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Abstract. —In the past two decades, genomic data have been widely used to detect historical gene flow between species
in a variety of plants and animals. The Tamias quadrivittatus group of North America chipmunks, which originated
through a series of rapid speciation events, are known to undergo massive amounts of mitochondrial introgression.
Yet in a recent analysis of targeted nuclear loci from the group, no evidence for cross-species introgression was
detected, indicating widespread cytonuclear discordance. The study used the heuristic method HYDE to detect gene
flow, which may suffer from low power. Here we use the Bayesian method implemented in the program BPP to re-
analyze these data. We develop a Bayesian test of introgression, calculating the Bayes factor via the Savage-Dickey
density ratio using the Markov chain Monte Carlo (MCMC) sample under the model of introgression. We take a
stepwise approach to constructing an introgression model by adding introgression events onto a well-supported
binary species tree. The analysis detected robust evidence for multiple ancient introgression events affecting the
nuclear genome, with introgression probabilities reaching 63%. We estimate population parameters and highlight
the fact that species divergence times may be seriously underestimated if ancient cross-species gene flow is ignored
in the analysis. We examine the assumptions and performance of HYDE and demonstrate that it lacks power if
gene flow occurs between sister lineages or if the mode of gene flow does not match the assumed hybrid-speciation
model with symmetrical population sizes. Our analyses highlight the power of likelihood-based inference of cross-
species gene flow using genomic sequence data. [Bayesian test; BPP; chipmunks; introgression; MSci; multispecies

coalescent; Savage-Dickey density ratio.]

INTRODUCTION

Genomic sequence data are a rich source of informa-
tion concerning the history of species divergences and
cross-species gene flow. The past two decades have seen
widespread use of genomic data to infer hybridization
or introgression (Mallet ef al., 2016). Gene flow has been
detected in a variety of species including Arabidopsis
(Arnold et al., 2016), butterflies (Martin ef al., 2013), cor-
als (Mao et al., 2018), lizards (Finger et al., 2022), birds
(Ellegren et al., 2012), and mammals (Chan et al., 2013;
Kumar et al., 2017; Shi and Yang, 2018). The studies have
considerably enriched our understanding of the evolu-
tionary dynamics of introgressed genes, and the role of
introgression in speciation and ecological adaptation
(Payseur and Rieseberg, 2016; Martin and Jiggins, 2017).

A number of statistical methods have been developed
to analyze genomic sequence data to detect gene flow
between species and to estimate its strength (as mea-
sured by the introgression probability or migration rate).
Heuristic or summary methods are based on summaries
of the multilocus sequence data and include the popular
D-statistic or ABBA-BABA test (Patterson ef al., 2012),
HYDE (Blischak et al., 2018), and SNAQ (Solis-Lemus

and Ane, 2016). The D-statistic and HYDE use the
site-pattern counts for a species quartet to test for the
presence of gene flow between nonsister species, while
SNAQ uses the frequencies of estimated gene tree topol-
ogies. Likelihood methods use the multilocus sequence
alignments directly and include the Bayesian imple-
mentations of the introgression model in PHYLONET/
MCMC-SEQ (Wen and Nakhleh, 2018), *BEAST (Zhang
et al., 2018), and BPP (Flouri et al., 2020), as well as the
maximum-likelihood and Bayesian implementations
of the continuous-migration model (also known as the
isolation-with-migration or IM model) (Nielsen and
Wakeley, 2001; Zhu and Yang, 2012; Dalquen et al., 2017;
Hey et al., 2018). See Jiao et al. (2021) for a recent review.
In theory, likelihood methods are expected to be more
powerful because they use all information in the data
about the model and parameters. However, summary
and likelihood methods for inferring cross-species
gene flow are seldom applied to the same real datasets
with their utilities evaluated, partly because likelihood
methods typically involve intensive computation and
may not be computationally feasible for genome-scale
datasets. In this regard, it is noteworthy that the BPP
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implementation of the multispecies-coalescent-with-in-
trogression (MSci) model has been successfully applied
to genomic datasets of more than 10,000 loci (Flouri et
al.,2020; Table 1; Thawornwattana et al., 2022; Table S4).

The Tamias chipmunks (sensu lato, but see Patterson
and Norris, 2016) are a diverse group of at least 23 dis-
tinct species, occupying a variety of habitats in the west-
ern United States. Molecular phylogenetic studies have
revealed a complex history of radiative speciations and
cross-species gene flow involving morphologically and
ecologically diverse lineages (Good and Sullivan, 2001;
Good et al., 2003).

The Tamias quadrivittatus group of chipmunks cur-
rently consists of nine species that are distributed across

the Great Basin along with the central and southern
Rocky Mountains in North America (Fig. 1). Previous
work on Tamias has highlighted the importance of geni-
tal morphology, specifically the baculum (a bone found
in the penis) in male chipmunks, as a reliable indicator
of species limits (Patterson and Thaeler Jr, 1982; White,
2010). The biogeographic history of the group likely
included large range fluctuations that have periodi-
cally resulted in isolation and secondary contact among
species, which would have affected opportunities for
hybridization and/or introgression (Good et al., 2003).
The current distributions of species in the group have
extensive regions of overlap and broad parapatry in
ecological transition zones (Fig. 1), with instances of

TaBLE1l Summary of evidence for mitochondrial introgression in the T. quadrivittatus group (Sullivan et al., 2014)

Species Region Distribution Introgression Source

T. bulleri M Allopatric No

T. canipes (C) GB/RM Allopatric No

T. cinereicollis (I) GB/RM Parapatric Yes Not assignable

T. dorsalis (D) GB/RM Parapatric Yes C/U/Q/Not assignable
T. durangae M Allopatric No

T. palmeri GB/RM Allopatric Untested

T. quadrivittatus (Q) GB/RM Parapatric Yes Not assignable

T. rufus (R) GB/RM Allopatric No

T. umbrinus (U) GB/RM Parapatric Yes Not assignable

Note: Geographic regions include Great Basin (GB), Rocky Mountains (RM), and Mexico (M). Single letter codes are for the six species

included in the nuclear data analysis.
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FIGURE 1.
IUCN (https:/ /www.iucnredlist.org/).

Geographic distributions of the six chipmunk species in the Tamias quadrivittatus group, based on data downloaded from the
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both allopatry and parapatry, and the determinants of
current distributions are thought to be related primar-
ily to competitive exclusion and ecological preference
(Brown, 1971; Heller, 1971; Root et al., 2001). The sys-
tem provides an exciting opportunity to investigate the
effects of introgression on genetic variation within and
between species.

Hybridization between chipmunk species has been
widely reported based on discrepancies between
mtDNA, nuclear DNA, and morphology (Good and
Sullivan, 2001; Good et al., 2003, 2008; Hird et al., 2010).
Work in the past decade has documented widespread
mitochondrial introgression among species of the
group (Reid et al., 2012; Sullivan et al., 2014; Sarver et al.,
2017, 2021), which is often asymmetrical, possibly due
to bacular morphology, which has been identified in at
least six species (Good et al., 2003, 2008; Reid et al., 2012;
Sullivan et al., 2014). Recent work on six species in the T.
quadrivittatus group found that four of them exhibited
clear evidence of introgressed mitochondrial DNA: T.
cinereicollis, T. dorsalis, T. quadrivittatus, and T. umbrinus
(Table 1). The cliff chipmunk (T. dorsalis) was involved in
local introgression with multiple other species, receiv-
ing mtDNA from whichever congeneric chipmunk
it came into contact with. However, populations of T.
dorsalis that are geographically isolated carry mtDNA
haplotypes that are unique to the species (Sullivan et
al., 2014; Sarver et al., 2017). Range overlap in transition
zones plays an important role in mitochondrial intro-
gression in Tamias (Brown, 1971; Bi et al., 2019).

Sarver et al. (2021) used a targeted sequence-cap-
ture approach to sequence thousands of nuclear loci
(mostly genes or exons) to estimate the species phylog-
eny of the T. quadrivittatus group and to infer possible
nuclear introgression. The program HYDE (Blischak et
al., 2018) was used to infer gene flow. Surprisingly, no
significant evidence for gene flow involving the nuclear
genome was detected between any species in the group,
despite the evidence for widespread mitochondrial
introgression. We note that HYDE, like the D-statistic,
uses the four-taxon site-pattern counts pooled across
the genome as data, and does not use information in
the variation in genealogical history across the genome
caused by the stochastic fluctuation of coalescent and
introgression (Lohse and Frantz, 2014; Jiao et al., 2021;
Zhu and Yang, 2021). As a result, neither the D-statistic
nor HYDE can detect gene flow between sister lineages.
Importantly, HYDE is designed to estimate the relative
genetic contributions of the two parental species which
hybridized to form a third species. When applied to
detect other modes of gene flow, it makes restrictive
assumptions about the direction of gene flow, and about
species divergence times and population sizes that may
be unrealistic (Fig. 7). The performance of HYDE when
its model assumptions are violated is unexplored.

To examine whether the lack of evidence for nuclear
introgression in the analysis by Sarver et al. (2021) may
be due to the lack of power of HYDE, here we re-analyze
the data of Sarver et al. (2021) using the BPP program
(Flouri et al., 2018, 2020), which includes a Bayesian

implementation of the MSci model. Borrowing ideas
from stepwise regression or Bayesian variable selec-
tion, we add introgression events sequentially onto the
binary species tree to construct a joint MSci model with
multiple introgression events. We develop a Bayesian
test of introgression, calculating the Bayes factor for
comparing the null model of no introgression against
the alternative model of introgression via the Savage-
Dickey density ratio (Dickey, 1971), using a Markov
chain Monte Carlo (MCMC) sample under the MSci
model. This may have a computational advantage over
cross-model MCMC algorithms such as reversible jump
MCMC (Green, 1995) or calculation of Bayes factors
using thermodynamic integration (Gelman and Meng,
1998; Lartillot and Philippe, 2006). Our re-analysis
revealed robust evidence for several ancient introgres-
sion events affecting the nuclear genome in the Tamias
group, involving both sister and nonsister species. We
examine the model assumptions underlying HYDE and
use computer simulation to demonstrate that the oppo-
site conclusions reached in the two analyses may be
explained by the lack of power of HYDE to detect gene
flow. We then assess the impact of ignoring introgres-
sion on estimation of population parameters, highlight-
ing serious biases in species divergence time estimation
when introgression exists and is ignored. Our results
highlight the power of coalescent-based likelihood
methods in the analysis of genomic datasets to infer the
history of species divergence and gene flow.

THEORY: BAYESIAN TEST OF INTROGRESSION

Bayes Factor Is Given by the Savage-Dickey Density Ratio
in Comparisons of Nested Hypotheses

One can test for the presence of cross-species gene
flow by comparing the introgression (MSci) model
with the corresponding multispecies-coalescent (MSC)
model with no gene flow. The model of no gene flow
(Ho) is a special case of the introgression model (Hi),
with Hi reducing to Ho when the introgression proba-
bility is 0.

The commonly used device for Bayesian model com-
parison is the Bayes factor, which is the ratio of the mar-
ginal likelihood values under the two compared models.
When the two models are nested, the Bayes factor is
given by the Savage-Dickey density ratio (Dickey, 1971).
In general, suppose we wish to compare the null model
Hy : ¢ = ¢ against the alternative model Hj : ¢ # ¢y,
and suppose that both models have common (nui-
sance) parameters A, while parameters { in Hi become
unidentifiable when ¢ = ¢o. The parameter vector is A
for Hy and (¢, A, €) for Hi. Given data x, let the likeli-
hood be Lo (A) under Hyp and L(¢, N\, &) =p (x| ¢, A\ €)
under Hi, with L(¢o, A\ &) =Lo(\) as the two mod-
els are nested. Let the prior be 7 (A) under Hy and
(N =m(@)m(N| )7 (€| $,A) under Hi. The
Bayes factor in support of Hi over Hy is defined as

€20z 1snbBny 1o uo Jasn uojbuiysepn Jo Ausiaaiun Aq 9/€/889/9t/2/2./e1on1e/01qsAs/wod dno oiwapese//:sdiy Wol) papeojumoc



2023 JIET AL—POWER OF BAYESIAN AND HEURISTIC TESTS 449

m [ (¢ AL ¢,A ¢) d¢ dx dé¢
mo fﬂ'o A)dA ’ 1)

where my and m are the marglnal likelihoods for the
two models, respectively.

Under the assumption that the priors on the common
parameters () agree between the two models

(A ] ¢o) =mo (), )

Bip can be expressed as the ratio of the prior and pos-
terior densities for ¢ in Hj, both evaluated at the null
value ¢y:

Bip =

By = 1 — 7 (o)

my  m(¢o | x)’ (©)
where 7 (¢ | x) = [[ 7 (¢, A € | x)dEdA is the marginal
posterior density of ¢.

A proof is provided in the Appendix. Note that
equation (3) holds even when there exist nuisance
parameters (A\) in both models, and also when the
usual regularity conditions are not met: for example,
when the null parameter values (¢p) are at the bound-
ary of the parameter space in Hi, and when some
parameters in Hi (§) become unidentifiable when
the parameters of interest take the null values (when
¢ = ¢p). Such nonstandard conditions cause consid-
erable difficulties for the likelihood ratio test (LRT),
leading to unconventional or unknown null distribu-
tions for the test statistic (Self and Liang, 1987). It is
interesting that they do not cause any difficulty for
the Bayesian test.

If the condition on the priors (equation (2)) does not
hold, a correction factor may be applied (Verdinelli and
Wasserman, 1995). This is not needed in our application.

Calculation of the Savage-Dickey Density Ratio

The prior density 7 (¢o) of equation (3) is ty 1cally
available analytically. The posterior density = F o | x)
can be estimated using a kernel density smoothing pro-
cedure using the MCMC sample under H; (Silverman,
1986). This means that calculation of Bip using equation
(3) requires running the MCMC under Hi only and no
cross-model algorithms such as reverse-jump MCMC
(Green, 1995) are needed. Note that within-model
MCMC typically has better mixing properties than
cross-model algorithms (Yang, 2014, pp. 247-260).

Suppose (¢, ¢@,---,¢MN)) are an MCMC sam-
ple from the posterior 7 (¢ | x). These are the ¢ values
sampled during the MCMC, with the values for other
parameters (A and &) simply ignored. The kernel den-
sity estimator at the point ¢y is

$o — (17(1))
O Nh Z h @

where K (+) is the kernel smoothmg function and  is the
smoothing parameter or window width. A good choice
of h is (Silverman, 1986, eq. 3.30-3.31, p. 47)

I — 09 min ( sD, inter-quartile range) o« N-(1/5)

1.34 5)

The kernel function K is typically symmetrical around
0, with points further away from ¢p make less contri-
bution to the density at ¢o. For example, the Gaussian
kernel is given as

1 e
Voro (6)
However, this approach may be awkward to apply if
the prior or posterior density at the null value, (o) or
7(¢o | x), is 0 or co. In this paper, we use a more intui-
tive way of deriving the Savage-Dickey density ratio of
equation (3), which also provides an approach to its cal-
culation. This treats the problem of testing as a problem
of estimation, and assesses how likely the parameter of
interest (¢) differs from the null value (¢p). Define a null
region or region of null effects, ¢ : |¢ — ¢o| < ¢, inside
which ¢ is very close to ¢g. The null region is a small
part of the parameter space for Hi that represents Hy
(Fig. 2). We then define a Bayes factor to represent the
evidence for H;

K(t) =

~F(@l) 1-F($) _ P()

P(glx) P(g) Pl (7)
as 1 —P(¢) =1 and 1 —P(g|x) ~ 1 for small e. When
e—0, P(@) = 7m(d)A and P(¢|x)— 7m(do | x)A
where the differential A is the size of the null region,
so that Bige — m(¢0)/7(¢o | x), as in equation (3). Thus
the same conclusion is reached whether the problem is
considered a testing problem (equation (1) or (3))) or an
estimation problem (equation (7)).

The approach is illustrated in Fig. 2 using the simple
problem of testing Hy : 1 = O against Hi : p 7# O using a
sample of size n from N (g, 1). The data are summarized
as the sample mean |X|. We assign the prior 12 ~ N (0, 03)
under Hi. The postenor is then ,u|x ~ N(M,Jl) with
p =nx/ [(n+1)/03] and 1/0? =n+ (1/03). The
prior and posterior probabilities of the null interval
are P(4) = P{|u| <e} =1—2¢(—¢/00) = m(1o)A and
P(g | x) = é([e — ul/o1) = d([—¢ — m]/o1) = 7(puo | X)A
with the differential to be the width of the null interval,
A =2e.

The above-mentioned theory applies generally
to Bayesian testing of nested hypotheses. Examples
include comparison of different species delimitation
models (e.g., one-species versus two-species mod-
els) (Yang and Rannala, 2010) and test of migration
between species (e.g., two species with and without
migration) (Nielsen and Wakeley, 2001). The theory
may be applied to compare nonnested models as well
if they both have the same null model as a special case.
Suppose Hp is a special case of both H; and Hz, and
let Mo, M1, M> be their marginal likelihood values. Then
By = My /M, = B1g/Bso, where the Bayes factors Big
and By can be calculated using the Savage-Dickey den-
sity ratio by running MCMC under Hi and H». In prac-
tice, the approach has only limited precision and works

Bioe =
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(a) Bayes factor expressed as the Savage-Dickey density ratio in the test of the null hypothesis Hy : 1 = 0 against the alternative

hypothesis H; : p # 0, using a data sample from N (1, 1). The black and red curves represent the prior and posterior densities for £ in Hi, and
the small interval (of width ¢) in the parameter space for Hi is the null interval ¢ (or interval of null effects), representing Ho. The prior and
posterior probabilities over the null interval (the gray and red areas) depend on the interval width (), but when ¢ — 0, their ratio converges to
the Bayes factor Bio = 7 (0)/7 (10 | X). If the area of null effects shrinks greatly when we move from the prior to the posterior, the data contain
strong evidence against Hy. (b) Approximate Bayes factor Big. = P(¢)/P(é | x) (equation (7)) plotted against € for a dataset of size n = 100 with
the sample mean x = 0.258. The prior is p ~ N(O o?) with o9 = 2 (twice the sampling standard deviation). When e — 0, Bip = 1.381. (c) Bayes
factor (equation (1) or (12)) plotted against the prior variance 0'0 for the same dataset showing the sensitivity of Big to the prior on the parameter
of interest (1). Note that in this dataset (with v/1|X| = 2.58) Hy is rejected by the LRT with p -value 1%.

only if the goodness of fit of the compared models is not
drastically different. If both Hy and Ho fit the data much
better than Hy so that B1p and By are estimated to be oo,
no sensible estimate for B2 can be generated.

Test of Introgression

When we use the Savage-Dickey density ratio (equa-
tion (3)) to test introgression, the nuisance parameters
include species divergence times (7) and population
sizes (#) on the species tree. Since we use the same pri-
ors on 7 and 6 in models with and without introgre-
sion, independent of the introgression probabilities (¢),
the assumption of equation (2) holds. We consider two
tests with different assumptions about the popula-
tion size parameters (Fig. 3). In test 1, the MSci model
assigns different § parameters on the two segments of a
branch broken by an introgression event; for example,
in Fig. 3a branch RA is broken into two branches RX
and XA and assigned 6x and 64, respectively. The null
model of no gene flow will have two 6 parameters for
the branch as well. Such a model can be implemented in
BPP by including ghost species in the MSC model from
which no sequences are sampled (Fig. 3a). In the second
test, the MSci model assigns the same ¢ parameter for
a branch on the species tree before and after an intro-
gression event (which can be specified using the con-
trol variable thetamodel = linked-msci in BPP) (Fig. 3b).
When the introgression probability takes the null value
(0) in Hj, the introgression time 7x becomes unidentifi-
able. The proof of equation (A1) applies to both scenar-
ios. In this study, we used test 1. Note that calculating

the Bayes factor using the Savage-Dickey density ratio
(equation (3) or (7)) requires an MCMC sample from H;
and does not require any analysis or MCMC run under
Hy.

In our BPP analysis, the introgression probability ¢
is assigned a beta prior beta(a, b), and the null hypoth-
esis corresponds to ¢y =0 in Hi. Let the null region
be ¢:p <e. Then P(p) = P(p < ¢) in equation (7) is
given by the cumulative distribution function (CDF) for
beta(a, b), while P(¢ | x) is simply the proportion of the
sampled ¢ values that are < ¢. Intuitively, the null region
@ : ¢ < e in Hj represents absence of introgression (as
the introgression probability ¢ is negligibly small),
[1 —P(4)]/IP(¢) is the prior odds in favor of gene flow,
while [1 — P(¢ | x)]/P(¢|x) is the posterior odds, and Bio
measures the change in the odds in favor of gene flow
when we move from the prior to the posterior. We used
e =0.01 and confirm that use of ¢ = 0.001 gave very
similar results. A cutoff of 20 for Bip may be considered
strong evidence in support of Hi (corresponding to 95%
posterior for Hj if the prior model probabilities for Hy
and Hj are 1/2 each), while 100 means extremely strong
evidence (corresponding to 99% posterior for Hj).

MATERIALS AND METHODS

Chipmunk Genomic Data

The dataset, generated and analyzed by Sarver et al.
(2021), includes 1060 nuclear loci from six chipmunk
species: T. rufus (R), T. canipes (C), T. cinereicollis (I), T.
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H,: MSci (¢ > 0)

H,: MSC

FIGURE3. Parametersin the alternative and null hypotheses in two
Bayesiantestsofintrogression(i.e., testof Hy : ¢ = Oagainst Hy : ¢ > 0).
The parameter of interest is the introgression probability ¢. In test 1
(a), the shared parameters are A = (7&, Tx = Ty, 0a, 0, Or, 0x, Oy). In test
2 (b), the shared parameters are A = (7r, 04, 05, 0r) while & = (7x = 7v)
in Hi becomes unidentifiable at the null value pg = 0. Here only the
two species involved in introgression are shown. Including other
species on the species tree adds the same set of parameters to the null
and alternative hypotheses.

umbrinus (U), T. quadrivittatus (Q), and T. dorsalis (D)
(with 5,5, 9, 10, 11, 11 individuals, respectively), as well
as the outgroup T. striatus (3 individuals). We included
all individuals whether or not their mtDNA was likely
to be introgressed. Due to lack of a reference genome,
Sarver et al. (2021) assembled genomic loci (targeted
genes or exons) into contigs using an approach called
Assembly by Reduced Complexity (ARC). Filters were
then applied to remove missing data (contigs not pres-
ent across all individuals) and sequences with likely
assembly errors. The procedure generated a dataset of
1060 loci (1060 ARC contigs, Sarver et al., 2021), with
sequence length ranging from 14 to 1026 bp among loci
and the number of variable sites from 0.33% to 15.2%.
High-quality heterozygous sites in the data, as iden-
tified by high mapping quality and depth of coverage,
are represented using IUPAC ambiguity codes. They are
accommodated using the analytical integration algo-
rithm implemented in BPP (Gronau et al., 2011; Flouri ef
al., 2018). This takes the unphased genotype sequences
as data and averages over all possible heterozygote
phase resolutions, using their relative likelihoods based

on the sequence alignment at the locus as weights
(Huang et al., 2022).

Species Tree Estimation for the T. quadrivittatus Group

We used BPP version 4 (Rannala and Yang, 2017;
Flouri et al., 2018) to estimate the species tree under the
MSC model without gene flow. This is the A01 analysis
(speciesdelimitation = 0, speciestree = 1) (Yang, 2015).

We assigned inverse-gamma (IG) priors to parame-
ters in the MSC model: § ~1G(3, 0.002) with mean 0.001
for population size parameters and 7 ~ IG(3, 0.01) with
mean 0.005 for the age of the root. The shape param-
eter &« =3 means that those priors are diffuse, while
the prior means are based on estimates from prelimi-
nary runs. Note that both ¢ and 7 are measured in the
expected number of mutations per site. The inverse
gamma is a conjugate prior for ¢ and allows the 0
parameters to be integrated out analytically, leading
to a reduction of parameter space and improved mix-
ing of the MCMC algorithm. We conducted 10 repli-
cate MCMC runs, using different starting species trees.
Each run generated 2 x 10° samples, with a sampling
frequency of 2 iterations, after a burn-in of 16,000 itera-
tions. Each run took about 70 hours using one thread on
a server with Intel Xeon Gold 6154 3.0 GHz processors.
Convergence was confirmed by consistency between
runs. All runs converged to the same species tree (Fig.
4a), with ~ 100% posterior probability, which had the
same topology as the tree inferred by Sarver ef al. (2021).

Stepwise Construction of the Introgression Model

As the species tree is well supported, apparently
unaffected by cross-species introgression, we used the
species tree to build an introgression model with mul-
tiple introgression events. Our procedure is similar to
stepwise regression, the step-by-step method for con-
structing a regression model that involves adding or
removing explanatory variables based on a criterion
such as an F- or t-test.

Our procedure has two stages. In the first stage, we
used BPP to fit a number of introgression models, each
with only one introgression event, and rank candidate
introgression events by their strength (indicated by the
introgression probability ). The analyses of Sarver et al.
(2021) suggest that mitochondrial introgression affected
mostly four species: T. umbrinus (U), T. dorsalis (D), T.
quadrivittatus (Q), and T. cinereicollis (I). We considered
introgression events involving all possible pairs among
those four species, as well as another species, QI, the
common ancestor of T. cinereicollis and T. quadrivittatus
(Fig. 4a). The dataset of 1060 loci was analyzed under
an MSci model with only one introgression event,
estimating the introgression probability (¢) and intro-
gression time (7). We assign the same inverse-gamma
priors on 6 and 7 as above, and beta(1,1) or U (0, 1) for
the introgression probability ¢. Two replicate runs were
conducted for each analysis to confirm consistency
between runs, and MCMC samples from the two runs
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were then combined to produce posterior estimates
of parameters. This analysis provides a ranking of the
introgression events by the introgression probability.
We calculated the Bayes factor for testing Hp : ¢p = 0
given by the Savage-Dickey density ratio (equation (3)),
using the null interval ¢ = (0,0.01) (equation (7)); use
of (0,0.001) produced virtually identical results. Only
introgresssion events with Bip > 20 were considered
further.

In the second stage, we added introgression events
onto the binary species tree (Fig. 4a) sequentially in the
order of decreasing strength (introgression probability).
To reduce the computational cost and to examine the
robustness of the analysis, this step was applied to two
subsets of the 1060 loci: the first half and the second
half, each of 530 loci. The priors used for population
sizes and root age were as above. With multiple intro-
gression events in the model, we extended the MCMC
runs to be k-times as long if the model involved k intro-
gression events. Three replicate runs were performed
to check consistency between runs. Samples from the
replicate runs were then combined to produce posterior
summaries. At each step, the added introgression event
was retained if it met the same cutoff as above in either
of the two data subsets.

Our procedure produced a joint introgression model
with three unidirectional introgression events. The

(@) MSC tree

Time (Myrs)
7.0 4
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5.0
4.0
3.0
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FIGURE 4.

joint model was then applied to the full dataset of 1060
loci to estimate the population parameters including
introgression probabilities, introgression times, species
divergence times, and population sizes (Fig. 4b), using
the same prior settings. We conducted 3 replicate runs,
using a burn-in of 50,000 iterations and then taking
10° samples, sampling every 2 iterations. Each run took
200 hrs.

REesuLrTs

Species Tree Estimation for the T. quadrivittatus Group

We analyzed the full data of 1060 loci under the MSC
model without gene flow to estimate the species tree. The
ten replicate runs using different starting species trees
converged to the same maximum a posteriori grobabﬂity
(MAP) tree, with posterior probability ~ 1007% (Fig. 4a).
Sarver et al. (2021) recovered the same species tree topol-
ogy in their analysis of the same data using ASTRAL
(Mirarab and Warnow, 2015) and SVDQUARTETS
(Chifman and Kubatko, 2014), although with weaker
support for some nodes, e.g., concerning the placement
of T. rufus. The differences in support may be due to the
fact that ASTRAL and SVDQUARTETS use summaries
of the multilocus sequence data that are not sufficient

(b) MSci tree
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(a) Species tree for the T. quadrivittatus group with T. striatus used as the outgroup. Branch lengths represent the posterior means

of divergence times (7) estimated from BPP analysis of the full data of 1060 loci under the MSC model with no gene flow, with node bars
indicating the 95% HPD intervals. A minimum divergence time of 7 Myrs for the outgroup T. striatus is used to convert the 7 estimates into
absolute times. (b) The joint introgression model constructed in this study with three unidirectional introgression events, showing parameter
estimates from BPP analysis of the full data of 1060 loci. Nodes created by introgression events are labeled, with the labels used to identify
parameters in Table S3. The MSci model includes 6 species divergence times and 3 introgression times (7), 19 population size parameters (6),

and 3 introgression probabilities (¢).
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statistics, and are thus less efficient than the full likeli-
hood method implemented in BPP (Xu and Yang, 2016;
Zhu and Yang, 2021).

Stepwise Construction of the Introgression Model

In the first stage of our procedure, we fitted intro-
gression models, each involving one introgression
event, using the full dataset of 1060 loci. We considered
introgression events between every contemporary pair
of the five species: T. cinereicollis (I), T. dorsalis (D), T.
quadrivittatus (Q), and T. umbrinus (U), and the ancestral
species QI (Fig. 4a). Introgression events that passed our
cutoff (B1p > 20) are listed in Table 2. Introgression from
QI into D had the highest probability, > 10%, while six
more events had ¢ >5%: Q - D,D - QI, Ql - U, I
— D, Q — I, and I — Q. We note that introgressions
between Q and I, and between QI and D, were signifi-
cant in both directions and the estimated introgressions
times were close (Table 2). We thus replaced the two
unidirectional introgression events by one bidirectional
introgression in further analyses (model D in Flouri et
al., 2020).

The time of QI — U introgression was estimated to
be 0.000408, very close to the species divergence time
at node QIR (0.000417) (Fig. 4a), suggesting that the
introgression was probably a more ancient event. Note
that if an introgression event is assigned incorrectly to a
daughter branch to the lineage truly involved in intro-
gression, one would expect the estimated introgression
time to collapse onto the species divergence time. We
thus attempted to place the introgression onto more
ancient ancestral branches on the species tree (Fig. 4a)
and finally identified the lineage involved in introgres-
sion to be the ancestral species QIRCD. The QIRCD —
U introgression had an estimated time that was away

from the species divergence times, and the estimated
introgression probability (62%) was the highest (Table
2).

In the second stage, we added introgression events
identified in Table 2 onto the binary species tree of Fig.
4a, in the order of their introgression probabilities (Table
S1). This was applied to two data subsets (the full data
split into two halves). While our procedure allows intro-
gression events already in the model to drop out when
new introgressions are added to the model, this did not
happen in the analysis of the Tamias dataset. Instead the
most important introgression events identified in stage 1
remained to be most important in the joint introgression
models constructed in stage 2. Note that multiple intro-
gression events may not be independent. An introgres-
sion event significant in stage 1 may not be significant
anymore when other introgression events are already
included in the model. For example, when the QI — D
introgression was already included in the model, none of
the introgressions Q — D, D — QI I = D and I — Q was
significant. Those introgressions may be expected to lead
to similar features in the sequence data, such as reduced
sequence divergences between Q or I and D. Similarly,
introgression probability for an introgression event often
became smaller when other introgressions were added
in the model. However, the opposite may occur as well.
For example, pgrcp—ur was estimated to be 54-63% when
this was the only introgression assumed in the model, but
increased to 59-69% when other introgression events were
added in the model (Table S1).

Results for the two data subsets were largely consis-
tent, especially concerning introgression events with
high introgression probabilities. We thus arrived at
a joint introgression model with three unidirectional
introgression events (Fig. 4b, Table S1).

TABLE 2 Posterior means and 95% HPD ClIs (in parentheses) for introgression probability () and introgression time (7) in the separate

introgression analysis

Introgression ®

7 (107%) Big

* QIRCD — U

0.6215 (0.3907, 0.8243)

0.896 (0.784, 1.004) o0

* QI - D 0.1187 (0.0866, 0.1499) 0.337 (0.311, 0.367) o0
Q-D 0.0779 (0.0509, 0.1026) 0.297 (0.253, 0.328) o0
D— QI 0.0707 (0.0384, 0.1058) 0.337 (0.302, 0.366) o0
QU 0.0624 (0.0269, 0.1020) 0.408 (0.353, 0.457) 21.27
I-D 0.0579 (0.0332, 0.0862) 0.265 (0.217, 0.318) 00

* Q-1 0.0568 (0.0315, 0.0750) 0.098 (0.073, 0.121) 00
I-Q 0.0533 (0.0153, 0.0969) 0.111 (0.077, 0.156) 00
D—U 0.0214 (0.0022, 0.0483) 0.276 (0.178, 0.474) 0.04
Q-U 0.0198 (0.0037, 0.0389) 0.296 (0.209, 0.367) 0.05
D1 0.0180 (0.0092, 0.0275) 0.155 (0.123, 0.192) 0.39
D—Q 0.0177 (0.0058, 0.0315) 0.184 (0.117, 0.347) 0.10
U—QI 0.0097 (0.0022, 0.0181) 0.371 (0.322, 0.410) 0.01
I-U 0.0069 (0.0015, 0.0136) 0.158 (0.098, 0.223) 0.00
U—D 0.0066 (0.0024, 0.0112) 0.235 (0.176, 0.300) 0.00
U—Q 0.0061 (0.0008, 0.0127) 0.200 (0.119, 0.294) 0.00
Ul 0.0037 (0.0009, 0.0071) 0.147 (0.090, 0.207) 0.00

Note: The species tree of Fig. 4a is used, with a single introgression event assumed in each analysis. The full dataset of 1060 loci is analyzed
using BPP to estimate the introgression probability (¢) and the introgression time (7), together with the species divergence times () and popu-
lation sizes (#) on the species tree. Introgression events with Big < 20 (D — U and below) are not considered further in the stepwise approach
of constructing the joint introgression model. The three introgression events that are selected in the joint introgression model are marked with

asterisks. Bayes factor Big = oo occurs if all ¢ values in the MCMC sample are > ¢ = 1%.
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We examined the impact of the prior for ¢ on the
Bayesian test of introgression. We calculated the Bayes
factor Bjp using the full dataset of 1060 loci under the
prior ¢ ~ beta(a, 8), with « =0.2,1,5 and # =0.2,1,5
, generating nine prior settings (Table S2). Note that
beta(c, 8) has the mean E (¢) = a/(a + 8) and variance
V(p)=ap/(a+ ﬁ)2 (a+B+1)). In particular, the
prior mean varied from 0.0385 for beta(0.2, 5) to 0.961
for beta(5, 0.2). The Bayes factor Bip was oo for all three
introgression probabilities in the joint model, insensi-
tive to the prior on ¢ (Table S2).

Estimation of Introgression Probabilities and Species
Divergence/Introgression Times

Finally, we fitted the joint introgression model of Fig.
4b to the full data of 1060 loci, as well as the two halves,
with parameter estimates shown in Table S3. The fitted
model is very parameter-rich, partly as we assign dif-
ferent 6 parameters for different branches on the species
tree: for example, branch Q in Figure 4b is broken into
two segments by the introgression event, Q — I, which
are assigned two independent 6 parameters. As a result,
population sizes for ancestral species tend to be poorly
estimated, especially for those populations with a very
short time duration. These patterns are consistent with
simulation studies that examine the information con-
tent in multilocus datasets (Huang et al., 2020).

The estimated introgression probabilities from the
full data are 0.625 with the 95% highest probability den-
sity (HPD) credibility interval (CI) to be (0.442, 0.794)
for poirep—u, 0.106 (0.074, 0.139) for ¢or—p, and 0.050
(0.028, 0.074) for wg-s1. The introgression probability
woRcD—U involved considerable uncertainty, with a
large CI, possibly because the introgression is ancient
and is between sister species, making it hard to estimate
its strength, so that the dataset of 1060 loci may be too
small.

We evaluated the impact of the prior for ¢ on param-
eter estimation in the analysis of the full dataset, using
a=0.2,1,5 and # = 0.2,1,5 in the prior ¢ ~ beta(c, 3)
(Fig. 5). The prior had some effects on ¢gircp—u, with
the prior mean being more important than the prior
variance. Under beta(0.2, 5) with the prior mean 0.0385,
the posterior mean was lower, and the CI wider. Under
beta(5, 0.2) with the prior mean 0.961, the posterior
mean was higher, and the CI narrower. However, the
posterior Cls overlapped considerably among the dif-
ferent priors, and overall the impact of the prior for ¢
on the estimate of ¢oircp—u was minor. Estimates of
woi—D and o1 were insensitive to the prior used (Fig.
5).

Accommodating gene flow in the model had sig-
nificant impacts on estimation of the time of diver-
gence between species involved in gene flow (Figs. 4
and 6). While estimates of times for the recent diver-
gences (Tor, TQIR, TQIRC, and Tgrep) were nearly iden-
tical between the MSC model ignoring gene flow and
the MSci model incorporating gene flow, the estimated
age of the T. quadrivittatus clade (Tgircpu) was much

greater under MSci than under MSC (Fig. 6). This can
be explained by the fact that the MSC model ignored
the QIRCD — U introgression, which had introgres-
sion probability 62.5%. Note that sequence divergence
between any pair of species X and Y has to be older
than species divergence (fxy > 7xy), and as a result, the
minimum (rather than average) sequence divergence
dominates the estimate of species divergence time. If
gene flow is present between species and is ignored
in the model, the reduced sequence divergence due to
gene flow will be misinterpreted as recent species diver-
gence, leading to underestimation of species divergence
time. This effect has been noted in previous simulations
(Leaché et al., 2014).

The estimated age of the root of the species tree
(Toirepus) was slightly smaller under MSci than under
MSC. However, Toirepus is negatively correlated with
the population size (6grcpus) so that both parameters
have large uncertainties (Burgess and Yang, 2008).

Sullivan et al. (2014, Fig. 1) used the minimum diver-
gence time of 7 Ma for the outgroup species T. striatus,
based on fossil teeth thought to belong to Tamias found
in the late Miocene, reported by Dalquest et al. (1996),
to date the T. quadrivittatus clade to 1.8 Ma in a maxi-
mum-likelihood concatenation analysis of four nuclear
genes, and to 1.2 Ma (with 95% CI 0.6-2.2) in a *BEAST
(Heled and Drummond, 2010) analysis of the same
data. Concatenation analysis is known to be biased as it
does not accommodate the stochastic variation of gene
tree topologies and divergence times among loci due to
the coalescent process (Ogilvie et al., 2017). We used the
same calibration to rescale the estimates of 7 under the
MSC and MSci models (Fig. 4). The minimum age for
the T. quadrivittatus clade was 1.9 Ma (with 95% HPD
CI to be 1.8-2.0) under the MSC model, comparable to
the *BEAST estimate under the same model (Fig. 4a).
Under the MSci model, the estimated minimum age
was 4.1 Ma (with CI be 3.2-5.1) (Fig. 4b), much older
than the estimates under the MSC model without gene
flow. Note that here the Cls accommodate the uncer-
tainty due to finite amounts of sequence data but not
uncertainties in the fossil calibration.

Model Assumptions Underlying HYDE

Whereas the analyses of nuclear data by Sarver et
al. (2021) using HYDE detected no significant signal
of introgression at all, our BPP analyses of the same
data revealed strong evidence of multiple introgression
events, involving both sister and nonsister species (Fig.
4b). To understand the opposing conclusions reached in
the two analyses, here we examine the model assump-
tions underlying HYDE. We then use simulation to
compare the performance of HYDE and BPP under
conditions that are representative of the Tamias data but
may violate the assumptions of HYDE.

HYDE was developed under the hybrid-specia-
tion model of Fig. 7a, with 7s = 7x = 71, and 0s = 0r
(Blischak et al., 2018). Formulated for quartet data, with
one sequence from each of the four species, it uses the
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FIGURE 5. Posterior means and 95% HPD ClIs for the three introgression probabilities () obtained from BPP analyses of the full data of 1060

loci using different beta priors, ¢ ~ beta(a, 3).

counts or frequencies of three parsimony-informative
butions of the two parental species to the hybrid spe-
cies: ¢ and 1 — ¢. Here pattern ijkI means a site with
nucleotides i,j,k, I in O, Py, H, P>, respectively (Fig. 7a).
Under this model, the probabilities of gene trees and
site patterns are both given by a mixture over the two
binary species trees S1 and Sz (called parental species
trees), with mixing probabilities ¢ and 1 — ¢ (Fig. 7b
and c). Given species tree 51, the matching pattern iijj
has a larger probability (say, a) than the other two mis-
matching patterns (each with probability b, say, with

b < a). Given species tree Sy, the matching pattern ijji
has probability a while the two mismatching patterns
have b each. The symmetry assumptions (7s = 7r and
s = 0r) ensure that a, b for tree S1 are equal to a, b for S.
By averaging over the two species trees, the site-pattern
probabilities under the hybridization model are given
as

piji =pa+ (1 —¢)b
piij=¢b+ (1 —@)b=0b
piji = ¢b+ (1 — p)a. (8)
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FIGURE 6. Scatterplot of posterior means and 95% HPD Cls (a) for the six species divergence times (7) and (b) for the six ancestral population
sizes (¢) in the MSC and MSci models of Fig. 4 obtained from BPP analyses of the full data of 1060 loci. Note that both 7 and 6 are measured in

the expected number of mutations per site.

Setting those probabilities to the observed frequen-
cies (p) and eliminating a and b from the system of
equations gives the estimate

~_ Piijj — Pijij

Pijj — 2Pijij + Pij ©)
This is equation (3) by Blischak et al. (2018), although
the derivation here is simpler than that of Kubatko
and Chifman (2019). Note that the theory works if
7s = 77 > 7x and s = 0r, so that the method may be
used under model A of Flouri ef al. (2020, Fig. 1) with
the symmetry assumption. The null hypothesis of no
hybridization/introgression (Hp : ¢ = 0) can be tested
by applying a normal approximation to the site-pattern
counts (Kubatko and Chifman, 2019).

To see which of the two assumptions (7s = 77 and
s = 0r) has more impact, note that a change in 7
is comparable with the same amount of change in
2/6. Coalescent may occur in population RS (if the H
sequence takes the left parental path in the model of
Fig. 7a), at the rate 2/6, over time period 7r — 75, and it
may occur in population RT (if the H sequence takes the
right parental path), at the rate 2/0_ over time period
TR — T1. If 2 (TR — 75) /0s =2 (TR — TTS /01, the probabil-
ity of coalescent (given that two sequences enter popu-
lations S or T) will be the same in the two populations.
However, the probabilities of the site patterns depend
on the time of coalescent as well as its occurrence. Thus
for equation (9) to be valid, both the rates and the times
have to be identical: 7s = 7 and 0s = 0r.

Note that HYDE or the D-statistic cannot be used
to infer gene flow between sister lineages. One might
think that HYDE or D could be applicable if two
sequences were sampled from the recipient lineage
to form a quartet. However this is not the case. With
ancient introgression, the two sequences from the same

lineage are interchangeable and have the same average
genomic distance to the outgroup sequence. Suppose P1
and H in Fig. 7a are two sequences from the same lin-
eage. Then site patterns iijj and ijij will have the same
probability even if ¢ > 0.

Simulations to Examine the Performance of HYDE

Our examination of assumptions underlying HYDE
suggests that HYDE may not be suitable for testing gene
flow in the Tamias data. The strongest introgression in
the Tamias data detected using BPP was between sister
species, with ¢orcp—u = 0.625 (Fig. 4b). This is uniden-
tifiable by HYDE. The next introgression involved
outflow with ¢gr.p = 0.106, whereas HYDE assumes
inflow. The third introgression was again between sis-
ter species, with pg_,; = 0.050. To verify those expecta-
tions and to explore the performance of HYDE and BPP
under different scenarios of gene flow, we conducted
simulations using four different model settings (Fig.
8a—d), based on parameter estimates obtained from the
Tamias data (Fig. 4b, Table S3). Gene trees and sequence
alignments at multiple loci were generated using the
simulate option of BPP. HYDE analysis was conducted
using PAUP (Swofford, 2003). The data were also ana-
lyzed using BPP. The results are summarized in Fig. 9.

Model a (Fig. 8a) assumes gene flow between sister
lineages, based on the introgression event from QIRCD
— U in the Tamias data (Fig. 4b). It was suggested that
by including multiple sequences from the recipient lin-
eage, HYDE or the D-statistic might be used to detect
gene flow between sister lineages. We used species R
and U, with introgression rate pr—y = 0.625, including
two sequences (Ua and Ub) from the recipient species
U, while S was used as the outgroup. The divergence
times (7) and population sizes (§) were based on the
real data (Table S3). When multiple branches in the full
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(a) Hybrid speciation model (b) Species tree S,

FIGURE 7.

(1-9)

(c) Species tree S,

(a) HYDE assumes a hybrid-speciation model with the additional assumption of equal population sizes, or a symmetrical inflow

model, with 7s = 7r and 65 = 0r (Blischak et al., 2018). (b, ¢) Two parental species trees 51 and Sz induced by the hybridization model of (a). Site

patterns are a mixture over the two species trees.

(a) sister species

(b) outflow asym

> QRDS:3.4

(c) inflow asym (d) inflow sym (HyDe)

FiGUure 8. Introgression models (species trees with introgression) used for simulating data to evaluate the performance of HYDE and BPP.
(a) Species tree for three species (R, U, and S) with R — U introgression at the rate of ¢ = 0.625, and with S to be the outgroup, based on BPP
estimates from the Tamias data (Fig. 4b, Table S3). Population sizes (f) are next to the branches and species divergence times (7) are next to the
nodes. Two sequences are sampled from species U. When the data are analyzed using HYDE, either Ua or Ub is specified as the hybrid lineage.
(b) Outflow model for three species (D, Q, R), with S to be the outgroup, with introgression from Q to D at the rate ¢ = 0.106 (Table S3). (c)
Inflow asymmetrical model for three species, with asymmetrical divergence times and population sizes. (d) Inflow symmetrical model for three
species, with 7y = Tgr and 0y = 0gr (see Fig. 7a). Note that only model (d) matches the assumption of HYDE.

tree (Fig. 4b) were merged into one branch in the tree
of Fig. 8a, 0 for the merged branch was calculated as a
weighted average, with the branch lengths as weights.
As our objective in this case was to confirm the lack
of power of HYDE (and the D-statistic), we simulated
large datasets, each with L = 8000 loci. The sequence
length was 500 sites, and the number of replicates was
100. When the data were analyzed using HYDE and the
D-statistic, the quartet tree (((Ua, Ub), R), S) was used,
with Ua or Ub labeled the “hybrid” lineage. The same
data were analyzed using BPP under the MSci model
with three species (Fig. 8a).

As expected, HYDE and the D-statistic had no power
to detect gene flow between sister lineages: indeed, the
power of HYDE and D was not higher than the signifi-
cant level (Fig. 9, Table S4). Note that a test that ignores
data and produces 5% positives at random will have
5% of power. Also HYDE did not produce reliable esti-
mates of ¢; in about half of the datasets, the estimate
was outside the range (0, 1).

Model b (Fig. 8b) was based on the next strongest
introgression in the Tamias data, with ¢grp = 0.106
(Fig. 4b). We used species D, Q, R, with S as the out-
group. This is a case of outflow, when gene flow from
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FI1GURE 9. Power of detecting gene flow by HYDE and BPP in 100 replicate datasets simulated under the models of Fig. 8.

an ingroup species Q to a more distant species D. Our
examination of the assumptions made by HYDE sug-
gests that HYDE can be used to detect inflow, but not
outflow. We generated datasets of various sizes with
L = 500,2000, or 8000 loci. The other settings were the
same as for model a. When the data were analyzed
using HYDE, Q was designated the “hybrid” lineage
while R and D were the two parents. HYDE performed
poorly (Fig. 9b), with very low power and frequent
invalid estimates of ¢ (Table S5).

Model c (Fig. 8c) was the same as model b but the direc-
tion of gene flow was reversed. The model was then a
case of inflow, as assumed by HYDE. However, species
divergence times and population sizes did not satisfy
the symmetry requirements of HYDE (in other words,
™ 7 Tor and Ouy # Ogr). In this case, HYDE had consid-
erable power in detecting gene flow (Fig. 9c). However,
the estimates of ¢ by HYDE involved large biases,
apparently converging to ~ 0.32 when the true value

was 0.106 (Table S5). This positive bias is apparently
because coalescent occurs at a higher rate or over longer
time period on the M branch than on the QR branch in
Fig. 8¢, with (TorD — ™)/O0m > (TorD — TQR)/QQR. In the
opposite case, the bias should be negative.

Model d (Fig. 8d) was the same as model ¢ with inflow
but in addition we enforced the symmetry assumptions,
so that species Q was a hybrid species formed by hybrid-
ization between D and R. This is the hybrid-speciation
model assumed by HYDE, and the method performed
well (Fig. 9d). Its power was lower than that for BPP,
as expected from statistical theory, but improved with
the increase of data, rising from 10% at L = 500 loci to
90% at 8000 loci. The parameter estimate appeared to be
consistent, converging to the correct value (0.106) when
the number of loci increased, and there were not many
invalid estimates (Table S5). Those results are consistent
with previous simulations, which evaluated the perfor-
mance of HYDE when all its assumptions were met and
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found the method to perform well (Blischak et al., 2018;
Flouri et al., 2020).

In summary, our simulations suggest that it is import-
ant to apply HYDE to detect the correct mode of gene
flow (that is, gene flow between nonsister lineages,
and inflow instead of outflow) (Fig. 8d). Furthermore,
the symmetry assumptions are important for HYDE to
produce reliable estimates of introgression probabil-
ity. When all model assumptions are met, HYDE per-
formed well. However, HYDE had no power to detect
gene flow between sister lineages, and very low power
to detect outflow.

In all four models (Fig. 8a—d), the Bayesian test
using BPP had good power (Fig. 9, Tables 54 and S5).
Furthermore, the posterior means and 95% HPD Cls for
parameters in the introgression models b-d were well
behaved (Fig. 10). While HYDE can estimate only two
parameters from the site-pattern counts (the internal
branch length in coalescent units on the species tree and
the introgression probability), the BPP analysis of the
same data estimates all parameters in the model. The
species divergence/introgression times were all well
estimated with small ClIs (Fig. 10). The introgression
probability was accurately estimated with narrow Cls
when > 500 loci were used. Population size parameters
for short branches were poorly estimated due to lack of
coalescent events in those populations.

We also examined the false positive rate (type I error
rate) of the HYDE and Bayesian tests, by simulating data
using the inflow-asym (Fig. 8c) and inflow-sym (Fig.
8d) models but with ¢ =0 fixed so that there was no
introgression in the true model. The results are summa-
rized in Table 3. Under the inflow-asym model, HYDE
had higher false positive rate than the nominal signifi-
cant level. For example, at the 5% significance level, the
false positive rate was 7%, 13%, and 7% in datasets of
500, 2000, and 8000 loci, respectively. The high rate may
be explained by the violation of the symmetry assump-
tions for HYDE. Under the inflow-sym model (or the
HYDE model), the rate was 3%, 2%, and 3%, all within
the allowed 5% (Table 3). Thus HYDE performed well
when its assumptions were met and had elevated false
positives when the assumptions were violated. In all
settings, the false positive rate of the Bayesian test was
estimated to be ~ 0%. This is consistent with the expec-
tation that the Bayesian test may be more conservative
(with lower false positive rate and lower power) than
the LRT (see discussions later).

Finally, to assess the information content in datasets
of the size of the Tamias data, we used parameter esti-
mates from the full dataset (Fig. 4b, Table S3) to simu-
late two datasets of the same size as the original, with 5,
5,9, 10, 11, 11, 3 unphased sequences per locus for spe-
cies R, C, I, U, Q, D, and S, respectively. The sequence
length was 200 sites. We analyzed the datasets under
the same MSci model of Fig. 4b using BPP to estimate
all parameters. The estimates from the two datasets
were similar, so we present those from one of them in
Table S3. At this data size, BPP achieved relatively good

precision and accuracy. The posterior means were close
to the true values, and the CIs were also similar to those
calculated from the real data. Similarly to analyses of
the real data, divergence times and population sizes
for modern species were well estimated, but ancestral
population sizes, in particular those for populations of
short time duration, were more poorly estimated.

DiscussioN

Criteria for Testing Gene Flow

Hypothesis testing or model selection involves arbi-
trariness, and classical hypothesis testing and Bayesian
model selection applied to the same data may pro-
duce strongly opposed conclusions, a situation known
as Jeffreys’s paradox (Jeffreys, 1939; Lindley, 1957).
Furthermore, Bayesian model selection is known to
be sensitive to priors on model parameters, especially
on parameters that are not shared between the mod-
els under comparison. See Yang (2014, pp. 194-7) for
a discussion of those issues. Here we review different
strategies for testing, using as example a simple prob-
lem of testing the null hypothesis Hp: 4 =0 against
the alternative Hi : 1 # 0, using a data sample, , from
the normal distribution N (i, 1). We assume that a false
positive error (of falsely rejecting Ho when it is true)
is more serious than a false negative error (of failing
to reject Ho when it is false). The data can be summa-
rized as the sample mean X, with the likelihood given
by X ~ N (0, 1/71) under Hp and ¥ ~ N (i, 1/n) under Hi.
Let ¢ (x; 2 0?) be the probability density function (PDF)
for N (u, 0%) and @ (.) be the CDF for N'(0,1).

In hypothesis testing, the P-value can be calcu-
lated from the fact that under Hop, v/n|x| ~ N(0,1) or
n|%* ~ x2. At the o = 5% significance level, we reject
H if

é(x;%,1/n)
¢(x;0,1/n) " (10)

Alternatively one may consider this as an estimation
problem and construct a confidence interval (CI) for u
and reject Hy if the CI excludes the null value 0. This is
equivalent to the LRT.

In a Bayesian analysis, we consider two approaches.
The first is to examine whether the posterior 95%
credibility interval (CI) for p under Hi excludes the
null value 0. We assign the prlor 1~ N (0,05) under
Hj. The posterlor is then p|x ~ (,ul,al) with mean
= nx/(n+1/03) and precision 102 =n+ 1/00 Here
the reciprocal of variance is known as precision. The
sample precision is 7 and the prior precision is 1/0?,
while the posterior precision is the sum of the two.
The 95% CI for p is given as p1 &= 1.9607 so that the CI
excludes 0 (in which case we reject Hp) if |p1| > 1.9607,
or if

2A0 =2log = n|x|* > X759, = 3.84

n|x? > 3.84 1+ 1/(no3)] . (11)

€20z 1snbBny 1o uo Jasn uojbuiysepn Jo Ausiaaiun Aq 9/€/889/9t/2/2./e1on1e/01qsAs/wod dno oiwapese//:sdiy Wol) papeojumoc



VOL. 72

460 SYSTEMATIC BIOLOGY
outflow asym inflow asym inflow sym

Zﬁ 0.99 0.94 0.98 0.99 0.97 0.98 0.94 0.94 0.95
eQ 4.0

20 e

0.0

80 0.93 0.98 0.96 0.92 0.98 0.94 0.98 0.98 0.98
Or
Op

0.93 0.94 0.95 0.95 0.99 0.95 0.96 0.95 0.92
0.92 0.97 0.96

oo | S ——
150 0.98 0.96 0.97 0.94 0.96 0.94 097 0.96 0.95
10.0

Oqrp .,
0.0
150 0.96 0.99 0.93 0.92 0.95 0.94 0.92 097 0.91
150 0.97 0.96 0.92 0.98 0.95 0.94

oL N/A

150 0.99 0.96 0.97 0.98 0.99 0.94 0.96 0.95 0.94

0.98
TQrRD 5o

0.95

0.95

0.95

0.92 0.95

0.90

0.96

0.98

0.96
TarR 3o

0.97

0.93

0.93

0.97 0.90

0.95

0.94

0.95

0.99
TbQ 3o

0.96

0.98

0.99

0.99 0.95

0.95

0.94

0.95

0.98

0.96

0.97

loci = 500

0.97

0.97 0.94

0.99

loci =2000 —— loci = 8000

0.94

0.98

F1Gure 10. Posterior means and 95% HPD ClIs for parameters in the three introgression models of Fig. 8: (b) outflow asym, (c) inflow
asym and (d) inflow sym (HYDE model), in BPP analyses of 100 replicate datasets, each with 500, 2000, or 8000 loci. Note that in model (d)
inflow sym, all populations had the same size () although separate § parameters were estimated for different populations when the data were
analyzed using BPP. Parameters 7 and 6 are multiplied by 10°. The number above the CI bars is the coverage or the probability that the CI

includes the true value.

€20z 1snbBny 1o uo Jasn uojbuiysepn Jo Ausiaaiun Aq 9/€/889/9t/2/2./e1on1e/01qsAs/wod dno oiwapese//:sdiy Wol) papeojumoc



2023

JIET AL—POWER OF BAYESIAN AND HEURISTIC TESTS

461

TaBLE 3 False positive rate of Bpr and HYDE tests and average estimates of introgression probability in 100 simulated replicates

BPP HYDE
Error rate Error rate Error rate Error rate Proportion of invalid estimates

#loci (o =1%) (o = 5%) ¢+ SD (o0 =1%) (o = 5%) £ 5D
Inflow asym (Fig. 8c)
500 0% 0% 0.019 + 0.011 1% 7% 0.140 + 0.108 52%
2000 0% 0% 0.009 + 0.004 5% 13% 0.094 + 0.061 52%
8000 0% 0% 0.004 + 0.002 2% 7% 0.038 + 0.032 51%
Inflow sym (Fig. 8d, HyDE model)
500 0% 0% 0.032 + 0.016 0% 3% 0.064 + 0.048 49%
2000 0% 0% 0.014 + 0.006 1% 2% 0.039 + 0.029 55%
8000 0% 0% 0.006 + 0.003 0% 3% 0.022 + 0.016 49%

Note: Data were simulated using the species trees of Fig. 8c, d but with ¢ = 0.

The second approach is to use the Bayes factor to
compare the null and alternative hypotheses (e.g., Yang,
2006, eq. 5.21).

_ PxH1) ¢ (%05 +0))
- P(x[Ho) ¢ (%0,1)

— 1 . exp { nx* }
\/1+no? 21+1/(med)] )7 (12)
The Bayes factor is closely related to (and ‘calibrated”
using) the posterior model probability. If the two models
are assigned equal prior probabilities (1o = 1 = 1/2),
the posterior model probability is

By
P(Hy | x) = 1+ By’ (13)

sothata95% cutoffon P (H; | x)correspondsto By = 19,
and Hy is rejected based on the Bayes factor if and only
if

Bio

nfxf? > log {19y/1+ nof } < 2[1+1/(nod)] (14

While the LRT (equation (10)) depends on /7|X| only,
both the posterior CI (equation (11)) and the Bayes fac-
tor (equation (14)) depend in addition on no3. Note that
the three criteria (equations (10), (11), and (14)) have the
ordering

3.84 < 3.84[1+1/(naj)]
<10g{19\/1+n0(2)} x2[1+1/(no})]. (15)

Thus the LRT has more power and higher false pos-
itive rate than the posterior CI while the Bayesian test
based on the Bayes factor is the most conservative.
The result reflects the general perception that the LRT
tends to reject the null hypothesis and favor parame-
ter-rich models too often, especially in large datasets.
Note that if Hy is true, the false positive rate of the LRT
stays at 5% when the sample size n — co, whereas in
the Bayesian analysis, the true model Hy will dominate,
with P (Hp | x) — 1 and B1g — 0 when n — oc.

Example calculations are given in Table 4 for two
datasets with v/7|X| = 1.96 or 2.58 and n = 100. In both
datasets, Hy is rejected by the LRT (at the 5% and 1% lev-
els, respectively), but the Bayes factor and the posterior

model probabilities favor Ho over Hi, with Bijp < 1 and
P(H; | x) <1/2.

This analysis suggests that the difference in power
between HYDE and BPP are due to the inefficient use
of information in the data by HYDE, not to the different
statistical philosophies. An LRT for testing introgression
applied to the multilocus sequence alignments may be
expected to have more power (and higher false positive
rate) than the Bayesian test based on the Bayes factor.

The Power of Heuristic and Likelihood Methods to Detect
Introgression

When applied to the Tamias dataset, HYDE and BPP
produced opposite conclusions concerning gene flow.
Our examination of the model assumptions for HYDE
and our simulations suggest that this is because gene
flow with the strongest signal in the Tamias group, either
between sister species or involving outflow, may be of
the wrong type or in the wrong direction for HYDE.
Here we review and summarize the major issues with
HYDE.

First, both HYDE and the D-statistic pool sites across
loci when counting site patterns, so that the site-pattern
counts are genome-wide averages. Cross-species gene
flow creates genealogical variation across the genome,
with the probabilistic distribution of the gene trees and
coalescent times specified by parameters in the MSC
model with gene flow, such as species divergence times,
population sizes, and rates of gene flow (Barton, 2006;
Lohse and Frantz, 2014). As a result, there is import-
ant information concerning gene flow in the variance
of site-pattern counts among loci, but this information
is ignored by those methods. In other words, sites at
the same locus share the genealogical history under
the assumption of no within-locus recombination (see
Zhu et al., 2022 for an evaluation of the impact of this
assumption on MSC-based analyses), and their differ-
ences reflect the stochastic fluctuation of the mutation
process. Sites at different loci in addition may have dif-
ferent genealogical histories, reflecting the stochastic
nature of the process of coalescent and introgression.
When sites are pooled across loci, those two sources
of variation are confounded, leading to loss of infor-
mation (Shi and Yang, 2018; Zhu and Yang, 2021). As
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TaBLE4 LRT and Bayesian tests in the normal example in two datasets

Data LRT Bayesian test

il P-value Prior Bio P(Hz | x)

1.96 0.05 op=1 0.359 0.264

1.96 0.05 op=2 0.262 0.208

1.96 0.05 oo =10 0.120 0.107

2.58 0.01 op=1 0.408 0.290

2.58 0.01 oo =2 0.300 0.230

2.58 0.01 oo =10 0.138 0.122

Note: The Bayes factor By is calculated assuming data size n = 100 in equation (12), while the posterior model probability is given by equa-
tion (13). Note that the P-value for the LRT is 5% (or 1%) in the dataset with v/#|%| = 1.96 (or 2.58).

a consequence, certain forms of introgression, such as
introgression between sister lineages, are unidentifiable
by D or HYDE, while estimation of introgression rates
between nonsister species suffers from larger variances
(Jiao et al., 2021).

Second, HYDE makes restrictive assumptions about
gene flow. The underlying model is one of hybrid spe-
ciation with identical population sizes or equivalently
the inflow model with symmetrical species divergence
times and population sizes (Fig. 7a, with 7s = 77 and
s = 0r) (Blischak et al., 2018; Kubatko and Chifman,
2019). Our simulation suggests that HYDE can indeed
infer gene flow/hybridization and produce reliable
estimates of introgression probability under this model
(Fig. 9d; Table S5; see also Blischak et al., 2018; Flouri et
al., 2020). However, introgression in the wrong direction
or violation of the symmetry assumptions may lead to
loss of power and biased or invalid estimates by HYDE
(Fig. 9b, ¢, Table S5).

Third, the approaches taken by HYDE to accom-
modate multiple samples per species and heterozy-
gote sites in diploid genomes may be problematic.
When multiple samples are available in the species
quartet, HYDE counts site patterns in all combina-
tions of the quartet. Let the numbers of sequences
for species O,P1,H,P> be no,ni,ny,na. There are
then no X n; X ng X ny combinations in which one
sequence is sampled per species, and HYDE counts
site patterns in all of them (Blischak et al., 2018). This
ignores the lack of independence among the quartets
and exaggerates the sample size. At the same time,
multiple samples from the same species are never
compared with each other, which should provide
important information about the population size for
that species. In a likelihood method such as BPP, all
sequences at the same locus, both from the same spe-
cies and from different species, are related through a
gene tree, and genealogical information at the locus
is used.

Similarly heterozygote sites are not treated properly
in HYDE. If the site pattern is AGRG, with R represent-
ing an A/G heterozygote, HYDE adds 0.5 each to the site
patterns ijjj (for AGGG) and jij (for AGAG) (Blischak et
al., 2018), in effect treating R as an unknown nucleotide
that is either A or G whereas correctly it means a hetero-
zygote (both A and G). The proportion of heterozygotes
in each diploid genome should be informative about ¢
for that population, but such information is not used by

HYDE. In BPP, heterozygote sites are resolved into their
underlying nucleotides using an analytical integration
algorithm (so that R means both A and G, say), with
the uncertainty in the genotypic phase of multiple het-
erozygous sites in a diploid sequence accommodated
by averaging over all possible heterozygote phase res-
olutions, weighting them according to their likelihoods
based on the sequence alignment at the locus (Gronau et
al., 2011; Flouri et al., 2018). Simulations suggest that this
approach has nearly identical statistical performance to
using fully phased haploid genomic sequences (Gronau
et al., 2011; Huang et al., 2022).

In this paper, we have focused on the heuristic
method HYDE and the likelihood method BPP, as
they have been used to analyze the Tamias data. By
choosing parameter values to be representative of
the Tamias data, our simulation has evaluated a tiny
portion of the parameter space and does not consti-
tute a systematic evaluation of the performance of
HYDE. The strengths and weaknesses of heuristic
and likelihood methods for inference under models
of gene flow were discussed by Degnan (2018) and
Jiao et al. (2021), but a comprehensive comparative
study has not yet been conducted. For estimation of
the species phylogeny under the MSC without gene
flow (Zhu and Yang, 2021, Fig. 3) demonstrated a dra-
matic information loss resulting from pooling sites
across loci in the site-pattern based methods (also
known as coalescent-aware concatenation methods),
and from the failure to use information in coalescent
times or gene-tree branch lengths in the two-step
methods (which infer the gene trees and then treat
them as data to infer the species tree). Both the site
pattern-based and the two-step methods are used
to infer gene flow and to estimate the introgression
probability (e.g.,, HYDE and the D-statistic in the
first category and SNAQ in the second) and similar
information loss may be expected. A detailed analy-
sis of the performance of heuristic methods in com-
parison with likelihood methods will be interesting.
Currently, the gap between the heuristic and likeli-
hood methods appears to be a large one. Heuristic
methods are orders-of-magnitude more efficient
computationally and can be applied to much larger
datasets, whereas likelihood methods have far bet-
ter statistical properties, being able to identify and
estimate all parameters in the model. There are great
opportunities for improving both the statistical
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performance of heuristic methods and the computa-
tional efficiency of likelihood methods (including the
mixing efficiency of MCMC algorithms).

Introgression in T. quadrivittatus Chipmunks

The joint introgression model for the T. quadrivitta-
tus group (Fig. 4b) was constructed using a stepwise
approach that iteratively adds introgression events to
the binary species tree. We note several limitations with
this approach. First the approach assumes the availabil-
ity of a stable binary species tree, and may not be feasible
if the species tree is large and highly uncertain, possi-
bly influenced by introgression events (Leaché et al.,
2014). The Tamias dataset analyzed here includes only
six species, and the first stage of our procedure (i.e., the
separate analysis) involved 16 possible introgression
events, so that the computation was feasible. Second,
the approach is not an exhaustive search in the space of
introgression models and may miss certain introgres-
sion events. Note that introgression events not selected
in the first stage of the procedure will not be incorpo-
rated in the final joint introgression model. In our anal-
ysis of the Tamias data, we considered introgressions
between contemporary species, mostly based on phy-
logenetic analyses of the mitochondrial genome (Sarver
et al., 2017), and moved certain events to older ances-
tral branches when the estimated introgression time
coincided with the species divergence time. We did not
evaluate introgressions involving ancestral branches
systematically. Furthermore, the criterion based on the
Bayes factor used in our test is a stringent one, and the
dataset of 1060 loci is relatively small. All those factors
suggest that we cannot rule out the possibility that we
may have missed some introgression events; in other
words, our analysis may suffer from false-negative
errors. In contrast, the three introgression events iden-
tified in our analysis (Fig. 4b) appear to be robust and
are unlikely to be false positives (Fig. 5, Table S2). We
conclude that there is strong and robust evidence that
gene flow has affected the nuclear genome in the T. qua-
drivittatus group of chipmunks.

Given the extensive mitochondrial introgression
in the Tamias group (Sullivan et al., 2014; Sarver et al.,
2017, 2021), introgression affecting the nuclear genome
was expected, and the failure to detect any significant
evidence for it in the HYDE analysis was surprising
(Sarver et al., 2021). Sarver et al. (2021) discussed the
evidence for cytonuclear discordance in the pattern of
introgression (Bonnet et al., 2017; McElroy et al., 2020;
Sarver et al., 2021), as well as possible roles of purifying
selection affecting the coding genes or exons that make
up the nuclear dataset being analyzed. Our results sug-
gest a simpler explanation, that gene flow in the Tamias
group is of a wrong type or in the wrong direction,
undetectable by HYDE.

Our analyses suggest that species involved in exces-
sive mitochondrial introgression tend to be those
involved in nuclear introgression as well. T. dorsalis
was noted to be a universal recipient of mtDNA from

other species (Sullivan et al., 2014; Sarver et al., 2017).
Consistent with this, our separate analysis (Table 2)
identified three introgression events into T. dorsalis
with ¢ > 5% as well as one event with T. dorsalis to be
the donor species, even though some of those events
become non-significant after introgression involving
older ancestors was incorporated in the model. It will
be interesting to use expanded datasets to examine
whether this is due to a lack of power to detect gene
flow or a genuine lack of gene flow.

It will be very useful to generate more genomic data,
especially the noncoding parts of the nuclear genome,
including more species from the genus, to provide more
power for detecting gene flow and estimating introgres-
sion rates. It will also be interesting to examine whether
the noncoding and coding regions of the genome give
consistent signals concerning species divergences and
cross-species gene flow, and to examine how the effec-
tive rate of gene flow vary among chromosomes or
across genomic regions. In a few genomic analyses, cod-
ing and noncoding parts of the genome were found to
produce highly consistent results, with nearly propor-
tional estimates of divergence times (7) and population
sizes (¢), and with very similar estimates of introgres-
sion rates (Shi and Yang, 2018; Thawornwattana et al.,
2018, 2022). One can also examine the posterior dis-
tribution of the gene trees to identify loci or genomic
segments that are most likely to have been transferred
across species boundaries, and to correlate with the
functions of genes residing in or tightly linked to the
segments.
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APPENDIX: BAYES FACTOR AS THE SAVAGE-DICKEY DENSITY
RaATIO IN COMPARISON OF NESTED MODELS

Consider the comparison of the null model
Hy : ¢ = ¢ against the alternative model Hi : ¢ # ¢y,
and suppose that both models have common (nui-
sance) parameters A, while parameters ¢ in H; become
unidentifiable when ¢ = ¢o. The parameter vector is A
for Hp and (¢, A, &) for Hi. Given data x, let the likeli-
hood be Lo (\) under Hp and L(qb,)\ =px| o NE)
under Hi, with L (¢o, A\, &) = Lo (A) as the two mod-
els are nested Let the rior be mo (A\) under Hp and

T (N &) =m( })j (& | ¢,\) under Hi. Under
the assumption that the priors on the common parame-
ters (\) agree between the two models, 7 (A | ¢o) = 7o ())
(equation (2)), the Bayes factor Bio in support of Hi over
Hpy (equation (1)) can be expressed as the ratio of the
prior and posterior densities for ¢ in Hi, both evaluated
at the null value ¢y: that is, Bio = 7(¢0)/7(¢0o | X) (equa-
tion (3)).

PROOF

Rewrite the prior 7 0(A) and likelihood Lo(\) under
Hy as probability densities under Hi. We have

f 7T0()\)L0(>\)d)\
B m

- fﬂ(AI%)Lo(A)d/\

By =

I ”<¢°q;§f>L ¢o, A, €)dedA
(¢o)
f f ¢0r /\ f (¢0/ /\r §)d£d)\
m(¢o)
~ [ 7 (d0, A €lx)dedA
m(¢o)
(o)’ (A1)
The proof above is more general than that given by
Dickey (1971), which does not deal with the unidentifi-
ability of £. Thus equation (3) holds even if there exist
nuisance parameters (A) in both models, if the null val-
ues (¢o) are at the boundary of the parameter space in
Hj, and if some parameters in Hi (§) become unidenti-

fiable when the parameters of interest take the null val-
ues (when ¢ = ¢y).
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