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ABSTRACT: Molecular surface representations have been advertised as a great tool
to study protein structure and functions, including protein—ligand binding affinity
modeling. However, the conventional surface-area-based methods fail to deliver a
competitive performance on the energy scoring tasks. The main reason is the lack of
crucial physical and chemical interactions encoded in the molecular surface
generations. We present novel molecular surface representations embedded in
different scales of the element interactive manifolds featuring the dramatically
dimensional reduction and accurately physical and biological properties encoders.
Those low-dimensional surface-based descriptors are ready to be paired with any
advanced machine learning algorithms to explore the essential structure—activity
relationships that give rise to the element interactive surface area-based scoring
functions (EISA-score). The newly developed EISA-score has outperformed many
state-of-the-art models, including various well-established surface-related representa-
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tions, in standard PDBbind benchmarks.

1. INTRODUCTION

Geometric modeling of biomolecules concerns geometrical
components at various scales and dimensions, including
molecular surface generation, molecular visualization, curva-
ture analysis, surface annotation, etc.212239,36:39,41,45,61,63,70,73
Among these ingredients, the molecular surface plays a
significant role in visualizing and analyzing molecular
structures and properties. Specifically, one can project the
electrostatic potentials, flexibility indexes, and curvature
magnitudes on the protein surface® to reveal protein structure
and function, such as protein—ligand binding sites, protein—
protein binding hot spots, and protein—DNA interactions.
There are various methods proposed to compute the
biomolecular surfaces. One can classify these methods into
three categories: analytical representation, partial differential
equations (PDEs)-based generation, and explicit formulation.
For the analytical calculation, the simplest model can be
referred to a van der Waals surface (vdWS), formed by a union
of the atomic sphere of the van der Waals radius. In addition,
one can use the trajectory of the probe’s center moving around
the van der Waals surface to give rise to the solvent accessible
surface (SAS).*' Unfortunately, those vdWS and SAS
approaches suffer the nonsmooth regions causing computation
obstacles. For that reason, Connolly proposed a solvent-
excluded surface (SES) to avoid these nonsmooth issues.”'
MSMS software was later developed to improve the speed and
reliability of the SES calculation via the reduced surface.’®
There are other efficient algorithms for generatin
SES.1015:242829,31,37,3840,47-49,6252° A 1 oo them, TMSmesh®
used the boundary element method and finite element method
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to handle arbitrary sizes of molecules. By adapting a multistep
region-growing EDT approach, Daberdaku and Ferrari*"
developed fast molecular surface representations for large
molecules. Hermosilla et al.>* utilized interactive GPU power
to accelerate SES rendering at a fractional cost. Wei and his co-
workers introduced ESES which accurately generates SES on
the Cartesian mesh.**

To define the solute—solvent region, one can allow the
overlap of the solvent and solute domains via the fuzzy
characteristic or hypersurface functions. This approach was
initially introduced in 2005 to generate the class of desirable
biomolecular surfaces by curvature-driven geometric PDEs.”’
The other type used the mean curvature flow or Laplace-
Beltrami equation to form the molecular surface by minimizing
the surface energy.’ > Later, these optimal geometric flow
schemes were extended to model the nonpolar energy of the
biomolecular systems,'®~"%7%7

Despite the fact that the analytical approaches are able to
generate the accurate molecular surface, and PDE-based
methods can embed the molecular energy information, they
are not flexible when expressing the surface of local atoms. In
addition, the analytical surfaces often consist of geometric
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singularities which obstruct the estimation of other geometry
information such as curvature.”*® The prominent representa-
tive of the explicit surface is the Gaussian surfaces, in which the
Gaussian functions are used as the density potential at each
atom.”**>*¥* Those surfaces avoid the geometric singularities
but are sensitive to level set values used to extract a specific
surface candidate.™

Molecular surface representations have shown their
important role in predictions of solvation-free energies and
ion channel transport. However, they have to be incorporated
in the realm of the phgysical models such as the Poisson—
Boltzmann equation'””" and Poisson—Nernst—Planck
model.">™"*7%7® These dependencies limit the direct link of
the molecular surface properties on the molecular properties.
In addition, the dependence on the parametrized factors such
as atomic charges and grid sizes of the predefined domain has
restrained the capability of the molecular surface details on the
diverse and complex biomolecular structures.”*

Due to the essential physical and chemical properties
captured on the molecular surface, its information has been
widely used in quantitative and qualitative tasks in exploring
molecule properties and activities. For the qualitative purpose,
the biomolecular surface can be used to visualize protein
folding,66 protein—protein interactions,”> DNA binding and
bending,27 molecular docking,65 binding site classification, ™
and molecular dynamics.”® In the quantitative effort, the
molecular surface can be integrated with the implicit solvent
model to predict solvation free energy,”'"”>” incorporated with
the Poisson—Nernst—Planck setting to compute the electro-
static and concentration profiles and current—voltage
curves,*¥®> and used as a variable in the partial least-squares
model to predict the solubility and permeability of the druglike
molecules.” However, those approaches are limited in
representing complex biomolecular structures from large and
diverse data sets due to the lack of details of physical and
chemical interactions.

Recently, we have unlocked the representation power of the
curvatures of the molecular surface for massive and distinct
molecular and biomolecular structures to predict drug toxicity,
molecular solvation energy, and protein—ligand binding
affinity.”” However, the role of the surface area in capturing
the crucial physical and chemical interactions in the
biomolecular structures is not fully explored. Despite the
recent efforts to integrate the surface area information into
predictive models such as Cyscore” and GLXE*® for protein—
ligand binding affinity prediction, those surface area-based
models are far from the competitive level with their
counterparts.

To decipher the full potential of the surface area-based
descriptors, we propose to construct the molecular surface at
the pairwise element levels. The element-wise surfaces will
effectively capture some specific types of noncovalent
interactions, such as van der Waals interactions, hydro-
phobicity, and hydrogen bonds. Furthermore, the element-
level surface area features highlight the scalability in the sense
that the proposed representation will be independent of
molecular sizes, that is, number of atoms, thus enabling the
equal footing configuration for molecular structures from the
highly diversified data sets. Given the information on atomic
coordinates, there are several ways to construct the
corresponding molecular surface. In this work, we extend our
proposed molecular surface generation of small molecules in

the implicit solvation modeling55 to characterize the surfaces
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between protein and ligand at the element level. In general, the
Riemannian manifolds are constructed on the subsets of the
group of element types to allow a convenient formation of the
structures of differential geometry. One can extract the
manifold representations for the selected atoms via a
discrete-to-continuum mapping that enables the embedding
of the high dimensional data space of the biomolecular atoms
into the low-dimensional model.””~*’

Protein—ligand interactions trigger lots of biological
processes, including signal transduction, gene regulation, and
immunoreaction. Thus, understanding protein—ligand inter-
actions will decipher the mechanism of biological regulation,
providing a solid framework and theoretical support for drug
design. As a result, various scoring functions (SFs) have been
developed to capture and represent the protein—ligand binding
process in recent years. The most popular type of SF is the
empirical SFs that uses the physical terms’ associated
coefficients fitted to the existing data.*>*>*® The completely
data-dependent SFs are the machine learning-based SFs, where
their performances are strongly affected by the quality of the
training data. On a positive note, such data-driven models can
effectively handle large and diverse data sets. The descriptors
of these SFs come in various forms, from the simple element-
pair contact counts” to high-level abstract mathematical
representations, namely gragh theory,* differential geome-
try,”” persistent homology,”*” hypergraphs,®' spectral graphs,®
and persistent curvatures.””

The objective of the present work is to introduce the
element-interactive surface area (EISA) descriptors for the first
time in the literature to accurately and effectively describe the
molecular representations in the low-dimensional space. The
interactive molecular surface is presented by the standard
correlation functions, namely exponential and Lorentz kernel
functions which give us the Gaussian-like surfaces. Moreover,
those surfaces are infinitely differentiable and free of geometric
singularities. In this work, we are interested in constructing a
class of surfaces at the multiscale levels by varying the suitable
kernel parameters and level set values via the multiscale
discrete-to-continuum mapping. By pairing with the advanced
machine learning architectures, the molecular surface-based
model, named EISA-score, reveals its quantitative power in
predicted drug-related molecular properties, such as protein—
ligand binding affinity (BA). The accurate and robust method
to calculate the BA values of the small molecules is the crucial
component in speeding up the process of drug discovery to
help design novel drugs. In this work, we test the scoring
power of our proposed model against three common
benchmarks in the drug design area, namely CASF-2007,*°
CASF-2013,*° and CASF-2016.%® Several experiments confirm
that our EISA-score achieves state-of-the-art results and
outperforms the other molecular surface-based models by a
wide margin.

2. MODEL DEVELOPMENT

2.1. Element Interactive Manifolds. This section
presents a background of the discrete-to-continuum mapping
via the atomic density function formulated in the common
choice of correlation kernel functions. Under the element-wise
setting, that mapping extracts the low-dimensional manifolds
targeting the specific element types to represent the high
dimensional interactions for the group of atoms of interest.

2.1.1. Atomic Density. Given a molecule with N atoms, we
denote X = {x, ), .., ry} as the set of N atomic coordinates.

https://doi.org/10.1021/acs.jcim.2c00697
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Figure 1. A 2D illustration of an element interactive information. (a) Element interactive collection X,,, where 7, = C and 7, = F with a cutoff

distance d. = 5 A. (b) The element interactive region D,, is the union of the balls with their centers belonging to X,, and radii being S A. The

element interactive domain D, is the colored region. (c) The element interactive density p,, with an exponential kernel.

Letr; € R® be the position of jth atom in the molecule and ||r

I and a

point r € R?. The molecular density is given by a discrete-to-
continuum mapping

— 1;|| be the Euclidean distance between the atom

N
p(x) = Y w®(||[r — x| n)
j=1 (1)

where o; are the weights, 1; are characteristic distances, and ®
is a C? correlation kernel or statistical density estimator that

satisfies the following admissibility conditions

(=5 =1,

as||r - er -0

(2)
o= 5]y =0,

as||r - rj|| - 3)

As in our previous work,’*">® the generalized exponential
and generalized Lorentz functions have shown their robustness
and efficiency in capturing the dynamic interactions between
various types of atoms at different ranges. Their formulations
are given as the following

generalized exponential kernel

=g =TI, k0
generalized Lorentz kernel
1
D, —rl;n) = 0
w(|[r = xf] ) (= er/i/[j)K, K> “

In the present work, the atomic weights w; are chosen to be 1
for simplicity. In other applications, one might consider the
atomic charges to represent the atomic weights.”*” The kernel
parameters 7; and k need to be carefully selected to capture the
crucial interactions between different atom types and
consequently produce a meaningful molecular surface. The
multiscale atom density that can be obtained by choosing
different ranges for the kernel parameter sets 7, and x has
shown its potential in covering different wide range
intramolecular interactions from the diverse families of
proteins.58’59

2.1.2. Element Interactive Densities. To account for details
of physical interactions in a protein—ligand complex such as
hydrophobic, hydrophilic, etc., we are interested in construct-
ing the atomic densities in an element interactive manner. To
this end, we consider the four most appearances element types
in protein, namely C, N, O, and S, while there are 10
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commonly occurring element types in ligand, namely, H, C, N,
O, S, P, F, Cl, Br, and 1. As a result, we have 40 element
interactive possibilities between protein and ligand atoms: CH,
CC, CN, CO, .., NH, .., and SL It is worth noting that we do
not consider protein's H in our current approach due to the
missing hydrogen atoms in most of the protein’s crystal
structures. One might be concerned that the lack of hydrogen
consideration in the protein will lead to the asymmetric
representation of hydrogen bonds. However, the hydrogen
bonds between protein and ligand could be implicitly
illustrated in our element interactive scheme. Although our
discussion of the element specifics is designed for the protein—
ligand system, this approach, with minimal effort, can be
applied to a single biomolecular setting and other interactive
models in chemistry and biology.

For convenience, let 7 = {H, C, N, O, S, P, F, Cl, ...} be
the set of all interested element types in a given biomolecular
data set. To reduce the notation complexity, we denote the
element type at the ith position in the set 7 as 7. For
example, 7, indicates the element type carbon. Assuming that
a biomolecule has N atoms of interest. Then, we assign

X={r,q)leR;aq,€T;i=1,2,.,N}

as the collection of these N atoms annotated by their
coordinates r; and element types a;. For a molecular complex,
the collection of all atoms of type 7 and 7}, within a binding
site defined by a cutoff distance d_ is denoted as

and

X, = {{r, r;}: ||r,- — rj|| <d; o €T,

% € Ty} (6)
Before constructing the element interactive densities, we define
the element interactive region Dy, for element type 7 and 7,
as the following

D,, ={re LIJ B(x, d)Ir, € X} )
where B(r, d.) is a ball with a center r; and a radius d.. The
element interactive domain Dy, is defined to be the smallest
cube that enclosed Dyy.

We now can design the element interactive density py;, an
atomic density defined in eq 1 but with a restraint on the
element interactive region Dy, :

https://doi.org/10.1021/acs.jcim.2c00697
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Figure 2. Illustration of EISA learning strategy using a complex with PDBID: Sdwr (first column). The second column represents the element-
specific groups for carbon—fluoride, nitrogen—hydrogen, and oxygen—carbon from top to bottom, respectively. The corresponding element
interactive manifolds are shown in the third column. Different manifolds are generated by varying the isovalue 0 < ¢ < 1. The fourth column
presents the surface area-based descriptors obtained from various manifolds. In the final column, the advanced machine learning models such as the
gradient boosting trees integrate these differential geometry features for training and prediction.

pkkl(r' @) = Z (D(”l' - l‘l- ; nkk/)] re Dkk/f l'}- (S kal
J
(8)
and the normalized density function can be defined as
\ Py, (t, ©)
Pk, (r) (D) = T
ma-x{pkk,(r; (D)} 9)

Figure 1 illustrates the atom collection X,,, element interactive
domain D,,, and element interactive density p,, for element
type 7, = C and 7 = F for the protein—ligand complex with
PDBID: Sdwr.

In this work, we call the density function (8) the “global
density” for the element types 7, and 7. In addition, we
desire to explore the “local density” formed by a single atom 7,

with an element type 7, and all element type 7, atoms:

Pl (1, ®) = &(|[r = 5 ||; ) + 2 O(||r = |5 1),
j#i

_iD —
r € Dy, o= T (10)

where D3, is a local element interactive cubic domain that

enclosed D,i”k, which is defined as

Djy, = {r € U B(r, d) U B(x, d)la, = T,

J#i
j=1,2,., N} (11)
It is straightforward to verify that
Dkk/ = LiOJ D;Cokl’ io = 1, 2, ey N and aio = 7—1( (12)

The assembly of the local element interactive density pki‘;c/
enables our proposed model to examine the local interactions
between a single atom of the element type 7, against a group
of atoms of the element type 7, capturing essential physical
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and chemical information across different biomolecular
families that the global density might omit.

2.2. Element Interactive Surface Area. With p being a
level set function defined on every grid point in an interested
domain Q, the isosurface I induced by p is given by I" = {(x, y,
z) € Q: p(x, y, z) = c}, where c is the recommended isovalue.
Assume f(x, y, z) is the surface density function defined in T,
the surface integral of f in Cartesian grids with a uniform mesh

can be evaluated by***

[fn o= ¥

(ij,k) €L,

In, .|
f(x, Yy Zk)T

I]h3
(13)

where h is the mesh size, (x, Vi z;) is the intersection point
between the interface I and the x mesh line going through (i, j,
k), and n,  is the x component of the unit normal vector at (x,,
¥ z). Similar definitions are used for the y and z directions. In
addition, I, is the set of irregular grid points. In our numerical
scheme, a grid point is classified as irregular if its numerical
difference’s stencil involves neighbor point(s) from the other
side of the interface I'. One can find the surface area of I" by
considering the density function f = 1 in eq 13.

The intersection point (x,, Vi z;) can be determined as
described in ref 53 by

Ino,Z

h

In, |
+ f(xi) .}{,' Zk)Ty + f(xi; yj) Zg)

/)(xoi ,Vj; Zk) - /)(xii )G/ Zk)

(xw y]—; Zk) = 1= xi): )?; 2k

Xi
/)(xi+1/ y]-! Zk) - /)(x,‘r )’j; Zk) *
(14)

where p(x,, y; z) = ¢, and the corresponding normal vector at
(%, ¥y 7) is interpolated by

p(xor yj’ zk) - p(x,'x J’j; Zk)

Nk

(15)
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where N is the normal vector at the grid point (i, j, k) and is
approximated by

p('xi+1’ )’j! Zk) - p('xi—I’ )’j! Zk)
Ni,j,k = ,
Xiv1 — %o

p('xil )’I.H; Zk) - p('xil )’I._ll Zk)

)
Vi1 TV

p(xi) yj) Zk+1) - p(xi) y]-; zk—l)

weey

2+l T Zk-1
The volume integral of f is derived in a similar manner:

/me(x, y,z)dS =

Z flx, Y Z)h +

i\j,k) €L

1
E Z f('xi' Yy zk)h3

( (i,j,k) €LUI,

(16)
Here I, contains all the grid points inside €, and I, is the set
of the irregular grid points defined at the surface area
estimation eq 13. The desired volume of an enclosed molecular
surface is attained by setting f(x, y, z) = 1.

2.3. Machine Learning Strategy with EISA. The
descriptors of the element interactive surface area (EISA) for
a molecule or molecular complex provide robustness and
scalable features for machine learning or deep learning-based
models to learn the diverse biomolecular data sets. The global
and local element interactive densities, respectively defined in
eqs 8 and 10, give rise to the corresponding global and local
surface area descriptors. Furthermore, by varying the isovalue ¢
for attaining the isosurface 'y = {(x, y, z) € Q: py = ¢} of the
element interactive manifold, one can arrive at multiple
surfaces for a given molecule at different resolutions. That
enables us to capture molecular surfaces at various scales,
which embed the physical and chemical interactions between
protein and ligand atoms at different ranges. The learning
strategy with EISA descriptors are summarized in Figure 2.

The EISA representations are ready to be integrated with
wide variety of machine learning algorithms such as support
vector machine,® random forest,’® gradient boosting trees,>
artificial neural networks,”” and convolutional neural net-
works.” However, we only use gradient boosting trees (GBTs)
in this work instead of optimizing machine learning algorithm
selections. We use the GBT module in scikit-learn v0.24.1
package with the following parameters: n_estimators =
10000, max depth = 7, min samples split 3,
learning rate =0.01, loss =1Is, subsample = 0.3,
and max features = sqrt. These parameter values are
selected from the extensive tests on PDBbind data sets and are
uniformly used in all our validation tasks in this work.

3. RESULTS

In this section, we demonstrate the performance of the
proposed element interactive surface area (EISA) strategy for
protein—ligand binding affinity prediction from three standard
benchmarks in drug design.

3.1. Model Parametrization. For convenience, we use the
notation EISA7  to indicate the element interactive surface
areas (EISAs) generated by using kernel type @ and
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corresponding kernel parameters x and 7. Here, @ = E and
= L refer to the generalized exponential and generalized
Lorentz kernels, respectively. And 7 is used such that
Ny, = ©(% + 7), where % and %, are the van der Waals
radii of element type k and element type k', respectively.
Kernel parameters « and 7 are selected based on the cross
validation with a random split of the training data. We propose
an EISA representation in which multiple kernels are
parametrized at different scale (#) values. In this work, we

consider at most two kernels. As a straightforward notation
. . a,a
extension, two kernels can be parametrized by EISA," > .
Each of these kernels gives rise to one set of features. Since
there are two ways of formulating the interactive surface areas,
global surface (see eq 8) and local surface (see eq 10), we

finalize our notation to demonstrate two different kinds of
surface calculation: S°EISA%® and °°EISA“® While

K, 75K Ty Ky 75K, Ty
the first notation stands for the global interactive surface, the
latter indicates the local surface area.

3.2. Data Sets. We are interested in using our EISA
method to predict the binding affinities of protein—ligand
complexes. A standard benchmark for such a prediction is the
PDBbind database. Three popular PDBbind data sets, namely
CASF-2007, CASF-2013, and CASF-2016, are employed to
test the performance of our method. Each PDBbind data set
has a hierarchical structure consisting of the following subsets:
a general set, a refined set, and a core set. The latter set is a
subset of the previous one. The PDBbind database provides
3D coordinates of ligands and their receptors obtained from
experimental measurement via the Protein Data Bank. In each
benchmark, it is standard to use the refined set, excluding the
core set, as a training set to build a predictive model for the
binding affinities of the complexes in the test set (i.e., the core
set). More information about these data sets is offered on the
PDBbind Web site http://pdbbind.org.cn/. A summary of the
data set is provided in Table 1.

Table 1. Summary of PDBbind Datasets Used in the Present
Work

Data set Training set complexes ~ Test set complexes

CASF-2007 benchmark 1105 195
CASF-2013 benchmark 3516 195
CASF-2016 benchmark 3772 285

3.3. Model Performance and Discussion. 3.3.1. Hyper-
parameters and Model Setting. To achieve the optimal EISA-
score’s performances on each benchmark, we carefully
optimize its hyperparameters on each training set. These
hyperparameters include kernel parameters 7 € [0.5, 6] and «
€ [0.5, 10] with an increment of 0.5 and higher values in {15,
20}. Moreover, the cutoff distance d_ is between S A and 14 A
with an increment of 1. (See Table 2 for the summary of the
hyperparameters’ domain.) The element interactive surface

Table 2. Ranges of EISA-Score’s Hyperparameters

Parameter Domain
T {05, 1.0, .., 6}
K {0.5, 1, ..., 10} U {15, 20}
d. {5, 6, .., 14}

{0.05, 0.1, ..., 0.8}

o

https://doi.org/10.1021/acs.jcim.2c00697
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Figure 3. Optimized parameters for the global surface model on CASF-2007 data set. (a) Global surface S-fold CV results for various cutoff
distances on CASF-2007 training set. We fix the kernel parameters (k, 7) = (2, 1). For a given cutoff distance value, we generate 16 surface areas
based on 16 different isovalues in [0.05, .., 0.8]. Global surface S-fold CV results for CASF-2007 training set with (b) single-scale exponential

kernel and (c) two-scale exponential kernel. The best parameter locations are marked by

« »

x”. Specifically, the best parameters for single-scale kernel

model are (k, 7) = (1.5, 0.5) with the corresponding Pearson’s correlation coefficient R, =0.678. The second optimized kernel parameters are (x, 7)

= (1.5, 1) producing R, = 0.693.

area is described by four commonly occurring atom types, C,
N, O, §, in protein and 10 commonly atom types, H, C, N, O,
F, P, S, Cl, Br, ], in ligands. Note that we only employ the
generalized exponential kernel in the current work since the
generalized Lorentz kernel yields similar accuracy.’”*

In global surface models, 8°EISA, with a given set of kernel
parameters (7, k), cutoff distance d,, and a pair of element
types 7, and 7, we consider 16 isovalues ¢ in the interval
[0.05, .., 0.8] with an increment of 0.0S. That results in 16
surface area values. We then achieve 6 descriptors by taking the
sum, mean, median, maximum, minimum, and standard
deviation of those area values. Furthermore, there are 4 X 10
= 40 combinations between protein and ligand element types.
Finally, we encode the binding interaction in a protein—ligand
complex into a vector of fixed length at 6 X 40 = 240
components.

In local surface models, 'EISA, besides using a similar
hyperparameter setting of the global approach, we only select
one single isovalue c in [0.1, 0.75] for element types 7; and 7.,

. However, a different atomic position from the element type
T will generate a different interactive manifold resulting in a
different surface area. To get a scalable representation, we
calculate the sum, mean, median, maximum, minimum, and
standard deviation of those various values. With 40 possible
combinations between protein and ligand atom types, one can
attain a descriptor of size 240 for a given complex.

It is worth noting that our EISA features for both global and
local surface models are simple and easy to calculate—the only
required data input is the atomic names and coordinates of the
complexes. For a given protein—ligand complex, it takes on
average 1 min and 30 s to generate the features on a single
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processor with mesh size h = 0.5. Furthermore, our EISA
models can be easily parallelized to accommodate the virtual
high-throughput screening.

3.3.2. Results and Discussion. Several hyperparameters of
our proposed models, 8°EISA, need to be carefully optimized
for each benchmark. For the sake of achieving fair perform-
ances, we only use the training data set to carry on the grid
search on the designated domains mentioned in Table 2 via
the results of the cross validation (CV) tests. We execute 20
CV runs for each hyperparameter set, and the criteria are based
on the best median Pearson’s correlation coeflicient R,

CASF-2007. At first, we carry out the 5-fold CV of the global
surface models 8°EISA on the CASF-2007 training data. To
explore the optimal cutoff distance values d, we fix the kernel
parameters (k, 7) = (2, 1), select 16 isovalues ¢ in [0.05, ...,
0.8], but vary the d_ between 5 A and 14 A with increments of
1. Figure 3a reveals that d. = 12 Ayields the best median
Pearson’s correlation coefficient R,

We now explore the optimal exponential kernel parameters

for a single-scale model gloEISAf:;Z where 7 € [0.5, 6] and k €
[0.5, 10] with increment of 0.5. We also consider high values
of k € {18, 20}. Figure 3b plots all the CV results and shows
that (x, 7) = (1.5, 1) gives the best median R, = 0.678 for the
global surface model. The two-scale kernel model,
glOEISAIEfl’éi‘KZ‘TZ, is built on top of the previously optimized
single scale. The optimal second kernel parameters (k, 7,) are
explored via CV experiments, and the result of each parameter
combination is illustrated in Figure 3c. We found that
glOEISAf’Sl,(Z)_S’1_5'1 produces the best median R, = 0.693 on the
CASF-2007 training set. It is interesting to observe that the
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1
single-kernel model gOEISAf.];’é.ZS, «,,, performs well on the 19§

complexes from the test set of the CASF-2007 benchmark with
the reported R, = 0.801 and the root-mean-square error

(RMSE) = 2.01 kcal/mol. While the two-scale model

!
gOEISAE Eféé,l.s,l performs slightly better than its predecessor

and achieves R, = 0.807 and RMSE = 2.00 kcal/mol. Those
results are reported in Table 3. Furthermore, we are interested

Table 3. Performance of Various EISA Models on the
CASF-2007 Test Set

Model R, RMSE (kcal/mol)
Results of Global Surface Model
$eEISATLY ¢ 0.801 2.01
SPEISAFERL | o) 0.807 2.00
Results with Local Surface
loepTSATIG 01 0.807 1.986
I BISATES SR 0.793 2.046
Results with Consensus Method
Consensus{¥°EISAT? 5, "“EISAT1015} 0.825 1.941
Consensus{¥°EISATSt%, 1 51, “EISATESasS 0.817 1.984

to see the feature importance of our proposed model. Figure 6a
reveals the top 10 most important features among the 240
features of the global surface model. It is interesting to find that
the hydrophobic interactions (C—C) and polar—nonpolar
interactions (C—N, C—0, C—S, N—C) are among the top 10
important features. The ranking of all 240 features of the global
surface model is provided in Table S1 in the Supporting
Information.

The second kind of our surface-based model is the local
surface based approach, '“EISA, that measures the various
different surface areas between a single protein atom and all
the ligand atoms. There is a slight difference in terms of the
parameter choice between the global and local models. While
the global surface areas utilize various isovalues between 0.05
and 0.8, the local surface approach will explore the isovalue to
generate the best surface model. But at first, while we fix the
isovalue ¢ = 0.25, and cutoff distance d. = 5 A, we vary the
kernel parameters k and 7 in their designated domains (see
Table 2). Figure 4a visualizes that CV test and reports the best
kernel parameters (k = 15, 7 = 0.5) with R, = 0.688. In the next
step, we investigate the best cutoff distance d_ for the local
surface based model with previously optimized single-kernel
parameters (x = 15 and 7 = 0.5) and an isovalue ¢ = 0.25. In
this experiment, we vary d. between 4 A and 7 A, with
increment of 0.5, then we find out the optimal cutoff distance
is 6.5 A, which produces the median R, = 0.701 on the 5-fold
CV of the CASF-2007 training set, see Figure 4c.

The isovalue ¢ is the next parameter we would like to

loc
optimize for our local surface model, EISAfg,éé?gc. We search ¢
in the discrete domain between 0.1 and 0.75 with increments
of 0.5. Figure 4d reveals that using isovalue ¢ = 0.15 will be the
loc
best choice for EISAfgifgC with the reported median R, =
0.712. Similar to the global surface model, we are interested in

loc
extending the single-scale EISA-score EISAfg,é(fgo'ls to the

loc E,6.5,0.15 . .
two-scale one  EISA7% .~ . Figure 4b summarizes the
15,0.5,&,,7,

performances of the current model on the 5-fold experiments
with respect to different values of «, and 7,, and we conclude
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Figure 4. Optimized parameters for the local surface model on CASF-2007 data set. (a) Local surface S-fold CV results for single-scale scenario,
and it is found that the best kernel parameters (k, 7) = (15, 0.5) and the corresponding median R, = 0.688. Note that there are empty values in the
panel a since R{ cannot be determined at the choice of k and 7; (b) S-fold CV results for single-scale approach and the best second kernel

parameters are (k, 7) = (2, 2) producing the best R, = 0.726. The marker

x” indicates the position having the best R,. (c) The 5-fold CV results of

the local surface model with respect to the cutoff distance d.. The best cutoff distance is d. = 6.5 A, and R,=0.701. (d) The 5-fold CV results of the
local surface model when the isovalue ¢ varies from 0.1 to 0.7. Optimal isovalue ¢ is found to be 0.15 and the corresponding R, is 0.712.
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Figure S. Performance comparison of different scoring functions on the CASF benchmarks. Our proposed model in this work, EISA-score, is
highlighted in red, the other geometric based scoring functions are highlighted in green, and the rest is in purple. (a) CASF-2007: the performances
of other methods taken from previous studies.””****~**7> Our EISA-score achieves R, =0.825 and RMSE = 1.941 kcal/mol. (b) CASF-2013: the
other results are extracted from previous studies.*”**”> Our EISA-score achieves R, = 0.757 and RMSE = 2.113 kcal/mol. (c) CASF-2016: our

EISA-score achieves Rp = 0.821 and RMSE = 1.835 kcal/mol, other scoring functions are discussed in the references.
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Figure 6. Feature importance for (a) global surface model and (b) local surface model using the mean decrease in impurity of the gradient boosting
trees. The horizontal axis represents the feature names which are textualized as the statistical measures (sum, mean, median, etc.) of the ligand-

protein element specific group.

that (k,, 7,) = (2, 2) gives us that optimal two-scale learner
achieving the best median R, = 0.726.

Table 3 reports the efficiency of one-kernel and two-kernel
local surface models on the CASF-2007 test set. Interestingly,

with only one-single scale, the local surface model,

1 .6.5;
OcEISAi‘ES’,s(;.SS’O'15 performs similarly to the two-scale approach

using the global surface features. Its R, value is 0.807 but its
RMSE is as low as 1.986 kcal/mol and is lower than that of the
global surface model. Unfortunately, the two-kernel version of
the local EISA-score does not improve what the one-kernel has

1 .6.5:
already achieved. In fact, the R, of OCEISAFS% ‘(f'ss;’z?'zl > s just
0.793, and the corresponding RMSE is 2.046 kcal/mol. The

consensus model which is the aggregation of the predicted
values from unrelated models is acclaimed to often improve
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the overall performance.””*”*® For that reason, we include the

consensus version in our proposed models. As seen from Table
3, the consensus approach, formed by a single scale between

1
the global and local surface areas, Consensus{goEISAf’sll(z)_s,

loc .6.5;
EISAfs”édi’O‘ls}, gives rise to the best one with R, = 0.825 and

RMSE = 1.941 kcal/mol. While the consensus of the two-
scales models produce the second best R, at 0.817 and RMSE
at 1.984 kcal/mol. Moreover, it is interesting to find that the
top five important features among the 240 features of the local
surface model are the summation of the surface area of the
element type pairs (C—C, H—C, C—N, C—0, H—-N). It is also
exciting to see that the maximum of the local surface areas of
the element type interactions C—C and O—O is in the top 10
positions. Figure 6b shows the 10 most important features for
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Figure 7. Optimized parameters of the global and local surface models for CASF-2013. Note that the marker

« »

x” indicates the position having the

best R, and the empty values in the panels are due to the fact that R, cannot be determined at the choice of k and 7. (a) Single-scale global surface
and its optimal kernel parameters (k, 7) = (3.5, 1) and corresponding median R, = 0717. (b) Two-scale kernel global surface and its optimal

parameters for the second kernel (k, 7) = (2, 0.5) and corresponding median

= 0729. (c) Single-scale local surface model and its optimal

parameters for the second kernel (k, 7) = (3, 1) and corresponding median R, = 0.71S. (d) Two-scale local surface model and its optimal
parameters for the second kernel (k, 7) = (3, 0.5) and corresponding median R, =0.727.

the local surface model. The ranking of all 240 features of the
local surface model is provided in Table S2 in the Supporting
Information.

In addition, we compare the scoring power of our proposed
EISA-score against the state-of-the-art scoring functions in the
literature.””****~** Figure 5a plots the aforementioned
comparison and clearly the dominance of our EISA model in
the scoring power task. Note that the geometrical-based
models, Cyscore’ and RF::Cyscore,*’ are highlighted in the
green color. Specifically, Cyscore used area and curvature
dependent descriptors. However, its performance (R, = 0.660)
is not as good as our proposed EISA-score (R, = 0.825) due to
the lack of the examination of pairwise element types inducing
interactive manifolds. Furthermore, one can cite another
reason is the missing machine learnin§ power in the Cyscore
model. However, Li and his colleague®” solved that concern by
replacing the Cyscore’s original scoring function by the
random forest, and the result is not promising with the
reported R, as low as 0.687. These results confirm the
efficiency and robustness of the proposed element specific
surface area based descriptors for protein—ligand complexes.

CASF-2013. In this second benchmark among the CASF
family, we carry out the similar hyperparameters optimization
strategy to the CASF-2007 approach. For simplicity, we use the
optimized cutoff distance d. = 12 A, found from the CASF-
2007 data set for the global surface model. To explore the most
optimal parameters for the first kernel, we again perform 5-fold
CV on CASF-2013 training data and find out that (x; = 3.5, 7,
= 1) gives the best R, = 0.717 (see Figure 7a). To construct
the second kernel, we simply fix the first kernel parameters, and
vary the second kernel parameter in the interested domain (see
Table 2). We found the best parameter for the second kernel
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Kk, = 2 and 7, = 0.5 with best median R, = 0.729 (see Figure
7b). Finally, we achieve the optimal one-kernel global surface

model glOEISAE.’SI' % and the optimal two-kernels global surface

1
model gOEISA];E:}?Z’O_S. These models are utilized to predict the

unseen complexes from the test set of CASF-2013. As seen
from Table 4, the performances of single kernel and two

Table 4. Performance of Various EISA Models on the
CASF-2013 Test Set

Model R, RMSE (kcal/mol)
Results with Global Surface
gPEISAD2 0.684 2.286
SUEISAEEL2 0.724 2.180
Results with Local Surface
locE[SAE§Si01S 0.749 2.102
loeEISASGES0ES 0.741 2.129
Results with Consensus Method
Consensus{*°EISAT!3, “EISASS$01} 0.741 2.155
Consensus{gl"EISAg‘E’jéroAS, 1°°EISA§%{§;§:%5} 0.756 2.113

g

kernels, respectively, achieve (R, = 0.684, RMSE = 2.286 kcal/
mol) and (R, = 0.724, RMSE = 2.180 kcal/mol). There is a
considerable improvement from the single kernel to two
kernels model in compassion to the what we have observed in
CASF-2007. The size of the training set (1105 for CASF-2007
and 3516 for CASF-2013) can play a huge factor role in our
multiscale strategy.

To reduce the search time cost of hyperparameters for the
local surface approach, we use the optimized cutoff distance d_
= 6.5 A, and the isovalue ¢ = 0.15 which are explored from the

https://doi.org/10.1021/acs.jcim.2c00697
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Figure 8. Optimized parameters of the global and local surface models for CASF-2016. Note that the marker “x” indicates the position having the
best R, and the empty values in the panels are due to the fact that R, cannot be determined at the choice of x and 7. (a) Single-scale global surface
and its optimal kernel parameters (x, 7) = (3, 1) and corresponding median R, = 0.715. (b) Two-scale kernel global surface and its optimal
parameters for the second kernel (k, 7) = (3, 0.5) and corresponding median R, = 0.727. (c) Single-scale local surface model and its optimal
parameters for the second kernel (k, ) = (1S, 0.5) and corresponding median R, = 0.733. (d) Two-scale local surface model and its optimal
parameters for the second kernel (k, 7) = (1, 1) and corresponding median R, = 0.738.

CASF-2007 experiment. These parameters are pretty con-
sistent among different protein—ligand complexes. Therefore,
we speculate there is little room for improvement if we
reoptimize those parameters. Similar to the global surface
scheme, we first search for the optimal one-kernel model.

Figure 7c plots the S-fold CV results of EISAf;}%S;O'15

training set of CASF-2013, and we conclude that k; = 0 and 7,
= 0.5 will yield the best R, = 0.734. Again, for the two-kernel

model EISAgES%015 e use the optimized value from the
U9y 8

on the

single-scale model for the first kernel, and explore the optimal
ones for the second kernel. As see in Figure 7d, k, =4 and 7, =
2.5 produces the best = 0.741. Finally, we evaluate the
scoring power of two selected local surface models,

1°C“1EISA§§555°-15 and 1°“E1$A§%{§;ij§;§5, on the CASF-2013 test
set. It is comparable to what we observed in CASF-2007, the
one-scale local surface model (Rp = 0.749) performs a bit
better than its counterpart (Rp = 0.741), albeit a bigger training

data. Our optimal strategy still relies on the consensus design
where the consensus between two two-scale models,
Consensus{gloEISA];l;: };2210_5, 1°°E15A§f,{§jﬁ‘2’;§5}, delivers the
best as high as 0.756 and the corresponding RMSE =
2.113 kcal/mol. (See Table 4 for the completion of results).
Our EISA-score again tops other published models on CASF-
2013 as indicated in Figure Sb. It is worth mentioning that we
also include the other surface area-based model, ASAS,*°
which used the solvent-accessible surface area of the buried
ligand molecule when forming the complex. However, ASAS’s
performance is not promising with an R, as low as 0.606 due to
the lack of the greater details of the buried surface for specific
element types.
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CASF-2016. For this final benchmark, we perform the
hyperparameters search similar to what we proposed for
CASF-2013. The global surface design will use the ideal
distance cutoff d. = 12 A obtained from the CASF-2007
experiments. The optimal single-scale model for CASF-2016 is

found to be glOEISAi’IIZ, where its R, from the S-fold CV on
3772 complexes of CASF-2016 training set is equal to 0.71S.
On top of this single-scale model, the two-scale continues to
improve the CV performances with its best model being

glOEISAg‘,El'go_S, and its R, = 0.727. Figure 8 panels a and b
summarize the CV results for various kernel parameter
combinations.

The local surface approach uses the optimal isovalue ¢ = 0.15
and distance cutoff d. = 6.5 A realized from CASF-2007 5-fold
results. Figures 8c,d reports the CV results on CASF-2016 with
respect to the single-scale and two-scale parameter choices.

1 6.5;
Specifically, OCEISAfs’i;.SS’O'IS is the best single-scale representa-

tive with the median S-fold CV R, =0.727. Furthermore, the

1 65;
best two-scale candidate is found to be OCEISAE: ’(f'sf’l?'lls with

the corresponding median 5-fold CV R, = 0.738.

Lastly, the aforementioned desirable EISA models are
trained on the training data of CASF-2016 and are utilized
to predict the binding energies of 285 complexes in CASF-
2016 test set. Table S lists the results of these models including
the consensus strategies. The familiar trend has been observed

loc

1 65;
here. Two-scale models, gOEISAfﬁ’;g&s and EISAstj ;f‘ssi’l?'lls,
bring about the most outstanding performance among the

nonconsensus ones. In addition, the consensus models
improve the existing methods. Specifically, Consensus{
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Table S. Performance of Various EISA Models on the
CASF-2016 Test Set

Model R, RMSE (kcal/mol)
Results with Global Surface
EOEISAD? 0.769 1.989
EPEISASRL 0.798 1.888
Results with Local Surface
leeETS AT 0.791 1.883
locEISATER S 0.795 1.881
Results with Consensus Method
Consensus{¢°EISA}{% EISAT>1%} 0.813 1.873
Consensus{#°EISAS}1 o, ocEISATESSIS 0.821 1.835

1

1 65;
SUEISAYT Y5 EISALyS!%} reaches the R, = 0.821 on the
test set while its stand-alone models gloEISAipi’;?O.S and

locEISAiESF: 6%5;;1?'115 scores R, = 0.798 and R, = 0.795, respectively.
CASF-2016 is a prevalent benchmark which attracts numerous
scorin% functions relying on it to test their scoring
power. 76872 A seen in Figure Sc, it is encouraging to see
our EISA-score outperforming other state-of-the-art methods.
It is noted that, among other 20 scoring functions listed in
Figure Sc, only ASAS® solely leans on the surface descriptors.
However, its performance on CASF-2016 is unfavorable with
R, = 0.625 as opposed to 0.821 of our proposed EISA-score.
This result again confirms the rigorous and robust capacity of
our novel surface area-based descriptors for drug design.

4. CONCLUSION

Molecular surface representations are well-known for biological
structure modeling to reveal biomolecular properties and
activities. However, their relationship to the Dbiological
functions is often encoded in the realm of the physical models
such as Poisson—Boltzmann equation and Poisson—Nernst—
Planck model. Unfortunately, the problematic parameter
choices of these physical models have overshadowed the
valuable information extracted from the molecular surface.
There are some recent efforts to directly incorporate the
surface area descriptors to capture the protein—ligand
potency.”*® However, conventional surface area models do
not portray crucial physical and chemical interactions such as
noncovalent bonds, hydrogen bonds, van der Waals
interactions, etc, which lead to discouraging results and
limited capacity to handle diverse biomolecular data sets.
These issues call for robustness and scalable surface area
representations for biomolecular structures.

This work proposes a novel element interactive surface area
score (EISA-score) for protein—ligand binding prediction and
can be extended to handle drug-related problems. Our
proposed models construct scalable element interactive
manifolds instead of a single surface representation for a
whole complex often used in the standard approaches. The
innovative surface areas help encode the physical and
biological information mentioned above, which have been
missed in conventional methods. Our EISA-score offers two
types of surface area models, namely global and local surface.
Specifically, while the global surface area strategy provides the
overall molecular representation between protein and ligand
atoms, the local approach focuses on describing the local
manifold formed by a specific protein atom and ligand
molecule. Our molecular surfaces are induced by the
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discrete-to-continuum mapping powered by the correlation
function such as exponential and Lorentz kernels.

Due to the high sensitivity of the hyperparameters, including
isovalue, kernel power, and kernel scalar factor in our surface
generation, we carefully perform the cross validation on the
training data to select the optimal surface descriptors for the
protein—ligand complexes. As a result, our proposed EISA-
score achieves superior performances over state-of-the-art
methods on three mainstream benchmarks, namely CASEF-
2007,”° CASE-2013," and CASF-2016.°® These encouraging
results confirm our surface-area-based models’ robustness,
reliability, and accuracy in the binding affinity prediction for
small molecules, which is an essential task in drug design.
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