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Abstract.  —In the past two decades, genomic data have been widely used to detect historical gene flow between species 
in a variety of plants and animals. The Tamias quadrivittatus group of North America chipmunks, which originated 
through a series of rapid speciation events, are known to undergo massive amounts of mitochondrial introgression. 
Yet in a recent analysis of targeted nuclear loci from the group, no evidence for cross-species introgression was 
detected, indicating widespread cytonuclear discordance. The study used the heuristic method HYDE to detect gene 
flow, which may suffer from low power. Here we use the Bayesian method implemented in the program BPP to re-
analyze these data. We develop a Bayesian test of introgression, calculating the Bayes factor via the Savage-Dickey 
density ratio using the Markov chain Monte Carlo (MCMC) sample under the model of introgression. We take a 
stepwise approach to constructing an introgression model by adding introgression events onto a well-supported 
binary species tree. The analysis detected robust evidence for multiple ancient introgression events affecting the 
nuclear genome, with introgression probabilities reaching 63%. We estimate population parameters and highlight  
the fact that species divergence times may be seriously underestimated if ancient cross-species gene flow is ignored 
in the analysis. We examine the assumptions and performance of HYDE and demonstrate that it lacks power if 
gene flow occurs between sister lineages or if the mode of gene flow does not match the assumed hybrid-speciation 
model with symmetrical population sizes. Our analyses highlight the power of likelihood-based inference of cross-
species gene flow using genomic sequence data. [Bayesian test; BPP; chipmunks; introgression; MSci; multispecies 
coalescent; Savage-Dickey density ratio.]

Introduction

Genomic sequence data are a rich source of informa-
tion concerning the history of species divergences and 
cross-species gene flow. The past two decades have seen 
widespread use of genomic data to infer hybridization 
or introgression (Mallet et al., 2016). Gene flow has been 
detected in a variety of species including Arabidopsis 
(Arnold et al., 2016), butterflies (Martin et al., 2013), cor-
als (Mao et al., 2018), lizards (Finger et al., 2022), birds 
(Ellegren et al., 2012), and mammals (Chan et al., 2013; 
Kumar et al., 2017; Shi and Yang, 2018). The studies have 
considerably enriched our understanding of the evolu-
tionary dynamics of introgressed genes, and the role of 
introgression in speciation and ecological adaptation 
(Payseur and Rieseberg, 2016; Martin and Jiggins, 2017).

A number of statistical methods have been developed 
to analyze genomic sequence data to detect gene flow 
between species and to estimate its strength (as mea-
sured by the introgression probability or migration rate). 
Heuristic or summary methods are based on summaries 
of the multilocus sequence data and include the popular 
D-statistic or ABBA-BABA test (Patterson et al., 2012), 
HYDE (Blischak et al., 2018), and SNAQ (Solis-Lemus 

and Ane, 2016). The D-statistic and HYDE use the 
site-pattern counts for a species quartet to test for the 
presence of gene flow between nonsister species, while 
SNAQ uses the frequencies of estimated gene tree topol-
ogies. Likelihood methods use the multilocus sequence 
alignments directly and include the Bayesian imple-
mentations of the introgression model in PHYLONET/
MCMC-SEQ (Wen and Nakhleh, 2018), *BEAST (Zhang 
et al., 2018), and BPP (Flouri et al., 2020), as well as the 
maximum-likelihood and Bayesian implementations 
of the continuous-migration model (also known as the 
isolation-with-migration or IM model) (Nielsen and 
Wakeley, 2001; Zhu and Yang, 2012; Dalquen et al., 2017; 
Hey et al., 2018). See Jiao et al. (2021) for a recent review. 
In theory, likelihood methods are expected to be more 
powerful because they use all information in the data 
about the model and parameters. However, summary 
and likelihood methods for inferring cross-species 
gene flow are seldom applied to the same real datasets 
with their utilities evaluated, partly because likelihood 
methods typically involve intensive computation and 
may not be computationally feasible for genome-scale 
datasets. In this regard, it is noteworthy that the BPP 
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implementation of the multispecies-coalescent-with-in-
trogression (MSci) model has been successfully applied 
to genomic datasets of more than 10,000 loci (Flouri et 
al., 2020; Table 1; Thawornwattana et al., 2022; Table S4).

The Tamias chipmunks (sensu lato, but see Patterson 
and Norris, 2016) are a diverse group of at least 23 dis-
tinct species, occupying a variety of habitats in the west-
ern United States. Molecular phylogenetic studies have 
revealed a complex history of radiative speciations and 
cross-species gene flow involving morphologically and 
ecologically diverse lineages (Good and Sullivan, 2001; 
Good et al., 2003).

The Tamias quadrivittatus group of chipmunks cur-
rently consists of nine species that are distributed across 

the Great Basin along with the central and southern 
Rocky Mountains in North America (Fig. 1). Previous 
work on Tamias has highlighted the importance of geni-
tal morphology, specifically the baculum (a bone found 
in the penis) in male chipmunks, as a reliable indicator 
of species limits (Patterson and Thaeler Jr, 1982; White, 
2010). The biogeographic history of the group likely 
included large range fluctuations that have periodi-
cally resulted in isolation and secondary contact among 
species, which would have affected opportunities for 
hybridization and/or introgression (Good et al., 2003). 
The current distributions of species in the group have 
extensive regions of overlap and broad parapatry in 
ecological transition zones (Fig. 1), with instances of 

Table 1 Summary of evidence for mitochondrial introgression in the T. quadrivittatus group (Sullivan et al., 2014)

Species Region Distribution Introgression Source 

T. bulleri M Allopatric No
T. canipes (C) GB/RM Allopatric No
T. cinereicollis (I) GB/RM Parapatric Yes Not assignable
T. dorsalis (D) GB/RM Parapatric Yes C/U/Q/Not assignable
T. durangae M Allopatric No
T. palmeri GB/RM Allopatric Untested
T. quadrivittatus (Q) GB/RM Parapatric Yes Not assignable
T. rufus (R) GB/RM Allopatric No
T. umbrinus (U) GB/RM Parapatric Yes Not assignable

Note: Geographic regions include Great Basin (GB), Rocky Mountains (RM), and Mexico (M). Single letter codes are for the six species 
included in the nuclear data analysis.

Figure 1. Geographic distributions of the six chipmunk species in the Tamias quadrivittatus group, based on data downloaded from the 
IUCN (https://www.iucnredlist.org/).
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both allopatry and parapatry, and the determinants of 
current distributions are thought to be related primar-
ily to competitive exclusion and ecological preference 
(Brown, 1971; Heller, 1971; Root et al., 2001). The sys-
tem provides an exciting opportunity to investigate the 
effects of introgression on genetic variation within and 
between species.

Hybridization between chipmunk species has been 
widely reported based on discrepancies between 
mtDNA, nuclear DNA, and morphology (Good and 
Sullivan, 2001; Good et al., 2003, 2008; Hird et al., 2010). 
Work in the past decade has documented widespread 
mitochondrial introgression among species of the 
group (Reid et al., 2012; Sullivan et al., 2014; Sarver et al., 
2017, 2021), which is often asymmetrical, possibly due 
to bacular morphology, which has been identified in at 
least six species (Good et al., 2003, 2008; Reid et al., 2012; 
Sullivan et al., 2014). Recent work on six species in the T. 
quadrivittatus group found that four of them exhibited 
clear evidence of introgressed mitochondrial DNA: T. 
cinereicollis, T. dorsalis, T. quadrivittatus, and T. umbrinus 
(Table 1). The cliff chipmunk (T. dorsalis) was involved in 
local introgression with multiple other species, receiv-
ing mtDNA from whichever congeneric chipmunk 
it came into contact with. However, populations of T. 
dorsalis that are geographically isolated carry mtDNA 
haplotypes that are unique to the species (Sullivan et 
al., 2014; Sarver et al., 2017). Range overlap in transition 
zones plays an important role in mitochondrial intro-
gression in Tamias (Brown, 1971; Bi et al., 2019).

Sarver et al. (2021) used a targeted sequence-cap-
ture approach to sequence thousands of nuclear loci 
(mostly genes or exons) to estimate the species phylog-
eny of the T. quadrivittatus group and to infer possible 
nuclear introgression. The program HYDE (Blischak et 
al., 2018) was used to infer gene flow. Surprisingly, no 
significant evidence for gene flow involving the nuclear 
genome was detected between any species in the group, 
despite the evidence for widespread mitochondrial 
introgression. We note that HYDE, like the D-statistic, 
uses the four-taxon site-pattern counts pooled across 
the genome as data, and does not use information in 
the variation in genealogical history across the genome 
caused by the stochastic fluctuation of coalescent and 
introgression (Lohse and Frantz, 2014; Jiao et al., 2021; 
Zhu and Yang, 2021). As a result, neither the D-statistic 
nor HYDE can detect gene flow between sister lineages. 
Importantly, HYDE is designed to estimate the relative 
genetic contributions of the two parental species which 
hybridized to form a third species. When applied to 
detect other modes of gene flow, it makes restrictive 
assumptions about the direction of gene flow, and about 
species divergence times and population sizes that may 
be unrealistic (Fig. 7). The performance of HYDE when 
its model assumptions are violated is unexplored.

To examine whether the lack of evidence for nuclear 
introgression in the analysis by Sarver et al. (2021) may 
be due to the lack of power of HYDE, here we re-analyze 
the data of Sarver et al. (2021) using the BPP program 
(Flouri et al., 2018, 2020), which includes a Bayesian 

implementation of the MSci model. Borrowing ideas 
from stepwise regression or Bayesian variable selec-
tion, we add introgression events sequentially onto the 
binary species tree to construct a joint MSci model with 
multiple introgression events. We develop a Bayesian 
test of introgression, calculating the Bayes factor for 
comparing the null model of no introgression against 
the alternative model of introgression via the Savage-
Dickey density ratio (Dickey, 1971), using a Markov 
chain Monte Carlo (MCMC) sample under the MSci 
model. This may have a computational advantage over 
cross-model MCMC algorithms such as reversible jump 
MCMC (Green, 1995) or calculation of Bayes factors 
using thermodynamic integration (Gelman and Meng, 
1998; Lartillot and Philippe, 2006). Our re-analysis 
revealed robust evidence for several ancient introgres-
sion events affecting the nuclear genome in the Tamias 
group, involving both sister and nonsister species. We 
examine the model assumptions underlying HYDE and 
use computer simulation to demonstrate that the oppo-
site conclusions reached in the two analyses may be 
explained by the lack of power of HYDE to detect gene 
flow. We then assess the impact of ignoring introgres-
sion on estimation of population parameters, highlight-
ing serious biases in species divergence time estimation 
when introgression exists and is ignored. Our results 
highlight the power of coalescent-based likelihood 
methods in the analysis of genomic datasets to infer the 
history of species divergence and gene flow.

Theory: Bayesian Test of Introgression

Bayes Factor Is Given by the Savage-Dickey Density Ratio 
in Comparisons of Nested Hypotheses

One can test for the presence of cross-species gene 
flow by comparing the introgression (MSci) model 
with the corresponding multispecies-coalescent (MSC) 
model with no gene flow. The model of no gene flow 
(H0) is a special case of the introgression model (H1), 
with H1 reducing to H0 when the introgression proba-
bility is 0.

The commonly used device for Bayesian model com-
parison is the Bayes factor, which is the ratio of the mar-
ginal likelihood values under the two compared models. 
When the two models are nested, the Bayes factor is 
given by the Savage-Dickey density ratio (Dickey, 1971). 
In general, suppose we wish to compare the null model 
H0 : φ = φ0 against the alternative model H1 : φ ̸= φ0,  
and suppose that both models have common (nui-
sance) parameters λ, while parameters ξ in H1 become 
unidentifiable when φ = φ0. The parameter vector is λ 
for H0 and (φ,λ, ξ) for H1. Given data x, let the likeli-
hood be L0 (λ) under H0 and L (φ,λ, ξ) = p (x | φ,λ, ξ) 
under H1, with L (φ0,λ, ξ) = L0 (λ) as the two mod-
els are nested. Let the prior be π0 (λ) under H0 and 
π (φ,λ, ξ) = π (φ)π (λ | φ)π (ξ | φ,λ) under H1. The 
Bayes factor in support of H1 over H0 is defined as
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B10 =
m

m0

=

˝

π(φ,λ, ξ)L(φ,λ, ξ) dφ dλ dξ
´

π0(λ)L0(λ)dλ
,

(1)

where m0 and m are the marginal likelihoods for the 
two models, respectively.

Under the assumption that the priors on the common 
parameters (λ) agree between the two models

π (λ | φ0) = π0 (λ) , (2)

B10 can be expressed as the ratio of the prior and pos-
terior densities for φ in H1, both evaluated at the null 
value φ0:

B10 =
m

m0

=
π (φ0)

π (φ0 | x)
,

(3)

where π (φ | x) =
˜

π (φ,λ, ξ | x)dξdλ is the marginal 
posterior density of φ.

A proof is provided in the Appendix. Note that 
equation (3) holds even when there exist nuisance 
parameters (λ) in both models, and also when the 
usual regularity conditions are not met: for example, 
when the null parameter values (φ0) are at the bound-
ary of the parameter space in H1, and when some 
parameters in H1 (ξ) become unidentifiable when 
the parameters of interest take the null values (when 
φ = φ0). Such nonstandard conditions cause consid-
erable difficulties for the likelihood ratio test (LRT), 
leading to unconventional or unknown null distribu-
tions for the test statistic (Self and Liang, 1987). It is 
interesting that they do not cause any difficulty for 
the Bayesian test.

If the condition on the priors (equation (2)) does not 
hold, a correction factor may be applied (Verdinelli and 
Wasserman, 1995). This is not needed in our application.

Calculation of the Savage-Dickey Density Ratio

The prior density π (φ0) of equation (3) is typically 
available analytically. The posterior density π (φ0 | x) 
can be estimated using a kernel density smoothing pro-
cedure using the MCMC sample under H1 (Silverman, 
1986). This means that calculation of B10 using equation 
(3) requires running the MCMC under H1 only and no 
cross-model algorithms such as reverse-jump MCMC 
(Green, 1995) are needed. Note that within-model 
MCMC typically has better mixing properties than 
cross-model algorithms (Yang, 2014, pp. 247–260).

Suppose 
(

φ(1),φ(2), · · · ,φ(N)
)

 are an MCMC sam-
ple from the posterior π (φ | x). These are the φ values 
sampled during the MCMC, with the values for other 
parameters (λ and ξ) simply ignored. The kernel den-
sity estimator at the point φ0 is

π̂(φ0|x) =
1

Nh

N∑

i=1

K

Ç

φ0 − φ(i)

h

å

,

(4)

where K (!) is the kernel smoothing function and h is the 
smoothing parameter or window width. A good choice 
of h is (Silverman, 1986, eq. 3.30–3.31, p. 47)

h = 0.9 ·min

Å

SD,
inter-quartile range

1.34

ã

×N
−(1/5).

(5)
The kernel function K is typically symmetrical around 

0, with points further away from φ0 make less contri-
bution to the density at φ0. For example, the Gaussian 
kernel is given as

K(t) =
1

√

2π
e
−t

2/2
.

(6)

However, this approach may be awkward to apply if 
the prior or posterior density at the null value, π(φ0) or 
π(φ0 | x), is 0 or ∞. In this paper, we use a more intui-
tive way of deriving the Savage-Dickey density ratio of 
equation (3), which also provides an approach to its cal-
culation. This treats the problem of testing as a problem 
of estimation, and assesses how likely the parameter of 
interest (φ) differs from the null value (φ0). Define a null 
region or region of null effects, /o : |φ− φ0| < ε, inside 
which φ is very close to φ0. The null region is a small 
part of the parameter space for H1 that represents H0 
(Fig. 2). We then define a Bayes factor to represent the 
evidence for H1

B10,ε =
1− P(/o|x)

P(/o|x)

/

1− P(/o)

P(/o)
≈

P(/o)

P(/o|x)
,

(7)

as 1− P(/o) ≈ 1 and 1− P(/o|x) ≈ 1 for small ε. When 
ε → 0, P(/o) → π(φ0)∆ and P(/o | x) → π(φ0 | x)∆, 
where the differential ∆ is the size of the null region, 
so that B10,ε → π(φ0)/π(φ0 | x), as in equation (3). Thus 
the same conclusion is reached whether the problem is 
considered a testing problem (equation (1) or (3))) or an 
estimation problem (equation (7)).

The approach is illustrated in Fig. 2 using the simple 
problem of testing H0 : µ = 0 against H1 : µ ̸= 0 using a 
sample of size n from N (µ, 1). The data are summarized 
as the sample mean |x̄|. We assign the prior µ ∼ N

(

0,σ2
0

)

 
under H1. The posterior is then µ|x ∼ N(µ1,σ

2
1), with 

µ1 = nx̄/ [(n+ 1)/σ2

0
] and 1/σ2

1
= n+ (1/σ2

0
). The 

prior and posterior probabilities of the null interval 
are P(/o) = P{|µ|< ε} = 1− 2φ(−ε/σ0) ≈ π(µ0)∆ and 
P(/o | x) = φ([ε− µ1]/σ1)− φ([−ε− µ1]/σ1) ≈ π(µ0 | x)∆, 
with the differential to be the width of the null interval, 
∆ = 2ε.

The above-mentioned theory applies generally 
to Bayesian testing of nested hypotheses. Examples 
include comparison of different species delimitation 
models (e.g., one-species versus two-species mod-
els) (Yang and Rannala, 2010) and test of migration 
between species (e.g., two species with and without 
migration) (Nielsen and Wakeley, 2001). The theory 
may be applied to compare nonnested models as well 
if they both have the same null model as a special case. 
Suppose H0 is a special case of both H1 and H2, and 
let M0,M1,M2 be their marginal likelihood values. Then 
B12 = M1/M2 = B10/B20, where the Bayes factors B10 
and B20 can be calculated using the Savage-Dickey den-
sity ratio by running MCMC under H1 and H2. In prac-
tice, the approach has only limited precision and works 
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only if the goodness of fit of the compared models is not 
drastically different. If both H1 and H2 fit the data much 
better than H0 so that B10 and B20 are estimated to be ∞, 
no sensible estimate for B12 can be generated.

Test of Introgression

When we use the Savage-Dickey density ratio (equa-
tion (3)) to test introgression, the nuisance parameters 
include species divergence times (τ ) and population 
sizes (θ) on the species tree. Since we use the same pri-
ors on τ  and θ in models with and without introgre-
sion, independent of the introgression probabilities (ϕ),  
the assumption of equation (2) holds. We consider two 
tests with different assumptions about the popula-
tion size parameters (Fig. 3). In test 1, the MSci model 
assigns different θ parameters on the two segments of a 
branch broken by an introgression event; for example, 
in Fig. 3a branch RA is broken into two branches RX 
and XA and assigned θX and θA, respectively. The null 
model of no gene flow will have two θ parameters for 
the branch as well. Such a model can be implemented in 
BPP by including ghost species in the MSC model from 
which no sequences are sampled (Fig. 3a). In the second 
test, the MSci model assigns the same θ parameter for 
a branch on the species tree before and after an intro-
gression event (which can be specified using the con-
trol variable thetamodel = linked-msci in BPP) (Fig. 3b). 
When the introgression probability takes the null value 
(0) in H1, the introgression time τX becomes unidentifi-
able. The proof of equation (A1) applies to both scenar-
ios. In this study, we used test 1. Note that calculating 

the Bayes factor using the Savage-Dickey density ratio 
(equation (3) or (7)) requires an MCMC sample from H1 
and does not require any analysis or MCMC run under 
H0.

In our BPP analysis, the introgression probability ϕ 
is assigned a beta prior beta(a, b), and the null hypoth-
esis corresponds to ϕ0 = 0 in H1. Let the null region 
be /o : ϕ < ε. Then P(/o) = P(ϕ < ε) in equation (7) is 
given by the cumulative distribution function (CDF) for 
beta(a, b), while P(/o | x) is simply the proportion of the 
sampled ϕ values that are < ε. Intuitively, the null region 
/o : ϕ < ε in H1 represents absence of introgression (as 
the introgression probability ϕ is negligibly small), 
[1− P(/o)]/P(/o) is the prior odds in favor of gene flow, 
while [1− P(/o | x)]/P(/o|x) is the posterior odds, and B10 
measures the change in the odds in favor of gene flow 
when we move from the prior to the posterior. We used 
ε = 0.01 and confirm that use of ε = 0.001 gave very 
similar results. A cutoff of 20 for B10 may be considered 
strong evidence in support of H1 (corresponding to 95% 
posterior for H1 if the prior model probabilities for H0 
and H1 are 1/2 each), while 100 means extremely strong 
evidence (corresponding to 99% posterior for H1).

Materials and Methods

Chipmunk Genomic Data

The dataset, generated and analyzed by Sarver et al. 
(2021), includes 1060 nuclear loci from six chipmunk 
species: T. rufus (R), T. canipes (C), T. cinereicollis (I), T. 

Figure 2. (a) Bayes factor expressed as the Savage-Dickey density ratio in the test of the null hypothesis H0 : µ = 0 against the alternative 
hypothesis H1 : µ ̸= 0, using a data sample from N (µ, 1). The black and red curves represent the prior and posterior densities for µ in H1, and 
the small interval (of width ε) in the parameter space for H1 is the null interval ϕ (or interval of null effects), representing H0. The prior and 
posterior probabilities over the null interval (the gray and red areas) depend on the interval width (ε), but when ε → 0, their ratio converges to 
the Bayes factor B10 = π (µ0)/π (µ0 | x). If the area of null effects shrinks greatly when we move from the prior to the posterior, the data contain 
strong evidence against H0. (b) Approximate Bayes factor B10,ε = P(/o)/P(/o | x) (equation (7)) plotted against ε for a dataset of size n = 100 with 
the sample mean x̄ = 0.258. The prior is µ ∼ N(0,σ2

0) with σ0 = 2 (twice the sampling standard deviation). When ε → 0, B10 = 1.381. (c) Bayes 
factor (equation (1) or (12)) plotted against the prior variance σ2

0
 for the same dataset showing the sensitivity of B10 to the prior on the parameter 

of interest (µ). Note that in this dataset (with 
√

n|x̄| = 2.58) H0 is rejected by the LRT with p -value 1%.
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umbrinus (U), T. quadrivittatus (Q), and T. dorsalis (D) 
(with 5, 5, 9, 10, 11, 11 individuals, respectively), as well 
as the outgroup T. striatus (3 individuals). We included 
all individuals whether or not their mtDNA was likely 
to be introgressed. Due to lack of a reference genome, 
Sarver et al. (2021) assembled genomic loci (targeted 
genes or exons) into contigs using an approach called 
Assembly by Reduced Complexity (ARC). Filters were 
then applied to remove missing data (contigs not pres-
ent across all individuals) and sequences with likely 
assembly errors. The procedure generated a dataset of 
1060 loci (1060 ARC contigs, Sarver et al., 2021), with 
sequence length ranging from 14 to 1026 bp among loci 
and the number of variable sites from 0.33% to 15.2%.

High-quality heterozygous sites in the data, as iden-
tified by high mapping quality and depth of coverage, 
are represented using IUPAC ambiguity codes. They are 
accommodated using the analytical integration algo-
rithm implemented in BPP (Gronau et al., 2011; Flouri et 
al., 2018). This takes the unphased genotype sequences 
as data and averages over all possible heterozygote 
phase resolutions, using their relative likelihoods based 

on the sequence alignment at the locus as weights 
(Huang et al., 2022).

Species Tree Estimation for the T. quadrivittatus Group

We used BPP version 4 (Rannala and Yang, 2017; 
Flouri et al., 2018) to estimate the species tree under the 
MSC model without gene flow. This is the A01 analysis 
(speciesdelimitation = 0, speciestree = 1) (Yang, 2015).

We assigned inverse-gamma (IG) priors to parame-
ters in the MSC model: θ ∼ IG(3, 0.002) with mean 0.001 
for population size parameters and τ0 ∼ IG(3, 0.01) with 
mean 0.005 for the age of the root. The shape param-
eter α = 3 means that those priors are diffuse, while 
the prior means are based on estimates from prelimi-
nary runs. Note that both θ and τ  are measured in the 
expected number of mutations per site. The inverse 
gamma is a conjugate prior for θ and allows the θ 
parameters to be integrated out analytically, leading 
to a reduction of parameter space and improved mix-
ing of the MCMC algorithm. We conducted 10 repli-
cate MCMC runs, using different starting species trees. 
Each run generated 2× 10

5 samples, with a sampling 
frequency of 2 iterations, after a burn-in of 16,000 itera-
tions. Each run took about 70 hours using one thread on 
a server with Intel Xeon Gold 6154 3.0 GHz processors. 
Convergence was confirmed by consistency between 
runs. All runs converged to the same species tree (Fig. 
4a), with ∼ 100% posterior probability, which had the 
same topology as the tree inferred by Sarver et al. (2021).

Stepwise Construction of the Introgression Model

As the species tree is well supported, apparently 
unaffected by cross-species introgression, we used the 
species tree to build an introgression model with mul-
tiple introgression events. Our procedure is similar to 
stepwise regression, the step-by-step method for con-
structing a regression model that involves adding or 
removing explanatory variables based on a criterion 
such as an F- or t-test.

Our procedure has two stages. In the first stage, we 
used BPP to fit a number of introgression models, each 
with only one introgression event, and rank candidate 
introgression events by their strength (indicated by the 
introgression probability ϕ). The analyses of Sarver et al. 
(2021) suggest that mitochondrial introgression affected 
mostly four species: T. umbrinus (U), T. dorsalis (D), T. 
quadrivittatus (Q), and T. cinereicollis (I). We considered 
introgression events involving all possible pairs among 
those four species, as well as another species, QI, the 
common ancestor of T. cinereicollis and T. quadrivittatus 
(Fig. 4a). The dataset of 1060 loci was analyzed under 
an MSci model with only one introgression event, 
estimating the introgression probability (ϕ) and intro-
gression time (τ ). We assign the same inverse-gamma 
priors on θ and τ  as above, and beta(1, 1) or U (0, 1) for 
the introgression probability ϕ. Two replicate runs were 
conducted for each analysis to confirm consistency 
between runs, and MCMC samples from the two runs 

Figure 3. Parameters in the alternative and null hypotheses in two 
Bayesian tests of introgression (i.e., test of H0 : ϕ = 0 against H1 : ϕ > 0).  
The parameter of interest is the introgression probability ϕ. In test 1 
(a), the shared parameters are λ = (τR, τX = τY, θA, θB, θR, θX, θY). In test 
2 (b), the shared parameters are λ = (τR, θA, θB, θR) while ξ = (τX = τY) 
in H1 becomes unidentifiable at the null value ϕ0 = 0. Here only the 
two species involved in introgression are shown. Including other 
species on the species tree adds the same set of parameters to the null 
and alternative hypotheses.
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were then combined to produce posterior estimates 
of parameters. This analysis provides a ranking of the 
introgression events by the introgression probability. 
We calculated the Bayes factor for testing H0 : ϕ0 = 0 
given by the Savage-Dickey density ratio (equation (3)), 
using the null interval /o = (0, 0.01) (equation (7)); use 
of (0, 0.001) produced virtually identical results. Only 
introgresssion events with B10 ≥ 20 were considered 
further.

In the second stage, we added introgression events 
onto the binary species tree (Fig. 4a) sequentially in the 
order of decreasing strength (introgression probability). 
To reduce the computational cost and to examine the 
robustness of the analysis, this step was applied to two 
subsets of the 1060 loci: the first half and the second 
half, each of 530 loci. The priors used for population 
sizes and root age were as above. With multiple intro-
gression events in the model, we extended the MCMC 
runs to be k-times as long if the model involved k intro-
gression events. Three replicate runs were performed 
to check consistency between runs. Samples from the 
replicate runs were then combined to produce posterior 
summaries. At each step, the added introgression event 
was retained if it met the same cutoff as above in either 
of the two data subsets.

Our procedure produced a joint introgression model 
with three unidirectional introgression events. The 

joint model was then applied to the full dataset of 1060 
loci to estimate the population parameters including 
introgression probabilities, introgression times, species 
divergence times, and population sizes (Fig. 4b), using 
the same prior settings. We conducted 3 replicate runs, 
using a burn-in of 50,000 iterations and then taking  
10

6 samples, sampling every 2 iterations. Each run took 
200 hrs.

Results

Species Tree Estimation for the T. quadrivittatus Group

We analyzed the full data of 1060 loci under the MSC 
model without gene flow to estimate the species tree. The 
ten replicate runs using different starting species trees 
converged to the same maximum a posteriori probability 
(MAP) tree, with posterior probability ∼ 100% (Fig. 4a). 
Sarver et al. (2021) recovered the same species tree topol-
ogy in their analysis of the same data using ASTRAL 
(Mirarab and Warnow, 2015) and SVDQUARTETS 
(Chifman and Kubatko, 2014), although with weaker 
support for some nodes, e.g., concerning the placement 
of T. rufus. The differences in support may be due to the 
fact that ASTRAL and SVDQUARTETS use summaries 
of the multilocus sequence data that are not sufficient 

Figure 4. (a) Species tree for the T. quadrivittatus group with T. striatus used as the outgroup. Branch lengths represent the posterior means 
of divergence times (τ ) estimated from BPP analysis of the full data of 1060 loci under the MSC model with no gene flow, with node bars 
indicating the 95% HPD intervals. A minimum divergence time of 7 Myrs for the outgroup T. striatus is used to convert the τ  estimates into 
absolute times. (b) The joint introgression model constructed in this study with three unidirectional introgression events, showing parameter 
estimates from BPP analysis of the full data of 1060 loci. Nodes created by introgression events are labeled, with the labels used to identify 
parameters in Table S3. The MSci model includes 6 species divergence times and 3 introgression times (τ ), 19 population size parameters (θ), 
and 3 introgression probabilities (ϕ).
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statistics, and are thus less efficient than the full likeli-
hood method implemented in BPP (Xu and Yang, 2016; 
Zhu and Yang, 2021).

Stepwise Construction of the Introgression Model

In the first stage of our procedure, we fitted intro-
gression models, each involving one introgression 
event, using the full dataset of 1060 loci. We considered 
introgression events between every contemporary pair 
of the five species: T. cinereicollis (I), T. dorsalis (D), T. 
quadrivittatus (Q), and T. umbrinus (U), and the ancestral 
species QI (Fig. 4a). Introgression events that passed our 
cutoff (B10 ≥ 20) are listed in Table 2. Introgression from 
QI into D had the highest probability, > 10%, while six 
more events had ϕ > 5%: Q → D, D → QI, QI → U, I 
→ D, Q → I, and I → Q. We note that introgressions 
between Q and I, and between QI and D, were signifi-
cant in both directions and the estimated introgressions 
times were close (Table 2). We thus replaced the two 
unidirectional introgression events by one bidirectional 
introgression in further analyses (model D in Flouri et 
al., 2020).

The time of QI → U introgression was estimated to 
be 0.000408, very close to the species divergence time 
at node QIR (0.000417) (Fig. 4a), suggesting that the 
introgression was probably a more ancient event. Note 
that if an introgression event is assigned incorrectly to a 
daughter branch to the lineage truly involved in intro-
gression, one would expect the estimated introgression 
time to collapse onto the species divergence time. We 
thus attempted to place the introgression onto more 
ancient ancestral branches on the species tree (Fig. 4a) 
and finally identified the lineage involved in introgres-
sion to be the ancestral species QIRCD. The QIRCD → 
U introgression had an estimated time that was away 

from the species divergence times, and the estimated 
introgression probability (62%) was the highest (Table 
2).

In the second stage, we added introgression events 
identified in Table 2 onto the binary species tree of Fig. 
4a, in the order of their introgression probabilities (Table 
S1). This was applied to two data subsets (the full data 
split into two halves). While our procedure allows intro-
gression events already in the model to drop out when 
new introgressions are added to the model, this did not 
happen in the analysis of the Tamias dataset. Instead the 
most important introgression events identified in stage 1 
remained to be most important in the joint introgression 
models constructed in stage 2. Note that multiple intro-
gression events may not be independent. An introgres-
sion event significant in stage 1 may not be significant 
anymore when other introgression events are already 
included in the model. For example, when the QI → D 
introgression was already included in the model, none of 
the introgressions Q → D, D → QI, I → D and I → Q was 
significant. Those introgressions may be expected to lead 
to similar features in the sequence data, such as reduced 
sequence divergences between Q or I and D. Similarly, 
introgression probability for an introgression event often 
became smaller when other introgressions were added 
in the model. However, the opposite may occur as well. 
For example, ϕQIRCD→U was estimated to be 54-63% when 
this was the only introgression assumed in the model, but 
increased to 59-69% when other introgression events were 
added in the model (Table S1).

Results for the two data subsets were largely consis-
tent, especially concerning introgression events with 
high introgression probabilities. We thus arrived at 
a joint introgression model with three unidirectional 
introgression events (Fig. 4b, Table S1).

Table 2 Posterior means and 95% HPD CIs (in parentheses) for introgression probability (ϕ) and introgression time (τ ) in the separate 
introgression analysis

 Introgression ϕ 
τ  (10−3) B10 

* QIRCD → U 0.6215 (0.3907, 0.8243) 0.896 (0.784, 1.004) ∞

* QI → D 0.1187 (0.0866, 0.1499) 0.337 (0.311, 0.367) ∞

Q → D 0.0779 (0.0509, 0.1026) 0.297 (0.253, 0.328) ∞

D → QI 0.0707 (0.0384, 0.1058) 0.337 (0.302, 0.366) ∞

QI → U 0.0624 (0.0269, 0.1020) 0.408 (0.353, 0.457) 21.27
I → D 0.0579 (0.0332, 0.0862) 0.265 (0.217, 0.318) ∞

* Q → I 0.0568 (0.0315, 0.0750) 0.098 (0.073, 0.121) ∞

I → Q 0.0533 (0.0153, 0.0969) 0.111 (0.077, 0.156) ∞

D → U 0.0214 (0.0022, 0.0483) 0.276 (0.178, 0.474) 0.04
Q → U 0.0198 (0.0037, 0.0389) 0.296 (0.209, 0.367) 0.05
D → I 0.0180 (0.0092, 0.0275) 0.155 (0.123, 0.192) 0.39
D → Q 0.0177 (0.0058, 0.0315) 0.184 (0.117, 0.347) 0.10
U → QI 0.0097 (0.0022, 0.0181) 0.371 (0.322, 0.410) 0.01
I → U 0.0069 (0.0015, 0.0136) 0.158 (0.098, 0.223) 0.00
U → D 0.0066 (0.0024, 0.0112) 0.235 (0.176, 0.300) 0.00
U → Q 0.0061 (0.0008, 0.0127) 0.200 (0.119, 0.294) 0.00
U → I 0.0037 (0.0009, 0.0071) 0.147 (0.090, 0.207) 0.00

Note: The species tree of Fig. 4a is used, with a single introgression event assumed in each analysis. The full dataset of 1060 loci is analyzed 
using bpp to estimate the introgression probability (ϕ) and the introgression time (τ ), together with the species divergence times (τ ) and popu-
lation sizes (θ) on the species tree. Introgression events with B10 < 20 (D → U and below) are not considered further in the stepwise approach 
of constructing the joint introgression model. The three introgression events that are selected in the joint introgression model are marked with 
asterisks. Bayes factor B10 = ∞ occurs if all ϕ values in the MCMC sample are > ε = 1%.
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We examined the impact of the prior for ϕ on the 
Bayesian test of introgression. We calculated the Bayes 
factor B10 using the full dataset of 1060 loci under the 
prior ϕ ∼ beta(α,β), with α = 0.2, 1, 5 and β = 0.2, 1, 5

, generating nine prior settings (Table S2). Note that 
beta(α,β) has the mean E (ϕ) = α/(α+ β) and variance 
V (ϕ) = αβ/((α+ β)

2
(α+ β + 1)). In particular, the 

prior mean varied from 0.0385 for beta(0.2, 5) to 0.961 
for beta(5, 0.2). The Bayes factor B10 was ∞ for all three 
introgression probabilities in the joint model, insensi-
tive to the prior on ϕ (Table S2).

Estimation of Introgression Probabilities and Species 
Divergence/Introgression Times

Finally, we fitted the joint introgression model of Fig. 
4b to the full data of 1060 loci, as well as the two halves, 
with parameter estimates shown in Table S3. The fitted 
model is very parameter-rich, partly as we assign dif-
ferent θ parameters for different branches on the species 
tree: for example, branch Q in Figure 4b is broken into 
two segments by the introgression event, Q → I, which 
are assigned two independent θ parameters. As a result, 
population sizes for ancestral species tend to be poorly 
estimated, especially for those populations with a very 
short time duration. These patterns are consistent with 
simulation studies that examine the information con-
tent in multilocus datasets (Huang et al., 2020).

The estimated introgression probabilities from the 
full data are 0.625 with the 95% highest probability den-
sity (HPD) credibility interval (CI) to be (0.442, 0.794) 
for ϕQIRCD→U, 0.106 (0.074, 0.139) for ϕQI→D, and 0.050 
(0.028, 0.074) for ϕQ→I . The introgression probability 
ϕQIRCD→U involved considerable uncertainty, with a 
large CI, possibly because the introgression is ancient 
and is between sister species, making it hard to estimate 
its strength, so that the dataset of 1060 loci may be too 
small.

We evaluated the impact of the prior for ϕ on param-
eter estimation in the analysis of the full dataset, using 
α = 0.2, 1, 5 and β = 0.2, 1, 5 in the prior ϕ ∼ beta(α,β) 
(Fig. 5). The prior had some effects on ϕQIRCD→U, with 
the prior mean being more important than the prior 
variance. Under beta(0.2, 5) with the prior mean 0.0385, 
the posterior mean was lower, and the CI wider. Under 
beta(5, 0.2) with the prior mean 0.961, the posterior 
mean was higher, and the CI narrower. However, the 
posterior CIs overlapped considerably among the dif-
ferent priors, and overall the impact of the prior for ϕ 
on the estimate of ϕQIRCD→U was minor. Estimates of 
ϕQI→D and ϕQ→I  were insensitive to the prior used (Fig. 
5).

Accommodating gene flow in the model had sig-
nificant impacts on estimation of the time of diver-
gence between species involved in gene flow (Figs. 4 
and 6). While estimates of times for the recent diver-
gences (τQI, τQIR, τQIRC, and τQIRCD) were nearly iden-
tical between the MSC model ignoring gene flow and 
the MSci model incorporating gene flow, the estimated 
age of the T. quadrivittatus clade (τQIRCDU) was much 

greater under MSci than under MSC (Fig. 6). This can 
be explained by the fact that the MSC model ignored 
the QIRCD → U introgression, which had introgres-
sion probability 62.5%. Note that sequence divergence 
between any pair of species X  and Y has to be older 
than species divergence (tXY > τXY), and as a result, the 
minimum (rather than average) sequence divergence 
dominates the estimate of species divergence time. If 
gene flow is present between species and is ignored 
in the model, the reduced sequence divergence due to 
gene flow will be misinterpreted as recent species diver-
gence, leading to underestimation of species divergence 
time. This effect has been noted in previous simulations 
(Leaché et al., 2014).

The estimated age of the root of the species tree 
(τQIRCDUS) was slightly smaller under MSci than under 
MSC. However, τQIRCDUS is negatively correlated with 
the population size (θQIRCDUS) so that both parameters 
have large uncertainties (Burgess and Yang, 2008).

Sullivan et al. (2014, Fig. 1) used the minimum diver-
gence time of 7 Ma for the outgroup species T. striatus, 
based on fossil teeth thought to belong to Tamias found 
in the late Miocene, reported by Dalquest et al. (1996), 
to date the T. quadrivittatus clade to 1.8 Ma in a maxi-
mum-likelihood concatenation analysis of four nuclear 
genes, and to 1.2 Ma (with 95% CI 0.6–2.2) in a *BEAST 
(Heled and Drummond, 2010) analysis of the same 
data. Concatenation analysis is known to be biased as it 
does not accommodate the stochastic variation of gene 
tree topologies and divergence times among loci due to 
the coalescent process (Ogilvie et al., 2017). We used the 
same calibration to rescale the estimates of τ  under the 
MSC and MSci models (Fig. 4). The minimum age for 
the T. quadrivittatus clade was 1.9 Ma (with 95% HPD 
CI to be 1.8–2.0) under the MSC model, comparable to 
the *BEAST estimate under the same model (Fig. 4a). 
Under the MSci model, the estimated minimum age 
was 4.1 Ma (with CI be 3.2–5.1) (Fig. 4b), much older 
than the estimates under the MSC model without gene 
flow. Note that here the CIs accommodate the uncer-
tainty due to finite amounts of sequence data but not 
uncertainties in the fossil calibration.

Model Assumptions Underlying HYDE

Whereas the analyses of nuclear data by Sarver et 
al. (2021) using HYDE detected no significant signal 
of introgression at all, our BPP analyses of the same 
data revealed strong evidence of multiple introgression 
events, involving both sister and nonsister species (Fig. 
4b). To understand the opposing conclusions reached in 
the two analyses, here we examine the model assump-
tions underlying HYDE. We then use simulation to 
compare the performance of HYDE and BPP under 
conditions that are representative of the Tamias data but 
may violate the assumptions of HYDE.

HYDE was developed under the hybrid-specia-
tion model of Fig. 7a, with τS = τX = τT , and θS = θT 
(Blischak et al., 2018). Formulated for quartet data, with 
one sequence from each of the four species, it uses the 
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counts or frequencies of three parsimony-informative 
site patterns: iijj, ijji, ijij, to estimate the genetic contri-
butions of the two parental species to the hybrid spe-
cies: ϕ and 1− ϕ. Here pattern ijkl means a site with 
nucleotides i, j, k, l in O,P1,H,P2, respectively (Fig. 7a). 
Under this model, the probabilities of gene trees and 
site patterns are both given by a mixture over the two 
binary species trees S1 and S2 (called parental species 
trees), with mixing probabilities ϕ and 1− ϕ (Fig. 7b 
and c). Given species tree S1, the matching pattern iijj 
has a larger probability (say, a) than the other two mis-
matching patterns (each with probability b, say, with 

b < a). Given species tree S2, the matching pattern ijji 
has probability a while the two mismatching patterns 
have b each. The symmetry assumptions (τS = τT and 
θS = θT) ensure that a, b for tree S1 are equal to a, b for S2. 
By averaging over the two species trees, the site-pattern 
probabilities under the hybridization model are given 
as

piijj = ϕa+ (1− ϕ) b

pijij = ϕb+ (1− ϕ) b = b

pijji = ϕb+ (1− ϕ) a. (8)

Figure 5. Posterior means and 95% HPD CIs for the three introgression probabilities (ϕ) obtained from BPP analyses of the full data of 1060 
loci using different beta priors, ϕ ∼ beta(α,β).
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Setting those probabilities to the observed frequen-
cies ( p̂) and eliminating a and b from the system of 
equations gives the estimate

ϕ̂ =
p̂iijj − p̂ijij

p̂iijj − 2p̂ijij + p̂ijji
,

(9)

This is equation (3) by Blischak et al. (2018), although 
the derivation here is simpler than that of Kubatko 
and Chifman (2019). Note that the theory works if 
τS = τT > τX  and θS = θT, so that the method may be 
used under model A of Flouri et al. (2020, Fig. 1) with 
the symmetry assumption. The null hypothesis of no 
hybridization/introgression (H0 : ϕ = 0) can be tested 
by applying a normal approximation to the site-pattern 
counts (Kubatko and Chifman, 2019).

To see which of the two assumptions (τS = τT and 
θS = θT) has more impact, note that a change in τ  
is comparable with the same amount of change in 
2/θ. Coalescent may occur in population RS (if the H 
sequence takes the left parental path in the model of 
Fig. 7a), at the rate 2/θ

S
 over time period τR − τS, and it 

may occur in population RT  (if the H sequence takes the 
right parental path), at the rate 2/θ

T
 over time period 

τR − τT. If 2 (τR − τS) /θS = 2 (τR − τT) /θT, the probabil-
ity of coalescent (given that two sequences enter popu-
lations S or T) will be the same in the two populations. 
However, the probabilities of the site patterns depend 
on the time of coalescent as well as its occurrence. Thus 
for equation (9) to be valid, both the rates and the times 
have to be identical: τS = τT and θS = θT.

Note that HYDE or the D-statistic cannot be used 
to infer gene flow between sister lineages. One might 
think that HYDE or D could be applicable if two 
sequences were sampled from the recipient lineage 
to form a quartet. However this is not the case. With 
ancient introgression, the two sequences from the same 

lineage are interchangeable and have the same average 
genomic distance to the outgroup sequence. Suppose P1 
and H in Fig. 7a are two sequences from the same lin-
eage. Then site patterns iijj and ijij will have the same 
probability even if ϕ > 0.

Simulations to Examine the Performance of HYDE

Our examination of assumptions underlying HYDE 
suggests that HYDE may not be suitable for testing gene 
flow in the Tamias data. The strongest introgression in 
the Tamias data detected using BPP was between sister 
species, with ϕQIRCD→U = 0.625 (Fig. 4b). This is uniden-
tifiable by HYDE. The next introgression involved 
outflow with ϕQI→D = 0.106, whereas HYDE assumes 
inflow. The third introgression was again between sis-
ter species, with ϕQ→I = 0.050. To verify those expecta-
tions and to explore the performance of HYDE and BPP 
under different scenarios of gene flow, we conducted 
simulations using four different model settings (Fig. 
8a–d), based on parameter estimates obtained from the 
Tamias data (Fig. 4b, Table S3). Gene trees and sequence 
alignments at multiple loci were generated using the 
simulate option of BPP. HYDE analysis was conducted 
using PAUP (Swofford, 2003). The data were also ana-
lyzed using BPP. The results are summarized in Fig. 9.

Model a (Fig. 8a) assumes gene flow between sister 
lineages, based on the introgression event from QIRCD 
→ U in the Tamias data (Fig. 4b). It was suggested that 
by including multiple sequences from the recipient lin-
eage, HYDE or the D-statistic might be used to detect 
gene flow between sister lineages. We used species R 
and U, with introgression rate ϕR→U = 0.625, including 
two sequences (Ua and Ub) from the recipient species 
U, while S was used as the outgroup. The divergence 
times (τ ) and population sizes (θ) were based on the 
real data (Table S3). When multiple branches in the full 

Figure 6. Scatterplot of posterior means and 95% HPD CIs (a) for the six species divergence times (τ ) and (b) for the six ancestral population 
sizes (θ) in the MSC and MSci models of Fig. 4 obtained from BPP analyses of the full data of 1060 loci. Note that both τ  and θ are measured in 
the expected number of mutations per site.

VOL. 72

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/s
y
s
b

io
/a

rtic
le

/7
2

/2
/4

4
6

/6
8

8
7

3
7

6
 b

y
 U

n
iv

e
rs

ity
 o

f W
a

s
h

in
g

to
n

 u
s
e

r o
n

 0
1

 A
u

g
u

s
t 2

0
2

3



JI ET AL.—POWER OF BAYESIAN AND HEURISTIC TESTS2023 457

tree (Fig. 4b) were merged into one branch in the tree 
of Fig. 8a, θ for the merged branch was calculated as a 
weighted average, with the branch lengths as weights. 
As our objective in this case was to confirm the lack 
of power of HYDE (and the D-statistic), we simulated 
large datasets, each with L = 8000 loci. The sequence 
length was 500 sites, and the number of replicates was 
100. When the data were analyzed using HYDE and the 
D-statistic, the quartet tree (((Ua, Ub), R), S) was used, 
with Ua or Ub labeled the “hybrid” lineage. The same 
data were analyzed using BPP under the MSci model 
with three species (Fig. 8a).

As expected, HYDE and the D-statistic had no power 
to detect gene flow between sister lineages: indeed, the 
power of HYDE and D was not higher than the signifi-
cant level (Fig. 9, Table S4). Note that a test that ignores 
data and produces 5% positives at random will have 
5% of power. Also HYDE did not produce reliable esti-
mates of ϕ; in about half of the datasets, the estimate 
was outside the range (0, 1).

Model b (Fig. 8b) was based on the next strongest 
introgression in the Tamias data, with ϕQI→D = 0.106 
(Fig. 4b). We used species D, Q, R, with S as the out-
group. This is a case of outflow, when gene flow from 

Figure 8. Introgression models (species trees with introgression) used for simulating data to evaluate the performance of HYDE and BPP. 
(a) Species tree for three species (R, U, and S) with R → U  introgression at the rate of ϕ = 0.625, and with S to be the outgroup, based on BPP 
estimates from the Tamias data (Fig. 4b, Table S3). Population sizes (θ) are next to the branches and species divergence times (τ ) are next to the 
nodes. Two sequences are sampled from species U. When the data are analyzed using HYDE, either Ua or Ub is specified as the hybrid lineage. 
(b) Outflow model for three species (D, Q, R), with S to be the outgroup, with introgression from Q to D at the rate ϕ = 0.106 (Table S3). (c) 
Inflow asymmetrical model for three species, with asymmetrical divergence times and population sizes. (d) Inflow symmetrical model for three 
species, with τM = τQR and θM = θQR (see Fig. 7a). Note that only model (d) matches the assumption of HYDE.

Figure 7. (a) HYDE assumes a hybrid-speciation model with the additional assumption of equal population sizes, or a symmetrical inflow 
model, with τS = τT and θS = θT (Blischak et al., 2018). (b, c) Two parental species trees S1 and S2 induced by the hybridization model of (a). Site 
patterns are a mixture over the two species trees.
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an ingroup species Q to a more distant species D. Our 
examination of the assumptions made by HYDE sug-
gests that HYDE can be used to detect inflow, but not 
outflow. We generated datasets of various sizes with 
L = 500, 2000, or 8000 loci. The other settings were the 
same as for model a. When the data were analyzed 
using HYDE, Q was designated the “hybrid” lineage 
while R and D were the two parents. HYDE performed 
poorly (Fig. 9b), with very low power and frequent 
invalid estimates of ϕ (Table S5).

Model c (Fig. 8c) was the same as model b but the direc-
tion of gene flow was reversed. The model was then a 
case of inflow, as assumed by HYDE. However, species 
divergence times and population sizes did not satisfy 
the symmetry requirements of HYDE (in other words, 
τM ̸= τQR and θM ̸= θQR). In this case, HYDE had consid-
erable power in detecting gene flow (Fig. 9c). However, 
the estimates of ϕ by HYDE involved large biases, 
apparently converging to ≈ 0.32 when the true value 

was 0.106 (Table S5). This positive bias is apparently 
because coalescent occurs at a higher rate or over longer 
time period on the M branch than on the QR branch in 
Fig. 8c, with (τQRD − τM)/θM > (τQRD − τQR)/θQR. In the 
opposite case, the bias should be negative.

Model d (Fig. 8d) was the same as model c with inflow 
but in addition we enforced the symmetry assumptions, 
so that species Q was a hybrid species formed by hybrid-
ization between D and R. This is the hybrid-speciation 
model assumed by HYDE, and the method performed 
well (Fig. 9d). Its power was lower than that for BPP, 
as expected from statistical theory, but improved with 
the increase of data, rising from 10% at L = 500 loci to 
90% at 8000 loci. The parameter estimate appeared to be 
consistent, converging to the correct value (0.106) when 
the number of loci increased, and there were not many 
invalid estimates (Table S5). Those results are consistent 
with previous simulations, which evaluated the perfor-
mance of HYDE when all its assumptions were met and 

Figure 9. Power of detecting gene flow by HYDE and BPP in 100 replicate datasets simulated under the models of Fig. 8.
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found the method to perform well (Blischak et al., 2018; 
Flouri et al., 2020).

In summary, our simulations suggest that it is import-
ant to apply HYDE to detect the correct mode of gene 
flow (that is, gene flow between nonsister lineages, 
and inflow instead of outflow) (Fig. 8d). Furthermore, 
the symmetry assumptions are important for HYDE to 
produce reliable estimates of introgression probabil-
ity. When all model assumptions are met, HYDE per-
formed well. However, HYDE had no power to detect 
gene flow between sister lineages, and very low power 
to detect outflow.

In all four models (Fig. 8a–d), the Bayesian test 
using BPP had good power (Fig. 9, Tables S4 and S5). 
Furthermore, the posterior means and 95% HPD CIs for 
parameters in the introgression models b-d were well 
behaved (Fig. 10). While HYDE can estimate only two 
parameters from the site-pattern counts (the internal 
branch length in coalescent units on the species tree and 
the introgression probability), the BPP analysis of the 
same data estimates all parameters in the model. The 
species divergence/introgression times were all well 
estimated with small CIs (Fig. 10). The introgression 
probability was accurately estimated with narrow CIs 
when ≥ 500 loci were used. Population size parameters 
for short branches were poorly estimated due to lack of 
coalescent events in those populations.

We also examined the false positive rate (type I error 
rate) of the HYDE and Bayesian tests, by simulating data 
using the inflow-asym (Fig. 8c) and inflow-sym (Fig. 
8d) models but with ϕ = 0 fixed so that there was no 
introgression in the true model. The results are summa-
rized in Table 3. Under the inflow-asym model, HYDE 
had higher false positive rate than the nominal signifi-
cant level. For example, at the 5% significance level, the 
false positive rate was 7%, 13%, and 7% in datasets of 
500, 2000, and 8000 loci, respectively. The high rate may 
be explained by the violation of the symmetry assump-
tions for HYDE. Under the inflow-sym model (or the 
HYDE model), the rate was 3%, 2%, and 3%, all within 
the allowed 5% (Table 3). Thus HYDE performed well 
when its assumptions were met and had elevated false 
positives when the assumptions were violated. In all 
settings, the false positive rate of the Bayesian test was 
estimated to be ∼ 0%. This is consistent with the expec-
tation that the Bayesian test may be more conservative 
(with lower false positive rate and lower power) than 
the LRT (see discussions later).

Finally, to assess the information content in datasets 
of the size of the Tamias data, we used parameter esti-
mates from the full dataset (Fig. 4b, Table S3) to simu-
late two datasets of the same size as the original, with 5, 
5, 9, 10, 11, 11, 3 unphased sequences per locus for spe-
cies R, C, I, U, Q, D, and S, respectively. The sequence 
length was 200 sites. We analyzed the datasets under 
the same MSci model of Fig. 4b using BPP to estimate 
all parameters. The estimates from the two datasets 
were similar, so we present those from one of them in 
Table S3. At this data size, BPP achieved relatively good 

precision and accuracy. The posterior means were close 
to the true values, and the CIs were also similar to those 
calculated from the real data. Similarly to analyses of 
the real data, divergence times and population sizes 
for modern species were well estimated, but ancestral 
population sizes, in particular those for populations of 
short time duration, were more poorly estimated.

Discussion

Criteria for Testing Gene Flow

Hypothesis testing or model selection involves arbi-
trariness, and classical hypothesis testing and Bayesian 
model selection applied to the same data may pro-
duce strongly opposed conclusions, a situation known 
as Jeffreys’s paradox (Jeffreys, 1939; Lindley, 1957). 
Furthermore, Bayesian model selection is known to 
be sensitive to priors on model parameters, especially 
on parameters that are not shared between the mod-
els under comparison. See Yang (2014, pp. 194–7) for 
a discussion of those issues. Here we review different 
strategies for testing, using as example a simple prob-
lem of testing the null hypothesis H0 : µ = 0 against 
the alternative H1 : µ ̸= 0, using a data sample, , from 
the normal distribution N (µ, 1). We assume that a false 
positive error (of falsely rejecting H0 when it is true) 
is more serious than a false negative error (of failing 
to reject H0 when it is false). The data can be summa-
rized as the sample mean x̄, with the likelihood given 
by x̄ ∼ N (0, 1/n) under H0 and x̄ ∼ N (µ, 1/n) under H1. 
Let φ

(

x;µ,σ2
)

 be the probability density function (PDF) 
for N

(

µ,σ2
)

 and Φ (!) be the CDF for N (0, 1).
In hypothesis testing, the P-value can be calcu-

lated from the fact that under H0 , 
√
n|x̄| ∼ N (0, 1) or 

n|x̄|
2
∼ χ

2

1
. At the α = 5% significance level, we reject 

H0  if

2∆ℓ = 2 log
φ(x̄; x̄, 1/n)

φ(x̄; 0, 1/n)
= n|x̄|2 > χ2

1,5% = 3.84.
(10)

Alternatively one may consider this as an estimation 
problem and construct a confidence interval (CI) for µ 
and reject H0 if the CI excludes the null value 0. This is 
equivalent to the LRT.

In a Bayesian analysis, we consider two approaches. 
The first is to examine whether the posterior 95% 
credibility interval (CI) for µ under H1 excludes the 
null value 0. We assign the prior µ ∼ N

(

0,σ2
0

)

 under 
H1. The posterior is then µ|x ∼ N(µ1,σ

2
1), with mean 

µ1 = nx̄/(n+ 1/σ2

0
) and precision 1/σ2

1
= n+ 1/σ2

0
. Here 

the reciprocal of variance is known as precision. The 
sample precision is n and the prior precision is 1/σ2

0
 ,  

while the posterior precision is the sum of the two. 
The 95% CI for µ is given as µ1 ± 1.96σ1 so that the CI 
excludes 0 (in which case we reject H0) if |µ1| > 1.96σ1,  
or if

n|x̄|2 > 3.84
[

1+ 1/(nσ2

0)
]

. (11)
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Figure 10. Posterior means and 95% HPD CIs for parameters in the three introgression models of Fig. 8: (b) outflow asym, (c) inflow 
asym and (d) inflow sym (HYDE model), in BPP analyses of 100 replicate datasets, each with 500, 2000, or 8000 loci. Note that in model (d) 
inflow sym, all populations had the same size (θ) although separate θ parameters were estimated for different populations when the data were 
analyzed using BPP. Parameters τ  and θ are multiplied by 103. The number above the CI bars is the coverage or the probability that the CI 
includes the true value.
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The second approach is to use the Bayes factor to 
compare the null and alternative hypotheses (e.g., Yang, 
2006, eq. 5.21).

B10 =
P(x̄|H1)

P(x̄|H0)
=

φ
(

x̄; 0, 1
n
+ σ2

0

)

φ
(

x̄; 0, 1
n

)

= 1
√

1+nσ2
0

· exp

ß

nx̄
2

2[1+1/(nσ2
0
)]

™

,
(12)

The Bayes factor is closely related to (and ‘calibrated’ 
using) the posterior model probability. If the two models 
are assigned equal prior probabilities (π0 = π1 = 1/2),  
the posterior model probability is

P (H1 | x) =
B10

1+ B10

,
(13)

so that a 95% cutoff on P (H1 | x) corresponds to B10 = 19, 
and H0 is rejected based on the Bayes factor if and only 
if

n|x̄|2 > log
{

19

»

1+ nσ2

0

}

× 2
[

1+ 1/(nσ2

0)
]

.
(14)

While the LRT (equation (10)) depends on 
√

n|x̄| only, 
both the posterior CI (equation (11)) and the Bayes fac-
tor (equation (14)) depend in addition on nσ2

0
. Note that 

the three criteria (equations (10), (11), and (14)) have the 
ordering

3.84 < 3.84
[

1+ 1/(nσ2

0)
]

< log
{

19

»

1+ nσ2

0

}

× 2
[

1+ 1/(nσ2

0)
]

. (15)

Thus the LRT has more power and higher false pos-
itive rate than the posterior CI while the Bayesian test 
based on the Bayes factor is the most conservative. 
The result reflects the general perception that the LRT 
tends to reject the null hypothesis and favor parame-
ter-rich models too often, especially in large datasets. 
Note that if H0 is true, the false positive rate of the LRT 
stays at 5% when the sample size n → ∞, whereas in 
the Bayesian analysis, the true model H0 will dominate, 
with P (H0 | x) → 1 and B10 → 0 when n → ∞.

Example calculations are given in Table 4 for two 
datasets with 

√

n|x̄| = 1.96 or 2.58 and n = 100. In both 
datasets, H0 is rejected by the LRT (at the 5% and 1% lev-
els, respectively), but the Bayes factor and the posterior 

model probabilities favor H0 over H1, with B10 < 1 and 
P (H1 | x) < 1/2.

This analysis suggests that the difference in power 
between HYDE and BPP are due to the inefficient use 
of information in the data by HYDE, not to the different 
statistical philosophies. An LRT for testing introgression 
applied to the multilocus sequence alignments may be 
expected to have more power (and higher false positive 
rate) than the Bayesian test based on the Bayes factor.

The Power of Heuristic and Likelihood Methods to Detect 
Introgression

When applied to the Tamias dataset, HYDE and BPP 
produced opposite conclusions concerning gene flow. 
Our examination of the model assumptions for HYDE 
and our simulations suggest that this is because gene 
flow with the strongest signal in the Tamias group, either 
between sister species or involving outflow, may be of 
the wrong type or in the wrong direction for HYDE. 
Here we review and summarize the major issues with 
HYDE.

First, both HYDE and the D-statistic pool sites across 
loci when counting site patterns, so that the site-pattern 
counts are genome-wide averages. Cross-species gene 
flow creates genealogical variation across the genome, 
with the probabilistic distribution of the gene trees and 
coalescent times specified by parameters in the MSC 
model with gene flow, such as species divergence times, 
population sizes, and rates of gene flow (Barton, 2006; 
Lohse and Frantz, 2014). As a result, there is import-
ant information concerning gene flow in the variance 
of site-pattern counts among loci, but this information 
is ignored by those methods. In other words, sites at 
the same locus share the genealogical history under 
the assumption of no within-locus recombination (see 
Zhu et al., 2022 for an evaluation of the impact of this 
assumption on MSC-based analyses), and their differ-
ences reflect the stochastic fluctuation of the mutation 
process. Sites at different loci in addition may have dif-
ferent genealogical histories, reflecting the stochastic 
nature of the process of coalescent and introgression. 
When sites are pooled across loci, those two sources 
of variation are confounded, leading to loss of infor-
mation (Shi and Yang, 2018; Zhu and Yang, 2021). As 

Table 3 False positive rate of bpp and HYDE tests and average estimates of introgression probability in 100 simulated replicates

 bpp HYDE

Error rate Error rate  Error rate Error rate  Proportion of invalid estimates 

# loci (α = 1%) (α = 5%) ϕ̂± SD (α = 1%) (α = 5%) ϕ̂± SD

Inflow asym (Fig. 8c)
500 0% 0% 0.019± 0.011 1% 7% 0.140± 0.108 52%
2000 0% 0% 0.009± 0.004 5% 13% 0.094± 0.061 52%
8000 0% 0% 0.004± 0.002 2% 7% 0.038± 0.032 51%
Inflow sym (Fig. 8d, HyDe model)
500 0% 0% 0.032± 0.016 0% 3% 0.064± 0.048 49%
2000 0% 0% 0.014± 0.006 1% 2% 0.039± 0.029 55%
8000 0% 0% 0.006± 0.003 0% 3% 0.022± 0.016 49%

Note: Data were simulated using the species trees of Fig. 8c, d but with ϕ = 0.
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a consequence, certain forms of introgression, such as 
introgression between sister lineages, are unidentifiable 
by D or HYDE, while estimation of introgression rates 
between nonsister species suffers from larger variances 
(Jiao et al., 2021).

Second, HYDE makes restrictive assumptions about 
gene flow. The underlying model is one of hybrid spe-
ciation with identical population sizes or equivalently 
the inflow model with symmetrical species divergence 
times and population sizes (Fig. 7a, with τS = τT and 
θS = θT) (Blischak et al., 2018; Kubatko and Chifman, 
2019). Our simulation suggests that HYDE can indeed 
infer gene flow/hybridization and produce reliable 
estimates of introgression probability under this model 
(Fig. 9d; Table S5; see also Blischak et al., 2018; Flouri et 
al., 2020). However, introgression in the wrong direction 
or violation of the symmetry assumptions may lead to 
loss of power and biased or invalid estimates by HYDE 
(Fig. 9b, c, Table S5).

Third, the approaches taken by HYDE to accom-
modate multiple samples per species and heterozy-
gote sites in diploid genomes may be problematic. 
When multiple samples are available in the species 
quartet, HYDE counts site patterns in all combina-
tions of the quartet. Let the numbers of sequences 
for species O,P1,H,P2 be nO, n1, nH, n2. There are 
then nO × n1 × nH × n2 combinations in which one 
sequence is sampled per species, and HYDE counts 
site patterns in all of them (Blischak et al., 2018). This 
ignores the lack of independence among the quartets 
and exaggerates the sample size. At the same time, 
multiple samples from the same species are never 
compared with each other, which should provide 
important information about the population size for 
that species. In a likelihood method such as BPP, all 
sequences at the same locus, both from the same spe-
cies and from different species, are related through a 
gene tree, and genealogical information at the locus 
is used.

Similarly heterozygote sites are not treated properly 
in HYDE. If the site pattern is AGRG, with R represent-
ing an A/G heterozygote, HYDE adds 0.5 each to the site 
patterns ijjj (for AGGG) and ijij (for AGAG) (Blischak et 
al., 2018), in effect treating R as an unknown nucleotide 
that is either A or G whereas correctly it means a hetero-
zygote (both A and G). The proportion of heterozygotes 
in each diploid genome should be informative about θ 
for that population, but such information is not used by 

HYDE. In BPP, heterozygote sites are resolved into their 
underlying nucleotides using an analytical integration 
algorithm (so that R means both A and G, say), with 
the uncertainty in the genotypic phase of multiple het-
erozygous sites in a diploid sequence accommodated 
by averaging over all possible heterozygote phase res-
olutions, weighting them according to their likelihoods 
based on the sequence alignment at the locus (Gronau et 
al., 2011; Flouri et al., 2018). Simulations suggest that this 
approach has nearly identical statistical performance to 
using fully phased haploid genomic sequences (Gronau 
et al., 2011; Huang et al., 2022).

In this paper, we have focused on the heuristic 
method HYDE and the likelihood method BPP, as 
they have been used to analyze the Tamias data. By 
choosing parameter values to be representative of 
the Tamias data, our simulation has evaluated a tiny 
portion of the parameter space and does not consti-
tute a systematic evaluation of the performance of 
HYDE. The strengths and weaknesses of heuristic 
and likelihood methods for inference under models 
of gene flow were discussed by Degnan (2018) and 
Jiao et al. (2021), but a comprehensive comparative 
study has not yet been conducted. For estimation of 
the species phylogeny under the MSC without gene 
flow (Zhu and Yang, 2021, Fig. 3) demonstrated a dra-
matic information loss resulting from pooling sites 
across loci in the site-pattern based methods (also 
known as coalescent-aware concatenation methods), 
and from the failure to use information in coalescent 
times or gene-tree branch lengths in the two-step 
methods (which infer the gene trees and then treat 
them as data to infer the species tree). Both the site 
pattern-based and the two-step methods are used 
to infer gene flow and to estimate the introgression 
probability (e.g., HYDE and the D-statistic in the 
first category and SNAQ in the second) and similar 
information loss may be expected. A detailed analy-
sis of the performance of heuristic methods in com-
parison with likelihood methods will be interesting. 
Currently, the gap between the heuristic and likeli-
hood methods appears to be a large one. Heuristic 
methods are orders-of-magnitude more efficient 
computationally and can be applied to much larger 
datasets, whereas likelihood methods have far bet-
ter statistical properties, being able to identify and 
estimate all parameters in the model. There are great 
opportunities for improving both the statistical 

Table 4 LRT and Bayesian tests in the normal example in two datasets

Data LRT Bayesian test
√

n|x̄| P-value Prior B10 P (H1 | x) 

1.96 0.05 σ0 = 1 0.359 0.264
1.96 0.05 σ0 = 2 0.262 0.208
1.96 0.05 σ0 = 10 0.120 0.107
2.58 0.01 σ0 = 1 0.408 0.290
2.58 0.01 σ0 = 2 0.300 0.230
2.58 0.01 σ0 = 10 0.138 0.122

Note: The Bayes factor B10 is calculated assuming data size n = 100 in equation (12), while the posterior model probability is given by equa-
tion (13). Note that the P-value for the LRT is 5% (or 1%) in the dataset with 

√

n|x̄| = 1.96 (or 2.58).

VOL. 72

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/s
y
s
b

io
/a

rtic
le

/7
2

/2
/4

4
6

/6
8

8
7

3
7

6
 b

y
 U

n
iv

e
rs

ity
 o

f W
a

s
h

in
g

to
n

 u
s
e

r o
n

 0
1

 A
u

g
u

s
t 2

0
2

3



JI ET AL.—POWER OF BAYESIAN AND HEURISTIC TESTS2023 463

performance of heuristic methods and the computa-
tional efficiency of likelihood methods (including the 
mixing efficiency of MCMC algorithms).

Introgression in T. quadrivittatus Chipmunks

The joint introgression model for the T. quadrivitta-
tus group (Fig. 4b) was constructed using a stepwise 
approach that iteratively adds introgression events to 
the binary species tree. We note several limitations with 
this approach. First the approach assumes the availabil-
ity of a stable binary species tree, and may not be feasible 
if the species tree is large and highly uncertain, possi-
bly influenced by introgression events (Leaché et al., 
2014). The Tamias dataset analyzed here includes only 
six species, and the first stage of our procedure (i.e., the 
separate analysis) involved 16 possible introgression 
events, so that the computation was feasible. Second, 
the approach is not an exhaustive search in the space of 
introgression models and may miss certain introgres-
sion events. Note that introgression events not selected 
in the first stage of the procedure will not be incorpo-
rated in the final joint introgression model. In our anal-
ysis of the Tamias data, we considered introgressions 
between contemporary species, mostly based on phy-
logenetic analyses of the mitochondrial genome (Sarver 
et al., 2017), and moved certain events to older ances-
tral branches when the estimated introgression time 
coincided with the species divergence time. We did not 
evaluate introgressions involving ancestral branches 
systematically. Furthermore, the criterion based on the 
Bayes factor used in our test is a stringent one, and the 
dataset of 1060 loci is relatively small. All those factors 
suggest that we cannot rule out the possibility that we 
may have missed some introgression events; in other 
words, our analysis may suffer from false-negative 
errors. In contrast, the three introgression events iden-
tified in our analysis (Fig. 4b) appear to be robust and 
are unlikely to be false positives (Fig. 5, Table S2). We 
conclude that there is strong and robust evidence that 
gene flow has affected the nuclear genome in the T. qua-
drivittatus group of chipmunks.

Given the extensive mitochondrial introgression 
in the Tamias group (Sullivan et al., 2014; Sarver et al., 
2017, 2021), introgression affecting the nuclear genome 
was expected, and the failure to detect any significant 
evidence for it in the HYDE analysis was surprising 
(Sarver et al., 2021). Sarver et al. (2021) discussed the 
evidence for cytonuclear discordance in the pattern of 
introgression (Bonnet et al., 2017; McElroy et al., 2020; 
Sarver et al., 2021), as well as possible roles of purifying 
selection affecting the coding genes or exons that make 
up the nuclear dataset being analyzed. Our results sug-
gest a simpler explanation, that gene flow in the Tamias 
group is of a wrong type or in the wrong direction, 
undetectable by HYDE.

Our analyses suggest that species involved in exces-
sive mitochondrial introgression tend to be those 
involved in nuclear introgression as well. T. dorsalis 
was noted to be a universal recipient of mtDNA from 

other species (Sullivan et al., 2014; Sarver et al., 2017). 
Consistent with this, our separate analysis (Table 2) 
identified three introgression events into T. dorsalis 
with ϕ > 5% as well as one event with T. dorsalis to be 
the donor species, even though some of those events 
become non-significant after introgression involving 
older ancestors was incorporated in the model. It will 
be interesting to use expanded datasets to examine 
whether this is due to a lack of power to detect gene 
flow or a genuine lack of gene flow.

It will be very useful to generate more genomic data, 
especially the noncoding parts of the nuclear genome, 
including more species from the genus, to provide more 
power for detecting gene flow and estimating introgres-
sion rates. It will also be interesting to examine whether 
the noncoding and coding regions of the genome give 
consistent signals concerning species divergences and 
cross-species gene flow, and to examine how the effec-
tive rate of gene flow vary among chromosomes or 
across genomic regions. In a few genomic analyses, cod-
ing and noncoding parts of the genome were found to 
produce highly consistent results, with nearly propor-
tional estimates of divergence times (τ ) and population 
sizes (θ), and with very similar estimates of introgres-
sion rates (Shi and Yang, 2018; Thawornwattana et al., 
2018, 2022). One can also examine the posterior dis-
tribution of the gene trees to identify loci or genomic 
segments that are most likely to have been transferred 
across species boundaries, and to correlate with the 
functions of genes residing in or tightly linked to the 
segments.
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Data available from the Dryad Digital Repository: 
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APPENDIX: BAYES FACTOR AS THE SAVAGE-DICKEY DENSITY 

RATIO IN COMPARISON OF NESTED MODELS

Consider the comparison of the null model 
H0 : φ = φ0 against the alternative model H1 : φ ̸= φ0,  
and suppose that both models have common (nui-
sance) parameters λ, while parameters ξ in H1 become 
unidentifiable when φ = φ0. The parameter vector is λ 
for H0 and (φ,λ, ξ) for H1. Given data x, let the likeli-
hood be L0 (λ) under H0 and L (φ,λ, ξ) = p (x | φ,λ, ξ) 
under H1, with L (φ0,λ, ξ) = L0 (λ) as the two mod-
els are nested. Let the prior be π0 (λ) under H0 and 
π (φ,λ, ξ) = π (φ)π (λ | φ)π (ξ | φ,λ) under H1. Under 
the assumption that the priors on the common parame-
ters (λ) agree between the two models, π (λ | φ0) = π0 (λ) 
(equation (2)), the Bayes factor B10 in support of H1 over 
H0 (equation (1)) can be expressed as the ratio of the 
prior and posterior densities for φ in H1, both evaluated 
at the null value φ0: that is, B10 = π(φ0)/π(φ0 | x) (equa-
tion (3)).

PROOF

Rewrite the prior π0(λ) and likelihood L0(λ) under 
H0 as probability densities under H1. We have

B10 =
m

´

π0(λ)L0(λ)dλ

=
m

´

π(λ|φ0)L0(λ)dλ

=
m

´ ´

π(φ0,λ,ξ)
π(φ0)

L(φ0,λ, ξ)dξdλ

=
π(φ0)

´ ´

1
m
π(φ0,λ, ξ)L(φ0,λ, ξ)dξdλ

=
π(φ0)

˜

π(φ0,λ, ξ|x)dξdλ

=
π(φ0)

π(φ0|x)
.

(A1)

The proof above is more general than that given by 
Dickey (1971), which does not deal with the unidentifi-
ability of ξ. Thus equation (3) holds even if there exist 
nuisance parameters (λ) in both models, if the null val-
ues (φ0) are at the boundary of the parameter space in 
H1, and if some parameters in H1 (ξ) become unidenti-
fiable when the parameters of interest take the null val-
ues (when φ = φ0).
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