl is difficult to implement in HPC environ-
ments for many reasons. Limitations of on-premises
infrastructure preclude many of the security isolation
techniques used in modern cloud environments. HPC
security policies must respect these limitations by

58 Authorized licensetltsgplimitey ta: $iniversitr.of HifieiseRegnloaded on August 01,2023 at 20:59:46 UTC from IEEE Kploean Bestrietians appl 2022



restricting the automation needed for responsive Cl.
Current solutions require duplicated effort, either in
provisioning dedicated resources for Cl, or by dupli-
cating deployment effort with containerized environ-
ments. The most promising solution is to move toward
more automated, secure, flexible infrastructure, which
will be neither quick nor easy to implement with the
restrictions of today’'s HPC environment.
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A. Bartlett, at the 2022 SIAM Conference on Parallel
Processing for Scientific Computing. The authors thank
the chairs for inviting us to the panel and creating the
opportunity for discussion. Daniel S. Katz thanks Ben
Clifford and other members of the Parsl and funcX
teams for some of the ideas here. Part of this work was
performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. Lawrence Liver-
more National Security, LLC (LLNL-JRNL-846623).
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