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Abstract—This paper investigates the use of nonlinear
differential-algebraic equation (NDAE) models for dynamic state
estimation (DSE) of power systems. NDAE models include
dynamics of generators in multi-machine systems coupled with
power flow equations. Although Numerical integration methods
have contributed to solving NDAE models of power systems,
NDAEs and the DSE problem have been treated separately in the
majority of literature due to the complexity in solving NDAEs.
In this paper, we leverage Gear’s and trapezoidal methods to
discretize NDAEs. This process combined with readings from
phasor measurement units provides a model for DSE formulated
as nonlinear least squares. The overall problem is solved using
the Gauss-Newton method. The effectiveness and accuracy of the
DSE is tested on standard test systems.

Index Terms—Differential Algebraic Equations, Dynamic State
Estimation, Gauss-Newton method, Implicit Methods, Power
Systems Dynamics.

I. INTRODUCTION

Power systems experience different types of uncertainty due
to load changes and faults, thereby imposing various opera-
tional and stability-related challenges. Dynamic state estima-
tion (DSE) is an effective tool for monitoring the dynamics
of the system. Electromechanical transients and dynamics of
multi-machine power systems are typically modeled by the
power flow equations coupled with nonlinear differential and
algebraic equations (NDAEs) pertaining to generators [1]–[4].
There are several numerical, hybrid, and decoupled methods
to solve DAEs; see e.g., [5]–[8], but these methods have not
been coupled with DSE. The present paper is specifically
concerned with leveraging NDAEs for DSE based on readings
from phasor measurement units (PMUs).

DAE models track the grid transients adequately for the
purpose of performing DSE because, if DSE is performed
only by using ordinary differential equation models, then
PMU locations are restricted to generator buses [9]. The
majority of the literature focuses mainly on the dynamical
models of generators without placing particular emphasis on
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the algebraic states of the network. For example, the works
in [10], [11] only consider dynamics of generators obtained by
Kron reduction. In [12], constant impedance loads are assumed
to eliminate algebraic network equations of a DAE model and
eventually avoid NDAEs. In [13], it is discussed that unless
NDAEs are used, it is difficult to perform DSE whereby PMUs
are installed on non-generator buses. To establish the relations
between bus voltages at non-generator buses and generators’
states, NDAEs are required. In [14], a distributed Gauss-
Newton method to perform state estimation is developed, but
the DAE model of the power system is not considered. Some
works bypass the nonlinearities by linearizing the NDAEs
around an equilibrium point [13], [15]. Despite their complex-
ity, incorporating NDAE models into DSE is well motivated
to enable the use of detailed generator models and power flow
equations in addition to arbitrary PMU placement.

Numerous approaches have been proposed to solve the DSE
problem. The works in [16], [17] are based on weighted
least squares but do not consider readings from PMUs which
measure nodal voltages and line currents. Kalman filter frame-
works are introduced in [11], [18], [19], but the generator
dynamical model is decoupled from the PMU model. Other
approaches include observer-based frameworks [13], [20] and
Newton-based methods [14], [21]. It is well known that the
PMU measurement model is linear when nodal voltages are
expressed in rectangular coordinates. If simplified dynami-
cal models are considered—such as random walk for the
voltages—then the DSE formulation is linear [22]. Instead, this
paper adopts generator dynamics involving the swing equation
and internal variables pertaining to the generator real and
reactive power, which render the overall model nonlinear.

The present work develops a DSE problem capitalizing on a
discretized power system NDAE model. The discretization is
carried out using implicit numerical methods, namely, Gear’s
and trapezoidal methods. The overall problem is formulated
as nonlinear least squares minimization and is solved using
the Gauss-Newton method.

The remainder of this paper is organized as follows. The
power system NDAE model, discretization of NDAEs, and the
measurement model are presented in Section II. Section III
formulates the objective function and develops the Gauss-
Newton iterative method for the DSE problem. Section IV978-1-6654-9921-7/22/$31.00 ©2022 IEEE
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provides numerical results regarding the performance of the
proposed DSE approach using both discretization methods.
The paper is concluded in Section V.

II. NONLINEAR DAE MODEL OF POWER SYSTEMS,
DISCRETIZATION, AND MEASUREMENT MODEL

In this section, NDAE modeling of power systems and
implicit discretization methods are detailed, followed by the
measurement model.

A. NDAE model of Power Systems

The power network model consists of N buses with G =
{1, 2, ..G} representing the set of buses connected to G
synchronous generators. Set L = {1, 2, ..L} represents the
buses containing loads only. Set N consists of synchronous
generators and load buses, i.e., N = G ∪ L. In this paper,
we leverage a comprehensive 4th order one-axis generator
dynamic model, generator’s algebraic equations, and power
flow equations. The dynamics of synchronous generator i ∈ G
are written as [23]

δ̇i = ωi − ωs (1a)
Miω̇i = Tmi −Di(ωi − ωs)− Pgi (1b)

T ′
doiėi = −xdi

x′
di

ei +
xdi − x′

di

x′
di

(vRi cos(δi) + vIi sin(δi))

+ Efdi (1c)

TChiṪmi = Tri − Tmi −
1

Ri
(ωi − ωs) (1d)

where δi = δi(t) is the rotor angle (rad), ωi = ωi(t)
is the rotor speed (rad/sec), ei = ei(t) is the generator
transient voltage (pu), Tmi = Tmi(t) is the mechanical input
power (pu), vRi = vRi(t) and vIi = vIi(t) are real and
imaginary generator terminal voltages (pu), Efdi = Efdi(t)
is the generator internal field voltage (pu), and Tri = Tri(t)
is the generator reference signal (pu). The constants in (1)
are defined as follows: Mi is the rotor inertia (pu × sec2),
Di is the generator damping coefficient (pu × sec), x′

di is
the direct-axis transient reactance (pu), xdi is the direct-axis
synchronous reactance (pu), T ′

doi is the direct-axis open circuit
time constant (sec), TChi is the chest valve time constant (sec),
Ri is the speed governor regulation constant in ( rad×Hz

pu ), and
ωs is the rotor synchronous speed (rad/sec).

The algebraic equations represent the relation among the
generator dynamic states, real and reactive power (Pgi, Qgi)
(pu), and real and imaginary terminal voltages (vRi, vIi). The
two algebraic equations for i ∈ G are stated as [23]

0 =
ei
x′
di

(vRi sin(δi)− vIi cos(δi))

− xqi + x′
di

2x′
dixqi

((v2Ri − v2Ii) sin(2δi)− 2vRivIi cos(2δi))− Pgi

(2a)

0 =
ei
x′
di

(vRi cos(δi) + vIi sin(δi))−
x′
di − xqi

2x′
dixqi

(v2Ri + v2Ii)

+
x′
di − xqi

2x′
dixqi

(v2Ri cos(2δi)− v2Ii cos(2δi)

+ 2vRivIi sin(2δi))−Qgi (2b)

where xqi is the quadrature-axis synchronous reactance (pu).
The network power flow equations for bus i ∈ N are [23]

Pli − Pgi +

N∑
j=1

Gij(vRivRj + vIivIj)

+Bij(vIivRj − vRivIj) = 0 (3a)

Qli −Qgi +

N∑
j=1

Gij(vIivRj − vRivIj)

−Bij(vRivRj + vIivIj) = 0 (3b)

where Gij and Bij are respectively the conductance and
susceptance of the line between buses i and j, Pli and Qli

are the active and reactive power consumed by the loads (pu).
If a bus does not have loads, Pli and Qli are set to zero.

Each synchronous generator has four dynamic states, which
are all collected in x = [δTi ωT

i eTi T T
mi]

T , whereas
generators’ internal field voltage and reference signal are
considered control inputs, i.e., u = [ET

fdi T T
ri ]

T . The al-
gebraic state representing the generators’ powers is defined
as ã = [P T

g QT
g ]

T where Pg = {Pgi}i∈G , Qg = {Qgi}i∈G
and the algebraic state representing the network’s bus voltages
in rectangular form is defined as ṽ = [vTR vTI ]

T where
vR = {vRi}i∈N , vI = {vIi}i∈N . The algebraic states together
are collected in a = [ãT ṽT ]T . Based on the previously
defined vectors, the complete NDAE model (1)–(3) is

NDAE: ẋ = f(x,a,u) (4a)
0 = g(x,a) (4b)

where the vector-valued functions f and g represent differ-
ential and algebraic equations respectively. The vector dimen-
sions are x ∈ R4G, ã ∈ R2G, ṽ ∈ R2N , a ∈ R2G+2N ,
u ∈ R2G yielding the nonlinear function mappings f : R4G ×
R2G+2N×R2G → R4G and g : R4G×R2G+2N → R(2G+2N).
The discretization methods to solve the NDAEs in (4) are
discussed below.

B. Discretization for NDAE model
Implicit methods formulate sets of equations involving both

current and future states of the system. When using implicit
methods to solve NDAEs, each step of the numerical inte-
gration method is defined as a solution of a set of nonlinear
equations. In this section, commonly used implicit methods
such as Gear’s and trapezoidal methods are discussed to solve
the power systems NDAE model in (4). The time is discretized
with step length h. Specifically, t takes the values t = nh
where n = 1, 2, . . . np, and np = tfinal/h is the total number
of time steps for a simulation horizon of tfinal seconds.

1) Gear’s method: To apply Gear’s method for solving
NDAEs, the model in (4) is rewritten as follows at time n:

x(nh)−
∑k

s=1 αsx(nh− sh)

βh
= f(x(nh),a(nh),u(nh))

(5a)
0 = g(x(nh),a(nh)) (5b)
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where the derivative is approximated using a linear combina-
tion of state values x(nh) and {x(nh− sh)}ks=1 computed at
k previous time steps. The constants β and αs depend on the
selected order k and are defined as follows:

β =

(
k∑

s=1

1

s

)−1

, αs = (−1)(s+1)β
k∑

j=s

1

j

(
j
s

)
. (6)

The set of equations in (5) amounts to a nonlinear system
where x(nh) and a(nh) are unknown and must be solved.
Eq. (5a) is rearranged and the following function is defined:

ψ(x(nh),a(nh),u(nh)) = x(nh)−
k∑

s=1

αsx(nh− sh)

− hβf(x(nh),a(nh),u(nh)) (7)

2) Trapezoidal method: At time n, the model in (4) is
rewritten as follows for the trapezoidal method:

x(nh)− x(nh− h)

0.5h
= (f(x(nh),a(nh),u(nh))+

f(x(nh− h),a(nh− h),u(nh− h)))
(8a)

0 = g(x(nh),a(nh)) (8b)

Eq. (8a) is rearranged and the following function is defined:

ψ(x(nh),a(nh),u(nh)) = x(nh)− x(nh− h)− 0.5h

[f(x(nh),a(nh),u(nh))

+ f(x(nh− h),a(nh− h),u(nh− h))]
(9)

The resulting system of equations for each method [cf. (5)
or (8)] can be summarized as follows:

0 = ψ(x(nh),a(nh),u(nh)) (10a)
0 = g(x(nh),a(nh)) (10b)

where it is understood that ψ(x(nh),a(nh),u(nh)) also de-
pends on state values prior to nh, depending on the definition
and order of the discretization method. The PMU measurement
model is discussed next.

C. PMU Measurement Model
Suppose that the N buses are connected to Nl lines. Let

Nj be the set of buses that are connected to the bus j , and
Lj=|Nj | is defined as the number of lines that are connected
to bus j . A PMU installed on bus j measures the bus complex
voltage and complex line currents corresponding to all buses
that are connected to bus j . PMUs are measuring quantities in
rectangular coordinates. To formulate the expression for line
currents, matrix Yft is defined as

Yft =

[
Yf

Yt

]
∈ R2Nl×N (11)

where Yf and Yt ∈ RNl×N are from and to branch admittance
matrices that can be easily extracted from MATPOWER [24].
The real and imaginary line currents are obtained as follows[

iR(t)
iI(t)

]
=

[
Re[Yft] −Im[Yft]
Im[Yft] Re[Yft]

]
ṽ(t) (12)

A PMU that is installed on a bus j measures the following
quantities

yj =
[
vRj vIj {iRjk}Tk∈Nj

{iIjk}Tk∈Nj

]T
(13)

where iRjk and iIjk are the real and imaginary currents corre-
sponding to lines connected to bus j. Hence, the measurement
vector yj at bus j can be written as

yj = Ĉj ṽ (14)

with Ĉj ∈ R(2+2Lj)×(2N) defined as

Ĉj =


eTj 0
0
¯

eTj
SjRe(Yft) −SjIm(Yft)
SjIm(Yft) SjRe(Yft)

 (15)

where ej is the vector of standard basis in RN with 1 at
row j and zero otherwise and Sj ∈ RLj×2Nl has 0/1 entries
selecting the rows of Yft corresponding to lines connected to
bus j [25].

The overall PMU measurement model can be written as

y(t) = Ĉṽ(t) (16)

where Ĉ stacks all Ĉj matrices corresponding to the installed
PMUs. The measurement model is alternatively written as

y(t) =Cx̃(t) (17)

where x̃(t) = [x(t)T a(t)T ]T and matrix C = [O Ĉ] has
zero columns corresponding to all rows of x̃(t) except ṽ(t).

The noisy version of y(t) is defined as

y(t) =Cx̃(t) +w(t) (18)

where w(t) represents zero-mean Gaussian noise assumed
independent across the measurements.

The next section discusses the formulation of the Gauss-
Newton method to perform DSE on the discretized NDAE
model.

III. GAUSS NEWTON METHOD FOR NONLINEAR DYNAMIC
STATE ESTIMATION

Given the NDAE model, and the implicit methods to dis-
cretize the model, the objective of this section is to estimate
the states of the system (both dynamic and algebraic states,
including ones not measured by PMUs). To this end, a nonlin-
ear least squares problem is formulated and solved using the
Gauss-Newton method to minimize the least squares objective
function. Specifically, the dynamic and algebraic state values
x̃(t) = x̃(nh) are estimated for n = 0, . . . , np. The vector z
of all system states to be estimated is defined as

z =
[
x(0)T a(0)T . . . x(nph)

T a(nph)
T
]T

(19a)

The residual function corresponding to the measurement
equation at time nh is

ry(nh) = y(nh)−Cx̃(nh) (20)
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where y(nh) is the vector of PMU measurements at each time
sample, i.e., y(nh) = y(t).

The residual functions corresponding to the discretized
NDAE model are written as [cf. (10)]

rxx(nh) = ψ(x(nh),a(nh),u(nh)) (21a)
rxa(nh) = g(x(nh),a(nh)) (21b)

where it is understood again that rxx(nh) also depends on
previous state values depending on the definition and order of
the discretization method.

Specifically, the residual functions of the discretization
equations for Gear’s method (5a)–(5b) are

rxx(nh) = x(nh)−
k∑

s=1

αsx(nh− sh)

− hβf(x(nh),a(nh),u(nh)) (22a)
rxa(nh) = g(x(nh),a(nh)) (22b)

and the residual functions for the trapezoidal method (8a)–(8b)
are

rxx(nh) = x(nh)− x(nh− sh)

− 0.5hf(x(nh),a(nh),u(nh)) (23a)
rxa(nh) = g(x(nh),a(nh)) (23b)

The vector of residuals r(z) corresponding to all mea-
surement, differential, and algebraic equations is defined as
follows:

r(z) =



ry(0)
...

ry(nph)
rxa(0)
rxx(h)
rxa(h)

...
rxx(nph)
rxa(nph)


(24)

The objective is to minimize the ℓ2-norm of the residual
vector:

minimize
z

||r(z)||22 (25)

resulting in a nonlinear least squares problem that can be
solved using the Gauss-Newton method. The advantage of
the Gauss-Newton method is that it includes approximate
Hessian information to iteratively update z, without actually
formulating second-order derivatives of the objective function
in (25).

The Jacobian matrix corresponding to (24) is defined as

J(z) =

[
−M
N

]
(26)

where M is the Jacobian matrix of the residual function cor-
responding to the measurement equation in (20). Specifically,
M is defined as a block diagonal matrix that contains np

blocks of C.

Matrix N is the Jacobian matrix of the residual func-
tions in (22a)–(22b) for Gear’s method and (23a)–(23b) for
the trapezoidal method. For both methods, matrix N ∈
R(2G+2N)+(4G+2G+2N)(np−1)×(4G+2G+2N)np has the follow-
ing structure:

N =


Θ O O O O . . . O
Φ Ag O O O . . . O
O Φ Ag O O . . . O
. . . . . . . . O
O O O O . . . Φ Ag

 (27)

where the block [Φ Ag] appears np times.
Matrix Θ ∈ R(2G+2N)×(4G+2G+2N) is defined as

Θ =
[
Gx(x(0),a(0)) Ga(x(0),a(0))

]
(28)

where Gx is the Jacobian matrix of (4b) with respect to state
variables x, andGa is the Jacobian matrix of (4b) with respect
to algebraic variables a.

Matrix Φ ∈ R(4G+2G+2N)×(4G+2G+2N) is defined for first-
order (k = 1) Gear’s and trapezoidal methods as

Φ =

[
−I O
O O

]
(29)

Matrix Ag ∈ R(4G+2G+2N)×(4G+2G+2N) is defined for
Gear’s method as

Ag =

[
Ix − βhFx −βhFa

Gx Ga

]
(30)

and for the trapezoidal method as

Ag =

[
Ix − 0.5hFx −0.5hFa

Gx Ga

]
(31)

where Fx is the Jacobian of (4a) with respect to state variables
x, and Fa is the Jacobian matrix of (4a) with respect to
algebraic variables a; Ix is the identity matrix with same
dimension as Fx. Matrices Fx, Fa, Gx, and Ga are evaluated
at x(nh),a(nh) for n = 1, . . . , np corresponding to block
rows of (27).

The Gauss-Newton update for iteration index γ is given as

z(γ+1) = z(γ) − hg(J(z
(γ))TJ(z(γ)))−1J(z(γ))Tr(z(γ)) (32)

where hg is the stepsize of the method. The next section
presents the relevant numerical results.

IV. NUMERICAL RESULTS

In this section, simulation results testing the performance of
Gear’s and trapezoidal methods in solving the DSE problem
using the Gauss-Newton method are discussed. The simula-
tions are performed in MATLAB R2021a on a 64-bit Windows
10 system equipped with a 3.5GHz XeonR E5-1650 CPU, and
128 GB of RAM. The MATLAB’s ode15i solver (that solves
the NDAE models) is used as a benchmark for DSE. The
simulations are performed on the following test systems:

• Western System Coordinating Council (WECC) 3 ma-
chine, 9-bus system (referred to as Case-9)

• IEEE-57 test system consisting of 7 machines and 57
buses (referred as Case-57).
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The machine constants and network parameters for all
the cases are extracted from PST toolbox and MATPOWER
respectively [23], [24]. Since the regulation and chest time
constants are not specified in PST, their values are chosen to be
Ri = 0.02 (Hz×rad)

pu and TChi = 0.2 sec [15]. The base power
for all systems is 100 MVA and the synchronous speed of the
network is ωs = 2π60 rad/sec. The generator parameters are
obtained from case files data3m9b.m for Case-9. For Case-57
the machine constants are chosen based on the ranges of values
provided in the PST toolbox. Parameter values for Case-57
have been selected as Mi = 0.2 pu× sec2, Di = 1.0 pu× sec,
xdi = 0.07 pu, xqi = 0.5 pu, x

′

di = 0.007 pu, and T
′

doi = 5 sec.
Initial constant power loads (P 0

l , Q
0
l ) are generated from

MATPOWER based on the standard files given for the two
networks. The algebraic variables a(0) at the initial operating
point are calculated by solving the power flow equations using
MATPOWER. The algebraic variables are then utilized to
solve (1) upon setting ẋ = 0 together with (2) to obtain
initial operating points of generators’ dynamic states x(0) and
control inputs u(0).

After t > 0, an abrupt step disturbance is applied to the
loads. The new values of complex power loads are specified
as P d

l +jQd
l = (1+d)(P 0

l +jQ0
l ) where d is the magnitude of

the disturbance. The initialization given to MATLAB’s ode15i
are the states and algebraic variables corresponding to the
previous operating point computed before step disturbance is
applied. The control inputs are obtained from MATPOWER’s
runopf.m based on the new loads.

Therefore, the simulated case amounts to a new command
at generators based on the loads P d

l + jQd
l = (1 + d)(P 0

l +
jQ0

l ) and the objective is to estimate the resulting dynamic
and algebraic states from PMU measurements. A disturbance
of 1% is considered for all the test cases. The order k = 1
is chosen for Gear’s method. The Gauss-Newton stepsize is
selected as hg = 0.1.

The PMUs are installed on bus 4, 6, and 7 for Case-9 [13],
and for Case-57 PMUs are installed on bus 1, 2, 4, 6, 9, 12,
15, 19, 20, 24, 25, 28, 29, 30, 32, and 33, 33, 35, 37, 38, 41,
46, 47, 50, 51, 53, 54, 56 [26]. Gaussian noise with standard
deviation of 0.01, 0.02, and 0.05 i.e., 1%, 2%, and 5% noise
is added to the measurements. All results are shown for step
length h = 0.1 and tfinal = 10 sec.

The DSE results for Case-9 with 5% Gaussian noise under
Gear’s and trapezoidal (TRAP) methods are depicted in Fig. 1.
The DSE results for Case-57 with 5% Gaussian noise under
Gear’s and trapezoidal methods are shown in Fig. 2. The
generator states and the voltages in the figures converge to
their steady state values and are estimated efficiently using
the proposed method even under the effect of noise.

To assess the accuracy of the numerical methods, the root
mean square error (RMSE) is calculated as

RMSE =

4G+2G+2N∑
m=1

√√√√ 1

np

np∑
n=0

(em[n])2 (33)

where em[n] is the error between MATLAB’s ode15i solver
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Fig. 1: Estimated generator angles, frequencies, and bus volt-
ages with 5% noise for Case-9 using Gear’s method (left) and
trapezoidal method (right).
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Fig. 2: Estimated generator angles, frequencies, and bus volt-
ages with 5% noise for Case-57 using Gear’s method (left)
and trapezoidal method (right).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 29,2023 at 01:26:19 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: RMSE values of numerical methods solving DSE
using Gauss-Newton method at step length h = 0.1 and time
span 10 seconds.

Test Case Numerical Method Without noise

Case-9
Gear (k=1) 0.0144

TRAP 0.0015

Case-57
Gear (k=1) 0.4782

TRAP 0.0150

TABLE II: RMSE values averaged over 10 noise realizations
at step length h = 0.1 and time span 10 seconds.

Test Case Numerical Method with 1% noise with 2% noise with 5% noise

Case-9
Gear (k=1) 0.5134 1.5571 2.0758

TRAP 0.3010 1.0389 1.4841

Case-57
Gear (k=1) 1.2830 2.2561 4.9912

TRAP 1.0595 2.0419 4.7596

and the DSE method using Gear’s and trapezoidal discretiza-
tions and m indexes all network states and algebraic variables
at time n. The RMSE values for the DSE without noise are
listed in Table I. The RMSE values averaged over 10 noise
realization sequences are listed in Table II for different noise
standard deviations. It is worth noting that the trapezoidal
method is characterized by lower RMSE values compared to
Gear’s method for both test systems.

V. CONCLUSION

In this paper, a method to perform DSE based on discretized
NDAE models of power systems has been developed. The DSE
objective amounts to a nonlinear least squares problem that
can be solved using the Gauss-Newton method. The simulation
results for DSE with discretized NDAEs show that the method
is accurate, robust under the effect of noise, and works
efficiently. The trapezoidal method has better performance
compared to Gear’s method. Future work includes accommo-
dating renewable generation dynamics into the NDAE model
and analyzing how to implement the developed DSE model in
a rolling window fashion.
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