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Abstract
Type IIB flux vacua based on Landau-Ginzburg models without Kahler deformations
provide fully-controlled insights into the non-geometric and strongly-coupled string
landscape. We show here that supersymmetric flux configurations at the Fermat point
of the 1% model, which were found long-time ago to saturate the orientifold tadpole,
leave a number of massless fields, which however are not all flat directions of the super-
potential at higher order. More generally, the rank of the Hessian of the superpotential
is compatible with a suitably formulated tadpole conjecture for all fluxes that we found.
Moreover, we describe new infinite families of supersymmetric 4d A/ = 1 Minkowski

and AdS vacua and confront them with several other swampland conjectures.

arXiv:2210.03706v1 [hep-th] 7 Oct 2022

October 2022



Contents

1

Introduction

Moduli stabilization in non-geometric backgrounds

2.1 Orientifolds and fluxes . . . . . . .. .. . ... ...
2.2  Non-renormalization theorems . . . . . . . . . . . ..
2.3 Conditions for supersymmetric vacua . . . . . . . . .

2.4 Higher-order derivatives of the superpotential . . . .

Around the tadpole conjecture

3.1 Hodge theoretic formulation . . . . . ... ... ...

3.2 The rank of the mass matrix for Minkowski solutions

3.3 Stabilization at higher order . . . . . . . .. ... ..

Minkowski solutions at fixed coupling

4.1 Massless fields in old solutions . . . . . . . . .. ...
4.2 Symmetries and new solutions . . . . . . . ... ...
4.3 Constraint on the G-flux . . . . . . . . . . ... ...

New infinite families

5.1 Two infinite families of Minkowski vacua . . . . . . .
5.2 Implications for the landscape and the swampland . .
53 AdSwvacua . . . .. ... ...

Conclusions

LG integrals

A.1 Single variable integrals . . . . ... ... ... ...
A.2 Taylor coefficients . . . . . .. ... ... ... ...

The G-flux for an AdS solution

Introduction

© J SO ot O N

11
12
15
16

18
18
19
21

22
23
24
25

28

30
31
31

32

Moduli stabilization by fluxes has been a cornerstone of realistic string models since the

advent of the string landscape. Early investigations of the GKP construction [1] such

as refs. [2, 3, 4, 5] appeared to confirm the expectation that a generic flux will stabilize

all complex structure moduli of Calabi-Yau manifolds in either type I1IB or F-theory



compactifications. Based on more recent studies, however, it was argued that in models
with a large number of complex structure moduli it should not be possible to stabilize
all of them using fluxes [6, 7, 8]. The basic idea, known as the tadpole conjecture, is
that the flux contribution to the D3-brane tadpole scales linearly with the number of
stabilized moduli, with a proportionality constant that leads to an effective bound in
many popular situations. This argument is part of the swampland program (reviewed
for example in [9, 10]), whose goal it is to determine what the low-energy effective field
theories are that can arise from a full-fledged theory of quantum gravity like string
theory.

The relation between the size of the tadpole and the number of stabilized moduli
can easily be tested (and hence falsified) in many examples. Moreover, with a some-
what more precise definition of the “number of stabilized moduli”, the conjecture can
be stated essentially in classical Hodge theory, and could thus conceivably be proven
rigorously independent of complicated or unknown perturbative or non-perturbative
quantum corrections. Recent work along this line has provided evidence for the con-
jecture in the large complex structure limits [11, 12, 13, 14]. A scenario including
a putative counterexample was presented in [15]. However, this counterexample was
more recently challenged in [16].

The main aim of this paper is to shed light on the competition between the sta-
bilization of moduli and the size of the D3-brane tadpole in the deep interior of the
moduli space of type IIB flux compactification (see [17] for related work in F-theory).
Our investigation is based on a Landau-Ginzburg orbifold describing a non-geometric
compactification with At = 0, that was first studied with this purpose some 16 years
ago in [18, 19]. It was shown there that while the model is intrinsically non-geometric,
the standard Hodge theoretic formulas for the flux superpotential and tadpole continue
to apply, based on the holomorphic nature of the supersymmetric locus and thanks to
powerful non-renormalization theorems for the superpotential. Moreover, while the lat-
tice of supersymmetric fluxes at the Fermat point has such a large rank that brute force
numerical searches for “short” flux vectors compatible with tadpole cancellation are
prohibitively expensive, some explicit fluxes were found that lead to supersymmetric
Minkowski and AdS vacua that are under full control despite an O(1) string coupling.
However, the exact content of the low-energy theory and the full set of supersymmetric
fluxes remained unexplored at the time.

In this work, we will show first of all that in the Minkowski vacua of the 1° Landau-



Ginzburg model presented in [18] in fact only a small subset of the 63 complex structure
moduli (that survive the orientifold projection) obtain a mass as a consequence of the
flux. Secondly, we will present a more complete list of supersymmetric fluxes saturating
the tadpole and leading to 4d Minkowski vacua, and show that all of them contain a
substantial number of massless fields. Thirdly, based on the evaluation of the cubic
(and higher-order) terms in the superpotential, we show that not all of these massless
fields correspond to truly flat directions, although we are not able to show that all
moduli are actually stabilized. Based on these insights, we present a mathematically
precise (if perhaps somewhat simplified) formulation of the tadpole conjecture that can
be tested non-trivially over the entire moduli space.

We then turn to other aspects of the swampland program, in which context the
compactifications of [18, 19] were revisited in the recent works [20, 21|, focusing only
on the stabilization of the three bulk complex structure moduli (that are mirror dual
to the untwisted Kéhler moduli in the mirror dual toroidal type IIA compactification).
An intriguing result of [21] was the presence of an infinite family of SUSY Minkowski
vacua. In this infinite family a quantized flux, which is unconstrained by the tadpole,
goes to infinity. Here, we discover similar infinite families of Minkowski vacua that
include all complex structure moduli of the model. One is then forced to accept that
an infinite family of 4d Minkowski solutions is part of the string landscape. This may
sound contradictory to the standard lore that the landscape is finite, that is, that there
is a finite number of vacua (and corresponding EFTs) below a certain energy cutoff
22, 23]. We argue that our infinite families of Minkowski vacua are consistent with
the finiteness conjecture since we expect that for each family there is a tower of states
becoming light.

Additionally, we revisit AdS solutions in these settings. There we find likewise new
infinite families of AdS solutions. The existence of these solutions was known based on
a study of simple models that restrict to the bulk moduli [19, 20, 21]. Those families
are reminiscent of the DGKT [24, 25] SUSY AdS vacua which are included in the
mirror of these construction. Here we show that such solutions also exist when taking
all complex structure moduli into account. We present explicitly two examples that

have peculiar features that are relevant to the swampland program.



2 Moduli stabilization in non-geometric backgrounds

Following [18], in this paper we focus on orientifolds of the 1° Landau-Ginzburg (LG)

model, with worldsheet superpotential
9
wW=> o (2.1)
i=1

We orbifold by the Zz symmetry ®; — w®; where w = e%'. Tt can be shown that
the model is the mirror dual of a rigid Calabi-Yau manifold (7°/Z3 x Z3). A basis for
the (¢, c) primary chiral superfields of the untwisted sector is given by the monomials
O,®,P, i # j # k # 1. There are 84 of them and they can be identified as complex
structure moduli. In the untwisted sector of a LG model there is no (a,c) sector,
but there could be Kéahler moduli in the twisted sector. However, in the case of a
Z3 orbifold one finds no non-trivial (a,c) primary superfields, so there are no Kéhler
moduli. Intuitively, the orbifold is fixing the volume in string frame. Notice that this

breaks S-duality in our setup.

2.1 Orientifolds and fluxes

The different consistent orientifold projections were studied in [18]. Here we will focus
only on the first orientifold considered in [18], which combines the worldsheet parity

operator with the operator g¢;:
g1 2 (D1, 2, @3, ..., Bg) — — (P2, Py, 3, .., D) . (2.2)

This reduces the number of complex structure moduli down to 63: 7 coming from
O1DyP,, 1 =3,4,...9, (;) = 21 coming from (®; + $5)P;P; and (?7)) = 35 coming from
D, D, Py.

Using results from [26], the authors of [18] calculated the Ramond-Ramond charge
of the crosscap state in the orientifold (2.2), and showed that it amounts to 12 units
of the one elementary B-brane in the model, which can naturally be addressed as a
“D3-brane”, keeping in mind that this is really an abuse of language because the model
is intrinsically non-geometric.

Similarly, the possible Ramond-Ramond and Neveu-Schwarz fluxes, F3 and Hs, can
be studied by consistency and comparison with the A-branes in the Landau-Ginzburg

theory, which are the analogues of supersymmetric three-cycles in ordinary Calabi-Yau



compactifications. This gives on the one hand their precise quantization condition, see
eq. (2.10) below, and on the other hand their contribution to the Ramond-Ramond
tadpole in the class of the orientifold. Including a possible contribution from mobile

D3-branes, the tadpole cancellation condition takes the standard form

1 ~ N,

Nﬂux_/ Fy A H; = / GAG =" _Np;3=12— Nps,  (2.3)
M T—TJu 2

where we have introduced the axio-dilaton 7 = Cy +ie~? and the G-flux G = Fy — 7 H;.

We emphasize that the familiarity of the expression (2.3), and other statements in

this section, should not belie the fact that their derivation and validity require delicate

consistency arguments from both worldsheet and spacetime considerations.

2.2 Non-renormalization theorems

In particular, as explained in [18], the flux superpotential is still given by the usual
GVW [27, 28] formula

W= / (Fy — 7H;) A, (2.4)

with the understanding that the integral just refers to the abstract pairing in Landau-
Ginzburg cohomology, and, crucially, receives no perturbative or non-perturbative cor-
rections, despite the fact that the volume is fixed at string size by the orbifold, and
the dilaton, as we will see, might be stabilized at strong coupling. This was argued
via the non-renormalization of the BPS tension of a D5-brane domain wall but it also
passes other non-trivial checks [18]. One may worry about brane instanton corrections.
However, Euclidean D3-branes are absent since k! = 0 and D(—1) instantons do not
contribute in the large volume limit and are independent of the internal volume. This
absence of D(—1) instantons seems also consistent with the recent paper by Kim [29]
that finds no D(—1) instantons if the O7-plane charges are locally cancelled by D7-
branes. Here, we have no O7-planes and D7-branes since h%!' = 0. One can also ask
why similar corrections should be absent in the type ITA mirror dual. For example, in
the DGKT construction [24], there is only one suitable 3-cycle, since h*! = 0, and this
cycle is threaded by Hs-flux. So, one does not expect brane instanton corrections in
the dual setup either [30].



2.3 Conditions for supersymmetric vacua

To study N = 1, D = 4 supersymmetric vacua using the 4d effective action, we require,
in addition to the superpotential (2.4), also some knowledge of the Kéhler potential
K, which is expected to receive both perturbative and non-perturbative string loop
corrections. As pointed out in [19] mirror symmetry implies that in the weak coupling,
large complex structure limit, the Kahler potential for the dilaton and the complex

structure moduli is given by:
K:—4mﬁ_ﬂ_mﬂ/QAm. (2.5)
M

Note that this factor of 4 in front of the dilaton kinetic term does appear in the di-
mensional reduction of the 10d type IIB supergravity action. However, for geometric
compactifications the proper 4d N’ = 1 chiral multiplets are related to the volume in
Einstein frame [31]. The above orbifold we are doing can be thought of as fixing the
volume in string frame. Since volg string = 6%¢V0167Einstein in geometric compactification
the 4 becomes a 1, the rest being absorbed into the term —2 In(volg ginstein) in K. Given
that our model is non-geometric this does not happen. One could thus think of this
factor as a small volume correction. However, more precisely one should derive this
factor of 4 using mirror symmetry [19]. This factor does appear in the dimensional
reduction of the 10d type ITA supergravity action on orientifolds of Calabi-Yau man-
ifolds [32]. If we appropriately restrict our Hz-flux then our setup is mirror dual to
a type ITA string theory compactification on a rigid Calabi-Yau manifold. Thus, our
K and W as well as our solutions should agree with the type IIA results, which is
the case if we include this factor of 4. Note, that our setup is more general than the
ITA compactifications since upon mirror symmetry some of the Hz-flux quanta might
become geometric or non-geometric fluxes on the type ITA side.

In this work we study both SUSY Minkowski and AdS vacua. The factor of 4 is
irrelevant for the discussion of Minkowski solutions but it has important consequences
for AdS solutions. In fact, without it we would not find fluxes that are unconstrained by
the tadpole cancellation condition and that are expected from the type IIA mirror dual
setup [24, 25]. The reason is that because of this factor of 4, the covariant derivative

with respect to the dilaton has an extra term:

D,W = —

T—T

_/ (3¢ +G)AQ=0. (2.6)



Together with
DaW:/G/\Xa:0, (2.7)
M

where Y, is a basis of (2, 1) harmonic forms, one finds that in a supersymmetric solution
G can be written as:

Gsusy = A%, + A° (=30 + Q) , (2.8)

where (2 is the holomorphic 3-form and the A’s are complex coefficients. Notice that
the flux can have a (3,0) component, which in turn implies that the supersymmetric
flux is not restricted to be imaginary self-dual (ISD). In fact, it provides an unbounded

contribution to the tadpole. The general formula for the tadpole is given by:

2ImT

Niux(Gsusy) = S1V3 (Z |A%)? — 8| A% > : (2.9)

Notice that the additional condition W = 0 for Minkowski solutions implies that
G € H*Y(M), i.e., above we would have A° = 0 and Ny, > 0.

To describe and implement flux quantization, it is best to work with respect to an
integral basis of the middle cohomology lattice of the model, which measures charges
of supersymmetric A-branes. In the Landau-Ginzburg model (2.1), as reviewed in [18],
primitive cycles I'y, are labelled by collections of 9 integers n; mod 3, ¢+ = 1,...,9,
which refer to the orientation of an elementary integration cycle for each variable ®;
(see appendix A). These I'y, are however not all linearly independent and also subject
to various identifications. In the orbifold, a basis is in correspondence with the first
170 non-negative integers written in binary notation with 9 digits, n = (ny, na, ..., ng),
where n; = 0, 1. The identification by the orientifold (2.2) allows us to reduce the basis
to 27 = 128 elements labelled by n = (1,1,n3,n4,...,n9), where n; = 0,1. Let us

denote their Poincaré dual 3-forms as 7,. We can expand the flux 3-form in this basis:

G=> N'u—7Y My, (2.10)

where N™ and M™ are integers, to ensure flux quantization.

Now our primary interest is finding fluxes such that we have a supersymmetric
vacuum at the Fermat point. That is, we need an appropriate choice of values for
these integers N,, and My, such that equations (2.8) and (2.10) are compatible. To do

this we remember that harmonic forms in LG models are represented by RR ground



Yol 9 12 15 18
HPeo | gGo) | g1 | g2) | fg03)

Table 1: Correspondence between harmonic 3-forms and RR ground states for our LG

model.

states, which, in the model at hand, are again labelled by nine integers:*

9
O «— 1=[1'"...,1°) with '=1,2 and ) ‘=0 mod 3. (2.11)

i=1

The classification of these states according to the four Hodge types of cohomology
classes is shown in table 1. As we review in appendix A, their pairing with the integral

classes v, is given by

/% Ay =Bw™  with n-1=) nl, (2.12)

where w = ¢35 and B) = 7 11— wli)F(g) is a factor that drops out of equation
(2.7) which then implies that

ST(Nt—rM™ W =0 foralllwith Y =12, (2.13)

n

while equation (2.6) reduces to

> (N = 7M™ (=3w™ W) =0, (2.14)
where lg = {1,1,1,1,1,1,1,1,1} and Lig = {2,2,2,2,2,2,2,2,2}. These are simple
linear equations and we can solve them in full generality although we are dealing with

a large number of moduli.

2.4 Higher-order derivatives of the superpotential

Having found fluxes that are supersymmetric at a particular point in moduli space,
the question arises whether this actually leads to a stabilization of all the moduli, i.e.,

the absence of any continuous zero-energy deformations of the vacuum. A sufficient

INote that we use € to denote a basis of 3-forms and this should not be confused with the

holomorphic (3,0)-form Q that does not have a subscript.



condition for stability is that all scalar fields corresponding to the erstwhile moduli be
massive. However, even if in the presence of massless fields, non-trivial interactions can
stabilize the moduli at higher order in the deformation parameters. In other words,
the deformations could be marginal, but not exactly so.

In the language of singularity theory, a supersymmetric vacuum corresponds to
a critical point of the superpotential® (2.4). The absence of continuous deformations
means that the critical point is isolated, while the absence of massless fields means that
the critical point is non-degenerate. An example of a degenerate but isolated critical
point is the origin ® = 0 of the superpotential W = ®3.

In principle, the full dependence of the superpotential on all the moduli is encoded
through € in the formula (2.4). In practice, the explicit evaluation is generically
prohibitively complicated for more than a handful of variables. In our model at the
Fermat point, however, we can luckily evaluate all derivatives of the superpotential in
terms of elementary integrals, see appendix A, even if the full functional dependence
remains inaccessible.

We will focus on this momentarily, but wish to point out that the second derivatives
of the superpotential (which in particular determine the masses of moduli) can in
fact be evaluated much more easily for a generic Calabi-Yau through their relation
with (what from its role in the heterotic string is known as) the Yukawa coupling.
Namely, the Yukawa coupling captures the (0, 3)-component of the third derivative of

the holomorphic three-form
Yope = /Q A DyDyD.S2, (2.15)

or equivalently the expansion of its second derivative in terms of the (1,2)-forms.
Referring specifically to table 3 of [33] the second derivatives of the flux superpotential

with respect to the complex structure moduli is given by
D,DyW = D, / GAxy= /G A (—1e" Y xe) - (2.16)

where we have also used that the flux, being dual to an integral cycle, is covariantly

constant. To reiterate, the interest of this observation is that the Yukawa coupling is

2In reality of course, the superpotential is not a function, but merely a section of a particular
line bundle over moduli space, as witnessed by the covariant derivatives in (2.7). Considerations of
singularity theory being local are not directly affected by this distinction after an appropriate choice

of holomorphic coordinates.

10



on general grounds an algebraic function on moduli space, and is therefore much more
easily evaluated than the full moduli dependence of WW.

In the case at hand, labeling the complex structure moduli by the corresponding
1 vectors whose entries sum to 12 according to table 1, and utilizing appendix A, we

find the following second derivatives of W

7 7 ll ll - 1
Dy, Dy, W 392 T MM w n-(la+1,—1o) H Wlatly=1 F < a+3b ) . (2.17)

=1

©

For the 7 derivatives we find

D.D\W = — 1_/(3G+@)Axa, (2.18)

T—T

D,D.W = 3_/}13/\9. (2.19)

T—T

At the particular point 7 = w we find

9 .

1 ; [
D.D S — AN — (=1 + 2w)M™) W™ 11— <) . (22
DIV = gy 3 (N7 (14 20 [T o) (3),< 0)

9 .
1 3 1§
D,DW = ————— % MW" [[(1-wDr(2). 2.21

38(1—|—2w)zn: v [[1( ot (3) (221)
When dealing with Minkowski vacua G € H*!(M) so the first equation simplifies to:

9 .
1 i (1
D.DW = =Y M w™ i (1 —wl)T (5) : (2.22)

and the last equation reduces to D,D,W = 0. The multi-derivative of order r with
respect to the moduli fields labelled by 1, ..., 1, is given by (see appendix A for details):

811(912 oW —39 Z _ 7-A]wn (Za 1047(1”71)].9)

- 1 (i),

3 Around the tadpole conjecture

(2.23)

In its original formulation [6], the tadpole conjecture states that “the fluxes which

stabilize a large number, h*! or h®!, of complex structure moduli of a Calabi-Yau

11



threefold or fourfold in a type IIB or F-theory compactification, respectively, make
a positive contribution to the D3-brane tadpole that grows at least linearly with the

number of moduli”, i.e., there is a constant a such that for a large number of moduli
(Flux tadpole) > a x (number of moduli) (3.1)

The conjecture was motivated by a number of failed attempts to find models in which
a large number of moduli can be stabilized explicitly by fluxes. Moreover, based on
these examples, it was also proposed that more specifically, « is at least 1/3. Since
the formulation of the conjecture, there have been a number of further tests and re-
finements, but to our knowledge no substantial deviation or modification of (3.1) with
a = 1/3 has yet been observed. A typical difficulty in either proving or disproving the
conjecture appear to be somewhat fuzzy hidden assumptions on the portion of moduli
space in which stabilization is to be sought for. Specifically, investigations such as
(12, 15, 16, 13, 14] focus around the large complex structure in order to control both
Kéhler and superpotential, and dismiss any potential violations at the boundary of
that region. The methods of the present paper, as well as its precursors [18, 21|, avoid
some of these difficulties and, although they apply in a rather different region of mod-
uli space, offer at least the same level of control. Without taking sides, our concrete
results motivate us to raise two points which we feel need to be taken into account for

a proper handle on the tadpole conjecture.

3.1 Hodge theoretic formulation

First of all, the conjecture (3.1) is stated without a precise definition of “stabilization
of moduli”. As our results illustrate, models located at special points in moduli space
with a high degree of symmetry will typically be missing mass terms for certain fields,
depending on their transformation properties, but these moduli can still be stabilized
at higher order in the deformation parameter.

Second, the conjecture focuses on the stabilization (however defined) of “all of a
large number of complex structure moduli” of a Calabi-Yau manifold by fluxes, with
a universal constant a. In fact, and certainly from the mathematical point of view, it
seems just as interesting to first investigate the interplay between the size of the flux
tadpole and the stabilization of only a subset of the moduli in a fized model, and worry

later about the global problem and the universality of a.

12



To make progress, we propose® to investigate a version of the tadpole conjecture
that can be formulated purely in Hodge theoretic terms, and that makes sense over the
entire moduli space. We do not claim to capture all subtleties of moduli stabilization,
especially those related to perturbative and non-perturbative quantum corrections,
or to the stabilization of Kéhler moduli. However, we feel that the actual problem
is “in the same universality class” of landscape problems in the sense of Douglas-
Denef [34, 35]. Moreover, our formulation has the advantage of being mathematically
precise. We will spell out the proposal only for type IIB compactifications on Calabi-
Yau threefolds, because this is the class of models for which we have concrete results.
We point out, however, that the (obvious) reformulation for F-theory on Calabi-Yau
fourfolds is even more closely related to classical problems in Hodge theory.

Namely, given a Calabi-Yau threefold Y with complex structure moduli space* My
of dimension dim My = h*!(Y) > 1, we may ask, for each point z € My, for the
existence of (non-zero) integral cohomology classes F3, H3 € H3(Y,Z) and a value of

the axio-dilaton 7 € ‘H in the upper half-plane, such that
G=F;—71Hy € H*(Y,) ® H(Y,) (3.2)

is a supersymmetric flux with respect to the complex structure corresponding to z. For

any such G, the flux tadpole

Q(G)z/ng/\ngTiT/YG/\C_J>O (3.3)
is a positive integer (if G is non-zero). We will call the sublattice
ARY C H(Y,Z) & TH®(Y, Z) (3.4)
of such fluxes, with rank A?TUZS)Y =: rk(7, z) the supersymmetric fluzx lattice, and the
subset
MEVSY = {(1,2) € H x My | 1k(r,2) > 0} C H x My (3.5)

for which A?ES)Y is non-trivial the supersymmetric locus. The fact that Q is positive

definite gives A(STUZS)Y an Euclidean structure.

3 A similar point of view appears to be taken in [13], but again restricted to the (strict) large complex
structure limit, as well as in the earlier work [17] in F-theory. We also thank Hossein Movasati
for illuminating discussions, especially about the possible role of the rank of the supersymmetric

flux/Hodge lattice.
41t is understood that the full construction involves an orientifold projection onto the invariant

part of the moduli space, fluxes have to be invariant, etc.

13



MEVSY s in general a complicated space, with many components of possibly dif-
ferent dimensions, as well as other singularities. We understand the gist of the tadpole
conjecture as relating the codimension of M5VSY | as a measure for the number of “sta-
bilized moduli”, to the smallest flux tadpole that engenders it. The issue related to the
first point raised above is that because of the singularities of the supersymmetric locus,
there are in general different notions of dimension. Among these, the Zariski dimension,
defined in terms of the maximal ideal m at (7, z2) as dim(Zm) (MEYSY) = dim(m/m?),
measures essentially the number of fields that are left massless by the flux. On the
other extreme, the Krull dimension dim{iz) (MSYSY), defined by the longest chain of
prime ideals of the local ring, corresponds to the maximal number of truly marginal
deformations. The fact that these are no more than the number of massless fields is
the classical inequality dim{iz) (MFVY) < diméz) (MEYSY), with equality when the
supersymmetric locus is smooth. The intuition is that a large rank of the flux lattice
corresponds to the intersection of many components of M$YSY and therefore leads to
a large discrepancy between dim”™ and dim?.

Now our results in the 1° LG model at the Fermat point (where ASUSY has extremely
large rank) indicate that while it is indeed difficult to find supersymmetric fluxes that
make all moduli massive with a bounded tadpole, higher order terms in the superpo-
tential will stabilize additional fields, although we have not been able to determine the
exact number of surviving continuous deformations. This leads us to propose that the
tadpole conjecture of [6] should be extended and tested over the entire moduli space
as the mathematical statement that the Zariski co-dimension of the supersymmetric
locus of Calabi-Yau threefolds is bounded linearly by the length of the shortest non-zero
lattice vector,

codiméz) (MBUSY) < 8- min{Q(G) | G € APYY G # 0} (3.6)

(1,2)

At this stage, the constant 5 might depend on Y, but would according to the “refined
tadpole conjecture” [6], be uniformly bounded as = o~ < 3.

In the following subsection 3.2, we explain the relationship between the number
of massive fields, i.e., the Zariski co-dimension, and the rank of the Hessian of the
superpotential, which is given in our model by egs. (2.17), (2.20), (2.21), and which
can more generally be written in terms of the Yukawa coupling as (2.16). This last
fact makes us particularly hopeful that the tadpole conjecture in the form (3.6) is

amenable to a mathematical proof (or counterexample). Then, in subsection (3.3), we

14



turn to the analysis of the higher-order terms, given in our model by (2.23). As alluded
to above, this is in general a complicated problem in (high-dimensional!) singularity
theory, and at this stage we will only describe an algorithm for taking into account the

first non-trivial correction.

3.2 The rank of the mass matrix for Minkowski solutions

For 4d N' = 1 theories the Lagrangian is given by
1 . _ - -
L= —§Kij—8ug013“g5] —V, with V=" (KYD;,WD;W —3|W|?) . (3.7)
Minkowski vacua satisfy the following relations
W=0W=0,W=0, Va=1,...,h%". (3.8)

The Hessian matrix of the scalar potential for Minkowski vacua is then simply given
by Hyy = 00,V = eX (00 W)K*(9;0;W).5 To calculate the physical masses squared
of the complex scalar fields requires us to go to a canonical basis in field space using
the diffeomorphism P'; = d¢'/0¢’ defined such that

1 o 1 . o 1 o
— §Kij8ug018”@j = _imjpk@@kpfl—aﬂgal — _5517 0,0' 0" . (3.9)

The masses squared are then given by the eigenvalues of the mass matrix M =
(P~Y)THP~!. This can be rewritten as

My = e¥[(P~1)T(00W) P05 [( P (90W) P~ (3.10)

We see that the masses squared are necessarily positive semidefinite. This ensures
the stability of the solution and is a result of the preserved supersymmetry. However,
while instabilities in the form of tachyons are forbidden, it is in principle possible that
scalar fields are massless. To answer the question of stability for a given solution with
massless scalars would then require one to calculate higher order terms in the scalar
potential.5 If some scalar fields in 4d N' = 1 Minkowski vacua would remain flat
directions, then one can only trust these vacua if one can control all corrections to the
superpotential, because any kind of correction could lead to a runaway potential for the

flat directions. Given the non-renormalization theorems in [18, 19] that we reviewed

For Minkowski vacua one finds that the equations (3.8) imply that 8°9;V = 0.
6For example, a single real scalar field with V(¢) = ¢* would be massless but stabilized at ¢ = 0.
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above in subsection 2.2, we expect that these models do not receive any correction
to the superpotential (but only to the Kahler potential). So, the existence of these
Minkowski vacua is guaranteed independent of the corrections and higher order terms.

Let us return to the mass matrix above in equation (3.10). It clearly involves in
addition to the superpotential also the inverse Kahler metric K. Given that we have
no control over corrections to the Kahler potential we generically do not know what
the masses of the scalar fields are. However, we can ask more modest questions like
whether all scalar fields are massive or how many scalar fields are massless. This can
actually be answered because the Kahler metric appears in the kinetic terms and is
therefore a positive definite matrix. For example, when calculating the determinant of
M, one finds that it is zero if and only if the determinant of 9?0, W is zero [21]. Thus,
if the Hessian of the superpotential has maximal rank then all scalar fields are massive.
One can extend this argument to show that the matrix rank of M;; is the same as
the matrix rank of 9°9,W: Assume there is a vector a in the nullspace of (9OW), i.e.,
(00W)a = 0. Then it follows from the definition of M;; in equation (3.10) that Pa
is in the nullspace of M. Since P is a diffeomorphism Pa is non-zero whenever a is
non-zero. Thus, P provides a 1-1 map between nullvectors of M and (00W') and both

matrices have therefore the same rank.

3.3 Stabilization at higher order

We have just seen that although we cannot calculate the physical masses of the moduli
without knowledge of the Kéahler potential, the number of fields that remain massless
in any given Minkowski vacuum can be determined just based on the Hessian of the
superpotential, i.e., the quadratic terms in the expansion around the critical point
(3.8). It is easy to see that this extends to higher order as well: A continuous family
of supersymmetric vacua just corresponds to a flat direction of the superpotential, a
problem which by analyticity can be studied with knowledge of all derivatives at the
critical point. In practice, this can be analyzed order by order in the field expansion,
which is still a very non-trivial problem, however.
To fix ideas, consider a theory with chiral fields ¢?, and superpotential W expanded
up to cubic terms around a critical point at the origin,
W = % Z Hyo'o! + % Zk Ciind" o’ " + higher order terms. (3.11)
i\j i.j,

If the Hessian H;; does not have full rank, there are some massless fields, and we would
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like to know how many of them correspond to true moduli, in particular, whether the

critical point equations
. 1 )

admit any continuous solutions.

In reality, this depends on the higher order terms. For example, the superpotential
W = 1(¢ — ¢?)? clearly has a flat direction along ¢ = ¢*. However, in the expansion
of W up to cubic order 9,W = ¢ — ¢?, 9,W = —2¢¢) and if we treated these trun-
cated equations exactly, we would conclude that ¢ = 1) = 0 is the only critical point.
The correct statement is that if we parametrize the deformation by the kernel of the
quadratic term, i.e., ¢, and eliminate ¢ = v? with the help of the first equation, the
second equation is —2¢® = 0, and vanishes up to the order that we have kept track of,
so we correctly cannot conclude that the deformation is lifted.

In general, if we find that the equations (3.12) do not vanish up to cubic order in
the independent fields once the massive fields have been eliminated, we can conclude
that the deformation space actually has smaller dimension than the kernel of H;;. How
many more fields are stabilized at this order can be determined by solving a number
of quadratic equations. To be specific, assume that H;; has rank one, with H;; = 1.
The first equation 9;WW = 0 is then solved if

' = —Hi = SO (3.13)

where the first sum is only over j # 1, but the second over all j, k. Since we are only
working up to third order in the independent fields (? for j > 1), we can without harm
replace @' with —Hy ;7 in the second term to solve 9, W up to that order. Substituting
this result in the remaining equations, the linear terms drop out (because H;; had rank
1) and we are left with a list of quadratic equations in only the independent fields.
The reduction in dimension is a bit subtle, and not necessarily given by the number of
linearly independent quadrics, but as soon as one quadric is non-zero, we can conclude
that additional fields are stabilized in the full problem.

The generalization to Hessians of higher rank is straightforward, and we have imple-
mented this for the study of moduli stabilization in the 1° Landau-Ginzburg model at
the Fermat point. The generalization to higher order in the fields if also fairly obvious,

but we will leave it for future work.
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4 Minkowski solutions at fixed coupling

As we reviewed above, the superpotential does not receive perturbative or non-
perturbative corrections and thus supersymmetric Minkowski vacua are of particular
interest in these 4d A/ = 1 theories. Originally Minkowski vacua in these non-geometric
settings were studied in [18] by including all complex structure moduli. Follow-up pa-
pers [19, 20, 21] then restricted to the three bulk torus complex structure moduli. It
was shown in [19] that such vacua cannot arise at parametrically large complex struc-
ture or weak coupling, thus confining them to a barely explored part of the string

landscape. In this section we will set the axio-dilaton to

i ]_ 3
T:C'0+ie’¢:w:e%:——+i\/—_. (4.1)
2 2
So, we have a string coupling of order one and we will describe our attempts to sys-

tematically classify the solutions of the 1° model at this point in moduli space.

4.1 Massless fields in old solutions

The original work [18] presented three explicit Minkowski solutions of our model in
their section 4.5. These solutions were found essentially by happenstance, and no
claim was made as to their genericity or completeness. In view of the questions raised
above, we have now checked the rank of the corresponding Hessians for these three

solutions. We find that the second example of [18], given in the Q-basis by’

1

G, = 9 { —Maa2121210 Q212102+ Q210,221 — Q1,121,212

+ Q111221210 — Q11122112 — Q11121221 + Q1,1,1,1,2,1,2,1,2} (4.2)

and which makes a contribution Ng, = 8 to the D3-brane tadpole, gives masses to 14
of the 64 scalar moduli. The first example of [18],

i

Gy = —3\/5 {91,1,1,1,2,1,2,1,2 — 1121221 — Q111122112 + Q1,1,1,1,2,2,1,2,1} (4.3)

with Npu. = 12 has 16 massive complex scalars. Finally, the third example:

1
Gs =g | —Qia222100 — Q221210 — Q221121 + Q21210 (4.4)

9

"While we reproduced the F3- and Hs-fluxes in [18, Sec. 4.5], we find a slightly different normal-

ization and phase for the G-fluxes.
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+Qaa210212 F Q1210022 — Q11222100 — 241,122,121 (4.5)
—M11121221 +F Q11102212+ 11102122F Q111111222 (4.6)

with Npu. = 12 has 22 massive complex scalars.

These numbers being rather small compared to the total number of moduli, we
have set out to check on the one hand whether any of the remaining massless fields
are stabilized at higher order in the field expansion, along the lines sketched in section
3.3, and second to search more systematically for Minkowski solutions in this model,
hopefully covering all possibilities.

Along these lines, we have found that while in the vacua corresponding to GG; and
(G5 above, the cubic terms in the superpotential do not lead to any further constraints
on the massless fields, in the vacuum corresponding to (G5, the 64 — 16 = 48 massless
scalars are subject to 10 linearly independent quadratic equations at that order, so
indeed some of them are actually stabilized and not true moduli. These results in
themselves suggest that this is not the full story, and that quartic terms and beyond
will lead to further stabilization. But we will leave this for future work and instead

turn to the systematic search.

4.2 Symmetries and new solutions

The 1° model specified in equation (2.1) enjoys an obvious S? permutation symmetry.
This symmetry is broken to S” by the orientifold action in equation (2.2). We thus
need to study one representative of each S7 orbit. However, this is still a formidable
task. For example, there are billions of ways of choosing 12 non-zero A® out of the 63
possible ones (cf. eqn. (2.8)) but the order of S is only 5040.® Thus, we somewhat
randomly generate roughly eight hundred different Minkowski solutions that satisfy
the tadpole cancellation condition and have Ng, = 12. The maximum rank that we
find for the mass matrix is 26. This is consistent with the tadpole conjecture, which
predicts that the number of massive fields should be smaller than 36 given that the
tadpole is 12. One example of this is given by:
1

Gi=—— 11221121 — 2121121 — Q112211121 + Q112221111

9

— 21221100 — Q2112210110 Q122111121 + Q2121,1,1,1,2,1

8This is somewhat overestimating the actual problem since whenever we choose an A% that is not

invariant under the orientifold but rather gets mapped into A’ then we have to turn on A® = A®,
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_9221111121+QQ21121111+QQ21211111_9222111111 . (47>

I et e e e et bt ) e e e e e Et ) P e e e e Rt Et ] P e et Rt R e )

Next, we attempt to generalize the results to a full proof. We know that solutions
which are related by a permutation will have the same rank. Interestingly, we find that
solutions with different permutation symmetries can have the same rank. The solution
G4 has an S5 X Zsy X Zg symmetry group. Another solution which also has rank 26 is

w2

Gs = 9 DMa2221,1,00 — Q212210010 — Q211221100 + Q221,121,111

+ Q221211110 — 2221111010 + Q112221010 — 112122111

_9112212111+Q122112111+9212112111_9221112111 ; (48)

I e e Rt L e et ) e e e e e e et ) P e b Rt et e ) e e e e e et et )

which has an S3 X Zy symmetry group.
We also discovered new solutions that satisfy the tadpole condition with Ng, = 12
and have different rank for the mass matrix. For example, the following solution has

20 massive fields respectively:

1
Gr=—|—Qi1121212+ Q11121221 F Q122102 — Q111,221,210

9

+W(_Ql21111212+9121111221+0121112112_9121112121

P et e e e et Rt P e e e e e Lt P e Eet b e R Rt e e e e e Rt Lt

—Doa10212 F Q1100221 F Q211112112 — Q2,1,1,1,1,2,1,2,1) ) (4.9)

and Gg below has 18 massive fields

1
Gg = ol ~ 121212+ Q111212210 Q22102 — Q111,122,121

+w(— 1211212+ Q11211221 +F Q11212112 — Q11212121

—Magra0212 Q12111221 F Q12112112 — Q1,1,2,1,1,2,1,2,1) . (4.10)

Summarizing, besides the rank 14 for the mass matrix that we only found for Ny, = 8
we found via an extensive search of solutions with Ny, = 12 the ranks 16, 18, 20, 22
and 26. It is not clear to us whether there is a pattern emerging or not but it would
be certainly interesting to study this further.

We have also evaluated some higher-order corrections for these new solutions ac-
cording to section 3.3. Including all terms in the superpotential that are cubic in the

fields, we find that while for G4 and G5, the number of massless fields is not reduced
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compared to the second-order level, for G; we find 3, and for Gg, 5 additional quadrics
in the massless fields that are linearly independent over C. This again is suggestive of
an intriguing pattern that we wish to study further in subsequent work.

Finally, we performed a search for flux configurations for which all scalar fields
have a mass. This is of course the case for generic choices of fluxes, however, in
those cases one overshoots the tadpole cancellation condition with the flux contribution
by a lot. We tried to identify flux configurations with a small contribution to the
tadpole conjecture that stabilize all moduli but we did not manage to find solutions
with Ng, smaller than 69. So, also from this angle we did not find an inconsistency
with the idea of the tadpole conjecture that in principle allows full stabilization with
Niwe > 64/3 ~ 21.

4.3 Constraint on the G-flux

In order to tackle the question of what Minkowski solutions exist in our orbifold of
the 1° model, we need to understand potential constraints that reduce the parameters
of a search. Here we summarize some constraints that we discovered when studying
Minkowski vacua.

We found that it is useful to write
Griink = »_ AXa € H'(M). (4.11)

Following [18, Section 4.3|, we can start by setting all but one of the A% equal to zero
so that G = A (), where we switched to the €2; basis discussed above in section 2.3.
The quantization condition in equation (2.10) then requires that for each n in our basis
there exist integers N™ and M™ such that

V3AWN = N® — 7M™ (4.12)

Since we chose 7 = w = ¢35, we find that |A[? > 1/3. This then implies that (c.f.
equation (2.9) for A° = 0)

Npuy = 81]A|* > 27. (4.13)
This means, with only one non-zero A%, it is impossible to find solutions within the
tadpole bound of 12. One can repeat a similar argument for two non-zero A%’s and

finds that their contribution to the tadpole is at least 18 and therefore still too large.

One can continue this analysis but it becomes more and more tedious to derive the
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analytic bounds. We are also more interested in an upper bound on the number of A*
that we can turn on in order to make the analysis of this model tractable.
Let us therefore turn on the generic G-flux in equation (4.11) and write it explicitly

as

GMink = Z AIQI = Z Nn’)/n — T Z Mn’}/n . (414)
1 n n

This allows us to write the 63 complex A% in terms of 126 real independent flux quanta.
Denoting all the different integer combinations of flux quanta (that are themselves
integer) schematically by Z, we find via an explicit calculation that all A® can be
brought into the form

A — %(Z +wI). (4.15)

The above constraint implies that each A® satisfies the constraint |A®|*> > 1/81. This

means that each non-zero A we turn on has to contribute at least 1 to the tadpole

Npux = 81 Z |A%|* > number of non-zero A®. (4.16)

Thus, for our 1? orientifold we can have at most 12 non-zero A% before violating the
tadpole condition. Given that there exist Minkowski solutions with 12 non-zero A®
and tadpole 12 (cf. eqn. (4.4)), we know that one can saturate the bound in this case.
Likewise, there is a solution with 8 non-zero A* and Ng,, = 8 (cf. eqn. (4.2)). So,
again in this case one can saturate the bound. Given that in practice we only found
solutions with Ny, < 12 for either four, eight or twelve non-zero A®’s, we believe that
there are further constraints that might potentially make a complete analysis of this

model feasible. We leave this as an interesting challenge for the future.

5 New infinite families

The original paper [18] established the existence of Minkowski vacua in the full 1°
orientifold model, while follow-up papers restricted only to a subset of moduli. In-
terestingly, in one of these follow-up papers [21] the existence of infinite families of
Minkowski and AdS vacua for the torus bulk moduli was established. We will here
now show that such infinite families also exist in the full model where we will include

all 63 complex structure moduli and the axio-dilaton.
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5.1 Two infinite families of Minkowski vacua
5.1.1 Generalization of a previous solution

We found it fairly straight forward to construct many different infinite families of
Minkowski vacua, when we allow the axio-dilaton 7 to vary. The one we present in this
subsection is the first example given in [18, Sec. 4.5] (see eqn. (4.3) above) generalized
by an arbitrary integer parameter N € Z. It’s G-flux is given by
G = 3N +1v/3(2 - N) (9111121212—9111121221
18(N2 — N +1)
—Miaa22102 + Q1,1,1,1,2,2,1,2,1) : (5.1)

The original solution in equation (4.3) is recovered for N = 0. The axio-dilaton for

this infinite family is given by

2N —1 o V3
1 .
2(N2—=N+1) 2(N2-=N+1)

T=Co+ie? = (5.2)

We see here, consistent with the argument in [19], that we are always at strong coupling

since
2(N?-N+1) _ 2

NV

Let us recall from above that this is consistent with the fact that S-duality is broken

e®

(5.3)

in our setup by the orbifold that freezes the string frame volume.

This infinite family of solutions has N, = 12 for any N € Z so that the tadpole
cancellation condition equation (2.3) is satisfied without requiring any D3-branes. We
find that this particular solution has only 16 massive complex scalar fields. This is,
maybe somewhat surprisingly, independent of the value of N. The explanation for
this is that the Hessian of the superpotential has zeros in most of its entries. The few

non-zero entries are functions of N.

5.1.2 A family with tadpole 12 and 26 massive scalar fields

Let us present here another infinite family derived from the new solution we presented
above in equation (4.7). The family of solutions which has 26 massive complex scalar

fields, again independent of the free parameter N € Z, has the G-flux

(2—N)+iV3N
(91,1,1,22 1121 — 112121 1,2,1 — Q1221 1,1,2,1

G —
18(N2 — N + 1)
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+ 12221100 — Q121221111 — 22,1,1,2,2.1,1,1,1
+ 22111121 F Q2121111210 — 2221111121

+Qo211211010 + Qo212111010 — D222111,11,1).  (5.4)

1<ty 14y Ly sy Pt Rk it ]

The original solution in equation (4.7) above is recovered for N = 0. The axio-dilaton

in this infinite family is

N2 +1 . V3

= Cy+ie?=— .
T=Corie SN —N+1) eV N1

(5.5)

Given that the expression for the dilaton is the same as in the previous infinite family,

given in equation (5.2) above, these solutions again only exist at strong coupling.

5.2 Implications for the landscape and the swampland
5.2.1 The tadpole conjecture

Given that we work with large number of h*! = 63 complex structure moduli, the two
infinite families above, as well as the solutions discussed in subsection 4.2, serve as an
interesting test of the tadpole conjecture. Let us stress again that this test is being
performed in a strong coupling limit, away from the large complex structure point.
In our solutions at the highly symmetric Fermat point we did not find solutions with
more than 26 massive complex structure moduli within the tadpole bound of 12. This
leads to 12/26 ~ .46, which is larger than o« = 1/3 and thus provides a confirmation
of the tadpole conjecture away from the boundary of moduli space. Given the large
number of parameters in this model we have not been able to fully map out the solution
space, so there is currently no proof preventing the existence of Minkowski vacua with
more massive scalars. Let us also stress that we found that some scalars are stabilized
by higher order terms. It would be very interesting to further study higher order
stabilization and check whether it is possible to violate the tadpole conjecture in this
way. It is certainly possible and maybe even expected that higher order terms stabilize
all moduli and thereby leave no flat directions. We hope to analyze this further in the

future.

5.2.2  Finiteness of vacua in quantum gravity

Lastly, we would like to address here the apparent existence of an infinite number of

4d supersymmetric Minkowski vacua in our setup. There are arguments that quantum
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gravity should only allow for a finite number of vacua, see for example [22]. This
requirement was promoted to a swampland conjecture in [23] and might seem at first
sight at odds with the existence of the infinite families of Minkowski vacua that we
find above.

A precise statement about the finiteness of vacua was given in [36, Section 4]. It says
that below a fixed finite energy cutoff, there exist only a finite number of low energy
effective field theories consistent with quantum gravity. For the counting one has to
quotient by the moduli space. So, in our setup, if there would be flat directions we
would have to quotient by them, however, each of the Minkowski vacua in the infinite
families above would be a valid low energy effective theory below a certain cutoff. The
latter point is exactly the loophole that makes our infinite families consistent with
the finiteness of vacua below a fixed cutoff: In all infinite families the string coupling
always runs to infinity. One therefore expects that an infinite tower of massive states
becomes light in this limit. So, for any given fized cutoff we only have a finite number
of vacua that are valid. It would be interesting to make this more precise. However,
given that in our setup S-duality is broken, there are no weakly coupled dual solutions

within our setup, making a more detailed study rather difficult.

5.3 AdS vacua

It is also possible to study supersymmetric AdS solutions in this setting despite the
fact that the Kahler potential receives unknown large corrections as discussed above
in subsection 2.2. This was explained in [18] in two different ways: On the one hand
we simply have to ensure that the G-flux is of the particular cohomology type given
above in equation (2.8). This choice is independent of gy corrections and therefore
the existence of supersymmetric AdS solutions is unaffected by potential corrections.
Another way of seeing this is by expanding the Kahler potential around the critical
point and to allow for arbitrary corrections. One then finds that the corrections to K
are of the form K — K+4f (go)—i—T(go). This can be undone by a Kéhler transformation
W — e %@ . Since the covariant derivative transform as D;/W — e~/ D,W we
see again that the existence of supersymmetric AdS solutions with D;W = 0 is not
affected by arbitrary corrections.

In these non-geometric settings AdS vacua have been studied in [19, 20, 21]. It was
shown in [19] that, restricting to the three torus bulk moduli, it is possible to find AdS

vacua at parametrically large complex structure and parametrically weak coupling.
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Thus, for those solutions one has parametric control over all corrections and can trust
the Kahler potential at large complex structure. It would be interesting to extend this
study to include all 63 complex structure moduli and check that all can be in the large
complex structure limit and are massive.” Here we do not explore this avenue but
rather keep working with our Landau-Ginzburg model at the Fermat point.

If the G-flux is chosen to be of the form in equation (2.8):
GSUSY = Aaxa + AO (—3Q + ﬁ) s (56)

then we are automatically guaranteed to have a supersymmetric AdS solution if A° # 0.
While we have shown in subsection 4.3 above that for Minkowski vacua we cannot have
more than twelve non-zero A® without violating the tadpole this is not true for AdS
solutions. In particular, a generic solution will have generically all A% non-zero and
different. We have generated many such solutions with the constraint that they satisfy
the tadpole cancellation in equation (2.3) with Np3 = 0. This means the fluxes exactly
cancel the contribution from the O3-planes. The G-flux for one such explicit solution
with 7 = % is given explicitly in appendix B. This solution has Ng,, = 12 and
therefore satisfies the tadpole condition without any D3-branes. So, the only light
fields are the 63 complex structure moduli and the axio-dilaton.

The mass matrix for any 4d N' = 1 supersymmetric AdS solution has off-diagonal
entries that lead to a mass splitting between the two real scalars in the chiral multiplets.

The Hessian of the scalar potential V' is given by

8:0,V = e |(D;DyW)K"(DiDW) — 2K, W 2|

We see that the above involves the Kéahler potential in a non-trivial way, which makes
it difficult to say something definitive given that K receives unknown correction at
strong coupling. In the previous Minkowski solutions, we saw that the rank of the
matrix D;D;W was rather small and most entries in the matrix were zero in these
examples. This told us that many scalar fields did not receive a mass through the
fluxes that we have turned on. Here however we find that the G-flux example given
in appendix B leads to rank 64 for the matrix D;D;W. This means that the scalar

potential should involve all 64 complex scalars although the fluxes only contribute 12

9This is the expected result at least for AdS solutions that are mirror dual to the DGKT construc-
tion [24].
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to the tadpole. This is in stark contrast with the Minkowski solutions. Although
we cannot calculate the masses explicitly here, given that an AdS solution exists and
given that all of the scalar fields appear in the scalar potential, one might expect that
generically all scalar fields will be massive in these solutions.’

While we have been able to generate many different such AdS solutions with Ny, =
12 and different mass matrix rank for D;D;W, we have not been easily able to extend
these solutions to infinite families. We leave this as an interesting challenge for the

future.

5.8.1 A family with unbound tadpole

Here we want to generalize an observation made in [21] for the three bulk moduli to
the full-fledged model at strong coupling: There are AdS solutions at large complex
structure and weak coupling for which it is possible that Ny, — —oo [21]. This would
then require that Np3 — +00 to satisfy the tadpole condition in equation (2.3). For
such solutions one then expects to have gauge groups with parametrically large rank.
This is very different from Minkowski solutions where one expects a finite gauge group
rank.

Here we present an infinite family of AdS solutions with two free parameters N, M &€
Z, M > 0. The G-flux is given by

(2M + 1)

G = 3 [(Ql,171,1,2,1,271,2 + Q1,1,172,1,2,1,2,1 - Q1,1,2,1,1,2,2,1,1 + Q1,1,2,2,2,1,1,1,1

+ 01111022 F Q111110122 Q121112211+ Q211112211
+912211101 + Q211221111 + Q2,2,2,1,1,1,1,1,1)

+N(_3 91,1,1,1,171,1,1,1 + 92,2,2,2,2,272,2,2)} . (58)

The axio-dilaton depends only on M and for the string coupling to be positive we

require that M >0

1 VBeM+1)
T= —é—f—lf. (5.9)

We see that the string coupling goes to zero for large positive M values

2
e? = m (5.10)

10Tn AdS stability requires that the masses squared are all above the Breitenlohner-Freedman bound

[37]. This is guaranteed for all our solutions because they are supersymmetric.
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This means that in this solution we have parametric control over string loop corrections
and we expect that all such corrections to the Kahler potential are suppressed in the

large M limit. The tadpole cancellation condition takes the form
Nau + Np3 = —9(2M + 1)(72N? — 11) + Np3 = 12. (5.11)

Given the constraint M > 0 this can only be satisfied for N # 0. In that case, we see
from the above that we need to add Npz = 12 + 9(2M + 1)(72N? — 11) D3-branes.
So, we expect solutions with an arbitrarily large gauge group rank. This is amusing
but consistent with other examples in the literature [38, 39, 40, 41, 42]. It was argued
in [43] that AdS vacua do not allow for a scale separation between the AdS scale and
an infinite tower of massive states. Thus, one cannot think of the gauge group as a
genuine gauge group in AdS, but rather should think of it as a defect gauge group in a
higher dimensional theory. The rank of such defect gauge theories is not bounded (as
should be clear from a stack of Dp-branes in 10d flat space). In [21] it was shown that
similar solutions at weak coupling and large complex structure indeed seem to contain
such a tower of light states. Actually, as was argued there, the open string moduli on
the D3-branes would also lead to a species bound [44, 45, 46, 47] that becomes small
rather quickly.

6 Conclusions

Landau-Ginzburg techniques allow us to access string compactifications away from the
large complex structure limit even for a very large number of moduli. In particular,
at the Fermat point one has access to the values of the superpotential and all its
derivatives. Furthermore, as was pointed out and used a long time ago in the papers
[18, 19], it is possible to find explicit Landau-Ginzburg models that are mirror dual
to rigid Calabi-Yau and therefore have no Kéahler moduli. Thus, compactifications of
type IIB string theory on those models give rise to scalar potentials that can depend
on all moduli and therefore in principle can give masses to all scalar fields. Here we
have revisited those models to perform a more systematic study of supersymmetric
Minkowski and supersymmetric AdS vacua.

One of the motivations for our study is the so-called tadpole conjecture [6], accord-
ing to which, in violation of the well-informed intuition, it is in fact not possible to

stabilize all moduli using fluxes before these make an unacceptably large contribution
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to the D3-brane tadpole. This question is usually studied in asymptotic limits near the
boundary of moduli space, where the effective action is best under control. Based on
our results, which rely on non-perturbative methods, we have proposed a version of the
conjecture that is valid throughout moduli space, and also makes a clear distinction
between giving masses to moduli and stabilizing them, potentially with a higher-order
potential.

Among these results, we have for the first time determined how many complex
structure moduli are massive in the previously known Minkowski solutions and we find
that only 14, 16 or 22 out of 63 complex structure moduli and the axio-dilaton have a
non-zero mass. Therefore, we carried out an extensive search for new Minkowski vacua
and found many more solutions that have more massive scalar fields. The maximal
value that we encountered is 26, so less than half of the scalar fields were massive. This
agrees well with the expectation of the tadpole conjecture [6] (in our reformulation)
and thus provides a test of this conjecture away from the boundary of moduli space.
While we find no violations of the tadpole conjecture in these Minkowski vacua, we
have not been able to fully map out the moduli space. We also found that higher
order terms in the scalar potential stabilize more scalar fields. Whether all fields can
be stabilized or not is an important question that we plan to address in the future.

We have found that Minkowski vacua seem to generically come in infinite families.
We presented solutions in which a quantized flux, which does not appear in the tadpole
cancellation condition, can take arbitrary integer values. Increasing the absolute value
of this flux quanta leads to parametrically strong coupling. However, due to powerful
renormalization theorems [18, 19], our solutions still exist at strong coupling. This
seems at odds with the believed finiteness of the number of vacua in string theory.
However, we argue that the strong coupling limit should signal that a tower of string
states becomes light. This would mean that the number of vacua below any given fixed
cutoff scale is always finite, consistent with previous expectations [22, 23].

Lastly, we have also studied supersymmetric AdS solutions. Here our goal was two-
fold: We have shown that for these AdS solutions it is possible to find superpotentials
that depend on all 63 complex structure moduli and the axio-dilaton, while still only
having a flux contribution to the tadpole that is equal to 12. We provide arguments
that for those AdS vacua generically there seems to be no correlation between the
number of massive scalar fields and the flux contribution to the tadpole cancellation

condition.
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We have also presented one explicit infinite family of AdS solutions that goes to
asymptotically weak coupling. In this limit the flux contribution goes to minus infinity
and needs to be compensated for by D3-branes whose number goes to plus infinity.
This thus leads to weakly coupled AdS solutions with gauge groups of arbitrarily large
rank.

Given that several recent developments in the swampland program are guided by
intuition from compactifications at large volume, large complex structure and weak
coupling, it is of greatest importance to study string theory away from these limits.
The Landau-Ginzburg models studied here, allow us to study non-geometric settings
without any volume modulus, they allow us to work at small complex structure with
many moduli and they even allow us to answer some questions at strong coupling. In
this paper we have made several new interesting discoveries in this rather unexplored

realm and many more are certain to await us.
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A LG integrals

We summarize here the expansion of the Landau-Ginzburg periods

Wn—/F Q (A1)

W=> (N*— 7MW, (A.2)

that enter the superpotential (2.4)

when the G-flux is expanded according to (2.10) in the basis dual to the I'y,, around
the Fermat point. This calculation is totally elementary and well-known to experts at
least from the days of [48].
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Figure 1: The integration cycles in a single variable Landau-Ginzburg model with worldsheet

superpotential W = z3.

A.1 Single variable integrals

With reference to fig. 1, for n = 0,1,2 € Z mod 3 we let ¢,, := w"[0,00) C C > = be the
three independent rays along which z® tends to real infinity, where w = €*™/3. Then
Vn = 0, — Ops1 for n = 0,1,2 span the lattice of cycles, subject to the one relation

Yo+ 71+ =0. Forl=1,2,..., we have

: 1 {
—z3 _1-1 n-l
et de=w"" = T'(= A3
/| ST() (4.3)
and therefore ) ]
Wy, —/ e 2 e = W (1 — W) - = I'(z) (A.4)
o 3 3

A.2 Taylor coefficients

Now, the deformation space of the 19 LG model (2.1) is parametrized by local coordi-
nates {t!,1=(I1,...,ly) € {1,2}°, > 1; = 12} via the worldsheet superpotential

W(th) = Z o=y X (A.5)

=1
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where x!' = [],(2;)% and 1 = (1,1,1,1,1,1,1,1,1). Then, for n = (ny,...,ng) €

{0,1,2}°, 'y = X47Yn, we can write the full moduli dependence of the period as

Wa(t') = /F e WO @y = /F ewm)Z%(zltlxl_l)Kdgx
" n K=0"""
oy o= Ok
:/F € ZH k! (X ) d’x
N )" B\ kli-D)
:Zn<kl)! H/e o) Ve,
()"

k1| H wn’hZ] ki(l;—1)+1
%

I
-

ky

Equivalently, and perhaps more simply, we can evaluate the r-th multi-derivative as

o 0 0 WO TT daet 50
athatb”'atlrwn(o):/e R IE

a=1

_ H/ o= (mi)Zgzl(lé—l)dIi _ Hw%Za _—
Tn %

% i

(S0 la—(r—1)1) Sy o ale — (1= 1)
w H(l w ) F( 3 > (A.7)

%

which is the expression we used in the main text in equation (2.23).

B The G-flux for an AdS solution

Here we give the explicit G-flux, discussed in subsection 5.3 above. It describes an
AdS solution that has Ny, = 12 and thus satisfies the tadpole cancellation condition
without D3-branes. The value of the axio-dilaton is 7 = 5 and all 64 complex scalars
appear in the Hessian of the superpotential since it has maximal rank 64. The G-flux
is given by

1
T I8

1 <3i + \/§> Q110222 =4 No1121012+201121211,1,2

+i<3i+\/§>9111112122+<3+i\/§> Q111112212+i<3i+\/§> Q111112221

777777777777777777777777

+ <—5 — 1\/§> Q11121122+ (3 + 1\/§> Qiaa21221 — 20V30 1110911

7777777777777777

G { (15 — 1\/§> (—391,1,1,1,1,1,1,1,1 + Q2,2,2,2,2,2,2,2,2)
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+1 (3i + \/3) Q11211221 +1 (5i + \/§) Q11212121+ (1 + 1\/§> Q11212211

sy tysydydy y byt by by dy

+ <2+2i\/§) Q11221102 F4 011221121+ (—2—21\/5) Q111221211

by lysyaydydyds by lysyaydydy sLyty
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