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Abstract
Machine learning has greatly influenced a variety of fields, including science. However, despite tremendous
accomplishments of machine learning, one of the key limitations of most existing machine learning approaches is their
reliance on large labeled sets, and thus, data with limited labeled samples remains an important challenge. Moreover, the
performance of machine learning methods is often severely hindered in case of diverse data, which is usually associated with
smaller data sets or data associated with areas of study where the size of the data sets is constrained by high experimental
cost and/or ethics. These challenges call for innovative strategies for dealing with these types of data.
In this work, the aforementioned challenges are addressed by integrating graph-based frameworks, semi-supervised
techniques, multiscale structures, and modified and adapted optimization procedures. This results in two innovative
multiscale Laplacian learning (MLL) approaches for machine learning tasks, such as data classification, and for tackling
data with limited samples, diverse data, and small data sets. The first approach, multikernel manifold learning (MML),
integrates manifold learning with multikernel information and incorporates a warped kernel regularizer using multiscale
graph Laplacians. The second approach, the multiscale MBO (MMBO) method, introduces multiscale Laplacians to the
modification of the famous classical Merriman-Bence-Osher (MBO) scheme, and makes use of fast solvers. We demonstrate
the performance of our algorithms experimentally on a variety of benchmark data sets, and compare them favorably to the
state-of-art approaches.
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1 Introduction

Artificial intelligence, including machine learning, has irre-
versibly changedmany fields including science, engineering,
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and technology [51, 56]. In fact, the combination of artifi-
cial intelligence (AI) and big data has been referred to as the
“fourth industrial revolution” [95]. Nevertheless, machine
learning approaches face several challenges.

First, while the big data challenge is well known, lit-
tle attention is paid to the diverse data challenge. The
success behind machine learning is that the behavior in
unknown domains can be accurately estimated by quantita-
tively learning the pattern from sufficient training samples.
However, while data sets in computer vision and image
analysis often contain millions or billions of points, it is
typically difficult to obtain large data sets in experimental
science [49]. We often deal with diverse data originating
from a relatively small data set lying in a huge space. For
example, due to the complexity, ethnics, and high cost of
scientific experiments [45, 92, 96, 97], it is extremely dif-
ficult to collect a relatively small set of drug candidates
of the order of 106 for a therapeutic target, while the size
of the underlying chemical space of potentially pharmaco-
logically active molecules is about 1060 [11]. Therefore,
researchers try to cover as many components as possi-
ble with a small number of sampling points. The diversity
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is created by deliberately sampling a wide distribution in
the huge space to understand the landscape of potential
drugs. This practice is very common in scientific explo-
rations. Similar diverse data sets exist in materials design
[32, 116]. Overall, diverse data originated from a rela-
tively small data set lying in a huge chemical space gives
rise to a severe challenge for machine learning. Math-
ematically, diverse data involves disconnected submani-
folds and/or nested submanifolds corresponding to multi-
physics and multiscale natures of the diversity, respectively
[25, 74]. The multiphysics and multiscale representations
of data have been addressed by the authors’ earlier work
on element-specific persistent homology [16, 18–20]. How-
ever, multiscale graph learning models have hardly been
developed. The proposed algorithms of this paper fill the
gap, addressing the multiphysics nature of data diver-
sity through a multiphysics data representation, such as
the element-specific feature extraction developed in recent
works such as [16, 18–20, 73].

Second, the success of many existing approaches for
machine learning tasks, such as data classification, is
dependent on a sufficient amount of labeled samples.
However, obtaining enough labeled data is difficult as it
is time-consuming and expensive, especially in domains
where only experts can determine experimental labels; thus,
labeled data is scarce. As a result, the majority of the data
embedded into a graph is unlabeled data, which is often
much easier to obtain than labeled data but more challenging
to predict. Overall, one of the key limitations of most
existing approaches is their reliance on large labeled sets; in
particular, deep learning approaches often require massive
labeled sets to learn the patterns behind the data. These
challenges call for innovative strategies to revolutionize the
current state-of-the-art.

Recently, algorithms involving the graph-based frame-
work, such as those described in Section 2.1, have recently
become some of the most competitive approaches for appli-
cations ranging from image processing to social sciences.
Such methods have been successful in part due to the many
advantages offered by using a graph-based approach. For
example, a graph-based framework provides valuable infor-
mation about the extent of similarity between elements
of both labeled and unlabeled data via a weighted simi-
larity graph and also yields information about the overall
structure of the data. Moreover, in addition to handling non-
linear structure, a graph setting embeds the dimension of
the features in a graph during weight computations, thus
reducing the high-dimensionality of the problem. The graph
framework is also able to incorporate diverse types of data,
such as 3D point clouds, hyperspectral data, text, etc.

Inspired by the recent successes, we address the afore-
mentioned challenges by integrating similarity graph-based
frameworks, multiscale structure, modified and adapted

optimization techniques and semi-supervised procedures,
with both labeled and unlabeled data embedded into a
graph. Overall, this paper formulates two multiscale Lapla-
cian learning (MLL) approaches for machine learning tasks,
such as data classification, and for dealing with diverse
data, data with limited samples and smaller data sets. The
first approach, the multikernel manifold learning (MML)
method, introduces multiscale kernels to manifold regu-
larization. This approach integrates new multiscale graph
Laplacians into loss-function based minimization problems
involving warped kernel regularizers. The second approach,
the multiscale Merriman-Bence-Osher (MMBO) method,
adapts and generalizes the classical Merriman-Bence-Osher
(MBO) scheme [71] to a multiscale graph Laplacian setting
for learning tasks. The MMBO approach also makes use of
fast solvers, such as [6, 10, 33, 34], for finding approxima-
tions of the extremal eigenvectors of the graph Laplacian.
We validate the proposed MLL approaches using a variety
of data sets.

There are several strengths of the proposed methods:

– The proposed techniques address the multiscale nature
of data through a multiphysics data representation,
allowing them to perform well in the case of diverse
data, which often occurs in, e.g., scientific applications.

– The methods require less labeled training data to accu-
rately classify a data set compared to most exist-
ing machine learning techniques, especially supervised
approaches, and often in considerably smaller quanti-
ties. This is in part due to the usage of a similarity
graph-based framework and the fact that the majority of
the data embedded into the graph is unlabeled data. In
fact, in most cases, good accuracy can be obtained with
at most 1%-5% of the data elements serving as labeled
data. This is an important advantage due to the scarcity
of labeled data for most applications.

– Although equally applicable and successful in the case
of larger data, the new methods also perform well
in the case of smaller data sets, which often result
in unsatisfactory performances for existing machine
learning techniques, due to an often insufficient number
of labeled samples and a decreased ability for machine
learning-based models to learn from the observed data.

The proposedMMBOmethod offers specific advantages:

– Although it can perform just as successfully on smaller
data, the MMBO algorithm is equipped with a structure
which allows it to be easily adapted and designed
specifically for the use of large data. In particular, in
the case of large data, one can use a slight modification
of the fast Nyström extension procedure [10, 33, 34] to
compute an approximation to the extremal eigenvectors
of the multiscale graph Laplacian using a dense graph
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without the need to compute all the graph weights.
In fact, only a small portion of the weights need
to be calculated. Overall, the method uses a low-
dimensional subspace spanned by only a small number
of eigenfunctions.

– Once the Ne eigenvectors of the graph Laplacian are
computed, the complexity of this algorithm is linear.
Moreover, the Nyström extenstion procedure allows the
Ne eigenvectors of the graph Laplacian to be computed
using only O(NNe) operations, where Ne << N and
N is the number of data elements.

The paper is organized as follows. In Section 2, we present
background, previous work and an overview of graph
learning methods. In Section 3, we derive the proposed
MML and MMBO methods and provide details on the
computation of eigenvectors of the graph Laplacian for the
latter method. The results from experiments are described in
Section 4, and we present a conclusion in Section 5.

2 Background

2.1 Previous work

In this section, we review recent graph-based methods for
data classification and semi-supervised learning, including
approaches related to convolutional neural networks, sup-
port vector machines, neural networks, label propagation,
embedding methods, multi-view and multi-modal methods.

Convolutional neural networks have recently been
extended to a graph-based framework for the purpose
of semi-supervised learning. In particular, [55] presents
a scalable approach using graph convolutional networks
by integrating a convolutional architecture motivated by
a localized first-order approximation of spectral graph
convolutions. Deeper insights into the graph convolutional
neural network model are discussed in [58]. Moreover,
a dual graph-based convolutional network approach is
described in [123], while a Bayesian graph convolutional
network procedure is derived in [117]. In [4], a multi-
scale graph convolution model is presented. In [13],
generalizations of convolutional neural networks to signals
defined on more general domains using two constructions
are described; one of the generalizations is based on the
spectrum of the graph Laplacian.

Neural networks have also been extended to a graph-
based framework for the task of semi-supervised learning.
For example, attention-based graph neural networks [102],
graph partition neural networks [60], and graph Markov
neural networks [90] have been proposed.

Moreover, support vector machines are also applied to
semi-supervised learning using a graph-based framework.

In [23], graph-based support vector machines are derived
to emphasize low density regions. Also, Laplacian support
vector machines (LapSVM) [9, 64] and Laplacian twin
support vector machines (Lap-TSVM) [88] have been
formulated.

Label and measure propagation methods are discussed
in, e.g., [46], where the authors derive a transductive label
propagation method that is based on the manifold assump-
tion. Label propagation techniques and the use of unlabeled
data in classification are investigated in [121]. Dynamic
label propagation is studied in [104], while semi-supervised
learning with measure propagation is described in [100].

Embedding methods are also used for semi-supervised
learning. Nonlinear embedding algorithms for use with
shallow semi-supervised learning techniques, such as kernel
methods, are applied to deep multi-layer architectures in
[110]. Other graph embeddingmethods are presented in [114].

Multi-view and multi-modal methods include [81], which
proposes a reformulation of a standard spectral learning
model that can be used for multiview clustering and semi-
supervised tasks. The work [80] proposes novel multi-
view learning, while [40] describes multi-modal curriculum
learning.

Other techniques for graph-based semi-supervised learn-
ing include fast anchor graph regularization [106], a
Bayesian framework for learning hyperparameters [52], and
random subspace dimensionality reduction. In [39], a clas-
sification method is proposed to learn from dissimilarity
and similarity information on labeled and unlabeled data
using a novel graph-based encoding of dissimilarity. Ran-
dom graph walks are used in [61], and sampling theory for
graph signals is utilized in [36]. In [105], a bivariate for-
mulation for graph-based semi-supervised learning is shown
to be equivalent to a linearly constrained max-cut problem.
Lastly, reproducing kernel Hilbert spaces are used in [99].

Various approaches involving graph-based regulariza-
tion terms include regularization frameworks [119, 120],
regularization developments [22], anchor graph regulariza-
tion [106], manifold regularization [9], measure propaga-
tion [100], approximate energy minimization [12], nonlocal
discrete regularization [30], power watershed [29], spec-
tral matting [57], Laplacian regularized least squares [99],
locality and similarity preserving embedding [31], and clus-
tering [83]. Examples for graph Laplacian regularization
include label propagation [121] and deep semi-supervised
embedding [110].

Merkurjev and co-authors have studied graph-based
spectral approaches [37, 38, 65–70] using Ginzburg-Landau
techniques and modifications of the MBO scheme [71],
which is an efficient method for evolving an interface by
mean curvature in a continuous setting and which can be
linked to optimization problems involving the Ginzburg-
Landau functional. Specifically, the MBO scheme can be
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derived from a Ginzburg-Landau functional minimization
procedure, and can be modified and transferred to a graph
setting using more general operators on graphs, as shown in
Merkurjev’s work on data classification [37, 65, 68–70].

Overall, Merkurjev and co-authors have shown that
multiclass data classification can be achieved using
techniques from topological spaces and the Gibbs simplex
[37, 68]. In particular, MBO-like methods were developed
for image processing applications [69], hyperspectral
imaging [38, 70], Cheeger and ratio cut applications [67],
heat kernel pagerank applications [66], and unsupervised
learning [65]. The subject of this paper is to integrate
elements of this prior work, prior work on manifold learning
and novel graph-based formulations into a multiscale
framework to develop new multiscale graph-based methods
for machine learning tasks, such as data classification. Our
methods will be able to deal with a variety of scales present
in many data sets.

Finally, two related methods involving dimension reduc-
tion [63, 107]. The first method proposes an adaptive
discriminative analysis framework for embedding non-
Gaussian data and can preserve within-class local structure
and learn discriminative transformation functions simulta-
neously. The second method [107] introduces novel con-
volutional two-dimensional nonlinear discriminant analysis
for dimensionality reduction and utilizes the nonlinearity of
the CNN. This method benefits from its learning ability.

2.2 Graph-based framework

The methods presented in this work use a similarity graph
framework consisting of a graph G = (V , E), where V =
{x1, . . . , xN } is a set of vertices associated with the elements
of the data set, and E is a set of edges connecting some pairs
of vertices. The edges are weighted by a weight function
w : V × V → R, where w(xi , xj ) measures the degree of
similarity between xi and xj . Larger values indicate similar
elements and smaller values indicate dissimilar elements.
Naturally, the embedding of data into a graph depends
greatly on the edge weights. This section provides more
details about graph construction, but the exact manner of
weight construction for particular data sets is described in
Section 4.

The use of the graph-based framework offers many
advantages. First, it provides valuable information about
the extent of similarity between pairs of elements of both
labeled and unlabeled data via a weighted similarity graph
and also yields information about the overall structure of
the data. This reduces the amount of labeled data needed
for good accuracy. Moreover, a graph-based setting embeds
the dimension of the features in the graph during weight
computations, thus reducing the high-dimensionality of the
problem. It also provides a way to handle nonlinearly

separable classes and affords the flexibility to incorporate
diverse types of data. In addition, in image processing, the
graph setting allows one to capture texture more accurately.

The exact technique of computing the similarity value
between two elements of data depends on the data set, but
first involves feature (attribute) vector construction and a
distance metric chosen specifically for the data and task
at hand. For example, for hyperspectral data, one may
choose the feature vector to be the vector of intensity
values in its many bands and the distance measure to be
the cosine distance. For 3D sensory data, one can take
the feature vector to contain both geometric and color
information; the weights can be calculated using a Gaussian
function incorporating normal vectors, e.g., [7]. For text
classification, popular feature extraction methods include
term frequency- inverse document frequency and bag-of-
words, both described in [2]. For biological data tasks, such
as protein classification, persistent homology [16] can be
used for feature construction.

Once the features are constructed, the weights are com-
puted. Popular weight functions include the Zelnik-Manor
and Perona function [87] and the Gaussian function [103]:

w(xi , xj ) = exp

(
−d(xi , xj )

2

σ 2

)
, (1)

where d(xi , xj ) represents a distance between feature
vectors of data elements xi and xj , and σ > 0. Using the
weight function w, one can construct a weight matrix W
defined as Wij = w(xi , xj ), and define the degree of a
vertex xi ∈ V as d(xi ) = ∑

jw(xi , xj ). If D is the diagonal
matrix with elements d(xi ), then the graph Laplacian is
defined as

L = D − W. (2)

It is sometimes beneficial to use normalized versions of the
graph Laplacian, such as a symmetric graph Laplacian [103].

For some data, it is more desirable to compute the
weights directly by calculating pairwise distances. In this
case, the efficiency can be increased by using parallel
computing or by reducing the dimension of data. Then,
a graph is often made sparse using, e.g., thresholding or
a nearest neighbors technique, resulting in graph where
most of the edge weights are zero. Thus, the number of
needed computations is reduced. Overall, a nearest neighbor
graph can be computed efficiently using the kd-tree code
of VLFeat library [3]. In particular, for the nearest neighbor
technique, vertices xi and xj are connected only if xi is
among the Nn nearest neighbors of xj or if xj is among the
Nn nearest neighbors of xi . Otherwise, w(xi , xj ) is set to 0.

For very large data sets, one can efficiently construct
an approximation to the full graph using e.g. sampling-
based approaches, such as the fast Nyström Extension
method [33].
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2.3 Semi-supervised setting

Despite the tremendous accomplishments of machine
learning, its success depends on a sufficient amount of
labeled samples. However, obtaining enough labeled data is
difficult as it is time-consuming and expensive. Therefore,
labeled data is scarce for most applications.

However, unlabeled data is usually easier and less costly
to obtain than labeled data. Therefore, it is advantageous to
use a semi-supervised setting, which uses both labeled and
unlabeled data to construct the graph in order to reduce the
amount of labeled data needed for good accuracy. In fact,
the use of unlabeled data for graph construction allows one
to obtain structural information of the data. Overall, for most
graph-based semi-supervised methods, the majority of data
embedded into a graph is unlabeled data. This paper derives
methods which use a semi-supervised setting of this kind.

3Methods

3.1 Background and related graph laplacian
methods

3.1.1 Manifold learning

For the derivation of the MMLmethod, let K be the number
of classes, L be the set of labeled vertices, and U be the
set of unlabeled vertices. We assume that L is drawn from
the joining distribution P on V × R, while U is drawn
from the marginal distribution PV of P . We also assume that
the conditional distribution P(y|x) varies smoothly in the
intrinsic geometry generated by PV , where y ∈ [1, K] and
x ∈ V .

In graph-based methods, information about labeled data
and the geometric structure of the marginal distribution PV

of the unlabeled samples is incorporated into the problem:

f ∗ = arg min
f ∈HM

1

|L |
∑
xi∈L

J (f, xi , yi)+γA‖f ‖2M+γI‖f ‖2I ,

(3)

where the Mercer kernel M : V × V → R uniquely defines
a reproducing kernel Hilbert space (RKHS) HM with the
corresponding norm ‖.‖M , J is a loss function which gives
rise to different types of regularization problems, γA > 0,
γI > 0, and ‖f ‖2I is an additional regularizer that reflects
the intrinsic geometry of PV . The solution f ∗ to (3) can be
described using the classical representer theorem [1]:

f ∗(x) =
∑
xi∈L

αiM(xi , x) +
∫
S

α(z)M(x, z)dPV (z), (4)

where S is the support of the marginal distribution PV [9].

In practice, that marginal distribution is unknown. In spite
of that, one could empirically estimate ‖f ‖I by making use
of the weighted graph as discussed in Section 2.2. With
the pre-defined graph Laplacian matrix L, the manifold
regularizer ‖f ‖2I can be empirically estimated [9] as

‖f ‖2I =
n∑

i,j=1

(
f (xi ) − f (xj )

)2
wij = fT Lf, (5)

where f = [f (x1), f (x2), · · · , f (xn)]T .
The ambient norm ‖.‖M and the intrinsic norm ‖.‖I in

(3) can be integrated in one term under the warped kernel M̃
[99]. This kernel defines an alternative reproducing kernel
Hilbert space H̃ by considering a modified inner product:

〈f, g〉H̃
M̃

= 〈f, g〉HM
+ fT Pg, (6)

where P is a positive semi-definite matrix defined on labeled
and unlabeled data, f = [f (x1), f (x2), · · · , f (xn)]T
and g = [g(x1), g(x2), · · · , g(xn)]T . With 〈., .〉H̃

M̃
, the

warped kernel M̃ is shown in [99] to have the following
representation:

M̃(x, z) = M(x, z) − MT
x (I + PM)−1PMz, (7)

where M = [mij ] is the Gram matrix with
mij = M(xi , xj ), Mx denotes the vector (M(x1, x),
M(x2, x), · · · , M(xn, x))T , and Mz denotes the vector
(M(z1, x), M(z2, x), · · · , M(zn, x))T .

The regularization problem for the warped kernel M̃ is:

f ∗ = arg min
f ∈H̃

M̃

1

|L |
∑
xi∈L

J (f, xi , yi) + γA‖f ‖2
M̃
. (8)

Problem (8) exploits the intrinsic geometry of PV via the
data-dependent kernel M̃ but still makes use of the classical
regularization solvers. In fact, the classical representer
theorem [1] allows f ∗ in (8) to be expressed as:

f ∗(x) =
∑
xi∈L

αiM̃(x, xi ). (9)

In practice, {αi} are numerically determined by an
appropriate optimization solver, e.g., [28].

3.1.2 MBO reduction

For the derivation of the MMBOmethod, we first note that a
typical learning algorithm involves finding an optimal label
matrix U = (u1, . . . ,uN)T associated with data elements,
where ui ∈ R

K represents the probability distribution over
the classes for data element xi ; the ith row of U is set to ui .
The vector ui is an element of the Gibbs simplex:

�K := {(z1, . . . , zK) ∈ [0, 1]K |
K∑

k=1

zk = 1}, (10)
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where K is the number of classes. Moreover, the kth vertex
of the simplex is given by the unit vector ek .

A general form of a graph-based problem for data
classification is the minimization of E(U) = R(U) +
Fid(U), where U is the data classification function, R(U) is
a graph-based regularization term incorporating the graph
weights, and Fid(U) is a term incorporating labeled points.

Not surprisingly, the choice of the regularization term
has non-trivial consequences in the final accuracy. In [37],
Garcia et al. successfully take for the regularization term a
multiclass graph- based Ginzburg-Landau (GL) functional:

GL(U) = ε

2
〈U,LU〉 + 1

2ε

∑
i

(
K∏

k=1

1

4
‖ui − ek‖2L1

)
. (11)

Here, ε > 0, L is a normalized graph Laplacian, K is the
number of classes, 〈U,LU〉 = trace(UT LU), ui is the ith

row of U, ek is an indicator vector of size K with one in the
kth component and zero elsewhere. The first (smoothing)
term in (11) measures variations in the vector field, while
the second (potential) term in (11) drives the system closer
to the vertices of the simplex.

While it is possible to develop a convex splitting
scheme to minimize the graph-based multiclass GL energy
[37], a more efficient technique involves MBO reduction.
Specifically, if one considers the minimization of the GL
functional plus a fidelity term (consisting of a fit to
elements of known class) in the continuous case, one can
apply L2 gradient descent resulting in a modified Allen-
Cahn equation. If a time-splitting scheme is then applied,
one obtains a procedure where one alternates between
propagation using the heat equation with a forcing term and
thresholding. In such a state, the resulting procedure has
similar elements to the MBO scheme [72], which evolves
an interface by mean curvature, in a continuous, rather than
graph-based, setting. The procedure can then be transferred
to a graph-based setting using [37, 68, 69]. Moreover, in
order for the scheme to be applicable to the multiclass
case, one can convert the thresholding operation to the
displacement of the vector field variable towards the closest
vertex in (10) [37, 68, 69].

3.2 The derivation of themultiscale setting
and the proposedmethods

3.2.1 Multiscale graph laplacian operator

The dominance of multiscale information over the single
one has been proved in various biophysics-related works,
such as those involving thermal fluctuation predictions
[85, 111] and binding affinity predictions [76]. Therefore,
it is promising to explore how the multiscale approach can

improve the accuracy of graph-based data classification. We
examine a novel multiscale graph Laplacian in the form of

Lmultiscale =
m∑

t=0

ctL
pt
t , (12)

where pt > 0, ct > 0, and Lt is an extended Laplacian
matrix defined by Lt = Dt − Wt , where Dt is a degree
matrix, and Wt is an extended adjacent graph edge matrix

[Wt ]ij = 1√
σt

Ht

( ||xi − xj ||
σt

)
e
− ||xi−xj ||2

σ2t , (13)

where σt > 0 and Ht is the t th order Hermite polynomial.
Usually, only two or three multiscale Laplacian terms in
(12), i.e., m = 1 or m = 2, are needed to obtain a significant
improvement in accuracy; by setting m = 0 and c0 = 1,
one can restore the regular graph Laplacian discussed in
(2). In this formulation, σt is automated scale filtration
parameter that controls the shape of a submanifold for a
data set, while ct weighs contributions from different scales.
The parameters ct and σt may vary for different Hermite
polynomials.

In case of large data for which computing all the graph
weights can be computationally expensive, one can use the
Nyström extension method [10, 33, 34] to compute approx-
imations to the few smallest eigenvalues and corresponding
eigenvectors of the multiscale graph Laplacian while calcu-
lating only a small fraction of the graph weights. We will
modify the Nyström procedure to incorporate the new mul-
tiscale graph Laplacian Lmultiscale. In this case, the weights
in the procedure are computed using

Wmultiscale =
m∑

t=0

ctW
pt
t , (14)

where, in most cases, m = 1 or m = 2 is enough to obtain a
significant accuracy improvement.

When the number of data elements is not too large, one
can compute the eigenvectors via the Rayleigh-Chebyshev
method [6] or the Shifted Block Lanczos algorithm [42].

3.2.2 Multikernel manifold learning (MML) scheme

In multikernel manifold learning (MML), the multiscale
Laplacian matrices proposed in (12) is employed to
form Nn-nearest neighbors subgraphs. By setting P =
γI

γA
Lmultiscale in (7), we attain an MML scheme enabling the

reconstruction of the regularization problem presented in
(3). Even with the integration of multiscale Laplacian oper-
ator into the data kernel, the manifold learning algorithms
still retains its classical representation as presented in (8).
One, therefore, could utilize traditional solvers to derive the
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multiscale manifold learning’s optimizer [99]. The MML
procedure is summarized as Algorithm 1.

Algorithm 1 MML Algorithm (multiscale).

3.2.3 Multiscale MBO (MMBO) scheme

Our proposed MMBO scheme uses a semi-implicit
approach where the multiscale Laplacian term is computed
implicitly due to the stiffness of the operator which is caused
by a wide range of its eigenvalues. An implicit term here
is needed since an explicit scheme requires all scales of the
eigenvalues to be resolved numerically.

To derive the MMBO scheme, let U represent a matrix
where each row is a probability distribution of each data
element over the classes and let ui represent the ith row of
U. In addition, let N be the number of data set elements, K
be the number of classes, dt> 0, and μ be a vector which
takes a value μ in the ith place if xi is a labeled element
and 0 otherwise. Moreover, let Ulabeled be the following
matrix: for rows corresponding to labeled points, the entry
corresponding to the class of the labeled point is set to
1. All other entries of the matrix are set to 0. Lastly, let
μ·(U−Ulabeled) indicate row-wise multiplication by a scalar.

As described in Section 3.1.2, if one considers the
minimization of a GL functional plus a fit to elements
of known class in the continuous case, an L2 gradient
descent results in a modified Allen-Cahn equation. If
a time-splitting scheme is then applied, one obtains a

procedure where one alternates between propagation using
the heat equation with a forcing term and thresholding. The
scheme can then be transferred to a graph-based setting
and the Laplace operator can be replaced by a graph-based
multiscale Laplacian. The thresholding can be changed to
the displacement of the variable towards the closest vertex
in (10). A projection to the simplex is then necessary before
the displacement step.

Our proposed MMBO procedure thus consists of the
following procedure. Starting with an initial guess for U,
obtain the next iterate of U via the following three steps:

1. Multiscale heat equation with a forcing term:

Un+ 1
2 = Un −dt{LmultiscaleUn+ 1

2 +μ · (Un −Ulabeled)},
where μ is a vector which takes a value μ in the ith

place if xi is a labeled element and 0 otherwise, and the
termμ·(Un−Ulabeled) indicates row-wise multiplication
by a scalar.

2. Projection to simplex: Each row of Un+ 1
2 is projected

onto the simplex using [26].
3. Displacement: un+1

i = ek , where un+1
i is the ith row

of Un+1, and ek is the indicator vector (with a value
of 1 in the kth place and 0 elsewhere) associated with
the vertex in the simplex closest to the ith row of the

projected Un+ 1
2 from step 2.

This implicit scheme allows the evolution of U to be
numerically stable regardless of the time step dt , in spite
of the “stiffness” of the differential equations which could
otherwise force dt to be impractically small.

One can compute Un+ 1
2 very efficiently using spectral

techniques and projections onto a low-dimensional sub-
space spanned by a small number of eigenfunctions in the
following manner, where I is the identity:

Un+ 1
2 =Xmultiscale (I + dt�multiscale)

−1XT
multiscaleUupdate,

(15)

where Uupdate = Un − dtμ · (Un −Ulabeled), Xmultiscale is an
N × Ne truncated matrix retaining only Ne << N smallest
eigenvectors of the multiscale graph Laplacian Lmultiscale,
and �multiscale is a Ne × Ne truncated diagonal matrix
retaining only the smallest eigenvalues of the multiscale
Laplacian Lmultiscale along the diagonal.

The proposedMMBOprocedure is detailed as Algorithm 2.
It is important to note that in the MMBO method, the graph
weights are only used to compute the few eigenvectors
and eigenvalues of the multiscale graph Laplacian, and the
multiscale MMBO procedure themselves do not involve
graph weights. This crucial property allows one to use the
Nyström extension procedure [10, 33, 34] to approximate
the extremal eigenvectors of the Laplacian by only comput-
ing a small portion of the graph weights; this enables one to
apply the multiscale models very efficiently on large data.



E. Merkurjev et al.

For initialization, the rows of U corresponding to labeled
points are set to the vertices of the simplex corresponding
to the known labels, while the rows of U corresponding to
the rest of the points initially represent random probability
distributions over the classes.

The energy minimization proceeds until a steady state
condition is reached. One way of determining a steady state
condition is to stop the calculation when, for a positive
constant η > 0,

max
i

‖un+1
i − un

i ‖2

max
i

‖un+1
i ‖2 < η. (16)

The final classes are obtained by assigning class k to node i

if ui is closest to vertex ek on the Gibbs simplex.

3.3 Computation of eigenvalues and eigenvectors
of themultiscale graph laplacian

The MMBO method requires one to compute a few of
the smallest eigenvalues and the corresponding eigenvectors
of the multiscale graph Laplacian to form Xmultiscale. We
examine and use three techniques for this task. Nyström
extension [10, 33, 34] is the preferred method for very large
data.

3.3.1 Nyström extension for fully connected graphs

Nyström extension [10, 33, 34] is a matrix completion
method, and it performs faster than many other techniques
because it computes approximations to eigenvectors and
eigenvalues using much smaller submatrices of the original
matrix.

Note that if λ is an eigenvalue of Ŵ = D− 1
2WD− 1

2 ,
then 1 − λ is an eigenvalue of the symmetric Laplacian

Ls = I − D− 1
2WD− 1

2 , and the two matrices have the
same eigenvectors. Thus, one can use Nyström extension to
calculate approximations to the eigenvectors of Ŵ and thus
of Ls.

Now, consider the problem of approximating the
extremal Ne eigenvalues and eigenvectors of a full graph Ŵ
and let ŵ(xi, xj ) = Ŵij . Nyström extension [10, 33, 34]
approximates the eigenvalue equation using a quadrature
rule and Ne << N randomly chosen interpolation points
from V , which represents data elements. Denote the set
of Ne randomly chosen points by X = {xi}Ne

i=1 and its
complement by Y . Partitioning V into V = X ∪ Y and
letting φk(x) be the the kth eigenvector of W and λk be its
associated eigenvalue, we obtain:∑
xj ∈X

ŵ(yi, xj )φk(xj ) = λkφk(yi)∀yi ∈ Y, ∀k ∈ 1, ..., Ne.

(17)

Algorithm 2 MMBO Algorithm (multiscale).

This system cannot be solved directly since the eigenvectors
are unknown; thus, the Ne eigenvectors of Ŵ are
approximated using much smaller submatrices of Ŵ.

The efficiency of Nyström extension lies with the
following fact: when computing the Ne eigenvalues and
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eigenvectors of an N × N matrix, where N is large, the
algorithm approximates them using much smaller matrices,
the largest of which has dimension N × Ne, where Ne <<

N . In particular, when the method is applied to W or Ŵ,
only a small portion of the weight matrix W or Ŵ needs to
be computed. In our experience, Ne = 100 or Ne = 200
were good choices.

If the number of scales is m + 1, the complexity of the
Nyström procedure is O(NNe(m + 1)), which is linear in
N .

3.3.2 Rayleigh-Chebyshev method

The Rayleigh-Chebyshev method [6] is a fast algorithm
for finding a small subset of eigenvalues and eigenvectors
of sparse symmetric matrices, such as a symmetric graph
Laplacian which can be made sparse using techniques such
as Nn-nearest neighbors. The method is a modification of
an inverse subspace iteration procedure and uses adaptively
determined Chebyshev polynomials.

3.3.3 A shifted block Lanczos algorithm

A shifted block Lanczos algorithm [42], as well as other vari-
ations of the Lanczos method [86] that is an adaptation of
power methods, are efficient techniques for solving sparse
symmetric eigenproblems and for finding a few of the
extremal eigenvalues. They can be used to find a subset of the
eigenvalues and eigenvectors of the symmetric graph Lapla-
cian which can be made sparse using Nn-nearest neighbors.

4 Results and discussion

4.1 Data sets

In this work, we validate the proposed MML and MMBO
methods against three common data sets:

– G50C is an artificial data set inspired by [41]
and generated from two normal covariance Gaussian
distributions. This data set has 550 data points located
in R50 and two labels {−1, +1}.

– USPST data set includes images of handwritten digits
taken from the USPS test data set. This data has 2007
images to be classified into ten labels corresponding to
ten numbers from 0 to 9.

– Mac-Win data set categorizes documents, taken from
20-Newsgroups data, into 2 classes: mac or windows
[101]. This set has 1946 elements and each element is
represented by a vector in R7511.

– WebKB data set is taken from the web documents of
the CS department of four universities and has been
used extensively. It has 1051 data samples and two
labels: course and non-course. There are two ways to
describe each web document: the textual content of the
webpage (called page representation), and the anchor
text on hyperlinks pointing from other webpages to the
current one. The data points with page representation
are in R

3000, while the ones with link representation
belong to R1840. When we combine two different kinds
of representations, we achieve the data points in R4840.

– α, β-protein data set consists of three different protein
domains, namely alpha proteins, beta proteins, and
mixed alpha and beta proteins, classified based on
protein secondary structures [17]. This data has 900
biomolecules, and each family has 300 instances.

The details of the data sets are outlined in Table 1.

4.2 Hyperparameters selection

In the MMBO setting, for each data point, we do not
compute the complete graph but instead construct a Nn-
nearest neighbor graph for the calculation efficiency. The
parameter l is one of the hyperparameters and is selected on
a case by case basis. Moreover, as discussed in Section 2.2,
the weight function used is the Gaussian kernel w(xi , xj ) =
exp(−d(xi , xj )

2/σ 2). Here, the scalar σ is optimized so
that it perfectly fits the labeled set information. In the
multiscale approach, each kernel is assigned different
σ values depending on the outcome of hyperparameter
selection. Overall, due to the random initialization of the
non-labeled points, we use the same random seed for all the
experiments in this work for reproducible purposes.

The Nyström extension method [10, 33, 34] allows for
fast computations even in case of larger data since this
approach approximates the eigenvalues and eigenvectors of
the origin matrix using much smaller matrices randomly
selected from the bigger ones. Thus, only a small portion
of the graph weights need to be computed. However, in
case of smaller data, it is often more advantageous to
use methods such as [6] which can directly compute the
eigenvalues and eigenvectors. Therefore, to obtain optimal
results, we employ the Rayleigh-Chebyshev procedure [6]
(see Section 3.3.2) for our experiments. This method is well-
known for efficiently calculating the smallest eigenvectors
of a sparse symmetric matrix. The hyperparameters of the
MMBOmodels are the number of leading eigenvalues (Ne),
the time step for solving heat equation (dt), the constraint
constant on fidelity term (μ), and the number of iterations
(Nt ).



E. Merkurjev et al.

Table 1 Data sets used in the experiments

Data set No. of classes Sample dim. No. of data elements No. of labeled data

G50C 2 50 550 50

USPST 10 256 2007 50

Mac-Win 2 7511 1946 50

WebKB (page) 2 3000 1051 12

WebKB (link) 2 1840 1051 12

WebKB (page+link) 2 4840 1051 12

α, β-protein 3 50 900 720

The hyperparameter selection for MML model is carried
out in a similar fashion as that of the MMBO algorithm. The
tunning parameters are: the number of nearest neighbors
(Nn), the scaler factor (σ ), the penalty coefficient (γA),
the manifold regularizer constraint (γI ), and the Laplacian
degree (p). The optimizer is solved using the primal SVM
solver [64]. The optimal hyperparameters of the proposed
methods are documented in the Supporting Information.

4.3 Performance and discussion

4.3.1 Non-biological data sets

The non-biological data sets we used for our experiments
are the G50C, USPST, Mac-Win, and WebKB data sets.
In the experiments involving these data sets, we utilize the
original representations without carrying out any feature
generation procedures. In addition, following the previous
work [23, 99], we only consider accuracy as the main
evaluation metric for the G50C, USPST, and Mac-Win
data sets. For WebKB, we compute the Precision/Recall
Breakeven Point (PRBEP) due to its imbalanced labeling,
but also use the classification accuracy to compare to more
recent methods.

The results for non-biological data sets are shown in
Figs. 1 and 2. In most experiments with non-biological data,
the proposed MMBO method is clearly the most dominant.
The other proposed model, the MML method, is the second
best model with promising performances.

In all cases, the results of the proposed MML and
MMBO methods show promising improvements from non-
multiscale frameworks. Specifically, the best performances
of the algorithms are achieved with three kernels. In
particular, there is a significant accuracy improvement from
single kernel to two kernel architectures on the USPST
data (from 86.11% to 90.57% for the MML model, and
from 86.55% to 88.65% for the MMBO model) and Mac-
Win data (from 89.98% to 90.01% for the MML model,
and from 92.06% to 93.49% for the MMBO model). The
improvement from single kernel to multi-kernel learning is
less for the G50C andWebKB data, but that is to be expected

since G50C is a small data set consisting of 550 samples.
Furthermore, it is an artificial data set drawn from two unit
covariance normal distributions. As a result, a single kernel
is enough to capture the crucial structure of data. Moreover,
the WebKB data poses a challenge for multiscale learning
due to its imbalanced data.

In almost all experiments conducted for this paper, the
proposed MMBO and MML models obtain the best results,
mostly with three kernels. In particular, for the G50C data,
the MMBO method achieves the best accuracy (95.06%),
but the MML method is still comparable with its accuracy
being 94.56%. Moreover, the superior performance of our
proposed algorithms over the state-of-the-art models is also
displayed in the case of the more complex USPST data, a
set of handwritten digit images with 1440 samples. While
the proposed MML algorithm obtains the best accuracy at
90.57%, the MMBO method with three-kernel information
still obtains a good accuracy of 88.73%. The other published
approaches, such as LapRLS [99], obtain lower accuracies.
For Mac-Win, the accuracies of our multi-scale models
are slightly lower than those of ∇TSVM (94.3%) [23]
and LDS (94.9%) [23]. The fact that there are only 1966
samples but the dimension of each sample is very high,
i.e., 7511, might indicate noisy information which can
reduce the performances of graph-based kernel models. For
WebKB, our proposed methods perform extremely well.
WebKB is the last data set in this category and has three
different feature representations, namely, link, page and
page+link. The overall performance of our proposed models
is very encouraging. We see that using only one kernel
already produces great results, with a little improvement
in using multiple kernels. With the PRBEP metric, the
best model is the MMBO method with 3 kernels which
obtains a PRBEP at 96.22%, 97.93%, and 98.87% for the
link, page, and page+link experiments, respectively. The
MML method obtains the next best result with a PRBEP of
95.75%, 95.81%, and 95.84% for link, page, and page+link
experiments, respectively. After the proposed methods, the
next best result using the PRBEP metric is obtained with
LapSVM [99]: 94.3%, 93.4%, and 94.9%. When using
the classification accuracy and 105 labeled elements, the



Multiscale laplacian learning

Fig. 1 Accuracy comparison of
MML and MMBO with other
methods on USPST, WebKB
(Page+Link), G50C, and
Mac-Win datasets. The proposed
methods are in red, and other
methods are in blue. We note
that some of the comparison
methods for USPST use more
labeled samples than the
proposed methods. Please refer
to Section 4.4 for more details.
See Fig. 2 for more comparison

MML model performs the best, with accuracies in the 98th

percentile.

4.3.2 Alpha and beta protein classification

We also tested the proposed multiscale learning models
using biological data, such as data involving protein
classification. In this data, based on the secondary
structure, proteins are typically grouped into three classes,
namely alpha helices, beta sheets, and mixed alpha and

beta domains. Figure 3 plots the secondary-structure
representations of 3 types of protein structures. The data,
which consists of 900 structures equally distributed into
three classes, was collected by Cang et al. [17] and
taken from SCOPe (Structural Classification of Proteins-
extended), an online database [35].

Five-fold cross validation is conducted to examine the
performance of the proposed models. To preserve the
unbiased information, in each fold, the test set consisted of
180 instances with 60 samples from each group. Overall,
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Fig. 2 PRBEP comparison of
MML and MMBO with other
methods on WebKB
(Page+Link), WebKB (Page),
and WebKB (Link) datasets. The
proposed methods are in red,
and other methods are in blue.
See Fig. 1 for more comparison

the protein data sets originally provide the coordinates and
atom types for each structure. However, feature generation
is needed to translate such information to a vector format
suitable for machine learning algorithms. Moreover, for this
data, the feature generation has to sustain crucial physical
and chemical interactions such as covalent and non-covalent
bonds, electrostatic, hydrogen bonds, etc. In the past
few years, we have developed numerous mathematical-
based feature engineering models including geometric

and algebraic graph [73, 77], differential geometry [75],
persistent homology [16], and persistent graph [108] for
representing 3D molecular information in low dimensional
representations.

We employ our geometric graph representation in [77].
In order to represent the physical and chemical properties of
a biomolecule, we consider four atom types, namely Cα , C,
N, and O. In particular, the protein structures are described
by vectors of 50 components. Overall, the details of the

Fig. 3 Secondary-structure representations of proteins taken from
α, β-protein data. Here, alpha helix is colored in red, beta sheet is
colored in blue. a) Alpha protein (PDBID: 1WIX), b) Beta protein

(PDBID: 3O4P), c) Mixed-alpha and beta protein (PDBID: 2CNQ).
PDBID stands for protein data bank ID with experimental structures
available at https://www.rcsb.org/

https://www.rcsb.org/
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parameters for the feature generated approach is provided in
the Supporting Information.

Both MMBO and MML models perform well. More-
over, similarly to previous experiments, multiscale infor-
mation strengthens the accuracy of both MML and MMBO
approaches. In fact, there is an encouraged improvement
from the one kernel model to the two kernel model , i.e.,
84% to 85% accuracy for the MMBO model. There is also
an improvement in the MMBO method results using three
kernels, i.e. 85.11%. For the MML method, there is a slight
improvement by using multiple kernels. For this data, the
MMBO method outperforms its counterpart, which indi-
cates the versatility of the MMBO algorithm when dealing
with a variety of data. All results are presented in Fig. 4.

4.4 Comparison algorithms

We compare our algorithms to many recent methods, most
of which are from 2015 and later.

For WebKB data, we compare classification accuracy
against recent methods such as semi-supervised multi-
view deep discriminant representation learning (SMDDRL)
[48], vertical ensemble co-training (VE-CoT) [54], auto-
weighted multiple graph learning (AMGL) [82], multi-
view learning with adaptive neighbors (MLAN) [79],
deep canonically correlated autoencoder (DCCAE) [109],
multi-view discriminative neural network (MDNN) [84],
semi-supervised learning for multiple graphs by gradient
flow (MGSC) [62], multi-domain classification w/ domain
selection (MCS) [24], multi-view semi-supervised learning
(FMSSL, FMSSL-K) [115], and semi-supervised multi-
modal deep learning framework (SMDLF) [27]. Our results
are obtained using 105 labels, and using the classification
accuracy metric. Results for SDMDRL, VE-CoT, AMGL,
MLAN, SMDLF, DCCAE and MDNN are from [48], the

Fig. 4 The performances of MMBO and MML models on the protein
classification data set

results for MGSC and MCS are from [62], and the results
for FMSSL and FMSSL-K are from [115]. All methods use
105 labels.

For USPST, we compare against recent methods such as
transductive minimax probability machines (TMPM) [44],
semi-supervised extreme learning machines (SS-ELM) [43],
graph embedding-based dimension reduction with extreme
learning machines (GDR-ELM) [112], extreme learning
machine auto-encoder (ELM- AE) [53], extreme learn-
ing machine auto-encoder with invertible functions (ELM-
AEIf) [113] and extreme learning machines for dimension-
ality reduction (SR-ELM) [5]. Our results are obtained using
only 50 labels. The results for TMPM (with 50 labels) are
from [44], the results for GDR-ELM, ELM-AE, ELM-AEIf
and SR-ELM (with 150 labels) are from [112], and the result
for SS-ELM (with 100 labels) are from [43].

For G50C, we compare against recent methods such
as classtering (CLSST) [94], semi-supervised broad learn-
ing system (SS- BLS) [118], classification from posi-
tive and unlabeled data (PNU) [93], classification from
unlabeled positive and negative data (PUNU) [93], semi-
supervised extreme learning machines (SS-ELM) [43],
semi-supervised hierarchical extreme learning machine
(SS-HELM) [98], safe semi-supervised support vector
machines (S4VM) [59], robust and fast transductive sup-
port vector machines (RTSVM, RTSVM- LDS) [21]. Our
results are obtained using 50 labels. The result for CLSST is
from [94], the results for SS-BLS, SS-ELM and SS-HELM
are obtained from [118], the results for PNU, PUNU and
S4VM are obtained from [93], and the results for RTSVM
and RTSVM-LDS are obtained from [21]. All comparison
methods use 50 labels.

For Mac-Win, we compare against recent methods such
as support vector machines with manifold regularization
and partially labeling privacy protection (SVM-MR&PLPP)
[78] and a scalable version (SSVM-MR&PLPP) [78]. These
results are obtained from [78]. All methods use 50 labels.

We also compare results for all data sets with slightly
older methods such as transductive graph methods (Graph-
Trans), closely related to [8, 119, 122], transductive support
vector machines (TSVM) [50], support vector machines
on a graph-distance derived kernel (Graph-density) [23],
TSVM by gradient descent (∇TSVM) [23], low density
separation (LDS) [23], Laplacian support vector machines
(LapSVM) [99] and Laplacian regularized least squares
(LapRLS) [99]. For WebKB, we use the PRBEP metric
when comparing against these methods. The results for all
older methods, except LapSVM and LapRLF, are obtained
from [23], the results for LapSVM and LapRLF are from
[99]. All comparisons with older methods use the same
number of labeled samples as the proposed methods: 12
labels for WebKB and the PRBEP metric, and 50 labels for
the rest of the data.
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4.5 Computation analysis

This section is dedicated to the computational analysis of
the proposed MMBO and MML methods. In particular, we
elaborate on the multiscale coefficient analysis, the effect of
labeled data, the computational complexity, the convergence
and the efficiency of the proposed algorithms.

4.5.1 Multiscale coefficient analysis

In this subsection, we computationally determine the effect
and the meaningful range of the multiscale coefficient ct

part of the multiscale graph Laplacian (12). Theoretically,
the (m+ 1)-kernel method will degenerate to the m-kernel
model when cm approaches zero. Therefore, a stable optimizer
should preserve that property. To this end, we examine the
relative difference in the accuracy of the two-kernel and
one-kernel MML algorithms over five discussed datasets:

%Difference =
∣∣∣∣∣Acc

2-kernel
MML − Acc1-kernelMML

Acc1-kernelMML

∣∣∣∣∣ × 100%, (18)

where Acck-kernelMML indicates the classification accuracy
obtained by the MML algorithm with k kernels. It is noted
that the 2-kernel and 1-kernel MML methods will share
the same first multiscale coefficient c0, while the second
multiscale coefficient c1 of 2-kernel MML model is chosen
from the following set: {10−3, 0.5 × 10−3, 10−2, . . . , 103}.

Figure 5 illustrates the %Difference Performances
between the two MML models on the five datasets. Note
that we only consider the classification accuracy for the
WebKB (page+link) experiment; we find that using the
PRBEP metric yields a similar trend. It is expected that
the difference between the performances of multi-kernel
models become larger when the multiscale coefficient
c1 increases. When c1 is smaller than 10−2, the two-
kernel MML algorithm performs similarly to the one-kernel
counterpart, as expected. A similar conclusion can be drawn
when a higher number of kernels is used in our models, and
when the MMBO algorithm is utilized in the experiment.

4.5.2 Effect of labeled data

In this experiment, we examine the role of the number
of labeled data elements on the accuracy of our proposed
algorithms. The proposed MML and MMBO methods are
semi-supervised learning approaches, which perform well
with small amounts of labeled samples. Thus, our models
usually do not require abundantly available labeled data.
Nevertheless, we perform experiments on MMBO and
MML with various amounts of labeled data.

To this end, we fix the test data for each dataset, and train
our models on the rest. See Table 2 for the details of these

Fig. 5 The %Difference between the one-kernel and two-kernel MML
models, depending on c1. While the two models share the same
multiscale coefficient c0, the second kernel coefficient c1 is discretely
chosen in the domain {10−3, . . . , 103}. Similar behavior can be
observed if the MMBO method is used instead in the experiment

settings. The number of labeled samples is determined by
the percentage d(%) of the size of the training set in each
experiment. Here, we vary d from 10% to 50%, with an
increment of 10%. To obtain a fair comparison, we optimize
bothMML andMMBO hyperparameters for each amount of
labeled samples. The accuracy metric is employed for both
MML and MMBO performance evaluation, except for the
WebKB data set, where the PRBEP metric is preferred due
to the imbalance in the class distribution.

Figure 6 plots the performances of both MML and
MMBO versus the different amounts of labeled samples for
all five datasets. As seen in Fig. 6, for the G50C andWebKB
data sets, one can obtain a very similar accuracy (differing
by less than 1%) when considering 10% of the training
data as labeled, as opposed to considering 50% of the
training data as labeled. In addition, for the Mac-Win and
USPST data sets, one can also obtain a very similar accuracy
(differing by less than 5%) when considering 10% of the
training data as labeled, as opposed to considering 50% of
the training data as labeled These results confirm that our
semi-supervised models are very accurate in the case of a
small number of labeled samples. For the biological data,
there is a larger change in the accuracy depending on the
number of labeled samples. The complexity of the protein
dataset and the quality of the features with essential physical
and chemical information in the biological structures have
caused the dependency of our semi-supervised learners on
the knowledge of the labeled samples. This speculation will
deserve a more in-depth investigation in our future work.

4.5.3 Computational complexity

In this section, we elaborate on the computational complex-
ity of the proposed methods. In regarding to computational
complexity of the MMBO algorithm, in practice, once the
Ne eigenvectors of the graph Laplacian are computed, the
complexity of MMBO scheme is linear in the number of
data elements N . In particular, let K be the number of



Multiscale laplacian learning

Table 2 Settings for the
experiments of the effect of
labeled data on MML and
MMBO’s performances

Data set No. of classes Sample dim. No. of data elements No. of test elements

G50C 2 50 550 250

USPST 20 256 2007 979

Mac-Win 2 7511 1946 948

WebKB (page+link) 2 4840 1051 520

α, β-protein 3 50 900 180

classes and m + 1 be the number of terms in the multiscale
Laplacian (12). Usually, m = 1 or m = 2 is enough to
obtain good accuracy. Then, one needs O(NKNe) opera-
tions for the multiscale heat equation with a forcing term,
O(NK logK) operations for the projection to the simplex
and O(NK) operations for the displacement step. More-
over, the technique in [10, 33, 34] allows one to compute
good approximations to the first Ne eigenvectors of the mul-
tiscale graph Laplacian using O(NNe(m + 1)) operations.
Since Ne << N and K << N , in practice, the complexity
of this method is linear.

In regarding to computational complexity of the MML
algorithm, the method uses a direct approach that requires

O(N2) operations to calculate a single data-dependent
kernel M̃ [91]. When m + 1 kernels are utilized, the
complexity in space of the MML method is O(N2(m + 1)).
Thus, MMBO technique theoretically requires less number
of operations than its counterpart, the MML procedure.

4.5.4 Convergence analysis

In this section, we study a Lyapunov function of a scheme
related to fidelity forced MBO-type schemes, where labeled
data is incorporated into the method. We specifically
consider the two-class case. The theory can be extended to
multiclass cases, as detailed in [37, 47, 89]. The groundwork

Fig. 6 The effect of the number
of labeled samples on the
performances of the proposed
MML and MMBO methods
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Table 3 The timing of the proposed MMBO method

Data set Size of data set Sample dimension Timing (Construction of graph and eigenvectors) Timing (MMBO procedure)

G50C 550 50 0.02 seconds 0.31 seconds

USPST 1440 1024 1.41 seconds 1.52 seconds

Mac-Win 1946 7511 9.8 seconds 1.17 seconds

WebKB (page) 1051 3000 1.04 seconds 0.60 seconds

WebKB (link) 1051 1840 0.67 seconds 0.60 seconds

WebKB (page+link) 1051 4840 1.58 seconds 0.60 seconds

α, β-protein 900 50 0.18 seconds 1.96 seconds

for the extension was considered in [14]. In the binary case,
we can consider U as a vector where thresholding at 1

2
divides elements into two classes. Moreover, let

e−tA =
∞∑

k=0

(−t)k
Ak

k! , (19)

for any matrix A, let L be the graph Laplacian (the standard,
symmetric or multiscale version), I be the identity matrix,
and M be a diagonal matrix with μ as its diagonal value
for labeled elements, and 0 as the diagonal value otherwise,
and let f̃ indicate the reference which is supported on the
labeled data elements, and let f = Mf̃ . In addition, for
t > 0, let

J (U) = 〈U, 1−2(L+M)−1(I−e−t (L+M))f −e−t (L+M)U〉,
(20)

where 〈〉 indicates the dot product. As mentioned before,
in the two-class case, we can consider U as a vector where
thresholding at 1

2 can divide elements into two classes.
The work [15] shows that (20) is not only strictly

concave, but it is also a Lyapunov functional for a certain
SDIE scheme [15], that is, J (Un+1) ≤ J (Un), with equality
if and only if Un+1 = Un for Un+1 defined by the SDIE
scheme. It is now very important to note that it can be
shown, using elements of Theorem 2.9 from [15], that Un+1

is a solution to the SDIE scheme (with λ = 1) if and only
if it solves the variational problem that defines the fidelity-
forced MBO scheme, i.e., the minimization of the graph

Ginzburg-Landau functional (11) plus a specific fidelity
term involving an L2 fit to labeled data. We refer the reader
to [15] for other connections between MBO-type methods
and the SDIE scheme.

4.5.5 Efficiency

The efficiency of the proposed MML and MMBO
procedures are examined in this subsection. The timing
results are listed for all data sets in Table 3 (for the MMBO
algorithm) and Table 4 (for the MML algorithm).

The timing of the proposed MMBO method is divided
into two parts: (1) the timing for the construction of
the graph weights and the calculation of the extremal
eigenvectors of the multiscale graph Laplacian, and (2) the
timing of the MMBO procedure. From Table 2, one can see
that the proposed MMBO procedure takes under 2 seconds
for all data sets, and the graph construction and computation
of the eigenvectors takes little time as well.

The timing of the proposed MML method consists of
two categories: (1) the timing for the construction of the
warped kernels, and (2) the timing of the optimizer. One
can see from Table 4 that the procedure of generating the
multiscale graph and the warped kernel is the most time-
consuming step of the MML algorithm, but it is still under
5 seconds when handling the Mac-Win data set having
1946 samples with a feature dimension of 7511. For other
data sets, the MML method takes under 0.3 seconds to
formulate the multiscale graph and the warped kernel. Due

Table 4 The timing of the proposed MML method

Data set Size of data set Sample dimension Timing (Deformed Kernel) Timing (Optimization)

G50C 550 50 0.039 seconds 0.001 seconds

USPST 1440 1024 0.24 seconds 0.003 seconds

Mac-Win 1946 7511 4.51 seconds 0.002 seconds

WebKB (page) 1051 3000 0.21 seconds 0.02 seconds

WebKB (link) 1051 1840 0.15 seconds 0.01 seconds

WebKB (page+link) 1051 4840 0.28 seconds 0.02 seconds

α, β-protein 900 50 0.05 seconds 0.02 seconds
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to the simplified version of the optimizer of the MML
method, one can directly use the standard solver of SVM
for the MML algorithm. This procedure is extremely fast
and needs no more than 0.03 seconds to complete the task
for all experiments. The computations were performed on a
personal laptop 2.4 GHz 8-Core Intel Core i9.

5 Conclusion

This work presents several methods for machine learning
tasks and for dealing with some of the challenges of
machine learning, such as data with limited samples,
smaller data sets, and diverse data, usually associated
with small data sets or data related to areas of study
where the size of the data sets is constrained by the
complexity and/or high cost of experiments. In particular,
we integrate graph-based techniques, multiscale structure,
adapted and modified optimization procedures and semi-
supervised frameworks to derive two multiscale Laplacian
learning (MLL) approaches for machine learning tasks, such
as data classification.

The first approach introduces a multiscale kernel
representation to a manifold learning technique and is
called the multikernel manifold learning (MML) algorithm.
The second approach combines multiscale analysis with
an interesting adaptation and modification of the famous
classical Merriman-Bence-Osher (MBO) scheme and is
called the multiscale MBO (MMBO) algorithm.

The performance of the proposed approaches is favor-
ably compared to recent and related approaches through
experiments on various data sets. A variety of computational
analyses indicates that two proposed new MLL methods
are powerful techniques for dealing with some of the most
important challenges and tasks in machine learning.

6 Supporting information

We present the optimal hyperparameters of the proposed
methods in Online Resource: Supporting Information.
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