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Abstract

Type IIB flux vacua based on Landau-Ginzburg models without Kähler deformations

provide fully-controlled insights into the non-geometric and strongly-coupled string

landscape. We show here that supersymmetric flux configurations at the Fermat point

of the 19 model, which were found long-time ago to saturate the orientifold tadpole,

leave a number of massless fields, which however are not all flat directions of the super-

potential at higher order. More generally, the rank of the Hessian of the superpotential

is compatible with a suitably formulated tadpole conjecture for all fluxes that we found.

Moreover, we describe new infinite families of supersymmetric 4d N = 1 Minkowski

and AdS vacua and confront them with several other swampland conjectures.
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1 Introduction

Moduli stabilization by fluxes has been a cornerstone of realistic string models since the

advent of the string landscape. Early investigations of the GKP construction [1] such

as refs. [2, 3, 4, 5] appeared to confirm the expectation that a generic flux will stabilize

all complex structure moduli of Calabi-Yau manifolds in either type IIB or F-theory
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compactifications. Based on more recent studies, however, it was argued that in models

with a large number of complex structure moduli it should not be possible to stabilize

all of them using fluxes [6, 7, 8]. The basic idea, known as the tadpole conjecture, is

that the flux contribution to the D3-brane tadpole scales linearly with the number of

stabilized moduli, with a proportionality constant that leads to an effective bound in

many popular situations. This argument is part of the swampland program (reviewed

for example in [9, 10]), whose goal it is to determine what the low-energy effective field

theories are that can arise from a full-fledged theory of quantum gravity like string

theory.

The relation between the size of the tadpole and the number of stabilized moduli

can easily be tested (and hence falsified) in many examples. Moreover, with a some-

what more precise definition of the “number of stabilized moduli”, the conjecture can

be stated essentially in classical Hodge theory, and could thus conceivably be proven

rigorously independent of complicated or unknown perturbative or non-perturbative

quantum corrections. Recent work along this line has provided evidence for the con-

jecture in the large complex structure limits [11, 12, 13, 14]. A scenario including

a putative counterexample was presented in [15]. However, this counterexample was

more recently challenged in [16].

The main aim of this paper is to shed light on the competition between the sta-

bilization of moduli and the size of the D3-brane tadpole in the deep interior of the

moduli space of type IIB flux compactification (see [17] for related work in F-theory).

Our investigation is based on a Landau-Ginzburg orbifold describing a non-geometric

compactification with h1,1 = 0, that was first studied with this purpose some 16 years

ago in [18, 19]. It was shown there that while the model is intrinsically non-geometric,

the standard Hodge theoretic formulas for the flux superpotential and tadpole continue

to apply, based on the holomorphic nature of the supersymmetric locus and thanks to

powerful non-renormalization theorems for the superpotential. Moreover, while the lat-

tice of supersymmetric fluxes at the Fermat point has such a large rank that brute force

numerical searches for “short” flux vectors compatible with tadpole cancellation are

prohibitively expensive, some explicit fluxes were found that lead to supersymmetric

Minkowski and AdS vacua that are under full control despite an O(1) string coupling.

However, the exact content of the low-energy theory and the full set of supersymmetric

fluxes remained unexplored at the time.

In this work, we will show first of all that in the Minkowski vacua of the 19 Landau-
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Ginzburg model presented in [18] in fact only a small subset of the 63 complex structure

moduli (that survive the orientifold projection) obtain a mass as a consequence of the

flux. Secondly, we will present a more complete list of supersymmetric fluxes saturating

the tadpole and leading to 4d Minkowski vacua, and show that all of them contain a

substantial number of massless fields. Thirdly, based on the evaluation of the cubic

(and higher-order) terms in the superpotential, we show that not all of these massless

fields correspond to truly flat directions, although we are not able to show that all

moduli are actually stabilized. Based on these insights, we present a mathematically

precise (if perhaps somewhat simplified) formulation of the tadpole conjecture that can

be tested non-trivially over the entire moduli space.

We then turn to other aspects of the swampland program, in which context the

compactifications of [18, 19] were revisited in the recent works [20, 21], focusing only

on the stabilization of the three bulk complex structure moduli (that are mirror dual

to the untwisted Kähler moduli in the mirror dual toroidal type IIA compactification).

An intriguing result of [21] was the presence of an infinite family of SUSY Minkowski

vacua. In this infinite family a quantized flux, which is unconstrained by the tadpole,

goes to infinity. Here, we discover similar infinite families of Minkowski vacua that

include all complex structure moduli of the model. One is then forced to accept that

an infinite family of 4d Minkowski solutions is part of the string landscape. This may

sound contradictory to the standard lore that the landscape is finite, that is, that there

is a finite number of vacua (and corresponding EFTs) below a certain energy cutoff

[22, 23]. We argue that our infinite families of Minkowski vacua are consistent with

the finiteness conjecture since we expect that for each family there is a tower of states

becoming light.

Additionally, we revisit AdS solutions in these settings. There we find likewise new

infinite families of AdS solutions. The existence of these solutions was known based on

a study of simple models that restrict to the bulk moduli [19, 20, 21]. Those families

are reminiscent of the DGKT [24, 25] SUSY AdS vacua which are included in the

mirror of these construction. Here we show that such solutions also exist when taking

all complex structure moduli into account. We present explicitly two examples that

have peculiar features that are relevant to the swampland program.
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2 Moduli stabilization in non-geometric backgrounds

Following [18], in this paper we focus on orientifolds of the 19 Landau-Ginzburg (LG)

model, with worldsheet superpotential

W =
9∑
i=1

Φ3
i . (2.1)

We orbifold by the Z3 symmetry Φi → ωΦi where ω = e
2πi
3 . It can be shown that

the model is the mirror dual of a rigid Calabi-Yau manifold (T 6/Z3 × Z3). A basis for

the (c, c) primary chiral superfields of the untwisted sector is given by the monomials

ΦiΦjΦk i 6= j 6= k 6= i. There are 84 of them and they can be identified as complex

structure moduli. In the untwisted sector of a LG model there is no (a, c) sector,

but there could be Kähler moduli in the twisted sector. However, in the case of a

Z3 orbifold one finds no non-trivial (a, c) primary superfields, so there are no Kähler

moduli. Intuitively, the orbifold is fixing the volume in string frame. Notice that this

breaks S-duality in our setup.

2.1 Orientifolds and fluxes

The different consistent orientifold projections were studied in [18]. Here we will focus

only on the first orientifold considered in [18], which combines the worldsheet parity

operator with the operator g1:

g1 : (Φ1,Φ2,Φ3, ...,Φ9)→ −(Φ2,Φ1,Φ3, ...,Φ9) . (2.2)

This reduces the number of complex structure moduli down to 63: 7 coming from

Φ1Φ2Φi, i = 3, 4, . . . 9,
(

7
2

)
= 21 coming from (Φ1 + Φ2)ΦiΦj and

(
7
3

)
= 35 coming from

ΦiΦjΦk.

Using results from [26], the authors of [18] calculated the Ramond-Ramond charge

of the crosscap state in the orientifold (2.2), and showed that it amounts to 12 units

of the one elementary B-brane in the model, which can naturally be addressed as a

“D3-brane”, keeping in mind that this is really an abuse of language because the model

is intrinsically non-geometric.

Similarly, the possible Ramond-Ramond and Neveu-Schwarz fluxes, F3 and H3, can

be studied by consistency and comparison with the A-branes in the Landau-Ginzburg

theory, which are the analogues of supersymmetric three-cycles in ordinary Calabi-Yau
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compactifications. This gives on the one hand their precise quantization condition, see

eq. (2.10) below, and on the other hand their contribution to the Ramond-Ramond

tadpole in the class of the orientifold. Including a possible contribution from mobile

D3-branes, the tadpole cancellation condition takes the standard form

Nflux =

∫
M

F3 ∧H3 =
1

τ − τ̄

∫
M

G ∧ Ḡ =
NO3

2
−ND3 = 12−ND3 , (2.3)

where we have introduced the axio-dilaton τ = C0 +ie−φ and the G-flux G = F3−τH3.

We emphasize that the familiarity of the expression (2.3), and other statements in

this section, should not belie the fact that their derivation and validity require delicate

consistency arguments from both worldsheet and spacetime considerations.

2.2 Non-renormalization theorems

In particular, as explained in [18], the flux superpotential is still given by the usual

GVW [27, 28] formula

W =

∫
M

(F3 − τH3) ∧ Ω , (2.4)

with the understanding that the integral just refers to the abstract pairing in Landau-

Ginzburg cohomology, and, crucially, receives no perturbative or non-perturbative cor-

rections, despite the fact that the volume is fixed at string size by the orbifold, and

the dilaton, as we will see, might be stabilized at strong coupling. This was argued

via the non-renormalization of the BPS tension of a D5-brane domain wall but it also

passes other non-trivial checks [18]. One may worry about brane instanton corrections.

However, Euclidean D3-branes are absent since h1,1 = 0 and D(−1) instantons do not

contribute in the large volume limit and are independent of the internal volume. This

absence of D(−1) instantons seems also consistent with the recent paper by Kim [29]

that finds no D(−1) instantons if the O7-plane charges are locally cancelled by D7-

branes. Here, we have no O7-planes and D7-branes since h1,1 = 0. One can also ask

why similar corrections should be absent in the type IIA mirror dual. For example, in

the DGKT construction [24], there is only one suitable 3-cycle, since h2,1 = 0, and this

cycle is threaded by H3-flux. So, one does not expect brane instanton corrections in

the dual setup either [30].
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2.3 Conditions for supersymmetric vacua

To study N = 1, D = 4 supersymmetric vacua using the 4d effective action, we require,

in addition to the superpotential (2.4), also some knowledge of the Kähler potential

K, which is expected to receive both perturbative and non-perturbative string loop

corrections. As pointed out in [19] mirror symmetry implies that in the weak coupling,

large complex structure limit, the Kähler potential for the dilaton and the complex

structure moduli is given by:

K = −4 ln[τ − τ̄ ]− ln[i

∫
M

Ω ∧ Ω]. (2.5)

Note that this factor of 4 in front of the dilaton kinetic term does appear in the di-

mensional reduction of the 10d type IIB supergravity action. However, for geometric

compactifications the proper 4d N = 1 chiral multiplets are related to the volume in

Einstein frame [31]. The above orbifold we are doing can be thought of as fixing the

volume in string frame. Since vol6,string = e
3
2
φvol6,Einstein in geometric compactification

the 4 becomes a 1, the rest being absorbed into the term −2 ln(vol6,Einstein) in K. Given

that our model is non-geometric this does not happen. One could thus think of this

factor as a small volume correction. However, more precisely one should derive this

factor of 4 using mirror symmetry [19]. This factor does appear in the dimensional

reduction of the 10d type IIA supergravity action on orientifolds of Calabi-Yau man-

ifolds [32]. If we appropriately restrict our H3-flux then our setup is mirror dual to

a type IIA string theory compactification on a rigid Calabi-Yau manifold. Thus, our

K and W as well as our solutions should agree with the type IIA results, which is

the case if we include this factor of 4. Note, that our setup is more general than the

IIA compactifications since upon mirror symmetry some of the H3-flux quanta might

become geometric or non-geometric fluxes on the type IIA side.

In this work we study both SUSY Minkowski and AdS vacua. The factor of 4 is

irrelevant for the discussion of Minkowski solutions but it has important consequences

for AdS solutions. In fact, without it we would not find fluxes that are unconstrained by

the tadpole cancellation condition and that are expected from the type IIA mirror dual

setup [24, 25]. The reason is that because of this factor of 4, the covariant derivative

with respect to the dilaton has an extra term:

DτW = − 1

τ − τ

∫
M

(
3G+G

)
∧ Ω = 0 . (2.6)
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Together with

DaW =

∫
M

G ∧ χa = 0 , (2.7)

where χa is a basis of (2, 1) harmonic forms, one finds that in a supersymmetric solution

G can be written as:

GSUSY = Aaχa + A0
(
−3Ω + Ω

)
, (2.8)

where Ω is the holomorphic 3-form and the A’s are complex coefficients. Notice that

the flux can have a (3, 0) component, which in turn implies that the supersymmetric

flux is not restricted to be imaginary self-dual (ISD). In fact, it provides an unbounded

contribution to the tadpole. The general formula for the tadpole is given by:

Nflux(GSUSY) =
81
√

3

2Imτ

(∑
a

|Aa|2 − 8|A0|2
)
. (2.9)

Notice that the additional condition W = 0 for Minkowski solutions implies that

G ∈ H2,1(M), i.e., above we would have A0 = 0 and Nflux ≥ 0.

To describe and implement flux quantization, it is best to work with respect to an

integral basis of the middle cohomology lattice of the model, which measures charges

of supersymmetric A-branes. In the Landau-Ginzburg model (2.1), as reviewed in [18],

primitive cycles Γn are labelled by collections of 9 integers ni mod 3, i = 1, . . . , 9,

which refer to the orientation of an elementary integration cycle for each variable Φi

(see appendix A). These Γn are however not all linearly independent and also subject

to various identifications. In the orbifold, a basis is in correspondence with the first

170 non-negative integers written in binary notation with 9 digits, n = (n1, n2, . . . , n9),

where ni = 0, 1. The identification by the orientifold (2.2) allows us to reduce the basis

to 27 = 128 elements labelled by n = (1, 1, n3, n4, . . . , n9), where ni = 0, 1. Let us

denote their Poincaré dual 3-forms as γn. We can expand the flux 3-form in this basis:

G =
∑

Nnγn − τ
∑

Mnγn , (2.10)

where Nn and Mn are integers, to ensure flux quantization.

Now our primary interest is finding fluxes such that we have a supersymmetric

vacuum at the Fermat point. That is, we need an appropriate choice of values for

these integers Nn and Mm such that equations (2.8) and (2.10) are compatible. To do

this we remember that harmonic forms in LG models are represented by RR ground
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∑
i li 9 12 15 18

H(p,q) H(3,0) H(2,1) H(1,2) H(0,3)

Table 1: Correspondence between harmonic 3-forms and RR ground states for our LG

model.

states, which, in the model at hand, are again labelled by nine integers:1

Ωl ←→ l =| l1 . . . , l9〉 with li = 1, 2 and
9∑
i=1

li = 0 mod 3 . (2.11)

The classification of these states according to the four Hodge types of cohomology

classes is shown in table 1. As we review in appendix A, their pairing with the integral

classes γn is given by∫
γn ∧ Ωl = Bl ω

n·l with n · l =
∑
i

nil
i , (2.12)

where ω = e
2πi
3 and Bl = 1

39/2

∏
i

(
1 − ωli

)
Γ( l

i

3
) is a factor that drops out of equation

(2.7) which then implies that∑
n

(Nn − τMn)ωn·l = 0 for all l with
∑
i

li = 12 , (2.13)

while equation (2.6) reduces to∑
n

(Nn − τMn)
(
−3ωn·l9 + ωn·l18

)
= 0 , (2.14)

where l9 = {1, 1, 1, 1, 1, 1, 1, 1, 1} and l18 = {2, 2, 2, 2, 2, 2, 2, 2, 2}. These are simple

linear equations and we can solve them in full generality although we are dealing with

a large number of moduli.

2.4 Higher-order derivatives of the superpotential

Having found fluxes that are supersymmetric at a particular point in moduli space,

the question arises whether this actually leads to a stabilization of all the moduli, i.e.,

the absence of any continuous zero-energy deformations of the vacuum. A sufficient

1Note that we use Ωl to denote a basis of 3-forms and this should not be confused with the

holomorphic (3,0)-form Ω that does not have a subscript.

9



condition for stability is that all scalar fields corresponding to the erstwhile moduli be

massive. However, even if in the presence of massless fields, non-trivial interactions can

stabilize the moduli at higher order in the deformation parameters. In other words,

the deformations could be marginal, but not exactly so.

In the language of singularity theory, a supersymmetric vacuum corresponds to

a critical point of the superpotential2 (2.4). The absence of continuous deformations

means that the critical point is isolated, while the absence of massless fields means that

the critical point is non-degenerate. An example of a degenerate but isolated critical

point is the origin Φ = 0 of the superpotential W = Φ3.

In principle, the full dependence of the superpotential on all the moduli is encoded

through Ω in the formula (2.4). In practice, the explicit evaluation is generically

prohibitively complicated for more than a handful of variables. In our model at the

Fermat point, however, we can luckily evaluate all derivatives of the superpotential in

terms of elementary integrals, see appendix A, even if the full functional dependence

remains inaccessible.

We will focus on this momentarily, but wish to point out that the second derivatives

of the superpotential (which in particular determine the masses of moduli) can in

fact be evaluated much more easily for a generic Calabi-Yau through their relation

with (what from its role in the heterotic string is known as) the Yukawa coupling.

Namely, the Yukawa coupling captures the (0, 3)-component of the third derivative of

the holomorphic three-form

Yabc =

∫
Ω ∧DaDbDcΩ , (2.15)

or equivalently the expansion of its second derivative in terms of the (1, 2)-forms.

Referring specifically to table 3 of [33] the second derivatives of the flux superpotential

with respect to the complex structure moduli is given by

DaDbW = Da

∫
G ∧ χb =

∫
G ∧

(
−ieKY c

abχc
)
. (2.16)

where we have also used that the flux, being dual to an integral cycle, is covariantly

constant. To reiterate, the interest of this observation is that the Yukawa coupling is

2In reality of course, the superpotential is not a function, but merely a section of a particular

line bundle over moduli space, as witnessed by the covariant derivatives in (2.7). Considerations of

singularity theory being local are not directly affected by this distinction after an appropriate choice

of holomorphic coordinates.
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on general grounds an algebraic function on moduli space, and is therefore much more

easily evaluated than the full moduli dependence of W .

In the case at hand, labeling the complex structure moduli by the corresponding

l vectors whose entries sum to 12 according to table 1, and utilizing appendix A, we

find the following second derivatives of W

DlaDlbW =
1

39

∑
n

(Nn − τMn)ωn·(la+lb−l9)

9∏
i=1

(
1− ωlia+lib−1

)
Γ

(
lia + lib − 1

3

)
. (2.17)

For the τ derivatives we find

DτDlaW = − 1

τ − τ

∫ (
3G+G

)
∧ χa , (2.18)

DτDτW =
3

τ − τ

∫
H3 ∧ Ω . (2.19)

At the particular point τ = ω we find

DτDlaW = − 1

39(1 + 2ω)

∑
n

(4Nn − (−1 + 2ω)Mn)ωn·la
9∏
i=1

(1− ωlia)Γ
(
lia
3

)
, (2.20)

DτDτW =
1

38(1 + 2ω)

∑
n

Mnωn·l9
9∏
i=1

(1− ωli9)Γ
(
li9
3

)
. (2.21)

When dealing with Minkowski vacua G ∈ H2,1(M) so the first equation simplifies to:

DτDlaW = − 1

39

∑
n

Mnωn·la
9∏
i=1

(1− ωlia)Γ
(
lia
3

)
, (2.22)

and the last equation reduces to DτDτW = 0. The multi-derivative of order r with

respect to the moduli fields labelled by l1, . . . , lr is given by (see appendix A for details):

∂l1∂l2 . . . ∂lrW =
1

39

∑
n

(Nn − τMn)ωn·(
∑
α lα−(r−1)l9)

×
9∏
i=1

(
1− ω

∑
α l
i
α−(r−1)

)
· Γ
(∑r

α l
i
α − (r − 1)

3

)
.

(2.23)

3 Around the tadpole conjecture

In its original formulation [6], the tadpole conjecture states that “the fluxes which

stabilize a large number, h2,1 or h3,1, of complex structure moduli of a Calabi-Yau
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threefold or fourfold in a type IIB or F-theory compactification, respectively, make

a positive contribution to the D3-brane tadpole that grows at least linearly with the

number of moduli”, i.e., there is a constant α such that for a large number of moduli

(Flux tadpole) > α× (number of moduli) (3.1)

The conjecture was motivated by a number of failed attempts to find models in which

a large number of moduli can be stabilized explicitly by fluxes. Moreover, based on

these examples, it was also proposed that more specifically, α is at least 1/3. Since

the formulation of the conjecture, there have been a number of further tests and re-

finements, but to our knowledge no substantial deviation or modification of (3.1) with

α = 1/3 has yet been observed. A typical difficulty in either proving or disproving the

conjecture appear to be somewhat fuzzy hidden assumptions on the portion of moduli

space in which stabilization is to be sought for. Specifically, investigations such as

[12, 15, 16, 13, 14] focus around the large complex structure in order to control both

Kähler and superpotential, and dismiss any potential violations at the boundary of

that region. The methods of the present paper, as well as its precursors [18, 21], avoid

some of these difficulties and, although they apply in a rather different region of mod-

uli space, offer at least the same level of control. Without taking sides, our concrete

results motivate us to raise two points which we feel need to be taken into account for

a proper handle on the tadpole conjecture.

3.1 Hodge theoretic formulation

First of all, the conjecture (3.1) is stated without a precise definition of “stabilization

of moduli”. As our results illustrate, models located at special points in moduli space

with a high degree of symmetry will typically be missing mass terms for certain fields,

depending on their transformation properties, but these moduli can still be stabilized

at higher order in the deformation parameter.

Second, the conjecture focuses on the stabilization (however defined) of “all of a

large number of complex structure moduli” of a Calabi-Yau manifold by fluxes, with

a universal constant α. In fact, and certainly from the mathematical point of view, it

seems just as interesting to first investigate the interplay between the size of the flux

tadpole and the stabilization of only a subset of the moduli in a fixed model, and worry

later about the global problem and the universality of α.
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To make progress, we propose3 to investigate a version of the tadpole conjecture

that can be formulated purely in Hodge theoretic terms, and that makes sense over the

entire moduli space. We do not claim to capture all subtleties of moduli stabilization,

especially those related to perturbative and non-perturbative quantum corrections,

or to the stabilization of Kähler moduli. However, we feel that the actual problem

is “in the same universality class” of landscape problems in the sense of Douglas-

Denef [34, 35]. Moreover, our formulation has the advantage of being mathematically

precise. We will spell out the proposal only for type IIB compactifications on Calabi-

Yau threefolds, because this is the class of models for which we have concrete results.

We point out, however, that the (obvious) reformulation for F-theory on Calabi-Yau

fourfolds is even more closely related to classical problems in Hodge theory.

Namely, given a Calabi-Yau threefold Y with complex structure moduli space4 MY

of dimension dimMY = h2,1(Y ) � 1, we may ask, for each point z ∈ MY , for the

existence of (non-zero) integral cohomology classes F3, H3 ∈ H3(Y,Z) and a value of

the axio-dilaton τ ∈ H in the upper half-plane, such that

G = F3 − τH3 ∈ H2,1(Yz)⊕H0,3(Yz) (3.2)

is a supersymmetric flux with respect to the complex structure corresponding to z. For

any such G, the flux tadpole

Q(G) =

∫
Y

F3 ∧H3 =
1

τ − τ̄

∫
Y

G ∧ Ḡ > 0 (3.3)

is a positive integer (if G is non-zero). We will call the sublattice

ΛSUSY
(τ,z) ⊂ H3(Y,Z)⊕ τH3(Y,Z) (3.4)

of such fluxes, with rank ΛSUSY
(τ,z) =: rk(τ, z) the supersymmetric flux lattice, and the

subset

MSUSY
Y = {(τ, z) ∈ H ×MY | rk(τ, z) > 0} ⊂ H ×MY (3.5)

for which ΛSUSY
(τ,z) is non-trivial the supersymmetric locus. The fact that Q is positive

definite gives ΛSUSY
(τ,z) an Euclidean structure.

3A similar point of view appears to be taken in [13], but again restricted to the (strict) large complex

structure limit, as well as in the earlier work [17] in F-theory. We also thank Hossein Movasati

for illuminating discussions, especially about the possible role of the rank of the supersymmetric

flux/Hodge lattice.
4It is understood that the full construction involves an orientifold projection onto the invariant

part of the moduli space, fluxes have to be invariant, etc.
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MSUSY
Y is in general a complicated space, with many components of possibly dif-

ferent dimensions, as well as other singularities. We understand the gist of the tadpole

conjecture as relating the codimension ofMSUSY
Y , as a measure for the number of “sta-

bilized moduli”, to the smallest flux tadpole that engenders it. The issue related to the

first point raised above is that because of the singularities of the supersymmetric locus,

there are in general different notions of dimension. Among these, the Zariski dimension,

defined in terms of the maximal ideal m at (τ, z) as dimZ
(τ,z)(MSUSY

Y ) = dim
(
m/m2

)
,

measures essentially the number of fields that are left massless by the flux. On the

other extreme, the Krull dimension dimK
(τ,z)(MSUSY

Y ), defined by the longest chain of

prime ideals of the local ring, corresponds to the maximal number of truly marginal

deformations. The fact that these are no more than the number of massless fields is

the classical inequality dimK
(τ,z)(MSUSY

Y ) ≤ dimZ
(τ,z)(MSUSY

Y ), with equality when the

supersymmetric locus is smooth. The intuition is that a large rank of the flux lattice

corresponds to the intersection of many components of MSUSY
Y , and therefore leads to

a large discrepancy between dimK and dimZ .

Now our results in the 19 LG model at the Fermat point (where ΛSUSY has extremely

large rank) indicate that while it is indeed difficult to find supersymmetric fluxes that

make all moduli massive with a bounded tadpole, higher order terms in the superpo-

tential will stabilize additional fields, although we have not been able to determine the

exact number of surviving continuous deformations. This leads us to propose that the

tadpole conjecture of [6] should be extended and tested over the entire moduli space

as the mathematical statement that the Zariski co-dimension of the supersymmetric

locus of Calabi-Yau threefolds is bounded linearly by the length of the shortest non-zero

lattice vector,

codimZ
(τ,z)(MSUSY) ≤ β ·min{Q(G) | G ∈ ΛSUSY

(τ,z) , G 6= 0} (3.6)

At this stage, the constant β might depend on Y , but would according to the “refined

tadpole conjecture” [6], be uniformly bounded as β = α−1 ≤ 3.

In the following subsection 3.2, we explain the relationship between the number

of massive fields, i.e., the Zariski co-dimension, and the rank of the Hessian of the

superpotential, which is given in our model by eqs. (2.17), (2.20), (2.21), and which

can more generally be written in terms of the Yukawa coupling as (2.16). This last

fact makes us particularly hopeful that the tadpole conjecture in the form (3.6) is

amenable to a mathematical proof (or counterexample). Then, in subsection (3.3), we

14



turn to the analysis of the higher-order terms, given in our model by (2.23). As alluded

to above, this is in general a complicated problem in (high-dimensional!) singularity

theory, and at this stage we will only describe an algorithm for taking into account the

first non-trivial correction.

3.2 The rank of the mass matrix for Minkowski solutions

For 4d N = 1 theories the Lagrangian is given by

L = −1

2
Ki̄∂µϕ

i∂µϕ̄̄ − V , with V = eK
(
Ki̄DiWDjW − 3|W |2

)
. (3.7)

Minkowski vacua satisfy the following relations

W = ∂τW = ∂aW = 0 , ∀a = 1, . . . , h2,1 . (3.8)

The Hessian matrix of the scalar potential for Minkowski vacua is then simply given

by Hi̄ = ∂i∂̄V = eK(∂i∂kW )Kkl̄(∂l̄∂̄W ).5 To calculate the physical masses squared

of the complex scalar fields requires us to go to a canonical basis in field space using

the diffeomorphism P i
j = ∂ϕi/∂ϕ̂j defined such that

− 1

2
Ki̄∂µϕ

i∂µϕ̄̄ = −1

2
Ki̄Pk

i∂µϕ̂
kP̄ ̄

l̄∂
µ ¯̂ϕl̄ = −1

2
δi̄ ∂µϕ̂

i∂µ ¯̂ϕ̄ . (3.9)

The masses squared are then given by the eigenvalues of the mass matrix M =

(P−1)THP̄−1. This can be rewritten as

Mim̄ = eK [(P−1)T (∂∂W )P−1]ijδ
jk̄[(P̄−1)T (∂̄∂̄W̄ )P̄−1]k̄m̄ . (3.10)

We see that the masses squared are necessarily positive semidefinite. This ensures

the stability of the solution and is a result of the preserved supersymmetry. However,

while instabilities in the form of tachyons are forbidden, it is in principle possible that

scalar fields are massless. To answer the question of stability for a given solution with

massless scalars would then require one to calculate higher order terms in the scalar

potential.6 If some scalar fields in 4d N = 1 Minkowski vacua would remain flat

directions, then one can only trust these vacua if one can control all corrections to the

superpotential, because any kind of correction could lead to a runaway potential for the

flat directions. Given the non-renormalization theorems in [18, 19] that we reviewed

5For Minkowski vacua one finds that the equations (3.8) imply that ∂i∂jV = 0.
6For example, a single real scalar field with V (φ) = φ4 would be massless but stabilized at φ = 0.
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above in subsection 2.2, we expect that these models do not receive any correction

to the superpotential (but only to the Kähler potential). So, the existence of these

Minkowski vacua is guaranteed independent of the corrections and higher order terms.

Let us return to the mass matrix above in equation (3.10). It clearly involves in

addition to the superpotential also the inverse Kähler metric Ki̄. Given that we have

no control over corrections to the Kähler potential we generically do not know what

the masses of the scalar fields are. However, we can ask more modest questions like

whether all scalar fields are massive or how many scalar fields are massless. This can

actually be answered because the Kähler metric appears in the kinetic terms and is

therefore a positive definite matrix. For example, when calculating the determinant of

Mim̄ one finds that it is zero if and only if the determinant of ∂i∂kW is zero [21]. Thus,

if the Hessian of the superpotential has maximal rank then all scalar fields are massive.

One can extend this argument to show that the matrix rank of Mim̄ is the same as

the matrix rank of ∂i∂kW : Assume there is a vector a in the nullspace of (∂∂W ), i.e.,

(∂∂W )a = 0. Then it follows from the definition of Mim̄ in equation (3.10) that P̄ ā

is in the nullspace of M . Since P is a diffeomorphism P̄ ā is non-zero whenever a is

non-zero. Thus, P provides a 1-1 map between nullvectors of M and (∂∂W ) and both

matrices have therefore the same rank.

3.3 Stabilization at higher order

We have just seen that although we cannot calculate the physical masses of the moduli

without knowledge of the Kähler potential, the number of fields that remain massless

in any given Minkowski vacuum can be determined just based on the Hessian of the

superpotential, i.e., the quadratic terms in the expansion around the critical point

(3.8). It is easy to see that this extends to higher order as well: A continuous family

of supersymmetric vacua just corresponds to a flat direction of the superpotential, a

problem which by analyticity can be studied with knowledge of all derivatives at the

critical point. In practice, this can be analyzed order by order in the field expansion,

which is still a very non-trivial problem, however.

To fix ideas, consider a theory with chiral fields ϕi, and superpotential W expanded

up to cubic terms around a critical point at the origin,

W =
1

2

∑
i,j

Hijϕ
iϕj +

1

3!

∑
i,j,k

Cijkϕ
iϕjϕk + higher order terms . (3.11)

If the Hessian Hij does not have full rank, there are some massless fields, and we would
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like to know how many of them correspond to true moduli, in particular, whether the

critical point equations

∂iW = Hijϕ
j +

1

3
Cijkϕ

jϕk + · · · (3.12)

admit any continuous solutions.

In reality, this depends on the higher order terms. For example, the superpotential

W = 1
2
(ϕ− ψ2)2 clearly has a flat direction along ϕ = ψ2. However, in the expansion

of W up to cubic order ∂ϕW = ϕ − ψ2, ∂ψW = −2ϕψ and if we treated these trun-

cated equations exactly, we would conclude that ϕ = ψ = 0 is the only critical point.

The correct statement is that if we parametrize the deformation by the kernel of the

quadratic term, i.e., ψ, and eliminate ϕ = ψ2 with the help of the first equation, the

second equation is −2ψ3 = 0, and vanishes up to the order that we have kept track of,

so we correctly cannot conclude that the deformation is lifted.

In general, if we find that the equations (3.12) do not vanish up to cubic order in

the independent fields once the massive fields have been eliminated, we can conclude

that the deformation space actually has smaller dimension than the kernel of Hij. How

many more fields are stabilized at this order can be determined by solving a number

of quadratic equations. To be specific, assume that Hij has rank one, with H11 = 1.

The first equation ∂1W = 0 is then solved if

ϕ1 = −H1jϕ
j − 1

3
C1jkϕ

jϕk (3.13)

where the first sum is only over j 6= 1, but the second over all j, k. Since we are only

working up to third order in the independent fields (ϕj for j > 1), we can without harm

replace ϕ1 with −H1jϕ
j in the second term to solve ∂1W up to that order. Substituting

this result in the remaining equations, the linear terms drop out (because Hij had rank

1) and we are left with a list of quadratic equations in only the independent fields.

The reduction in dimension is a bit subtle, and not necessarily given by the number of

linearly independent quadrics, but as soon as one quadric is non-zero, we can conclude

that additional fields are stabilized in the full problem.

The generalization to Hessians of higher rank is straightforward, and we have imple-

mented this for the study of moduli stabilization in the 19 Landau-Ginzburg model at

the Fermat point. The generalization to higher order in the fields if also fairly obvious,

but we will leave it for future work.
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4 Minkowski solutions at fixed coupling

As we reviewed above, the superpotential does not receive perturbative or non-

perturbative corrections and thus supersymmetric Minkowski vacua are of particular

interest in these 4d N = 1 theories. Originally Minkowski vacua in these non-geometric

settings were studied in [18] by including all complex structure moduli. Follow-up pa-

pers [19, 20, 21] then restricted to the three bulk torus complex structure moduli. It

was shown in [19] that such vacua cannot arise at parametrically large complex struc-

ture or weak coupling, thus confining them to a barely explored part of the string

landscape. In this section we will set the axio-dilaton to

τ = C0 + ie−φ = ω = e
2πi
3 = −1

2
+ i

√
3

2
. (4.1)

So, we have a string coupling of order one and we will describe our attempts to sys-

tematically classify the solutions of the 19 model at this point in moduli space.

4.1 Massless fields in old solutions

The original work [18] presented three explicit Minkowski solutions of our model in

their section 4.5. These solutions were found essentially by happenstance, and no

claim was made as to their genericity or completeness. In view of the questions raised

above, we have now checked the rank of the corresponding Hessians for these three

solutions. We find that the second example of [18], given in the Ω-basis by7

G1 =
1

9

[
− Ω1,1,1,2,1,2,1,2,1 + Ω1,1,1,2,1,2,1,1,2 + Ω1,1,1,2,1,1,2,2,1 − Ω1,1,1,2,1,1,2,1,2

+ Ω1,1,1,1,2,2,1,2,1 − Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,2,1,2,1,2

]
(4.2)

and which makes a contribution Nflux = 8 to the D3-brane tadpole, gives masses to 14

of the 64 scalar moduli. The first example of [18],

G2 =
i

3
√

3

[
Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1 − Ω1,1,1,1,2,2,1,1,2 + Ω1,1,1,1,2,2,1,2,1

]
(4.3)

with Nflux = 12 has 16 massive complex scalars. Finally, the third example:

G3 =
1

9

[
− Ω1,1,1,2,2,2,1,1,1 − Ω1,1,1,2,2,1,2,1,1 − Ω1,1,1,2,2,1,1,2,1 + Ω1,1,1,2,1,2,1,1,2 (4.4)

7While we reproduced the F3- and H3-fluxes in [18, Sec. 4.5], we find a slightly different normal-

ization and phase for the G-fluxes.
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+ Ω1,1,1,2,1,1,2,1,2 + Ω1,1,1,2,1,1,1,2,2 − Ω1,1,1,1,2,2,2,1,1 − Ω1,1,1,1,2,2,1,2,1 (4.5)

− Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,1,2,2,1,2 + Ω1,1,1,1,1,2,1,2,2 + Ω1,1,1,1,1,1,2,2,2

]
(4.6)

with Nflux = 12 has 22 massive complex scalars.

These numbers being rather small compared to the total number of moduli, we

have set out to check on the one hand whether any of the remaining massless fields

are stabilized at higher order in the field expansion, along the lines sketched in section

3.3, and second to search more systematically for Minkowski solutions in this model,

hopefully covering all possibilities.

Along these lines, we have found that while in the vacua corresponding to G1 and

G3 above, the cubic terms in the superpotential do not lead to any further constraints

on the massless fields, in the vacuum corresponding to G2, the 64 − 16 = 48 massless

scalars are subject to 10 linearly independent quadratic equations at that order, so

indeed some of them are actually stabilized and not true moduli. These results in

themselves suggest that this is not the full story, and that quartic terms and beyond

will lead to further stabilization. But we will leave this for future work and instead

turn to the systematic search.

4.2 Symmetries and new solutions

The 19 model specified in equation (2.1) enjoys an obvious S9 permutation symmetry.

This symmetry is broken to S7 by the orientifold action in equation (2.2). We thus

need to study one representative of each S7 orbit. However, this is still a formidable

task. For example, there are billions of ways of choosing 12 non-zero Aa out of the 63

possible ones (cf. eqn. (2.8)) but the order of S7 is only 5040.8 Thus, we somewhat

randomly generate roughly eight hundred different Minkowski solutions that satisfy

the tadpole cancellation condition and have Nflux = 12. The maximum rank that we

find for the mass matrix is 26. This is consistent with the tadpole conjecture, which

predicts that the number of massive fields should be smaller than 36 given that the

tadpole is 12. One example of this is given by:

G4 = −1

9

[
Ω1,1,1,2,2,1,1,2,1 − Ω1,1,2,1,2,1,1,2,1 − Ω1,1,2,2,1,1,1,2,1 + Ω1,1,2,2,2,1,1,1,1

− Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1 + Ω1,2,2,1,1,1,1,2,1 + Ω2,1,2,1,1,1,1,2,1

8This is somewhat overestimating the actual problem since whenever we choose an Aa that is not

invariant under the orientifold but rather gets mapped into Ab then we have to turn on Ab = Aa.
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− Ω2,2,1,1,1,1,1,2,1 + Ω2,2,1,1,2,1,1,1,1 + Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1

]
. (4.7)

Next, we attempt to generalize the results to a full proof. We know that solutions

which are related by a permutation will have the same rank. Interestingly, we find that

solutions with different permutation symmetries can have the same rank. The solution

G4 has an S3 × Z2 × Z2 symmetry group. Another solution which also has rank 26 is

G5 =
ω2

9

[
Ω1,1,2,2,2,1,1,1,1 − Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1 + Ω2,2,1,1,2,1,1,1,1

+ Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1 + Ω1,1,1,2,2,2,1,1,1 − Ω1,1,2,1,2,2,1,1,1

− Ω1,1,2,2,1,2,1,1,1 + Ω1,2,2,1,1,2,1,1,1 + Ω2,1,2,1,1,2,1,1,1 − Ω2,2,1,1,1,2,1,1,1

]
, (4.8)

which has an S3 × Z2 symmetry group.

We also discovered new solutions that satisfy the tadpole condition with Nflux = 12

and have different rank for the mass matrix. For example, the following solution has

20 massive fields respectively:

G7 =
1

9

[
− Ω1,1,1,1,2,1,2,1,2 + Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1

+ ω(−Ω1,2,1,1,1,1,2,1,2 + Ω1,2,1,1,1,1,2,2,1 + Ω1,2,1,1,1,2,1,1,2 − Ω1,2,1,1,1,2,1,2,1

− Ω2,1,1,1,1,1,2,1,2 + Ω2,1,1,1,1,1,2,2,1 + Ω2,1,1,1,1,2,1,1,2 − Ω2,1,1,1,1,2,1,2,1)

]
, (4.9)

and G8 below has 18 massive fields

G8 =
1

9

[
− Ω1,1,1,1,2,1,2,1,2 + Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1

+ ω(−Ω1,1,1,2,1,1,2,1,2 + Ω1,1,1,2,1,1,2,2,1 + Ω1,1,1,2,1,2,1,1,2 − Ω1,1,1,2,1,2,1,2,1

− Ω1,1,2,1,1,1,2,1,2 + Ω1,1,2,1,1,1,2,2,1 + Ω1,1,2,1,1,2,1,1,2 − Ω1,1,2,1,1,2,1,2,1)

]
. (4.10)

Summarizing, besides the rank 14 for the mass matrix that we only found for Nflux = 8

we found via an extensive search of solutions with Nflux = 12 the ranks 16, 18, 20, 22

and 26. It is not clear to us whether there is a pattern emerging or not but it would

be certainly interesting to study this further.

We have also evaluated some higher-order corrections for these new solutions ac-

cording to section 3.3. Including all terms in the superpotential that are cubic in the

fields, we find that while for G4 and G5, the number of massless fields is not reduced
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compared to the second-order level, for G7 we find 3, and for G8, 5 additional quadrics

in the massless fields that are linearly independent over C. This again is suggestive of

an intriguing pattern that we wish to study further in subsequent work.

Finally, we performed a search for flux configurations for which all scalar fields

have a mass. This is of course the case for generic choices of fluxes, however, in

those cases one overshoots the tadpole cancellation condition with the flux contribution

by a lot. We tried to identify flux configurations with a small contribution to the

tadpole conjecture that stabilize all moduli but we did not manage to find solutions

with Nflux smaller than 69. So, also from this angle we did not find an inconsistency

with the idea of the tadpole conjecture that in principle allows full stabilization with

Nflux > 64/3 ≈ 21.

4.3 Constraint on the G-flux

In order to tackle the question of what Minkowski solutions exist in our orbifold of

the 19 model, we need to understand potential constraints that reduce the parameters

of a search. Here we summarize some constraints that we discovered when studying

Minkowski vacua.

We found that it is useful to write

GMink =
∑

Aaχa ∈ H2,1(M) . (4.11)

Following [18, Section 4.3], we can start by setting all but one of the Aa equal to zero

so that G = AΩl, where we switched to the Ωl basis discussed above in section 2.3.

The quantization condition in equation (2.10) then requires that for each n in our basis

there exist integers Nn and Mn such that

√
3Aωn·l = Nn − τMn . (4.12)

Since we chose τ = ω = e
2πi
3 , we find that |A|2 ≥ 1/3. This then implies that (c.f.

equation (2.9) for A0 = 0)

Nflux = 81|A|2 ≥ 27 . (4.13)

This means, with only one non-zero Aa, it is impossible to find solutions within the

tadpole bound of 12. One can repeat a similar argument for two non-zero Aa’s and

finds that their contribution to the tadpole is at least 18 and therefore still too large.

One can continue this analysis but it becomes more and more tedious to derive the
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analytic bounds. We are also more interested in an upper bound on the number of Aa

that we can turn on in order to make the analysis of this model tractable.

Let us therefore turn on the generic G-flux in equation (4.11) and write it explicitly

as

GMink =
∑
l

AlΩl =
∑
n

Nnγn − τ
∑
n

Mnγn . (4.14)

This allows us to write the 63 complex Aa in terms of 126 real independent flux quanta.

Denoting all the different integer combinations of flux quanta (that are themselves

integer) schematically by Z, we find via an explicit calculation that all Aa can be

brought into the form

Aa =
1

9
(Z + ωZ) . (4.15)

The above constraint implies that each Aa satisfies the constraint |Aa|2 ≥ 1/81. This

means that each non-zero Aa we turn on has to contribute at least 1 to the tadpole

Nflux = 81
∑
a

|Aa|2 ≥ number of non-zero Aa . (4.16)

Thus, for our 19 orientifold we can have at most 12 non-zero Aa before violating the

tadpole condition. Given that there exist Minkowski solutions with 12 non-zero Aa

and tadpole 12 (cf. eqn. (4.4)), we know that one can saturate the bound in this case.

Likewise, there is a solution with 8 non-zero Aa and Nflux = 8 (cf. eqn. (4.2)). So,

again in this case one can saturate the bound. Given that in practice we only found

solutions with Nflux ≤ 12 for either four, eight or twelve non-zero Aa’s, we believe that

there are further constraints that might potentially make a complete analysis of this

model feasible. We leave this as an interesting challenge for the future.

5 New infinite families

The original paper [18] established the existence of Minkowski vacua in the full 19

orientifold model, while follow-up papers restricted only to a subset of moduli. In-

terestingly, in one of these follow-up papers [21] the existence of infinite families of

Minkowski and AdS vacua for the torus bulk moduli was established. We will here

now show that such infinite families also exist in the full model where we will include

all 63 complex structure moduli and the axio-dilaton.
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5.1 Two infinite families of Minkowski vacua

5.1.1 Generalization of a previous solution

We found it fairly straight forward to construct many different infinite families of

Minkowski vacua, when we allow the axio-dilaton τ to vary. The one we present in this

subsection is the first example given in [18, Sec. 4.5] (see eqn. (4.3) above) generalized

by an arbitrary integer parameter N ∈ Z. It’s G-flux is given by

G =
3N + i

√
3(2−N)

18(N 2 −N + 1)

(
Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1

−Ω1,1,1,1,2,2,1,1,2 + Ω1,1,1,1,2,2,1,2,1

)
. (5.1)

The original solution in equation (4.3) is recovered for N = 0. The axio-dilaton for

this infinite family is given by

τ = C0 + ie−φ =
2N − 1

2 (N2 −N + 1)
+ i

√
3

2 (N2 −N + 1)
. (5.2)

We see here, consistent with the argument in [19], that we are always at strong coupling

since

eφ =
2 (N2 −N + 1)√

3
≥ 2√

3
. (5.3)

Let us recall from above that this is consistent with the fact that S-duality is broken

in our setup by the orbifold that freezes the string frame volume.

This infinite family of solutions has Nflux = 12 for any N ∈ Z so that the tadpole

cancellation condition equation (2.3) is satisfied without requiring any D3-branes. We

find that this particular solution has only 16 massive complex scalar fields. This is,

maybe somewhat surprisingly, independent of the value of N . The explanation for

this is that the Hessian of the superpotential has zeros in most of its entries. The few

non-zero entries are functions of N .

5.1.2 A family with tadpole 12 and 26 massive scalar fields

Let us present here another infinite family derived from the new solution we presented

above in equation (4.7). The family of solutions which has 26 massive complex scalar

fields, again independent of the free parameter N ∈ Z, has the G-flux

G = −(2−N) + i
√

3N

18(N 2 −N + 1)
(Ω1,1,1,2,2,1,1,2,1 − Ω1,1,2,1,2,1,1,2,1 − Ω1,1,2,2,1,1,1,2,1
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+Ω1,1,2,2,2,1,1,1,1 − Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1

+Ω1,2,2,1,1,1,1,2,1 + Ω2,1,2,1,1,1,1,2,1 − Ω2,2,1,1,1,1,1,2,1

+Ω2,2,1,1,2,1,1,1,1 + Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1). (5.4)

The original solution in equation (4.7) above is recovered for N = 0. The axio-dilaton

in this infinite family is

τ = C0 + ie−φ = − 2N2 + 1

2 (N2 −N + 1)
+ i

√
3

2 (N2 −N + 1)
. (5.5)

Given that the expression for the dilaton is the same as in the previous infinite family,

given in equation (5.2) above, these solutions again only exist at strong coupling.

5.2 Implications for the landscape and the swampland

5.2.1 The tadpole conjecture

Given that we work with large number of h2,1 = 63 complex structure moduli, the two

infinite families above, as well as the solutions discussed in subsection 4.2, serve as an

interesting test of the tadpole conjecture. Let us stress again that this test is being

performed in a strong coupling limit, away from the large complex structure point.

In our solutions at the highly symmetric Fermat point we did not find solutions with

more than 26 massive complex structure moduli within the tadpole bound of 12. This

leads to 12/26 ≈ .46, which is larger than α = 1/3 and thus provides a confirmation

of the tadpole conjecture away from the boundary of moduli space. Given the large

number of parameters in this model we have not been able to fully map out the solution

space, so there is currently no proof preventing the existence of Minkowski vacua with

more massive scalars. Let us also stress that we found that some scalars are stabilized

by higher order terms. It would be very interesting to further study higher order

stabilization and check whether it is possible to violate the tadpole conjecture in this

way. It is certainly possible and maybe even expected that higher order terms stabilize

all moduli and thereby leave no flat directions. We hope to analyze this further in the

future.

5.2.2 Finiteness of vacua in quantum gravity

Lastly, we would like to address here the apparent existence of an infinite number of

4d supersymmetric Minkowski vacua in our setup. There are arguments that quantum
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gravity should only allow for a finite number of vacua, see for example [22]. This

requirement was promoted to a swampland conjecture in [23] and might seem at first

sight at odds with the existence of the infinite families of Minkowski vacua that we

find above.

A precise statement about the finiteness of vacua was given in [36, Section 4]. It says

that below a fixed finite energy cutoff, there exist only a finite number of low energy

effective field theories consistent with quantum gravity. For the counting one has to

quotient by the moduli space. So, in our setup, if there would be flat directions we

would have to quotient by them, however, each of the Minkowski vacua in the infinite

families above would be a valid low energy effective theory below a certain cutoff. The

latter point is exactly the loophole that makes our infinite families consistent with

the finiteness of vacua below a fixed cutoff: In all infinite families the string coupling

always runs to infinity. One therefore expects that an infinite tower of massive states

becomes light in this limit. So, for any given fixed cutoff we only have a finite number

of vacua that are valid. It would be interesting to make this more precise. However,

given that in our setup S-duality is broken, there are no weakly coupled dual solutions

within our setup, making a more detailed study rather difficult.

5.3 AdS vacua

It is also possible to study supersymmetric AdS solutions in this setting despite the

fact that the Kähler potential receives unknown large corrections as discussed above

in subsection 2.2. This was explained in [18] in two different ways: On the one hand

we simply have to ensure that the G-flux is of the particular cohomology type given

above in equation (2.8). This choice is independent of gs corrections and therefore

the existence of supersymmetric AdS solutions is unaffected by potential corrections.

Another way of seeing this is by expanding the Kähler potential around the critical

point and to allow for arbitrary corrections. One then finds that the corrections to K

are of the form K → K+δf(ϕ)+δf(ϕ). This can be undone by a Kähler transformation

W → e−δf(ϕ)W . Since the covariant derivative transform as DiW → e−δf(ϕ)DiW we

see again that the existence of supersymmetric AdS solutions with DiW = 0 is not

affected by arbitrary corrections.

In these non-geometric settings AdS vacua have been studied in [19, 20, 21]. It was

shown in [19] that, restricting to the three torus bulk moduli, it is possible to find AdS

vacua at parametrically large complex structure and parametrically weak coupling.
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Thus, for those solutions one has parametric control over all corrections and can trust

the Kähler potential at large complex structure. It would be interesting to extend this

study to include all 63 complex structure moduli and check that all can be in the large

complex structure limit and are massive.9 Here we do not explore this avenue but

rather keep working with our Landau-Ginzburg model at the Fermat point.

If the G-flux is chosen to be of the form in equation (2.8):

GSUSY = Aaχa + A0
(
−3Ω + Ω

)
, (5.6)

then we are automatically guaranteed to have a supersymmetric AdS solution if A0 6= 0.

While we have shown in subsection 4.3 above that for Minkowski vacua we cannot have

more than twelve non-zero Aa without violating the tadpole this is not true for AdS

solutions. In particular, a generic solution will have generically all Aa non-zero and

different. We have generated many such solutions with the constraint that they satisfy

the tadpole cancellation in equation (2.3) with ND3 = 0. This means the fluxes exactly

cancel the contribution from the O3-planes. The G-flux for one such explicit solution

with τ = e
2πi
3 is given explicitly in appendix B. This solution has Nflux = 12 and

therefore satisfies the tadpole condition without any D3-branes. So, the only light

fields are the 63 complex structure moduli and the axio-dilaton.

The mass matrix for any 4d N = 1 supersymmetric AdS solution has off-diagonal

entries that lead to a mass splitting between the two real scalars in the chiral multiplets.

The Hessian of the scalar potential V is given by

∂i∂̄V = eK
[
(DiDkW )Kkl̄(Dl̄D̄W̄ )− 2Ki̄|W |2

]
,

∂i∂jV = −eK(DiDjW )W̄ . (5.7)

We see that the above involves the Kähler potential in a non-trivial way, which makes

it difficult to say something definitive given that K receives unknown correction at

strong coupling. In the previous Minkowski solutions, we saw that the rank of the

matrix DiDjW was rather small and most entries in the matrix were zero in these

examples. This told us that many scalar fields did not receive a mass through the

fluxes that we have turned on. Here however we find that the G-flux example given

in appendix B leads to rank 64 for the matrix DiDjW . This means that the scalar

potential should involve all 64 complex scalars although the fluxes only contribute 12

9This is the expected result at least for AdS solutions that are mirror dual to the DGKT construc-

tion [24].
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to the tadpole. This is in stark contrast with the Minkowski solutions. Although

we cannot calculate the masses explicitly here, given that an AdS solution exists and

given that all of the scalar fields appear in the scalar potential, one might expect that

generically all scalar fields will be massive in these solutions.10

While we have been able to generate many different such AdS solutions with Nflux =

12 and different mass matrix rank for DiDjW , we have not been easily able to extend

these solutions to infinite families. We leave this as an interesting challenge for the

future.

5.3.1 A family with unbound tadpole

Here we want to generalize an observation made in [21] for the three bulk moduli to

the full-fledged model at strong coupling: There are AdS solutions at large complex

structure and weak coupling for which it is possible that Nflux → −∞ [21]. This would

then require that ND3 → +∞ to satisfy the tadpole condition in equation (2.3). For

such solutions one then expects to have gauge groups with parametrically large rank.

This is very different from Minkowski solutions where one expects a finite gauge group

rank.

Here we present an infinite family of AdS solutions with two free parameters N,M ∈
Z, M ≥ 0. The G-flux is given by

G =
(2M + 1)

3

[(
Ω1,1,1,1,2,1,2,1,2 + Ω1,1,1,2,1,2,1,2,1 − Ω1,1,2,1,1,2,2,1,1 + Ω1,1,2,2,2,1,1,1,1

+Ω1,2,1,1,1,1,1,2,2 + Ω2,1,1,1,1,1,1,2,2 + Ω1,2,1,1,1,2,2,1,1 + Ω2,1,1,1,1,2,2,1,1

+Ω1,2,1,2,2,1,1,1,1 + Ω2,1,1,2,2,1,1,1,1 + Ω2,2,2,1,1,1,1,1,1

)
+N(−3 Ω1,1,1,1,1,1,1,1,1 + Ω2,2,2,2,2,2,2,2,2)

]
. (5.8)

The axio-dilaton depends only on M and for the string coupling to be positive we

require that M ≥ 0

τ = −1

2
+ i

√
3 (2M + 1)

2
. (5.9)

We see that the string coupling goes to zero for large positive M values

eφ =
2√

3 (2M + 1)
. (5.10)

10In AdS stability requires that the masses squared are all above the Breitenlohner-Freedman bound

[37]. This is guaranteed for all our solutions because they are supersymmetric.
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This means that in this solution we have parametric control over string loop corrections

and we expect that all such corrections to the Kähler potential are suppressed in the

large M limit. The tadpole cancellation condition takes the form

Nflux +ND3 = −9(2M + 1)(72N 2 − 11) +ND3 = 12 . (5.11)

Given the constraint M ≥ 0 this can only be satisfied for N 6= 0. In that case, we see

from the above that we need to add ND3 = 12 + 9(2M + 1)(72N 2 − 11) D3-branes.

So, we expect solutions with an arbitrarily large gauge group rank. This is amusing

but consistent with other examples in the literature [38, 39, 40, 41, 42]. It was argued

in [43] that AdS vacua do not allow for a scale separation between the AdS scale and

an infinite tower of massive states. Thus, one cannot think of the gauge group as a

genuine gauge group in AdS4 but rather should think of it as a defect gauge group in a

higher dimensional theory. The rank of such defect gauge theories is not bounded (as

should be clear from a stack of Dp-branes in 10d flat space). In [21] it was shown that

similar solutions at weak coupling and large complex structure indeed seem to contain

such a tower of light states. Actually, as was argued there, the open string moduli on

the D3-branes would also lead to a species bound [44, 45, 46, 47] that becomes small

rather quickly.

6 Conclusions

Landau-Ginzburg techniques allow us to access string compactifications away from the

large complex structure limit even for a very large number of moduli. In particular,

at the Fermat point one has access to the values of the superpotential and all its

derivatives. Furthermore, as was pointed out and used a long time ago in the papers

[18, 19], it is possible to find explicit Landau-Ginzburg models that are mirror dual

to rigid Calabi-Yau and therefore have no Kähler moduli. Thus, compactifications of

type IIB string theory on those models give rise to scalar potentials that can depend

on all moduli and therefore in principle can give masses to all scalar fields. Here we

have revisited those models to perform a more systematic study of supersymmetric

Minkowski and supersymmetric AdS vacua.

One of the motivations for our study is the so-called tadpole conjecture [6], accord-

ing to which, in violation of the well-informed intuition, it is in fact not possible to

stabilize all moduli using fluxes before these make an unacceptably large contribution
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to the D3-brane tadpole. This question is usually studied in asymptotic limits near the

boundary of moduli space, where the effective action is best under control. Based on

our results, which rely on non-perturbative methods, we have proposed a version of the

conjecture that is valid throughout moduli space, and also makes a clear distinction

between giving masses to moduli and stabilizing them, potentially with a higher-order

potential.

Among these results, we have for the first time determined how many complex

structure moduli are massive in the previously known Minkowski solutions and we find

that only 14, 16 or 22 out of 63 complex structure moduli and the axio-dilaton have a

non-zero mass. Therefore, we carried out an extensive search for new Minkowski vacua

and found many more solutions that have more massive scalar fields. The maximal

value that we encountered is 26, so less than half of the scalar fields were massive. This

agrees well with the expectation of the tadpole conjecture [6] (in our reformulation)

and thus provides a test of this conjecture away from the boundary of moduli space.

While we find no violations of the tadpole conjecture in these Minkowski vacua, we

have not been able to fully map out the moduli space. We also found that higher

order terms in the scalar potential stabilize more scalar fields. Whether all fields can

be stabilized or not is an important question that we plan to address in the future.

We have found that Minkowski vacua seem to generically come in infinite families.

We presented solutions in which a quantized flux, which does not appear in the tadpole

cancellation condition, can take arbitrary integer values. Increasing the absolute value

of this flux quanta leads to parametrically strong coupling. However, due to powerful

renormalization theorems [18, 19], our solutions still exist at strong coupling. This

seems at odds with the believed finiteness of the number of vacua in string theory.

However, we argue that the strong coupling limit should signal that a tower of string

states becomes light. This would mean that the number of vacua below any given fixed

cutoff scale is always finite, consistent with previous expectations [22, 23].

Lastly, we have also studied supersymmetric AdS solutions. Here our goal was two-

fold: We have shown that for these AdS solutions it is possible to find superpotentials

that depend on all 63 complex structure moduli and the axio-dilaton, while still only

having a flux contribution to the tadpole that is equal to 12. We provide arguments

that for those AdS vacua generically there seems to be no correlation between the

number of massive scalar fields and the flux contribution to the tadpole cancellation

condition.
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We have also presented one explicit infinite family of AdS solutions that goes to

asymptotically weak coupling. In this limit the flux contribution goes to minus infinity

and needs to be compensated for by D3-branes whose number goes to plus infinity.

This thus leads to weakly coupled AdS solutions with gauge groups of arbitrarily large

rank.

Given that several recent developments in the swampland program are guided by

intuition from compactifications at large volume, large complex structure and weak

coupling, it is of greatest importance to study string theory away from these limits.

The Landau-Ginzburg models studied here, allow us to study non-geometric settings

without any volume modulus, they allow us to work at small complex structure with

many moduli and they even allow us to answer some questions at strong coupling. In

this paper we have made several new interesting discoveries in this rather unexplored

realm and many more are certain to await us.
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A LG integrals

We summarize here the expansion of the Landau-Ginzburg periods

Wn =

∫
Γn

Ω (A.1)

that enter the superpotential (2.4)

W =
∑(

Nn − τMn
)
Wn (A.2)

when the G-flux is expanded according to (2.10) in the basis dual to the Γn, around

the Fermat point. This calculation is totally elementary and well-known to experts at

least from the days of [48].
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Figure 1: The integration cycles in a single variable Landau-Ginzburg model with worldsheet

superpotential W = x3.

A.1 Single variable integrals

With reference to fig. 1, for n = 0, 1, 2 ∈ Z mod 3 we let δn := ωn[0,∞) ⊂ C 3 x be the

three independent rays along which x3 tends to real infinity, where ω = e2πi/3. Then

γn := δn − δn+1 for n = 0, 1, 2 span the lattice of cycles, subject to the one relation

γ0 + γ1 + γ2 = 0. For l = 1, 2, . . ., we have∫
δn

e−x
3

xl−1dx = ωn·l · 1

3
· Γ
( l

3

)
(A.3)

and therefore

wn,l :=

∫
γn

e−x
3

xl−1dx = ωn·l(1− ωl) · 1

3
· Γ
( l

3

)
. (A.4)

A.2 Taylor coefficients

Now, the deformation space of the 19 LG model (2.1) is parametrized by local coordi-

nates {tl, l = (l1, . . . , l9) ∈ {1, 2}9,
∑
li = 12} via the worldsheet superpotential

W(tl) =
9∑
i=1

x3
i −

∑
l

tlxl−1 (A.5)
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where xl =
∏

i(xi)
li and 1 = (1, 1, 1, 1, 1, 1, 1, 1, 1). Then, for n = (n1, . . . , n9) ∈

{0, 1, 2}9, Γn = ×iγni we can write the full moduli dependence of the period as

Wn(tl) =

∫
Γn

e−W(tl)d9x =

∫
Γn

e−W(0)

∞∑
K=0

1

K!

(∑
l t

lxl−1)Kd9x

=

∫
Γn

e−W(0)

∞∑
kl=0

∏
l

(
tl
)kl
kl!

(
xl−1)kld9x

=
∞∑
kl=0

∏
l

(
tl
)kl
kl!

∏
i

∫
γni

e−x
3
i
(
xi
)∑

l kl(li−1)
dxi

=
∑
kl

∏
l

(
tl
)kl
kl!

∏
i

wni,
∑

l kl(li−1)+1

(A.6)

Equivalently, and perhaps more simply, we can evaluate the r-th multi-derivative as

∂

∂tl1
∂

∂tl2
· · · ∂

∂tlr
Wn(0) =

∫
Γn

e−W(0)

r∏
α=1

xlα−1d9x

=
∏
i

∫
γni

e−x
3
i
(
xi
)∑r

α=1(liα−1)
dxi =

∏
i

wni,
∑
α l
i
α−r+1

=
1

39
· ωn(

∑
α lα−(r−1)1)

∏
i

(
1− ω

∑
α l
i
α−(r−1)

)
· Γ
(∑

α l
i
α − (r − 1)

3

)
(A.7)

which is the expression we used in the main text in equation (2.23).

B The G-flux for an AdS solution

Here we give the explicit G-flux, discussed in subsection 5.3 above. It describes an

AdS solution that has Nflux = 12 and thus satisfies the tadpole cancellation condition

without D3-branes. The value of the axio-dilaton is τ = e
2πi
3 and all 64 complex scalars

appear in the Hessian of the superpotential since it has maximal rank 64. The G-flux

is given by

G =
1

18

[(
15− i

√
3
)

(−3Ω1,1,1,1,1,1,1,1,1 + Ω2,2,2,2,2,2,2,2,2)

i
(

3i +
√

3
)

Ω1,1,1,1,1,1,2,2,2 − 4Ω1,2,1,1,2,1,1,1,2 + 2Ω1,1,2,1,2,1,1,1,2

+ i
(

3i +
√

3
)

Ω1,1,1,1,1,2,1,2,2 +
(

3 + i
√

3
)

Ω1,1,1,1,1,2,2,1,2 + i
(

3i +
√

3
)

Ω1,1,1,1,1,2,2,2,1

+
(
−5− i

√
3
)

Ω1,1,1,1,2,1,1,2,2 +
(

3 + i
√

3
)

Ω1,1,1,1,2,1,2,2,1 − 2i
√

3Ω1,1,1,1,2,2,1,1,2
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+
(

6 + 2i
√

3
)

Ω1,1,1,1,2,2,1,2,1 + 2i
√

3Ω1,1,1,2,1,1,1,2,2 + 2Ω1,1,1,2,1,1,2,1,2

+ i
(

3i +
√

3
)

Ω1,1,1,2,1,1,2,2,1 + i
(

5i +
√

3
)

Ω1,1,1,2,1,2,1,2,1 +
(

1 + i
√

3
)

Ω1,1,1,2,1,2,2,1,1

+
(

2 + 2i
√

3
)

Ω1,1,1,2,2,1,1,1,2 + 4Ω1,1,1,2,2,1,1,2,1 +
(
−2− 2i

√
3
)

Ω1,1,1,2,2,1,2,1,1

+
(
−1− i

√
3
)

Ω1,1,1,2,2,2,1,1,1 + i
(

3i +
√

3
)

Ω1,1,2,1,1,1,1,2,2 +
(

3 + i
√

3
)

Ω1,1,2,1,1,1,2,1,2

+ i
(

3i +
√

3
)

Ω1,1,2,1,1,1,2,2,1 +
(

3 + i
√

3
)

Ω1,1,2,1,1,2,1,1,2 + i
(

3i +
√

3
)

Ω1,1,2,1,1,2,1,2,1

+
(

3 + i
√

3
)

Ω1,1,2,1,1,2,2,1,1 + 2i
√

3Ω1,1,2,1,2,1,1,2,1 + 2Ω1,1,2,1,2,1,2,1,1

+
(

3 + i
√

3
)

Ω1,1,2,1,2,2,1,1,1 +
(

1 + i
√

3
)

Ω1,1,2,2,1,1,1,1,2 + i
(

i +
√

3
)

Ω1,1,2,2,1,1,1,2,1

+
(

1 + i
√

3
)

Ω1,1,2,2,1,1,2,1,1 +
(

1 + i
√

3
)

Ω1,1,2,2,1,2,1,1,1 +
(
−5− i

√
3
)

Ω1,1,2,2,2,1,1,1,1

− 8Ω1,2,1,1,1,1,1,2,2 +
(

2 + 2i
√

3
)

Ω1,2,1,1,1,1,2,1,2 + i
(

3i +
√

3
)

Ω1,2,1,1,1,1,2,2,1

+ 2i
(

i +
√

3
)

Ω1,2,1,1,1,2,1,2,1 +
(

1 + 3i
√

3
)

Ω1,2,1,1,1,2,2,1,1 + 8Ω1,2,1,1,2,1,1,2,1

+
(
−3− i

√
3
)

Ω1,2,1,1,2,1,2,1,1 + 2Ω1,2,1,1,2,2,1,1,1 +
(

5 + 3i
√

3
)

Ω1,2,1,2,1,1,1,1,2

+
(
−1− i

√
3
)

Ω1,2,1,2,1,1,2,1,1 − 4Ω1,2,1,2,1,2,1,1,1 +
(

4 + 4i
√

3
)

Ω1,2,1,2,2,1,1,1,1+(
3 + 3i

√
3
)

Ω1,2,2,1,1,1,1,1,2 + 2i
(

2i +
√

3
)

Ω1,2,2,1,1,1,1,2,1 +
(

3 + 3i
√

3
)

Ω1,2,2,1,1,1,2,1,1

+
(

4 + 4i
√

3
)

Ω1,2,2,1,1,2,1,1,1 + 2i
(

2i +
√

3
)

Ω1,2,2,1,2,1,1,1,1 + i
(

3i +
√

3
)

Ω1,2,2,2,1,1,1,1,1

− 8Ω2,1,1,1,1,1,1,2,2 +
(

2 + 2i
√

3
)

Ω2,1,1,1,1,1,2,1,2 + i
(

3i +
√

3
)

Ω2,1,1,1,1,1,2,2,1

+ 2i
(

i +
√

3
)

Ω2,1,1,1,1,2,1,2,1 +
(

1 + 3i
√

3
)

Ω2,1,1,1,1,2,2,1,1 − 4Ω2,1,1,1,2,1,1,1,2

+
(
−3− i

√
3
)

Ω2,1,1,1,2,1,2,1,1 + 2Ω2,1,1,1,2,2,1,1,1 +
(

5 + 3i
√

3
)

Ω2,1,1,2,1,1,1,1,2

+ 4Ω2,1,1,2,1,1,1,2,1 +
(
−1− i

√
3
)

Ω2,1,1,2,1,1,2,1,1 − 4Ω2,1,1,2,1,2,1,1,1

+
(

3 + 3i
√

3
)

Ω2,1,2,1,1,1,1,1,2 + 2i
(

2i +
√

3
)

Ω2,1,2,1,1,1,1,2,1 +
(

3 + 3i
√

3
)

Ω2,1,2,1,1,1,2,1,1

+
(

4 + 4i
√

3
)

Ω2,1,2,1,1,2,1,1,1 + 2i
(

2i +
√

3
)

Ω2,1,2,1,2,1,1,1,1 + i
(

3i +
√

3
)

Ω2,1,2,2,1,1,1,1,1

+ 4Ω1,2,1,2,1,1,1,2,1 + 8Ω2,1,1,1,2,1,1,2,1 +
(

4 + 4i
√

3
)

Ω2,1,1,2,2,1,1,1,1

+ i
(

i +
√

3
)

Ω2,2,1,1,1,1,1,1,2 + 8Ω2,2,1,1,1,1,1,2,1 − 2Ω2,2,1,1,1,1,2,1,1

+ i
(

i +
√

3
)

Ω2,2,1,1,1,2,1,1,1 + 2i
√

3Ω2,2,1,1,2,1,1,1,1

+ 2
(

5 + 2i
√

3
)

Ω2,2,1,2,1,1,1,1,1 +
(
−2 + 4i

√
3
)

Ω2,2,2,1,1,1,1,1,1

]
. (B.1)

33



References

[1] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097].

[2] A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications

on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104].

[3] F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06

(2004) 034 [hep-th/0404257].

[4] F. Denef, M.R. Douglas, B. Florea, A. Grassi and S. Kachru, Fixing all moduli

in a simple f-theory compactification, Adv. Theor. Math. Phys. 9 (2005) 861

[hep-th/0503124].

[5] A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB

Orientifolds, JHEP 02 (2009) 005 [0805.1573].
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