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Figure 1. Novel view synthesis from a single wide-baseline stereo image pair. In a single forward pass, our method maps a wide-baseline

stereo image pair to features that enable fast rendering of novel views, trained using only posed multi-view images of static scenes without

ground-truth or proxy geometry. We outperform all prior art on novel view synthesis from sparse observations, taking a significant step

towards matching the quality of overfitting on single scenes in this challenging setting.

Abstract

We introduce a method for novel view synthesis given only

a single wide-baseline stereo image pair. In this challenging

regime, 3D scene points are regularly observed only once,

requiring prior-based reconstruction of scene geometry and

appearance. We find that existing approaches to novel view

synthesis from sparse observations fail due to recovering in-

correct 3D geometry and due to the high cost of differentiable

rendering that precludes their scaling to large-scale train-

ing. We take a step towards resolving these shortcomings

by formulating a multi-view transformer encoder, proposing

an efficient, image-space epipolar line sampling scheme to

assemble image features for a target ray, and a lightweight

cross-attention-based renderer. Our contributions enable

training of our method on a large-scale real-world dataset of

indoor and outdoor scenes. We demonstrate that our method

learns powerful multi-view geometry priors while reducing

the rendering time. We conduct extensive comparisons on

held-out test scenes across two real-world datasets, signif-
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icantly outperforming prior work on novel view synthesis

from sparse image observations and achieving multi-view-

consistent novel view synthesis.

1. Introduction

The goal of novel view synthesis is to render images of a

scene from unseen camera viewpoints given a set of image

observations. In recent years, the emergence of differentiable

rendering [26, 28, 45, 46, 51] has led to a leap in quality and

applicability of these approaches, enabling near photorealis-

tic results for most real-world 3D scenes. However, methods

that approach photorealism require hundreds or even thou-

sands of images carefully exploring every part of the scene,

where special care must be taken by the user to densely

image all 3D points in the scene from multiple angles.

In contrast, we are interested in the regime of novel view

synthesis from a sparse set of context views. Specifically,

this paper explores whether it is possible to sythesize novel

view images using an extremely sparse set of observations.

In the most challenging case, this problem reduces to using

input images such that every 3D point in the scene is only ob-
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served from a single camera perspective. Towards this goal,

we propose a system that uses only a single wide-baseline

stereo image pair of the scene as input. This stereo image

pair regularly has little overlap, such that many 3D points are

indeed only observed in one of the images, see Fig. 1. Image

observations themselves are thus insufficient information to

compute 3D geometry and appearance via multi-view stereo,

and we must instead learn prior-based 3D reconstruction.

Nevertheless, reasoning about multi-view consistency is crit-

ical, as prior-based reconstructions must agree across images

to ensure multi-view-consistent reconstruction.

This is a novel problem setting: While some existing

methods demonstrate novel view synthesis from very sparse

observations [46, 52, 59], they are limited to object-level

scenes. In contrast, we are interested in large real-world

scenes that are composed of multiple objects with complex

geometry and occlusions. Previous approaches for novel

view synthesis of scenes focus on small baseline renderings

using 3− 10 images as input [7, 8, 18, 25, 48, 54, 59]. In this

setting, most 3D points in the scene are observed in multiple

input images, and multi-view feature correspondences can

be used to regress 3D geometry and appearance. Thus, these

methods in practice learn to amortize multi-view stereo. In

our setting, we use a wide-baseline stereo image pair as in-

put, where it is not sufficient to rely on multi-view feature

correspondences due to many points only being observed in

a single view. We show that in this challenging setting, exist-

ing approaches do not faithfully recover the 3D geometry of

the scene. In addition, most existing methods rely on costly

volume rendering for novel view synthesis, where the num-

ber of samples per ray required for high-quality rendering

makes it difficult to train on complex real-world scenes.

In this paper, we propose a new method that addresses

these limitations, and provides the first solution for high-

quality novel view synthesis of a scene from a wide-baseline

stereo image pair. To better reason about the 3D scene, we

introduce a multi-view vision transformer that computes

pixel-aligned features for each input image. In contrast to a

monocular image encoder commonly used in previous ap-

proaches [52, 54, 59], the multi-view transformer uses the

camera pose information as input to better reason about the

scene geometry. We reduce the memory and computational

costs for computing image features by combining this vision

transformer at lower resolutions with a CNN at higher reso-

lutions. A multi-view feature matching step further refines

the geometry encoded in these feature maps for any 3D point

that can be observed in both images.

We also introduce an efficient differentiable renderer that

enables large-scale training. Existing approaches that use

volume rendering sample points along camera rays in 3D

and project these points onto the image planes to compute

the corresponding features using bilinear interpolation. Since

perspective projection is a non-linear operation, uniformly

sampled 3D points are not uniformly distributed in 2D, lead-

ing to some pixels in the feature maps being sampled mul-

tiple times, and other pixels not being sampled at all. Thus,

this sampling strategy does not use the information in the

pixel-aligned feature maps optimally. We instead take an

image-centric sampling approach where we first compute

the epipolar lines of a target pixel in the input images, and

sample points uniformly on these lines in 2D. This exploits

the fact that the number of pixels along the epipolar lines

is the maximum effective number of samples. In addition,

we use lightweight cross-attention layers that directly aggre-

gate the sampled features and compute the pixel color. In

contrast to volume rendering where we need to sample very

close to a surface in order to render its color, thus requiring a

large number of samples, our learned renderer does not share

this limitation and can compute the pixel color even with

sparse samples. Our lightweight rendering and feature back-

bone components enable us to train on large-scale real-world

datasets. We demonstrate through extensive experiments on

two datasets that our method achieves state-of-the-art results,

significantly outperforming existing approaches for novel

view synthesis from sparse inputs.

2. Related Work

Image-based rendering. Image-based rendering (IBR)

methods generate images from novel camera viewpoints

by blending information from a set of input images. We

provide a brief overview of some methods. Please refer to

the review by Shum and Kang [42] for details. Some IBR

approaches directly model the plenoptic function without

using information about the scene geometry [20, 31]. Other

approaches use a proxy scene geometry computed using

multi-view stereo to guide the blending of information from

the input images [3, 9, 16, 23]. While rendering without com-

puting an explicit 3D geometry leads to higher-quality re-

sults, it requires a large number of input images. In contrast,

methods that rely on 3D geometry can work with sparse

image inputs. However, multi-view stereo from a sparse set

of input views often leads to inaccurate geometry, especially

for scenes with complex geometry, limiting the quality of

rendered images. Methods have been proposed for higher-

quality geometry computation [5, 15], optical flow-based

refinement [4, 10, 11], and improved blending [14, 35, 38].

In contrast to these image-based rendering methods, we rely

on priors learned from data that enable novel-view synthesis

from just a wide-baseline stereo image. We do not create any

explicit proxy geometry of the scene and are thus unaffected

by inaccurate multi-view stereo.

Single-Scene Volumetric Approaches. Recent progress

in neural rendering [51] and neural fields [28,43,57] has led

to a drastic jump in the quality of novel-view synthesis from

several input images of a scene. Here, a 3D scene represen-
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tation is optimized via differentiable rendering to fit a set of

image observations. Early approaches leveraged voxel grids

and learned renderers [26, 32, 45]. More recent approaches

rely on neural fields [2, 27, 28, 57] to parameterize the 3D

scene and volumetric rendering [26,28,50] for image synthe-

sis. This leads to photorealistic view synthesis but requires

hundreds of input images that densely sample the 3D scene.

Hand-crafted and learned priors may reduce the number of

required images to the order of three to ten [33], but 3D

points still need to be observed from at least two perspec-

tives. A major challenge of these approaches is the cost of

accurate differentiable rendering, regularly requiring hun-

dreds of samples per ray. Recent approaches have achieved

impressive speed-ups in 3D reconstruction leveraging high-

performance data structures and sparsity [6,13,24,29]. While

promising, reconstruction can still take a few minutes per

scene, and sparse data structures such as octrees and hash

tables cannot easily be used with learned priors.

Our approach tackles a different setting than these meth-

ods, using only a single wide-baseline stereo image as input,

where 3D points are regularly only observed in a single view.

Our approach does not require any per-scene optimization

at test time. Instead, it reconstructs the scene in a single for-

ward pass. Note that while our method does not achieve the

quality of per-scene optimization methods that use hundreds

of input images, it demonstrates a significant step up in novel

view synthesis from very sparse image observations.

Prior-based 3D Reconstruction and View Synthesis. In-

stead of overfitting to a single scene, differentiable render-

ing can also be used to supervise prior-based inference

methods. Some methods generalize image-based render-

ing techniques by computing feature maps on top of a

proxy geometry [1, 19, 38, 56]. Volume rendering using

multi-plane images has been used for small baseline novel

view synthesis [47, 53, 61, 62]. Early neural fields-based ap-

proaches [34, 46] were conditioned on a single global latent

code and rendered via sphere tracing. In contrast to a global

latent code, several approaches use a feature backbone to

compute pixel-aligned features that can be transformed using

MLPs [21,52,59] or transformers layers [37,54] to a radiance

field. Ideas from multi-view stereo such as the construction

of plane-swept cost volumes [7,18,25], or multi-view feature

matching [8] have been used for higher-quality results.

Alternatively to these radiance field-based approaches,

some methods use a light field rendering formulation where

an oriented camera ray can directly be transformed to the

pixel color as a function of the features computed from

the input images [44, 49]. Scene Representation Transform-

ers [39] use transformers with global attention to compute

a set-latent representation that can be decoded to pixel col-

ors when queried with a target camera ray. However, global

attention layers on high-resolution input images are very

compute and memory intensive. Developed concurrently

with our work, Suhail et al. [48] proposed to use a trans-

former to only compute features for image patches along the

epipolar rays of the pixel being rendered. This is still very

expensive due to global attention layer computations over

multiple image patches for every rendered pixel. In addition,

this method ignores the context information of the scene,

since all computation is performed only for patches that lie

on the epipolar lines.

All existing prior-based reconstruction methods either

only support object-level scenes or very small baseline ren-

derings, or rely on multiple image observations where most

3D points are observed in multiple input images. This is

different from our setting where we only use a wide-baseline

stereo image pair of scenes as input.

3. Method

Our goal is to render novel views of a 3D scene given

a wide-baseline stereo image pair I1 and I2. We assume

known camera intrinsic Ki ∈ R
3×3 and extrinsic Ei ∈

R
4×3 expressed relative to context camera 1. We use a multi-

view encoder to compute pixel-aligned features, and a cross-

attention-based renderer to transform the features into novel

view renderings, see Figure 2 for an overview.

3.1. Multiview Feature Encoding

An essential part of novel view synthesis given context

images is an accurate reconstruction of scene geometry. Our

method implicitly reconstructs 3D geometry and appearance

of the scene in the form of pixel-aligned feature maps for

each stereo image. In prior work, pixel-aligned features are

obtained by separately encoding each image via a vision

transformer or CNN [21, 59]. However, in our early experi-

ments, we found this led to artifacts in renderings observing

boundary regions between context images. We hypothesize

that separate encoding of images leads to inconsistent geom-

etry reconstruction across context images. We thus introduce

our multi-view encoder, which obtains pixel-aligned features

by jointly processing the images and the relative pose be-

tween them. Encoding the pose information has also been

shown to act as an effective inductive bias for 3D tasks [58].

We now describe this architecture in detail, which extends

the dense vision transformer proposed by Ranftl et al. [36].

Please see Figure 2 for an overview. From each stereo im-

age, we first independently extract convolutional features via

a ResNet50 CNN. We then flatten both images, obtaining

2× 16× 16 features in total. To each feature, we add (1) a

learned per-pixel positional embedding encoding its pixel

coordinate and (2) a camera pose embedding, obtained via

a linear transform of the relative camera pose between con-

text images 1 and 2. These tokens are processed by a vision

transformer, which critically performs self-attention across

all tokens across both images. In-between self-attention lay-

ers, per-image features are re-assembled into a spatial grid,
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Figure 2. Method Overview. (a) Given context images from different viewpoints, a multi-view encoder extracts pixel-aligned features,

leveraging attention across the images and their corresponding camera pose embeddings. (b) Given a target ray, in each context view, we

sample primary features along the epipolar line equidistant in pixel space. We then project the corresponding 3D points onto the other views

and sample corresponding secondary epipolar line features, where out-of-bounds features are set to zero. (c) We render the target ray by

performing cross-attention over the set of all primary and secondary epipolar line features from all views.

up-sampled, and processed by a fusion CNN [36] to yield

per-image spatial feature map. Directly using these spatial

feature maps for novel view synthesis leads to blurry recon-

structions, due to the loss of high-frequency texture informa-

tion. We thus concatenate these features with high-resolution

image features obtained from a shallow CNN.

3.2. Epipolar Line Sampling and Feature Matching

We aim to render an image of the scene encoded in the two

pixel-aligned feature maps from a novel camera viewpoint.

A common way to achieve this is volume rendering, where

we cast a camera ray, compute density and color values at

many depths along the ray, and integrate them to compute

the color of the pixel. Sampling locations are determined in

3D. Coarse samples are either uniformly spaced in euclidean

space or spaced with uniform disparity, and fine samples are

distributed closer to the surface as computed by the coarse

samples [2, 28, 30]. However, in our regime of generalizable

novel view synthesis with pixel-aligned feature maps, this

sampling scheme is suboptimal. In this case, sampling along

the ray should be determined by the resolution of the con-

text images: the number of pixels along the epipolar line is

the maximum effective number of samples available for any

method. More samples would not provide any extra infor-

mation. We propose a sampling strategy to exploit this and

demonstrate its effectiveness in an ablation study.

Consider a pixel coordinate ut = (u, v) in the target

image It, with assumed known intrinsic Kt and extrinsic

Tt =
[

Rt tt
0 1

]

camera parameters relative to the context

camera I1. Its epipolar lines l{1,2}, in context cameras 1 and

2 are given as:

li = Fi [u, v, 1]
T
= K−T

i ([tt]×Rt)K
−1
t [u, v, 1]

T
(1)

via the fundamental matrix Fi. We now uniformly sample

N pixel coordinates along the line segment of the epipolar

line within the image boundaries. To enable the renderer to

reason about whether to use a certain pixel-aligned feature

or not, a critical piece of information is the depth in the con-

text coordinate frame at which we are sampling this feature.

This depth value can be computed via triangulation, using

a closed-form expression. Please refer to the supplemental

document for details. We now obtain N tuples {(d, f)k}
N
k=1

of depth d and image feature f per context image for a total

of 2N samples which we call primary samples.

We further propose a feature matching module to refine

the geometry encoded in the primary epipolar line samples

via correspondence matching. Consider a primary epipolar

line sample obtained from context image i, a tuple (d, f) cor-

responding to a pixel coordinate ut. We propose to augment

this sample by a corresponding feature in the other context

image. Specifically, we first solve for the corresponding 3D

point, and then project this 3D point onto the other context

image to retrieve a corresponding feature f̂ , which we refer

to as a secondary feature. The secondary features are set

to zero if the projected point is out of the image bounds.

Intuitively, primary and secondary features together allow

a final stage of geometry refinement for 3D points that are

observed in both images: if the features agree, this sample

likely encodes a surface. If the projected point on the other

image lies outside the image boundary, we simply set the sec-

ondary features to zeros. We obtain the input to the renderer

as the final set of features by concatenating each primary

epipolar line feature with its corresponding secondary fea-

ture in the other context view, yielding a set {(d, f , f̂)k)
2N
k=1.

In practice, we sample N = 64 points on the epipolar lines
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for both images, leading to a total of 2N = 128 tuples.

3.3. Differentiable Rendering via Cross­Attention

To render the target ray, it remains to map the set of

epipolar line samples {(d, f , f̂)k)
2N
k=1 to a color value. As

this operation has to be executed once per ray, a key con-

sideration in the design of this function is computational

cost. We propose to perform rendering via a lightweight

cross-attention decoder.

For each point on the epipolar line, we embed the target

ray origin ot, target ray direction rt, depth with respect to

the target ray origin dt, and context camera ray direction rc
for the epipolar point into a ray query token q via a shallow

MLP as Φ([ot, rt, rc, dt]). The 2N ray feature values are

independently transformed into key and value tokens using

a 2-layer MLP. Our renderer now performs two rounds of

cross-attention over this set of features to obtain a final fea-

ture embedding, which is then decoded into color via a small

MLP.

The expectation of the Softmax distribution over the

sampled features gives a rough idea of the scene depth

as e =
∑

k dkαk, where dk denotes the depth of the k-

th epipolar ray sample along the target ray and αk is the

corresponding Softmax weight as computed by the cross-

attention operator. Note that e is not the actual depth but

a measure of which epipolar samples the renderer uses to

compute the pixel color. Unlike volume rendering, where

we need to sample very close to a surface to render its color,

our light field-based renderer can reason about the surface

without exactly sampling on it. The learned cross-attention

layers can use the target camera ray information, along with

a sparse set of epipolar samples, to compute the pixel color.

Thus, our method does not require explicit computation of

accurate scene depth for rendering.

3.4. Training and Losses

We now have a rendered image from a novel camera

viewpoint. Our loss function consists of two terms:

L = Limg + λregLreg . (2)

The first term evaluates the difference between the rendered

image from a novel camera viewpoint, R and the ground

truth, G as:

Limg = ||R−G||1 + λLPIPSLLPIPS(R,G) , (3)

where LLPIPS is the LPIPS perceptual loss [60]. In practice,

we render square patches with a length of 32 pixels and

evaluate these image losses at the patch level.

We also use a regularization loss on the cross-attention

weights of the renderer for better multi-view consistency:

Lreg =
∑

(u,v)

∑

(u′v′)∈N (u,v)

((e(u, v)− e(u′, v′))2 . (4)

Here, e(u, v) denotes the expected value of the depth of

the epipolar samples at pixel (u, v), and N () defines the

neighborhood around a pixel.

For better generalization, we further perform several

geometrically-consistent data augmentations during the train-

ing procedure. We center crop and scale the input and target

images, which leads to transformation in the intrinsics of the

camera. We also flip the images which leads to transforma-

tion of the extrinsics.

4. Experiments

We quantitatively and qualitatively show that our ap-

proach can effectively render novel views from wide-

baseline stereo pairs. We describe our underlying experi-

mental setup in Section 4.1. Next, we evaluate our approach

on challenging indoor scenes with substantial occlusions in

Section 4.2. We further evaluate on outdoor scenes in Sec-

tion 4.3. We analyze and ablate the underlying components

in Section 4.4. Finally, we illustrate how our approach can

render novel views of unposed images of scenes captured in

the wild in Section 4.5.

4.1. Experimental Setup

Datasets. We train and evaluate our approach on

RealEstate10k [62], a large dataset of indoor and outdoor

scenes, and ACID [22], a large dataset of outdoor scenes.

We use 67477 scenes for training and 7289 scenes for test-

ing for RealEstate10k, and 11075 scenes for training and

1972 scenes for testing for ACID, following default splits.

We train our method on images at 256× 256 resolution and

evaluate methods on their ability to reconstruct intermediate

views in test scenes (details in the supplement).

Baselines. We compare to several existing approaches for

novel view synthesis from sparse image observations. We

compare to pixelNeRF [59] and IBRNet [54] that use pixel-

aligned features, which are decoded into 3D volumes ren-

dered using volumetric rendering. We also compare to Gen-

eralizable Patch-based Rendering (GPNR) [48], which uses

a vision transformer-based backbone to compute epipolar

features, and a light field-based renderer to compute pixel

colors. These baselines cover a wide range of design choices

used in existing methods, such as pixel-aligned feature maps

computed using CNNs [54, 59] and transformers [48], volu-

metric rendering by decoding features using MLPs [59] and

transformers [54], and light field-based rendering [48]. We

use publicly available codebases for all baselines and train

them on the same datasets we use for fair evaluations. Please

refer to the supplemental for comparisons to more baselines.

Evaluation Metrics. We use LPIPS [60], PSNR,

SSIM [55], and MSE metrics to compare the image quality

of rendered images with the ground truth.
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Input Images PixelNeRF IBRNet GPNR Ours Target

Figure 3. Comparative Rendering Results on RealEstate10k. Our approach can render novel views of indoor scenes with substantial

occlusions with high fidelity using a wide-baseline input image pair, outperforming all baselines. Note that many points of the 3D scene are

only observed in a single image in such inputs. Our method can correctly reason about the 3D structures from such sparse views.

Input Images Rendered Novel Views

Figure 4. Novel view renderings of our approach given a large

baseline stereo pair. Our approach can synthesize intermediate

views that are substantially different from input images, even with

very limited overlap between images.

4.2. Indoor Scene Neural Rendering

We first evaluate the ability of our approach and baselines

to render novel views in complex indoor environments with

substantial occlusions between objects.

Qualitative Results. In Figure 3, we provide qualitative

results of novel view renderings of our approach, compared

Method LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓

pixelNeRF [59] 0.591 0.460 13.91 0.0440

IBRNet [54] 0.532 0.484 15.99 0.0280

GPNR [48] 0.459 0.748 18.55 0.0165

Ours 0.262 0.839 21.38 0.0110

Table 1. Novel view rendering performance on RealEstate10K.

Our method outperforms all baselines on all metrics.

Method LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓

pixelNeRF [59] 0.628 0.464 16.48 0.0275

IBRNet [54] 0.385 0.513 19.24 0.0167

GPNR [48] 0.558 0.719 17.57 0.0218

Ours 0.364 0.781 23.63 0.0074

Table 2. Novel view rendering performance on ACID. Our

method outperforms all baselines on all metrics.

to each of our baselines. We provide additional novel view

results of our method in Figure 4. Compared to the baselines,

our approach reconstructs the 3D structure of the scene better,

and also captures more high-frequency details.

Quantitative Results. We quantitatively evaluate our ap-

proach and baselines in Table 1. We find that our approach

substantially outperforms each compared baseline in terms

of all of our metrics.
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PixelNeRF IBRNet GPNR Ours TargetInput Images

Figure 5. Comparative Results on ACID. Our approach is able to render novels views with higher quality than all baselines.

4.3. Outdoor Scene Neural Rendering

We further evaluate on outdoor scenes with potentially

unbounded depth.

Qualitative Results. We illustrate qualitative results in

Figure 5. In comparison to the baselines, our approach is

able to more accurately reconstruct the geometry, and is

able to synthesize multi-view consistent renderings from

two large baseline views.

Quantitative Results. Similar to indoor scenes, our ap-

proach also outperforms all baselines in terms of all metrics

on outdoor scenes, see Table 2.

4.4. Ablations and Analysis

We next analyze and ablate individual components of

our approach. We use the RealEstate10k dataset for these

experiments.

Ablations. We evaluate the importance of different com-

ponents of our method in Table 3. The “Base Model” corre-

sponds to a vanilla architecture that does not include some

of our proposed contributions. It samples points uniformly

in 3D, instead of our proposed 2D epipolar line sampling.

It uses a monocular encoder instead of our proposed multi-

view encoder, and does not use correspondence matching

across views for refining the geometry. It also does not use

the regularization loss for multi-view consistency or any data

augmentation during training. We find that all components of

our approach are essential for high-quality performance. The

results in Table 3 show that sampling in 3D sub-optimally

uses the information in the feature maps, that our multi-view

encoder and cross-image correspondence matching can com-

pute features that better encode the 3D scene structure com-

pared to monocular encoders, and that data augmentation

helps with generalization. While we found that the incorpo-

ration of the regularization loss led to a slight decrease in

PSNR, we found that it improved multi-view consistency in

the rendered video results, and also improved both LPIPS

and SSIM perceptual metrics.

Models LPIPS↓ SSIM↑ PSNR↑ MSE↓

Base Model 0.452 0.735 18.11 0.0201

+ 2D Sampling 0.428 0.762 19.02 0.0159

+ Cross Correspondence 0.415 0.766 19.52 0.0142

+ Multiview Encoder 0.361 0.794 20.43 0.0132

+ Regularization Loss 0.358 0.808 19.84 0.0139

+ Data Aug 0.262 0.839 21.38 0.0110

Table 3. Ablations. All components of our proposed method are

essential for high-quality novel view synthesis.

IBRNet

PixelNeRF

GPNR

Ours

Ours (Faster)

Figure 6. FPS vs PSNR. Our approach strikes the best trade-off

between rendering quality and rendering speed. We can further

reduce the number of Epipolar samples (“Ours (Faster)”), which

makes our method faster than all baselines, while still significantly

outperforming them in terms of rendering quality.

Speed. Next, in Figure 6, we study the relationship be-

tween rendering quality and rendering speed for all ap-

proaches. Our lightweight approach achieves the best trade-

off, significantly outperforming all methods in terms of ren-

dering quality, while being at-par with the most efficient

baseline. By reducing the number of sampled epipolar points

from 64 to 48 samples per image, we can further speed up

our approach, outperforming all baselines both in terms of

rendering speed and image quality.

Epipolar Attention. Finally, we visualize the underlying

epipolar attention weights learned by our approach in Fig-

ure 7. The expected value of the depths of the epipolar sam-
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Figure 7. Visualization of Epipolar Attention Weights. The ex-

pected value of the depths of the epipolar samples under the at-

tention weights can be seen as a depth proxy. As our renderer is

not a volume renderer, these attention weights need not exactly

correspond to the actual depth for correct renderings.

ples can be seen as a proxy depth and corresponds roughly

to the underlying geometry of the scene. This enables us to

analyze the learned computation of our renderer.

4.5. Novel View Synthesis from Unposed Images

Our method uses a wide-baseline stereo image as input

with known relative pose between them. We show that our

method can perform novel view synthesis even without the

knowledge of this relative pose information. In this case,

we utilize SuperGlue [40] to compute reliable pixel cor-

respondences between the input images. Since we do not

know the camera intrinsics for in-the-wild images, we use

the average intrinsics of the RealEstate10k dataset and com-

pute the Essential matrix from the correspondences using

RANSAC [12]. We then compute the pose information from

the essential matrix [17] and use it as input for our method.

Note that the recovered translation is only defined up to a

scale. Figure 8 demonstrates results on some in-the-wild

scenes using images from the internet. Even in this unposed

setting, our method can reason about the geometry of the

scene by aggregating information across the sparse input

views. This is an extremely challenging setting, and existing

approaches for novel view synthesis from sparse views do

not demonstrate any results on unposed images.

5. Discussion

While we have presented the first approach for novel

view synthesis of scenes from very sparse input views, our

approach still has several limitations. Our rendering results

are not at the same quality as those obtained by methods

that optimize on single scenes using more images. Learning

priors that enable novel view synthesis from sparse views is a

significantly more challenging problem compared to using a

large number of input images, where 3D points are regularly

observed in many images. Our approach takes a step towards

Input Images Rendered Novel Views

Figure 8. Novel View Synthesis from Unposed Images. Our ap-

proach can also render novel views using two unposed images

captured in the wild. Note that parts of the scene only visible in one

of the images can be correctly rendered from novel viewpoints.

photorealistic renderings of scenes using only sparse views.

As our approach relies on learned priors, it does not gen-

eralize well to new scenes with very different appearances

compared to the training scenes. However, our efficient ap-

proach lends itself to large-scale training on diverse datasets,

in turn enabling reconstruction of diverse scenes. Finally,

while our method, in theory, can be extended to take more

than two input views, we have only experimented with two

views as a first step towards very sparse multi-view neural

rendering.

6. Conclusion

We introduce a method for implicit 3D reconstruction

and novel view synthesis from a single, wide-baseline stereo

pair, trained using only self-supervision from posed color

images. By leveraging a multi-view encoder, an image-space

epipolar line feature sampling scheme, and a cross-attention

based renderer, our method surpasses the quality of prior

art on datasets of challenging scenes. Our method further

strikes a compelling trade-off between rendering speed and

quality, rendering novel views significantly faster than most

prior methods. Meanwhile, leveraging epipolar line geometry

strikes a compelling trade-off between structured and gen-

eralist learning paradigms, enabling us to train our method

on real-world datasets such as RealEstate10k. We believe

that this work will inspire the community towards further

exploring the regime of extreme few-shot and generalizable

novel view synthesis.
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In this supplemental document, we provide experimental

details of our method (Section A), additional comparisons

with other baselines (Section B), additional analysis of our

approach (Section C), and derivation of epipolar correspon-

dences in (Section D). Please refer to the project webpage

for video results.

A. Experimental Details

We provide detailed experimental details necessary to

reproduce the results listed in our paper.

Dataset Details. We use the download script

from https : / / github . com / cashiwamochi /

RealEstate10K_Downloader to download videos

in RealEstate and ACID datasets at 640 × 480 image

resolution. Our datasets are smaller than the original ACID

and RealEstate datasets because some of the listed YouTube

URLs were not available anymore.

Training Details. We use a batch size of 48 and train our

models using the Adam optimizer with a learning rate of 5e-5.

We train on 4 Nvidia V100 GPUs for around 100k iterations,

which takes a total of 3 days. We do not use LPIPS and

regularization losses for the first 30k iterations. Both LPIPS

and the regularization losses are computed across 32x32

patches of rendered images. Input frames are sampled so

that are between 92 and 150 frames apart with intermediate

frames rendered.

Model Architecture. We utilize the VIT architecture from

Ranftl et al. [36] as our multi-view backbone. We use the

output feature maps of the last 2 RefineNet branches of the

architecture as our features. The high-resolution feature map

is obtained by applying a single convolutional layer with a

kernel size of 3x3 with 64 channel dimensions. We embed

query tokens using a 2 layer MLP with hidden dimension

of 128. We likewise obtain key vectors for cross-attention

using a 2 layer MLP on input features. Attention values are

computed using the dot product of key and query vectors,

with dot product between vectors scaled by 1/16 for numer-

ical stability. For the second round of cross-attention, the

output feature from the previous round of cross-attention

is concatenated to each query token. The MLP architecture

used to decode RGB colors from pooled features is 3 layers

in size with a hidden dimension of size 128.

Evaluation Details We use test scenes for evaluation in

both RealEstate10k and ACID datasets. We use two frames

128 timesteps apart as the input to the methods and recon-

struct an intermediate frame using the GT pose from the

datasets.

† Equal Advising

Neural Rendering of Unposed Images. As mentioned in

the main paper, we use SuperGlue [41] to estimate corre-

spondences between two unposed images, and then estimate

the relative pose between them by computing the essential

matrix. We use the average RealEstate10k intrinsic param-

eters. The recovered translation is only defined up to scale.

We perform a grid search to find the best-performing scale

offset. We set the intrinsic matrix of unposed images to be

the average focal length of scenes in RealEstate10k (225).

Input Images RegNeRF Renderings

Input Images Our Renderings

Figure 9. Visualization of RegNeRF Renderings. Comparison of

RegNeRF renderings (top) with renderings of our method (bottom).

Method LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓

RegNeRF (Single Scene) [33] 0.669 0.491 11.59 0.0741

Ours (Single Scene) 0.209 0.657 20.12 0.0102

pixelNeRF [59] 0.591 0.460 13.91 0.0440

StereoNeRF [8] 0.604 0.486 15.40 0.0318

GeoNeRF [18] 0.541 0.511 16.65 0.0209

IBRNet [54] 0.532 0.484 15.99 0.0280

GPNR [48] 0.459 0.748 18.55 0.0165

Ours 0.262 0.839 21.38 0.0110

Table 4. Extended table of Novel view rendering performance

on RealEstate10K. Our method outperforms all baselines on all

metrics. RegNeRF results are reported for one evaluation scene (as

the method requires a separate model to be fit per scene).

B. Additional Baseline Comparisons

We further compare with RegNeRF [33] , StereoNeRF [8],

GeoNeRF [18]. Quantitative comparisons with all baselines

can be found in Table 4. We significantly outperform these

baselines. Since RegNeRF is scene-specific, we perform this

evaluation on one test scene of the RealEstate10k dataset.

RegNeRF takes several hours to compute the 3D reconstruc-

tion for a single scene, unlike our approach, where only a

single forward pass is used. Qualitative comparisons can be

found in Figure 9. Our method can better reconstruct the 3D

scene structure as it learns a prior over scenes.

C. Additional Analysis Results

We provide further analysis of our approach below.
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Input Images Novel View Input Images Novel View

Figure 10. Rendering with Different Context Views. Visualization of rendering results when rendering with multiple context views.

3D Samples 64 128 192 Epi. Samples

PSNR ↑ 19.29 20.35 20.60 21.38

SSIM ↑ 0.769 0.778 0.790 0.839

LPIPS ↓ 0.319 0.284 0.273 0.262

Table 5. Rendering Results with Volumetric Samples. Perfor-

mance of rendering as a function of the number of volumetric

samples used. A large number of volumetric samples still does not

match epipolar samples.

Views 1 2 3

PSNR ↑ 18.48 21.38 22.29

SSIM ↑ 0.700 0.839 0.848

LPIPS ↓ 0.357 0.262 0.251

Table 6. Rendering Results with Different Context Views. Per-

formance of rendering as a function of number of context views

used.

Performance with Epipolar Samples. In Table 5, we il-

lustrate the effects of using uniform samples on the epipolar

lines compared to a large number of volumetric samples. A

very large number of volumetric samples still does not match

the underlying performance of epipolar samples.

Multiview Encoder Ablations. We qualitatively illustrate

the ablation of adding a multiview compared to a single

image encoder in Figure 11.

Results on Varying Context Views We illustrate how we

can render our approach with a different number of views

in Table 6. We qualitatively illustrate rendering results with

a different number of context views in Figure 10. Our ren-

derer improves performance with a larger number of context

views.

Results on Varying Baseline Size. In Table 7, we illus-

trate rendering performance as we change the underlying

baseline from which our approach is rendered. We find that

as we decrease the baseline (distance) between frames, the

underlying rendering performance improves.

Baseline 32 64 96 128

PSNR ↑ 26.24 22.50 21.93 21.38

SSIM ↑ 0.915 0.852 0.845 0.839

LPIPS ↓ 0.149 0.223 0.246 0.262

Table 7. Rendering Results with Baseline Changes. Performance

of rendering as a function of change of baseline. Smaller baselines

induce higher quality renderings.

Input Images w/o Multiview Multiview

Figure 11. Ablation of Multiview Encoder. Qualitative visualiza-

tion of rendering results when removing or adding a multiview

encoder.

D. Triangulation

Here, we provide details on computing 3D points using

triangulation. For a pixel coordinate in the context image

(u′, v′), we may solve for its corresponding 3D point via:

l∗ = argmin
l

∥πt(oi + l ·R−1

i K−1

i [u′, v′, 1])− ut∥
2

2
,

(5)

where oi is the camera origin of the respective context im-

age, πt(·) denotes projection onto the target camera, and

ut is the pixel coordinate of the target ray we aim to

render. The 3D point p∗ can then be obtained as p∗ =
oi+ l∗ ·R−1

i K−1

i [u′, v′, 1], and its depth in the context cam-

era can be obtained as the z-coordinate of the point in the
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context camera’s coordinates. Let ri denotes the normalized

ray direction R−1

i K−1

i [u′, v′, 1]. The closed form solution

can be represented as:

l∗ =
u · oi[z]− cxoi[z]− fxoi[x]

fxri[x] + cxri[x]− uri[z]

=
v · oi[z]− cyoi[z]− fyoi[y]

fyri[y] + cyri[y]− uri[z]
,

where K =

[

fx 0 cx
0 fy cy
0 0 1

]

.
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