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Abstract

Humans and animals have to balance the need for exploring new options with exploiting
known options that yield good outcomes. This tradeoff is known as the explore-exploit
dilemma. To better understand the neural mechanisms underlying how humans and
animals address the explore-exploit dilemma, a good animal behavioral model is critical.
Most previous rodents explore-exploit studies used ethologically unrealistic operant
boxes and reversal learning paradigms in which the decision to abandon a bad option is
confounded by the need for exploring a novel option for information collection, making it
difficult to separate different drives and heuristics for exploration. In this study, we
investigated how rodents make explore-exploit decisions using a spatial navigation
Horizon Task (Wilson, Geana, White, Ludvig, & Cohen, 2014) adapted to rats to
address the above limitations. We compared the rats’ performance to that of humans
using identical measures. We showed that rats use prior information to effectively guide
exploration. In addition, rats use information-driven directed exploration like humans,
but the extent to which they explore has the opposite dependence on time horizon than
humans. Moreover, we found that free choices and guided choices have fundamentally
different influences on exploration in rodents, a finding that has not yet been tested in
humans. This study reveals that the explore-exploit spatial behavior of rats is more
complex than previously thought.

Keywords: explore-exploit dilemma, directed and random exploration, prior information,
guided vs free exploration.



Introduction

Humans and animals constantly face a choice between exploiting options that are
known to be good and exploring unknown options in the hope of discovering better
future outcomes. Humans face this dilemma in many scenarios, from simple choices
such as deciding whether to try a new restaurant for dinner, to important life decisions
such as deciding whether to explore a new career. Animals face the explore-exploit
dilemma when deciding whether to explore and forage for food, territory, or mates. The
cognitive ability to balance exploration and exploitation is vital to animal and human
survival and success. In recent years, the study of explore-exploit decisions in humans
and animals has become an active field of investigation (Mehlhorn et al., 2015; Schulz &
Gershman, 2019; Wilson, Bonawitz, Costa, & Ebitz, 2021).

An optimal solution to explore-exploit decisions is, in general, computationally
intractable (Bellman, 1954), leading humans and animals to use approximations or
heuristics. Previous research revealed that subjects were likely to use one or both of
two main heuristics. The first is an information-driven heuristic known as directed
exploration in which action is biased towards the more uncertain option (Banks, Olson,
& Porter, 1997; Frank, Doll, Oas-Terpstra, & Moreno, 2009; Krebs, Kacelnik, & Taylor,
1978; Lee, Zhang, Munro, & Steyvers, 2011; Meyer & Shi, 1995; Payzan-LeNestour &
Bossaerts, 2012; Steyvers, Lee, & Wagenmakers, 2009; Wilson et al., 2014; Zhang &
Yu, 2013). The second is a noise-driven heuristic known as random exploration, in
which exploratory actions with suboptimal estimates of reward value are chosen by
chance (Badre, Doll, Long, & Frank, 2012; Feng, Wang, Zarnescu, & Wilson, 2021;
Gershman, 2018, 2019; Kao, Doupe, & Brainard, 2005; Wang & Wilson, 2018; Wilson et
al., 2014).

One key factor in explore-exploit decisions is the time horizon, i.e., the number of known
future choices remaining which can be influenced by the current decision. Horizon
adaptation is thought to be a hallmark of effective exploration. In a long horizon context
in which you will make a lot of similar decisions later on, it's more beneficial to explore.
For example, exploring a new restaurant in your area of living can benefit you in the
long run, since you might enjoy it for the rest of your life. However, in a short horizon
context, it is optimal to choose what is known to be best. For example, going to a highly
rated restaurant is probably better than trying a newly opened restaurant if you are
going for a one-time meal in a new city on a trip. Recent studies showed that humans
were able to adapt the extent of their directed and random exploration with the time
horizon (Wilson et al., 2014).Yet apart from one early study in birds (Kacelnik, 1979),
very little work has investigated how animals explore under different time horizons.

More generally, relatively few studies have investigated how animals, in particular
rodents, make explore-exploit decisions. To study such behavior, most rodent explore-
exploit studies use a reversal learning paradigm (RLP). In the reversal learning design,
animals choose between two options where one is better than the other. These can be
options with high vs low physical costs (Beeler, Daw, Frazier, & Zhuang, 2010), options
with large reward and short delay vs small reward and long delay (Laskowski et al.,
2016), or binary reward options with high vs low probabilities (Chen, Knep, Han, Ebitz,
& Grissom, 2021; Cinotti et al., 2019; Parker et al., 2016; Verharen, den Ouden, Adan,



& Vanderschuren, 2020). As animals explore the two options, they will eventually
converge to the better one and keep exploiting it, until the outcomes of the two options
are swapped. Deviating from the previously exploited option after the switch of their
outcome is considered exploration in these tasks. Such reversal learning paradigms
however have several limitations. Firstly, both good and bad outcomes should occur in
exploration. However, in reversal learning, after the reversal point, “exploring” the
previously suboptimal option will always lead to a better outcome. Thus, exploration is
confounded by simply abandoning a currently bad option. Secondly, it is in general not
possible to separate different drives and heuristics for exploration in reversal paradigms.
For example, to study directed exploration, we need to measure how choices are biased
towards the more uncertain option. However, uncertainty is implicit in RLP in that the
less chosen option is more uncertain. Since the less chosen option is usually also the
option with a lower estimated value, value and uncertainty are confounded in RLP.
Thirdly, most of the tasks mentioned above are implemented in operant boxes that are
not natural environments for a rat and hence may not engage the decision circuitry fully.
As pointed out recently, head-fixed monkeys exhibit a risk preference opposite to that of
freely moving monkeys using the same task, suggesting that decision making may be
directly influenced by the physical constraints of the experimental paradigms
(Eisenreich, Hayden, & Zimmermann, 2019). One of the most fundamental and natural
behaviors of rats is spatial navigation. It is unknown how rats would behave in a setting
in which the explore-exploit dilemma taps into their spatial navigation abilities. There is
also a gap between the human and rodent literature in our understanding of the explore-
exploit decision processes. The complexity of the tasks and their quantifications are
different across species, and whether similar heuristics are in play in humans and
rodents remain an open question.

In this paper, we designed a rodent version of an exploration task similar to the human
“Horizon Task” used in Wilson et al, 2014, in which rats explore under different time
horizon conditions. The objective of our experiment is two-fold. The first objective was to
address the limitations in reversal learning paradigms as mentioned above. Specifically,
in our design, the three parameters: the exploit value, the explore value and the
uncertainty are manipulated independently to resolve the confounds among choice,
uncertainty, and value in the RLP design. Consequently, using Bayesian modeling, we
are able to separate directed exploration from random exploration in rodents.
Furthermore, our rat version was designed in an open field maze where rats can make
explore-exploit decisions by navigating, which is more ethologically naturalistic than
using operant boxes. The second objective of the current study was to examine how
rodents explore in different time horizon conditions. A similar version of the rodent
exploration task was run in human subjects to directly compare, using the same
behavioral measures, the similarities, and differences in horizon adaptive exploration
between humans and rats.



Methods

Animals

Six Brown Norway rats were used in these experiments. All rats were male between 6
and 7 months old at the start of the experiment. All rats were housed under reverse
12:12 light cycles. Rats were food restricted to 85% of their ad libitum body weight but
were not water restricted. All animal procedures were approved by the IACUC of the
University of Arizona and followed NIH guidelines.

Human participants

Forty-seven undergraduates from the University of Arizona participated in this study.
Two were excluded for being under 18 (in line with the IRB agreement for using the
Psychology Department subject pool), leaving 45 participants (14 males, 31 females). In
addition, participants who did not perform significantly above chance were excluded.
Five were excluded for human experiment 1 (leaving 40 for analysis), and 3 were
excluded for human experiment 2 (leaving 42 for analysis). All participants were from
the undergraduate psychology subject pool and earned academic credits for their
participation in the study. The human experiments were approved by the University of
Arizona Institutional Review Board.

Experiments - rats

In this paper, we used a close variant of the human Horizon Task (Wilson et al., 2014).
In the rodent version of the Horizon Task, rats were asked to choose between two
options that give out different number of drops of sugar water. The reward size from one
of the two options is known to the rat, whereas the reward size of the other option is
unknown. We assess how rats “explore” the unknown option as a function of time
horizon, i.e., the number of choices they have in a game.

Apparatus: The rodent experiments were run on an open field maze that consisted of a
circular area (1.5 m diameter) with 8 equidistant feeders at its periphery (B. Jones,
Bukoski, Nadel, & Fellous, 2012; B. J. Jones, Pest, Vargas, Glisky, & Fellous, 2015).
Each feeder delivered sugar water (150 ul/drop, 0.15g sugar/ml) in the form of
computer-controlled drops. A blinking LED was attached to each feeder and if active,
indicated that the feeder could deliver a reward is the rat decided to visit it (note the
LED was active even if the reward was 0 drop, see below).

Pre-training: Rats were first pre-trained to associate light with reward. Then we pre-train
rats on fully guided games, in which they run back and forth between the home base
and either one of the target feeders. We then removed the reward at the homebase, so
rats are pre-trained to go to the home base to trigger the light at the feeder without
getting a direct reward at homebase. Then we introduce free choice trials to rats, after
guided choices. 2 lights at the two feeders blinked simultaneously and rats were pre-
trained to make a choice between the two feeders. We first pre-train rats to choose
between 0 and 1 drops. Once the rat could reliably choose the 1 drop feeder, we
introduce different amounts of rewards. We then engaged in pretraining with 1 vs 5
drops, and once the rat showed a preference for choosing the 5 drops feeder, we
introduce the full reward schedule (Experiments section below, randomly sample a



reward size from 0 to 5 drops). Rats were pretrained through these phases at different
rates based on performance.

Experiments: The experimental sessions were divided into ‘games.’ In each game, only
3/8 feeders were activated in an isosceles pattern (Fig 1A, yellow light bulbs). One
feeder was the home base; the two others, equidistant from the home base, were the
rewarded feeders. The home base was never rewarded, but animals had to reach it to
trigger/activate the 2 rewarded feeders. The home base was flanked by two Lego
blocks, forcing the animal to start its navigation to the 2 rewarded feeders without
directional bias (Fig 1, blue rectangles). At the start of each game, depending on the
conditions, the two rewarded feeders were associated with a fixed number of sugar
water drops drawn uniformly from 0 to 5 and always gave the same number of drops
during that game (Fig 1B). Before making their free choices, rats were guided to one of
the rewarded feeders in the first nG trials (i.e., only one LED was blinking, nG=3, ‘Trial 1
cue’ to ‘Trial 3 cue’, Fig 1B). Critically, only one of the two rewarded feeders was cued
during the guided trials, leaving the value of the other rewarded feeder unknown to the
rat before making free choices. Rats performed versions where nG = 0, 1, or 3 (In cases
of nG = 0, rats were not guided to any target feeder and started with a free choice
between the 2 rewarded feeders instead.). Fig 1B illustrates the version with nG = 3.
From the nG+15t trial, they were cued to make free choices (e.g., the LED of the 2
rewarded feeders blinked simultaneously, ‘Trial 4 cue’ Fig 1B). The guided trials were
followed by H free choices between the 2 rewarded feeders. Rats performed versions
where H =1, 6, or 15. Fig 1B illustrates the version with H = 1. After the first game was
completed, an 8s increasing sweep tone was played to indicate the start of a new game.
The layout was then switched, and the feeder directly opposite to the initial home base
was now activated as the new home base in this new game (Game 2 start, Fig 1B). The
new rewarded feeders became the feeders opposite to the new home base (Game 2,
Fig 1A, 2A). The number of free choices H is also referred to as the ‘horizon’.

Experiment 1: between-session version

In this version, rats are always guided 3 times before a free choice can be made (i.e.,
nG=3). There are 3 different horizon conditions, the short condition H = 1 in which only
1 free choice is allowed after the guided trials, the long condition H = 6 in which 6 free
choices are allowed and the extra-long condition H = 15 in which 15 free choices are
allowed (Fig 1C). In the same session, both home bases are associated with the same
horizon condition (Fig 1A). Rats performed games of different horizons in blocks of
consecutive days before switching to the next horizon condition. H=1and H =6
sessions were run in counterbalanced orders between rats, and H = 15 conditions were
run after the H = 1 and H = 6 sessions were completed. For clarity, the transition
sessions (the first session after each horizon condition change) were excluded from the
analyses. Inclusion of these games in the analysis do not change our conclusions. Six
rats participated in this experiment and completed a total of 292 sessions and 4802
games (36664 trials).



Experiment 2: within-session version

In this version, rats performed H = 1 and H = 6 games within the same session. A sound
cue was played at each home base visit during each game indicating the corresponding
horizon for that game, a low pitch sound was paired with short horizon games (H = 1)
and a high pitch sound was paired with long horizon games (H = 6). For 192 out of a
total of 218 sessions, one home base was always associated with the short horizon
game and sound cue (H = 1), whereas the other home base was always associated with
the long horizon game and sound cue (H = 6) (Fig 2A). For the other 26 sessions, long
and short horizon games could occur at either home bases signaled by the sound cue.
Results from these 26 sessions were analyzed separately in the Supplementary Fig S6.
In each session, rats were guided nG times before a free choice could be made, nG =0,
1, or 3 for different sessions (Fig 2B). For nG = 0, the rat started each game by making
free choices without guided trials. In order to compare nG = 0 with nG = 1 games, rats
were trained to make H+1 free choices in nG = 0 games. For instance, for a long
horizon game with no guided trials (nG = 0, H = 6), the rat would make 7 free choices.

In the analysis, we treated the first free choice as if it was guided in nG = 0 games (in
other words, the rats guide themselves in the first trial) to contrast it with nG = 1 games
in which in the first trial the rat was actually guided (by the single blinking light). Since
rats experienced the horizon condition at the two homebases for the first time during the
first 2 games of each session, these games were excluded from the analyses. Inclusion
of these games in the analyses do not change our conclusions. Four rats participated in
this experiment and completed a total of 218 sessions and 5587 games (28436 trials).

Experiment 3: randomized reward

In this control experiment, we always used the long horizon condition (H = 6). However,
instead of having a fixed reward for each rewarded feeder within a game, all rewarded
feeders gave a uniformly random number of drops between 0 to 5 each time. In this
case, there was nothing to learn. The reward contingency was completely random. Rats
were guided 3 times before a free choice could be made. Four rats participated in this
experiment and completed a total of 20 sessions and 309 games (2781 trials).

Experiments — humans

Experiment 4 — small reward version

In this experiment, participants were sitting in a booth, in front of a computer screen.
They were asked to choose between two slot machines (also referred to as bandits, Fig
3A) that gave out a fixed number of reward points uniformly drawn from 1 to 5. The
schematic in Figure 3 represents the actual task stimuli. Participants were instructed to
maximize the total number of points. The height of the boxes indicated the number of
choices allowed in the current game (i.e., the horizon condition, H=2 in Fig 3A) and
each row represented a trial. Before participants made their own choices, in the very
first trial, they were guided to pick one of the bandits (Trial 1 cue, nG=1, Fig 3A). The
option available was cued with a green background color. Participants indicated their
choices by pressing an arrow key on the keyboard. Their response was followed by an
indication of how many rewards they obtained, the reward of the unchosen option was



not shown and showed up as ‘XX’ (Trial 1 response, Fig 3A). From the 2nd trial, both
bandits were available and participants were free to make their own choices. Rewards
from each trial of a game remained on the screen until the end of the game. There were
four horizon conditions (H=1, 2, 5, 10 free choices), and games with different horizons
were pseudo-randomly interleaved (Fig 3B). Fourty human participants completed a
total of 6080 games (33440 trials).

Experiment 5 — large reward version

This experiment was the same as experiment 4 except that the reward points were
drawn uniformly from 1 to 100. Results from this version is shown in the Supplementary
Fig S3. Forty two human participants completed a total of 6720 games (36960 trials).

Model-free analysis

We computed the following model-free measures of exploration. P(high reward) is the
probability of choosing objectively the option with a higher deterministic reward. This
measure quantifies ‘exploitation’. P(switch) is the probability of switching from the last
chosen option, this quantifies ‘exploration’. P(unguided) is the probability of choosing
the unguided option on the first free choice, i.e., P(switch) on the first free choice.
P(unguided) is akin to p(high info) in previous human studies (Wilson et al., 2014). On
later free choices, P(switch) could have both a directed and random component. We
computed and compared the above measures between humans and rats (Experiment 1,
4), between different horizon conditions (Experiment 2), and between guided and free
choices (NG =0 vs nG = 1 in rats, Experiment 2).

Hierarchical Bayesian analysis

We used hierarchical Bayesian analysis to quantify directed exploration and random
exploration for both humans and rats. We focused on humans’ and rats’ first free
choices to be able to compare across horizon conditions.

To model choices on the first free-choice trial, we assumed that subjects made
decisions by computing the difference AQ between the reward value of the guided
option, and an exploration threshold 8. Subjects were more likely to choose the
unknown option when AQ < 0, and more likely to exploit the guided option when AQ >
0. The level of randomness in choices were controlled by a decision noise parameter o.
Both a higher exploration threshold 6 and a higher decision noise ¢ could lead to more
exploration. 6 is a model-based measure of directed exploration and ¢ is a model-based
measure of random exploration. Specifically, we write
AQ = Rguidzea — 0 — b * Sgyigea + ®1cAR ¢ + aysAR g (1)
p(unguided) = %AQ (2)
1+e o
where, Rg,iqcq is the reward value of the guided option, 6 is the exploration threshold, b
is the spatial bias, sgyi4.4 is 1 When the guided side is left and is -1 when the guided
side is right, o is the decision noise, AR;; = R}5iiqeca — Runguidea IS the difference in
experienced rewards from the previous game, «,; is the short-term feeder bias
coefficient for the last game, AR5 = R} igeq — Rimguiaea 1S the difference in average



rewards from the previous session, «a; is the long-term feeder bias coefficient for the
last session.

Each subject’s behavior in each horizon (H=1,6 or 15 forratsand H =1, 2, 5, 10 for
humans) and in each guided condition (nG =0, 1, or 3 for rats and nG = 1 for humans)
was controlled by 5 free parameters, namely the exploration threshold 8, spatial bias b,
short-term feeder bias «;;, long-term feeder bias a;s and decision noise . Model fitting
was done separately for the rat and human experiments. Each of the free parameters
was fit to the behavior of each subject using a hierarchical Bayesian approach (Allenby,
Rossi, & McCulloch, 2005). The parameters for each subject were assumed to be
sampled from group-level prior distributions whose parameters, the so-called
‘hyperparameters’, were estimated using a Markov Chain Monte Carlo sampling
procedure. The hyperparameters themselves were assumed to be sampled from
‘hyperprior’ distributions whose parameters were set so that these hyperpriors were

broad. The specific priors and hyperpriors for each parameter are shown in table 1.
[
Here, the group-level mean of threshold 6,,, = % and the group-level mean of

AhgtPhg
g

. . . a . . . . .
decision noise o, = pr Tl’)a . Posterior distributions over the exploration threshold 6,,,
hg " “hg

and the decision noise o, are shown for each experiment (Fig 8, 9, 10, 12).

Table 1 Model parameters, priors and hyperpriors

Parameter Prior Hyperpriors
Exploration threshold ), g 0'ngs~Beta(ap,, by ,) ah,~U(0.1,10)
Ongs = OngsRmax bg,~U(0.1,10)
Decision noise 0,45 ongs~Beta(aphg, by g) apy~U(0.1,10)
Ohgs = O_illgszmax bgg"'U(O-lr 10)
Spatial bias by, g b gs~Beta(ang, by) any~U(0.1,10)
bhgs =2 billgsbmax — bnax b£g~U(0.1, 10)
Short-term feeder bias g args~Beta(ags, brs) ang~U(0.1,10)
bi5~U(0.1,10)
Long-term feeder bias afy agys~Beta(ary, bry) ary~U(0.1,10)
bis~U(0.1,10)

* Rnax is the maximal reward in the experiment. R,,,, = 5 for all experiments except for human experiment 5, in which R,,,, = 100.
** ¥ max IS set to be large enough that any reasonable ¢ falls between 0 and £,,,,.. We set X,,,,, = 10 for all experiments except for
human experiment 5, in which £,,,, = 100.

*** b, and b, are set such that any reasonable b falls between -b,,,,, and b,,.,. We set b, = 5 for all experiments except for
human experiment 5, in which b, = 50.

**** h = horizon, g = nG, s = subject (each rat or each human participant)

The model fitting was implemented using the JAGS package (Depaoli et al., 2016,
Steyvers, 2011) via the MATJAGS interface (psiexp.ss.uci.edu/research/programs
data/jags). This package approximates the posterior distribution over model parameters
by generating samples from this posterior distribution given the observed behavioral
data. We used 4 independent Markov chains to generate 80000 samples from the



posterior distribution over parameters (20000 samples per chain). Each chain had a
burn in period of 10000 samples, which were discarded to reduce the effects of initial
conditions, and posterior samples were acquired at a thin rate of 1. We simulated
behavior using 50 uncorrelated random sets of five parameter values and assessed
whether our model could successfully recover these simulated parameters. Parameter
recovery results are reported in Supplementary Fig S1. In our model, we were able to
near perfectly recover the exploration threshold 6 (R = 0.99), decision noise g (R =
0.98), spatial bias b (R = 0.99), and short-term feeder bias «;; (R = 0.96). We have
lower performance in recovering long-term feeder bias a;s (R = 0.63). We note that
despite these good correlations, our model systematically overestimated «; ¢, providing
therefore upper bound estimates for these parameters.

Results

As with humans, rats transition from exploration to exploitation in the course of a
single game.

Both humans (Experiment 4) and rats (Experiment 1) were able to choose the
objectively best option (P(high reward), the option with a higher reward magnitude
between the two available sugar water feeders for rats, or the slot machine with a higher
reward point payout for humans) significantly above chance (50%) for all trials and all
horizon conditions (Fig 4A, C). Both humans and rats improved their performances with
the number of trials given (Fig 4A, C). Their performances were significantly higher
during the last trial of longer horizons compared to shorter horizons (p < 0.001 for
human, p = 0.002 for rats, Fig 4A, C, see also Fig 6A, C). At the last trial of the longest
horizon condition (H = 10), humans could achieve an accuracy of 98.4% (Fig 4A)
whereas at the last trial of the longest horizon condition (H = 15), rats could achieve an
average accuracy of 83.0% (Fig 4C).

Rats switched from the last chosen option at a significantly higher rate on trial 1 (58.7%
forH=6 and 51.8% for H = 15, p < 0.001 when compared with trial 2, Fig 4D) and then
adopted a more constant and lower rate of switching for later trials (averaged 26.0% for
H =6 and 20.7% for H = 15, Fig 4D). Humans switched more at trial 1 (70.2%, 71.7%
and 74.2% for H =2, 5, 10, Fig 4B) and trial 2 (27.9%, 33.9% and 37.4% for H =
2,5,10), and eventually stopped switching (4.8% and 4.3% at the last trial of H=5 and H
= 10).These results may be partly explained by the deterministic nature of the reward
delivery in the experimental design because it only takes a single switch after the
guided trials to learn the value of the unguided option. When humans were guided to a
good choice (when the unguided reward is objectively lower than the guided reward)
and switched on the 18! free choice to find out that the alternative was worse, they
immediately switched back on the 2™ choice (Fig 5C, S2). It took several trials for rats
to switch back (Fig 5D, S2). The percentage of switching remained higher when guided
to a good choice than to a bad choice until the 4" trial (for H = 6, p = 0.01).
Nonetheless, the fact that P(switch) at trial 1 is higher than later trials clearly separated
the 15t free choice from the later trials. Unlike in reversal learning where exploratory
behavior manifests over a series of trials, we are able to analyze exploratory behavior
by focusing on the 15t free choice in our design. Interestingly, when guided to a good
option at first, both rats (p < 0.01 for H =6, p = 0.07 for H = 15) and humans (p < 0.01

10



forH =2and 5, p =0.008 for H = 10) showed a better accuracy in later trials compared
to when guided to a bad option (Fig 5A, B).

As with humans, rats were able to use prior information to guide exploratory
choices.

On the first free choice of each game, participants have only sampled one of the options
and thus have no information from this game about the payoff of the other option. Thus,
if participants were to perform above chance on this first free choice, they must have
been making use of information from past trials, for example about the prior distribution
of possible rewards.

Intriguingly, both humans (Experiment 4) and rats (Experiment 1) performed above
chance on the first free-choice trials (p < 0.001), both achieving a similar average
(66.6% for rats and 69.0% for humans). The fact that the average accuracy was
significantly above chance in the first non-guided trial showed that humans and rats
used prior information to guide subsequent exploration. In this particular experiment
with repeated games, humans and animals were able to assess the relative ‘goodness’
of the guided target in the current game based on the reward they obtained in previous
games.

Their performances in the first free-choice trial were not uniform and displayed a U
shape (Fig 6A, C). The accuracy was the highest when they were guided to 0 or 5 drops
(or 1 and 5 points for humans), and the lowest when they were guided to more
ambiguous reward amounts such as 3 drops. With prior information alone, it is
theoretically not possible for humans and rats to choose correctly on the first free-choice
trial when guided to intermediate rewards, but through learning in long-horizon games,
their performance curves in the last trial were higher (p < 0.05 for all drops except 4 in
rats, p < 0.01 for all drops in humans) and became more uniform across reward sizes
(Fig 6B, D).

As with humans, rats can adapt the extent to which they explore based on the
reward of the quided choice.

We computed P(unguided), the probability of choosing the option that was not guided
when the first free-choice trial occurred (i.e., p(switch) at the first free choice) as a
function of the reward size during the guided trials (Fig 7A, C). Two-way ANOVA
(Horizon x Guided Reward) showed a significant main effect of guided reward on
p(unguided), p < 0.001. Like humans (Fig 7A), we found that rats were likely to explore
the unguided option if they obtained a low reward during the guided trials (e.g., O drops,
mean = 95.2% Fig 7C), and were unlikely to explore the unguided option if they
obtained a large reward (e.g., 5 drops, mean = 27.5%, Fig 7C). Overall, when guided to
the option with an objectively lower reward, rats chose the unguided feeder significantly
more (at 74.6%, p < 0.001 for H =1 and 6, p = 0.01 for H = 15) on their first free
choices, whereas when guided to the option with an objectively higher reward, rats only
chose the unguided feeder at 39.9% on their first free choices (Fig 5D, trial 1). Humans
chose the unguided option 89.5% on an objectively lower guided reward, and 54.4% on
an objectively higher guided reward (Fig 5C, trial 1). Unlike the “win-stay lose-shift”
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strategy in probabilistic exploration tasks, both “stay” and “shift” in our task were
outcomes of a comparison between the current reward and estimated prior distribution
of rewards and were not directly associated with a gain of reward or an absence of
reward. Unlike with the reversal learning paradigms in which animals update values
gradually and switch to the alternative option after experiencing a stream of bad
outcomes, rats in our experiments can make exploratory decisions based on guided
reward in a single trial (Fig 2B, nG = 0 or 1, Experiment 2) or after a small number of
guided trials (nG = 3, Experiment 1).

As with humans, rats use directed exploration. However, time horizon has
opposite modulation on directed exploration in rats and humans.

P(unguided) is akin to the p(high info) measure in previous human research and a
model-free way of measuring directed exploration is to contrast P(unguided) across
horizon conditions (Wilson et al., 2014). In line with previous research, humans explored
the unguided option significantly more in long horizons than in shorter ones (p < 0.001,
Fig 7B, Experiment 4, p < 0.001, Fig S3G, H, Experiment 5). However, for rats, we did
not observe a significant difference in P(unguided) for different horizons in Experiment 1
(p > 0.05). To properly quantify directed exploration and random exploration, we turned
to modeling. Posterior distributions over the group-level means of exploration threshold
6 and decision noise g for both humans and rats are shown in Figure 8A and E, the
subject-level estimates of the parameters 6 and ¢ are shown in Figure 8B and F. The
posterior distributions of other parameters on spatial bias and feeder bias from previous
games are shown in Figure S4. For humans, in line with the model-free result, we
observed a significant increase of threshold as horizon increases (p < 0.001, Fig 8A, B,
p < 0.001, Fig 3J), compatible with previous findings in the human horizon task (Wilson
et al., 2014). In other words, in longer horizons, humans use more directed exploration
in their first free choices than in shorter horizons. Again, we did not observe a significant
effect of horizon on threshold in rats at the subject level (p > 0.05). However, both the
model-free measure p(unguided) and the model-based measure 6 showed the opposite
trend (Fig 7D, Fig 8F) compared to humans. We will reexamine this in a more controlled
Experiment 2 below.

While exploration threshold 8 is theoretically tied to directed exploration, decision noise
o is tied to random exploration. Our task has some limitations when studying the
horizon modulation of random exploration. Decision noise is consistently small in all
horizon conditions for humans (Fig 8C, D). This may arise from the fact that rewards
only take 5 different values (1 — 5) and are deterministic, in contrast to the stochastic
rewards ranging from 1-100 in the human Horizon Task (Wilson et al., 2014). In human
Experiment 5, the rewards are deterministic but range from 1 to 100. Decision noise in
longer horizons (H = 5, 10) are significantly higher than decision noise (H =1, 2) in
shorter horizons (p < 0.01, Fig S1K, L), which is in line with the horizon adaptive random
exploration reported in human studies (Wilson et al., 2014). The deterministic nature of
the task seemed to limit the use of random exploration by humans and animals in the 1t
free choices. In the 0-5 reward sizes version of the task, we were not able to detect
significant horizon differences in random exploration in either humans (p > 0.05, Fig 8C,
D) or rats (p > 0.05, Fig 8G, H).
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One critical difference between the human Experiment 4 and the rat Experiment 1 is
that human performed all horizon conditions within a single session, whereas rats had
to perform the different horizon conditions on different days. Third variables such as the
amount of training a particular rat was exposed to before each condition, weight of the
rat, etc. could not be controlled and therefore could influence how they explore across
different horizon conditions, and make it difficult to detect horizon dependent changes in
exploration in Experiment 1. Furthermore, the within-session version may make the
difference between horizon conditions more salient to the rats. To make a fairer
comparison, as a result, in Experiment 2, we trained rats to run two horizon conditions H
= 1 and H = 6 within the same session, where one home base was always associated
with short-horizon games (H = 1) and the other home base was always associated with
long-horizon games (H = 6). In this alternate design, there is therefore no confound of
learning/training effect or weight-related motivation effect.

In Experiment 2, we showed that regardless of the number of guided trials, the model-
free measure P(unguided) was significantly lower for Horizon 6 compared to Horizon 1
(Fig 9A, B). Through a two-way ANOVA analysis (Horizon x nG, i.e., the number of
guided choices), we found a significant main effect of horizon on P(unguided) with p <
0.01. Using the model, we confirmed that regardless of the number of guided trials,
exploration threshold 6 for H = 6 was significantly lower than H = 1 (p < 0.001, Fig 9C,
D). By computing the posterior distribution over the differences in exploration threshold
between horizons A6 = 6(H = 6) — 6(H = 1), we found that the percentage of samples
that A6 < 0 was 96.2%, 89.3% and 75.8% for nG = 0, 1, and 3 respectively (Fig 9G). On
the other hand, decision noise ¢ remained unchanged forH=1vs H=6 (p > 0.05),
regardless of the number of guided trials (Fig 9E, F). By computing the posterior
distribution over the differences in decision noise between horizons Ag = o(H = 6) —
o(H = 1), we found that the percentage of samples that A6 > 0 was 53.8%, 51.1% and
44.2% for nG = 0, 1 and 3 respectively (Fig 9H).

Moreover, we performed a variant of Experiment 2 in which we used low-pitch vs high-
pitch sound cues to signal the horizon condition. The sound was played before the start
of each game and during the guided trials to cue the rat to the horizon condition of the
current game. The motivation for doing this was that all horizons were interleaved in the
human version whereas they were alternated in Experiment 2 when each home base
was tied to a specific horizon condition. With the sound cue, we could interleave the
horizon conditions pseudo-randomly in rats as in the human version. Within a session,
each home base could be associated with different horizon conditions. Again, we found
that exploration threshold decreased as a function of horizon whereas decision noise
remained unchanged (Fig S6). The fact that there was still a behavioral difference
between games of different horizon conditions using only sound cues shows that rats
can associate sounds with different time horizon conditions, which can be useful for
future task developments.
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Rats explore more in more volatile environments, but volatility alone does not
account for the horizon adaptive exploration in rats.

The Horizon Task (Wilson et al., 2014) was originally designed in humans to assess
exploratory behavior in terms of planning: In longer time horizons it is more beneficial to
explore because there is a longer time (i.e. more trials) to benefit from the information
gained from exploration. In longer time horizons, the environment is also more stable
and less volatile, meaning the rewards from the two options will remain predictable for a
longer time before changes occur. As a result, instead of planning rationally, rats may
simply adapt the extent to which they explore based on the volatility of the environment
and explore more when the environment is changing more frequently (shorter horizon).
This may account for the opposite dependence of directed exploration on the horizon in
rats compared to humans.

In order to test this hypothesis, instead of giving deterministic rewards that were fixed
and learnable for the two rewarded feeders, in Experiment 3, each feeder gave an
independently random reward that was sampled uniformly between 0 and 5 drops each
time. In other words, the rewards of the two feeders were not learnable and changed
independently from trial to trial, from game to game. The time horizon was always set to
H = 6. In this version, since there was no information that could be learned and the
rewards were random, the rat’s accuracy was at chance at 54.3%. Possibly due to
overtraining in Experiment 1 and 2, after the guided choices, rats still explored the
unguided option significantly more on the first free choices than on subsequent ones (p
= 0.01), suggesting that the novelty of the unknown feeder itself in addition to the
potential better reward may drive exploration (Fig 10A). Critically, the percentage of
exploring the unguided feeder was higher compared to P(unguided) in the constant
reward scenario in Experiment 1, especially when the guided reward size was high (Fig
10B). For later choices, the overall level of switching was also slightly higher compared
to that of the constant reward condition in Experiment 1 (Fig 10A). In a more volatile
environment, rats increased their switching rate. This could account for the horizon
difference in P(switch) in Figure 4D where there was a significantly lower rate of
switching in H = 15 compared to H = 6 (p < 0.001), possibly due to the fact that the
environment was less volatile in the H = 15 case. This difference in P(switch) could not
be attributed to directed exploration and could arise from random exploration.

Despite that volatility could potentially account for random exploration in later trials,
importantly, volatility alone cannot account for the opposite dependence of exploration
threshold on horizon in rats. In Experiment 3, we observed an increase in both the
exploration threshold (Fig 10C, D, p < 0.01) and decision noise (Fig 10E, F, p <0.01) in
the random reward condition compared to the constant reward condition. Since only
exploration threshold (not decision noise) changes with horizon in Experiment 2. This
suggests that the horizon difference we observed in Experiment 2 cannot be attributed
to volatility. We note that exposure to Experiment 1 and 2 may contribute to the high
threshold (more switching) in Experiment 3, but it is unlikely that the high decision noise
parameter arises from any carry-over effects from Experiment 1 and 2. Since increasing
volatility increases decision noise, it still holds from Experiment 3 that volatility itself
does not account for the horizon differences we observed in rats.
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Self-guided exploration is treated intrinsically differently than cue-guided choices
in rats.

We investigated whether self-driven exploration was any different from cue-guided
exploration. Did rats behave differently if they were guided by light cues on the first
trials, or if they were instead invited to choose freely? Specifically, in separate weeks
and between sessions, rats performed both a version in which they were guided to one
feeder once before freely choosing between the 2 options (Guided condition, nG =1 in
Experiment 2), and a version in which they started off with 2 options to choose from
(Free choice condition, nG = 0 in Experiment 2). In the analysis, we treated the first
choice in the Free choice condition as if it were guided (i.e., self-guided by the rat itself,
instead of by the blinking LED), and treated the second choice as choice number 1 (Fig
11).

Perhaps counter-intuitively, we found that overall, rats performed significantly better (p <
0.01) if the first trial was a free self-guided choice than when they were guided by a light
cue (Fig 11A). Moreover, rats explore differently in the Free condition compared to the
Guided condition. When rats were cue-guided, they switched significantly more on the
first free choice than in subsequent choices as in other variants of the task (Fig 11B, 4B,
D). However, when they chose freely, the 2" choice did not differ from subsequent
choices anymore (p > 0.05), and rats seemed to have kept a steady rate of switching
throughout the game, at a rate higher than the Guided condition (p < 0.001, Fig 11B).
Rats switched significantly more on the first free choice in the Guided condition
compared to the Free choice condition (p < 0.001, Fig 11D), and they switched more
regardless of the guided reward and the horizon condition (Fig 11C).

We have shown earlier that the exploration threshold was lower in H = 6 than with H =
1, regardless of whether the first trial was guided or not (Fig 9C, D) and decision noise
remained unchanged (Fig 9E, F). Now we ask whether exploration threshold and
decision noise differ in the Guided vs Free choice condition. For both horizon H = 1 and
H = 6, exploration threshold in Free-choice condition was lower than in the Guided
condition (Fig 12A). By computing the posterior distribution over the differences in
exploration threshold between conditions A6 = 6(Free) — 8(Guided), we found that the
percentage of samples that A6 < 0 is 99.5%, and 98.4% forH=1and H=6
respectively (Fig 12B). In other words, when rats were cue-guided, they explored more
in the first free choice. Decision noise did not change significantly in the Guided
condition vs Free choice condition (Fig 12C), by computing the posterior distribution
over the differences in decision noise between conditions Ac = o(Free) — o(Guided),
we found that the percentage of samples that Ac < 0 is 62.0%, and 64.4% for H =1 and
H = 6 respectively (Fig 12D).

To our knowledge, such comparisons between self-guided and cue-guided 15 choice in
explore-exploit tasks have done been done on humans yet, and as such, these results
therefore predict human performance.

Finally, we note that there are no sex differences on horizon adaptation of directed
exploration in humans (p > 0.05, Experiment 4). Recent work has also found no
evidence for sex differences in either directed or random exploration in the original

15



Horizon Task (Smith et al., 2021). For these reasons, we did not include a population of
female rats at this stage, although we recognize that further work on sex differences in
the explore-exploit tasks will be needed.
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Discussion

In this study, we investigated the exploratory behaviors of rats using a new model of the
Horizon task. We addressed the limitations of previous rodent studies by designing a
novel open-field task in which rodents choose between two locations that offered
different amounts of rewards. To dissociate the uncertainty in the estimation of value
from the ambiguity of an unknown novel option, we manipulated the magnitudes of
rewards rather than the probabilities of their delivery. Rather than reversing (or drifting)
the reward conditions at the same set of locations/feeders as in traditional reversal
learning paradigms, we were able to use two sets of different locations alternatively as
new games start and use independent rewards between games. As a result, we were
able to dissociate exploration for information from abandoning a currently bad option
(which are confounded in reversal learning paradigms). In our design, rats were guided
to one of two feeder locations first, and the extent to which they explored the other
unguided feeder location in their first free choice was compared across horizons. This
measure is an equivalent of the model-free measure that is related to directed
exploration in previous human studies (Wilson et al., 2014). In addition, rats performed
the task in both a short and a long horizon condition to assess whether they explored
differently in different time horizon contexts. Finally, we recruited human subjects to
perform a version that was comparable to the rat task, and we compared the
performance between humans and rats.

We showed that similarly to humans, rats were able to use prior information about the
distribution of rewards to guide future exploration. Rats explored the unguided option
more in their first free choice when the guided reward size was low compared to when
the guided reward size was high. This is very similar to the win-stay/lose-shift strategies
in reversal learning where animals choose to switch more when the exploit value is low
and less when the exploit value is high. However, unlike in reversal learning where a
“‘win” or a “loss” is computed by comparing the current reward with the expected value,
in our design, a “win” or a “loss” is computed by comparing the current reward (or
estimated value of the current option) with the estimated distribution of rewards using
prior information. In order to assess whether the exploit value was low or high, instead
of using short-term memory to recall the value of the exploit option before reversal
within the same game, rats had to use their long-term memory from previous games
and sessions in previous days to estimate the distribution of possible rewards. We
showed that rats were indeed able to incorporate prior information in guiding their
exploration.

In this study, we were able to separate directed exploration from random exploration.
Both rats and humans switched significantly more at the first free choice than on
subsequent choices. We further quantified directed and random exploration using
hierarchical Bayesian modeling in both the rat and the human datasets. In line with
previous human studies, humans have an increased exploration threshold (explore
more) in longer horizons. Unlike humans however, rats showed an opposite adaptation
of exploration threshold to the time horizon. For random exploration, with deterministic
reward size in a small range (0 — 5), we did not observe adaptations of random
exploration in either humans or rats in this task. With a deterministic larger reward range
(1 = 100), in human Experiment 5, we did observe some level of random exploration
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(Fig S1K, L), but not as strong as in the probabilistic version of the human Horizon Task
(Wilson et al., 2014). This can be considered a limitation of the current design and may
also be a limitation of using rats and their limited ability to assess and discriminate
between large number of levels of rewards. exploration, our task is better suited to study
directed exploration rather than random exploration. Variation in the probability of
reward deliveries, and smaller (or different types) of rewards might be possible way to
improve our task in the future, to better assess random exploration.

As with optimal agents, human have a higher level of directed exploration in longer time
horizons since the value of the information gained through exploration is high if the
remaining time horizon is long. Interestingly, rats have instead a lower level of directed
exploration in longer horizon. Our results do not fully explain this phenomenon. We first
speculate why rats do not increase threshold as humans do. There may be an ‘optimize
vs satisfice’ discrepancy in humans vs rats due to the nature of the rewards received.
The utility of 1 to 5 drops and the cost of actions are different for humans and rats.
Humans receive hypothetical points with relatively effortless keypresses on a computer
keyboard, whereas rats had to physically travel on a meter-long maze to earn sugar
water. The efforts humans spent in making the decision was small. As a result, they
over-explored to find out the best possible action. It costs little for humans to optimize
by testing if the alternative reward is 5 when the guided reward is 3, however rats may
risk running for O rewards by visiting the unguided feeder when they are guaranteed to
have 3 drops of sugar water in the guided feeder. Rats therefore likely under-explored
(directed exploration) to secure a satisfiable amount of return for each visit. In our data,
rats had lower exploration thresholds compared to humans (Fig 8A, E). The drive to
explore may therefore not be to optimize for rats, but to satisfice. Exploring more in
longer horizon may be an optimal way to explore, but optimization may only offer
marginal gain in total rewards, and it may not be worth for rats to achieve optimality in
this task. To properly test this hypothesis would require future experiments that could
involve effortful decision making in humans (e.g., physically walk from one building to
another on campus) or potentially run identical tasks in long/short distance (or maze vs
boxes) in rats. We would predict that rats in an effortful setup will be less willing to
engage in directed exploration than rats in an effortless setup.

Why do rats show a decrease in exploration threshold with horizon? In short horizon,
without fully understanding the structure of the task, rats may perceive the time horizon
in terms of the volatility of the environment, and thus explore more in a more volatile
condition (the short horizon condition). Experiment 3 supported this view, in that, by
having random rewards, rats explored more compared to the constant reward case in
Experiment 1 (Fig 10). However, volatility does not selectively increase threshold, but
also increases decision noise. This is compatible with the theory that relative uncertainty
correlates with directed exploration whereas total uncertainty correlates with random
exploration (Gershman, 2019). In a more volatile environment, the uncertainty of both
options increase, thus both total uncertainty and relative uncertainty increase, resulting
in the increase in the threshold as well as the decision noise. Since rats selectively
increased threshold without increasing decision noise in longer horizon condition,
volatility alone cannot account for the behavior of the rats. Another possibility is that rats
may be biased towards feeders that were more rewarding in past games. Indeed, we
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observed that rats are slightly biased towards the feeder that had high rewards in the
past (Fig S5). In Experiment 2, rats spent more trials on long horizon games (H = 6)
compared to short horizon games (H = 1). As a result, rats might develop a stronger
bias towards rewarding feeders in long horizon games. We did see a significantly larger
feeder bias in long horizon games in Experiment 2 (Fig S7). However, feeder bias
should in principle affect the guided feeder and unguided feeder equally and it is not
clear how it might bias exploration. Parameter recovery results suggested that our
model estimates the upper bound of these feeder biases (Fig S1). It is therefore unlikely
that the horizon difference in exploration threshold arises from feeder biases. Lastly, a
longer horizon means that there were many opportunities to explore the unguided
option, making it less urgent to explore on the first trial compared to a shorter horizon.
Future study is needed to compare these alternative algorithms that rats may use in
explore-exploit tasks and explain why rats decrease their decision threshold with time
horizon.

Nevertheless, we note that rats can adapt the level of directed exploration to the time
horizon. The use of horizon context to explore requires (possibly irrational) planning and
model-based reasoning (a mental model of the environment that reflects the time
horizon). Win-stay/lose-shift strategies which are effective in solving reversal learning
problems do not work in dealing with horizon changes. The win-stay/lose-shift strategy
is solely dependent on experienced and estimated rewards and does not by itself adapt
to time horizon changes. To the authors’ knowledge, horizon adaption of exploration
has only been examined in very limited species (humans, Wilson et al, 2014; great tits,
Kacelnik, 1979). It remains an open question as to whether other species can adapt
exploration to time horizons.

In addition, we believe our design has advantages in serving as a potential behavioral
model in studying the neurophysiological mechanisms underlying real-time explore-
exploit decisions and its neural substrate. In the reversal learning paradigm, the level of
exploration had to be evaluated on the course of several trials, therefore the exact
timing of “exploration” decision is difficult to estimate. In our design, however,
exploration can be seen in a single trial (visiting the unknown option), which is
advantageous.

Finally, we observed an interesting difference in the exploration strategy between when
the first choice was self-driven vs cue-guided (a condition that was not studied in
humans in this task). This suggests a different neural mechanism underlying voluntary
vs guided learning. Rats explored the unvisited feeder more when they were guided
first, but this was not observed when the first choice was made freely by themselves. A
similar phenomenon was recently reported in a human explore-exploit study
(Sadeghiyeh, Wang, & Wilson, 2018). More generally, learning differences in active and
passive version of the same tasks have been shown in a number of tasks (Gureckis &
Markant, 2012; Markant & Gureckis, 2014; Markant, Settles, & Gureckis, 2016).Our rat
model has therefore the potential of probing the differential neural mechanism
underlying active vs passive learning. Overall, our novel design provides a fruitful
behavioral paradigm to investigate explore-exploit tradeoffs in future
electrophysiological studies and suggest new avenues for further comparisons between
rats and humans.
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Figure Captions

Figure 1: A: In rat experiments, the 2 sets of home bases, lights and feeders were used
alternatively between games. B. Timeline of the rat experiments. Rats were trained to
start each trial by reaching the home base (HB, no reward). They were then given a
small number (here nG = 3) of guided trial (e.g., Trial 1-3, one blinking light, here 1
drop). Subsequent trials consisted in 2 simultaneously blinking lights (here Horizon = 1).
The end of a game was signaled by a sweeping tone and a change of home base. C.
Horizon conditions (the number of free trials) in Experiment 1, the number of guided
trials are always 3 in Experiment 1.

Figure 2: A. In rat Experiment 2 (except for the sound cue variant), horizon conditions
are alternated between games. B. Task conditions (nG x Horizon) in Experiment 2. The
number of guided trials is 0, 1 or 3 trials, the number of free trials (horizons) are either 1
or 6 trials. Note that when nG = 0, there are H + 1 free trials and the first of these are
treated as a (self-guided) guided trial.

Figure 3: A. Timeline of the human experiments (Experiment 4 and 5): Human subjects
were presented with a 2-armed bandit display of explicit time horizon (here Horizon = 2).
They were guided to the first bandit and obtained a visible reward (here 3 points).
Subsequent trials consisted in simultaneously colored squares indicating free choices
between the two bandits. B. Task conditions in Experiment 4 and 5. There are four
horizon conditions H=1, 2, 5 and 10.

Figure 4: A and C. Probability of choosing the option with the highest reward for
humans (A) and rats (C). B and D. Probability of switching from the last chosen option in
free choices for humans (B) and rats (D). The human data is from Experiment 4 and the
rat data is from Experiment 1.

Figure 5: Probability of choosing the option with the highest reward, i.e., p(high reward)
and probability of switching from the last chosen option in free choices, i.e. p(switch),
split up by whether the guided option is the objectively better option, for humans (A, C)
and rats (B, D). Data from Experiments 1 (rats) and 4 (humans). High (low) contrast
colors indicate games where the guided choices where in fact the best (worst) one of
the two available choices.

Figure 6: Probability of choosing the option with the highest reward in the 15t and last
free choice as a function of guided reward size. A and C. Probability of choosing the
high reward option in the 1st choice of each horizon as a function of guided reward size
for humans(A) and for rats (C). B and D. Probability of choosing the high reward option
in the last free choice of each horizon as a function of guided reward size for humans
(B) and for rats(D). Experiment 1 (rats) and 4 (humans).

Figure 7: A and C. Probability of exploring the unguided option (i.e., P(switch) at trial
number 1) in the 18! free choice as a function of guided reward size for humans (A) and
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for rats (C). B and D. Probability of exploring the unguided option as a function of
horizon for humans (B) and for rats (D). Experiment 1 (rats) and 4 (humans).

Figure 8: Model-based estimates of exploration threshold and decision noise for
humans (A-D) and rats (E-H). A and E: Posterior distributions over the group-level
means of exploration threshold 6. B and F: Means of the subject-level estimates of
exploration threshold 6 as a function of horizon. C and G: Posterior distributions over
the group-level means of decision noise ¢. D and H: Means of the subject-level
estimates of decision noise ¢ as a function of horizon. Experiment 1 (rats) and 4
(humans)

Figure 9: Differences in directed and random exploration in H=1 vs H = 6 in rats. A.
Probability of exploring the unguided option vs guided reward size separated by horizon
condition, for nG =0, 1 and 3 respectively. B. Average P(unguided) by horizon (blue is
H=1,red is H=6)and nG. C. Posterior distributions over the group-level means of
exploration threshold 6(H = 1) and 8(H = 6) for nG =0, 1 and 3. D. Means of the
subject-level estimates of exploration threshold 6 as a function of horizon. E. Posterior
distributions over the group-level means of decision noise ¢(H = 1) and o(H = 6) for
nG =0, 1 and 3. F. Means of the subject-level estimates of decision noise ¢ as a
function of horizon. G. Posterior distribution over the group-level means of 6(H = 6) —
0(H = 1). H. Posterior distribution over the group-level means of o(H = 6) —o(H = 1).
(Experiment 2). nG= number of guided trials.

Figure 10: Effects of volatility on exploration by comparing random vs constant reward
conditions (Experiment 3). A. Probability of switching from the last chosen option as a
function of trial number. B. Probability of exploring the unguided option in the 15t free
choice as a function of guided reward size. C. Posterior distributions over the group-
level means of exploration threshold 8. D. Means of the subject-level estimates of
exploration threshold 6. E. Posterior distributions over the group-level means of
decision noise ¢. F. Means of the subject-level estimates of decision noise o.

Figure 11: Differences in exploration in Guided vs Free choice condition (Experiment
2). At the start of a game, rats were given one guided trial (1 light blinking, Guided
condition) or a free choice instead (2 lights blinking, self-guided condition). A: Probability
of choosing the option with the highest reward in free choices after the guided trial vs
after the first free choice for H = 1 and H = 6. B: Probability of switching from the last
chosen option in Guided vs Free condition for H=1 and H = 6. C: Influence of reward
size during the first trials (Guided or Free choice) on exploration. D: Average
percentage of exploring the unchosen option in Guided vs Free choice condition by
horizon, blue is H= 1, red is H = 6, lighter color is Free choice condition and darker
color is Guided condition.

Figure 12: Model estimates of exploration threshold and decision noise in Free choice

condition vs Guided condition. A and C. Posterior distributions over the group-level
means of exploration threshold 6 (A) and decision noise ¢ (C). B. Posterior distribution
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over the group-level means of 6(Free) — 68 (Guided). D. Posterior distribution over the
group-level means of o(Free) — a(Guided).
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