
COMPARING DECENTRALIZED GRADIENT DESCENT APPROACHES AND
GUARANTEES

Shana Moothedath and Namrata Vaswani

Iowa State University, Ames, IA, USA

ABSTRACT

This work studies our recently developed decentralized algorithm,
decentralized alternating projected gradient descent algorithm,
called Dec-AltProjGDmin, for solving the following low-rank (LR)
matrix recovery problem: recover an LR matrix from indepen-
dent column-wise linear projections (LR column-wise Compressive
Sensing). In recent work, we presented constructive convergence
guarantees for Dec-AltProjGDmin under simple assumptions. By
“constructive”, we mean that the convergence time lower bound
is provided for achieving any error level ε . However, our guar-
antee was stated for the equal neighbor consensus algorithm (at
each iteration, each node computes the average of the data of all its
neighbors) while most existing results do not assume the use of a
specific consensus algorithm, but instead state guarantees in terms
of the weights matrix eigenvalues. In order to compare with these
results, we first modify our result to be in this form. Our second and
main contribution is a theoretical and experimental comparison of
our new result with the best existing one from the decentralized GD
literature that also provides a convergence time bound for values of
ε that are large enough. The existing guarantee is for a different
problem setting and holds under different assumptions than ours and
hence the comparison is not very clear cut. However, we are not
aware of any other provably correct algorithms for decentralized LR
matrix recovery in any other settings either.

Index Terms— Low Rank matrix recovery, compressed sens-
ing, decentralized algorithms

1. INTRODUCTION

This work studies our recently developed decentralized algorithm,
decentralized alternating projected gradient descent algorithm (Dec-
AltProjGDmin) [1], for solving the following low-rank (LR) matrix
recovery problem: recover an LR matrix from independent column-
wise linear projections (LR column-wise Compressive Sensing (LR-
cCS)) [2, 3, 4]. One application of our setting is in federated sketch-
ing where the goal is to reconstruct the data (images or videos)
from their compressed signals acquired at geographically distributed
nodes (mobile phones or IoT devices). Typically there is no cen-
tral server and the agents/sensors communicate among themselves
for reconstructing the data. In recent work [5, 6], we presented a
constructive convergence guarantee for Dec-AltProjGDmin under
simple assumptions. By “constructive”, we mean that the conver-
gence time lower bound is provided for achieving any error level ε .
One important application where this problem occurs is in decentral-
ized federated sketching. Sketching refers to lossy data compression
where the compression step is a very fast operation, typically a linear
projection, but the decompression can be more complex.

Our guarantee from [5, 6] was stated for the equal neighbor con-
sensus algorithm (at each iteration, each node computes the average
of the data of all its neighbors) while most existing results do not

assume use of a specific consensus algorithm, but instead state guar-
antees in terms of the weights’ (mixing) matrix eigenvalues. In order
to compare with these results, we first modify our result to also be
in this form. Our second and main contribution is a theoretical and
experimental comparison of our new result with the best existing
one from the decentralized GD literature that also provides a con-
vergence time bound for values of ε that are large enough. We also
provide experimental comparisons with using the well known De-
centralized GD (DecGD) algorithm [7] for our problem and explain
why it does not work.

The guarantee for DecGD is for a different problem setting and
hold under different assumptions than ours and hence the compari-
son is not very clear cut. However, we are not aware of any other
provably correct algorithms for decentralized LR matrix recovery in
any other settings either. To the best of our knowledge, there is only
one work on non-convex optimization that provides a randomized
algorithm with a non-asymptotic guarantee: the work of [20] (given
below). The setting in [20] is very different than ours and it requires
the Polyak Łojasiewicz (PL) condition to hold.

1.1. Problem setting and notation
LRcCS problem aims to recover a set of q n-dimensional vec-
tors/signals X? := [x?1,x

?
2, . . . ,x

?
q] such that the n× q matrix X? has

rank r�min(n,q), from m-length projections yk given by
yk := Ak x?k , k = 1,2, . . . ,q. (1)

The m×n matrices Ak are known and mutually independent for dif-
ferent k. We consider yk’s are low-dimensional and hence m < n and
the goal is to have to use as few number of samples m as possible.
The total sample complexity is mq.

We assume that there is a set of L distributed nodes/sensors, each
of which obtains sketches (linear projections) of a disjoint subset of
columns of X?. We denote the set of columns sketched at node g by
Sg. The sets Sg form a partition of [q] := {1,2, . . . ,q}, i.e., they are
mutually disjoint and ∪L

g=1Sg = [q]. The communication network
is specified by an undirected graph G = (V,E), where V denotes
the set of nodes, with |V | = L, and E denotes the set of undirected
edges. The neighbor set of the gth node (sensor) is defined as by
Ng := { j : (g, j) ∈ E}. We consider a decentralized setting where
there is no central coordinating node, each node of the network can
only communicate with its neighboring nodes.

Let us denote the reduced (rank r) Singular Value Decomposi-

tion (SVD) of the rank-r matrix X? as X? SVD
= U? Σ? V?>. Let κ

be the condition number of Σ?. We define B := V> and B̃ := ΣV>.
Thus X? SVD

= U? Σ? B? = U? B̃?. For a matrix Z̃, we use Z to de-
note orthonormal basis. When computed using QR decomposition,

Z̃ QR
= ZRRR. We denote the Frobenius norm as ‖·‖F and the induced

`2 norm as ‖·‖. We use ek to denote the kth canonical basis vector
and h ∈ [d] for h ∈ {1,2, . . . ,d} for some integer d. We define the
Subspace Distance (SD) measure between two matrices U1 and U2

IC
A

SS
P

20
23

 -
20

23
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
co

us
tic

s,
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g
(I

C
A

SS
P)

 |
97

8-
1-

72
81

-6
32

7-
7/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

SS
P4

93
57

.2
02

3.
10

09
69

94

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 01,2023 at 21:49:06 UTC from IEEE Xplore. Restrictions apply.

as SD(U1,U2) :=
∥∥(I−U1U>1)U2

∥∥
F , where I is the identity matrix.

Further, > denotes matrix or vector transpose and |zzz| for a vector zzz
denotes element-wise absolute values. We use 1statement to denote
an indicator function that takes the value 1 if statement is true and
zero otherwise. We use ◦ to denote component-wise multiplication
(Hadamard product). We reuse c,C to denote different numerical
constants in each use with c < 1 and C > 1.

Assumption 1 (Right singular vectors’ incoherence). Assume that
maxk ‖x?k‖ = maxk ‖b?

k‖ ≤ σ?
maxµ

√
r/q for a constant µ ≥ 1 (µ

does not grow with n,q,r). This further implies that maxk ‖x?k‖ ≤
κµ‖X?‖F/

√
q.

1.2. Related work and contributions
Related work: The LRcCS problem has been studied in the central-
ized setting and a GD-based solution was proposed in [3]. Recently,
LRcCS has been studied in the decentralized setting in our prior
works [5, 1, 6]. In [1] we presented the Dec-AltProjGDmin algo-
rithm and an empirical validation using generated data. In [5, 6], we
presented the theoretical guarantee and and its proof. The algorithm
and guarantee given in papers [5, 1, 6] are for an equal neighbor
model communication network [8].

Projected GD is a GD-based solution approach for solving con-
strained optimization problems. It involves projecting the output of
each GD step onto the constraint set. In the last decade, the design of
decentralized GD and projected GD algorithms has received a lot of
attention [7, 9, 10, 11, 12, 13, 14, 15], starting with the seminal work
of Nedić et al. [7]. There is also some recent work on projected GD
for constrained optimization problems [9, 12, 13] or for imposing
the consensus constraint [12]. However, all existing approaches that
come with guarantees assume convex cost functions and either no
constraints or convex constraint sets. The works of [9, 13] study pro-
jected GD approaches to solve a decentralized convex optimization
with convex constraint sets. Both use projection onto convex sets
to impose the constraint after each GD iteration. The work of [12]
considers the unconstrained optimization problem, and uses projec-
tion onto an appropriately defined subspace to impose the consensus
constraint at each algorithm iteration.
Contributions: In this paper we focus on comparing our fully-
decentralized GD algorithm (Dec-AltProjGDmin) with the decen-
tralized GD algorithm in [15], both theorems and numerical ex-
periments. The theoretical guarantees presented in this paper use
fundamental theorem of calculus [16], sub-exponential Bernstein
inequality [17], Markov chain convergence results [18], average
consensus algorithms and results [8], and analysis of perturbed QR
decomposition [19].

2. THE PROPOSED ALGORITHM AND GUARANTEE
2.1. Dec-AltProjGDmin: Decentralized Alternating Projected
GD and minimization

Pseudocode of Dec-AltProjGDmin is presented in Algorithm 1.
There are two key steps. We decompose X = UB and define

f (U,B) =
L

∑
g=1

fg(U,B), where fg(U,B) = ∑
k∈Sg

‖yk−AkUbk‖2. (2)

At each GD iteration, for each new estimate of U, we first solve for
B by minimizing f (U,B) over it while keeping U fixed at its current
value. Then we compute Ũ = U−η∇U f (U,B) and orthonormal-
ize it using QR decomposition as U = QR(Ũ). Here ∇U f (U,B) =
∑

q
k=1 A>k (AkUbk−yk)b>k .

To initialize, we compute U0 as the top r left singular vec-
tors of X0 = (1/m)∑k∈[q] A>k yk,trunc(α)e>k with α := C̃ ∑ki(yki)

2

mq and

yk,trunc(α) := yk ◦1{y2
ki6α}. This is yk with large magnitude entries

zeroed out. To compute X0, we use an average consensus algorithm.
Let Tcon denote the number of iterations of the consensus algorithm
and Z(g)

in , for g ∈ [L], be the input. For Z(g)
0 := Z(g)

in average consensus
updates as

Z(g)
t+1 = Z(g)

t + ∑
j∈Ng

Wg j

(
Z(j)

t −Z(g)
t

)
, for g ∈ [L] (3)

and outputs AvgCon(g)({Z
(g)
in }

L
g=1,G,Tcon) := Z(g)

out = L ·Z(g)
Tcon

, for all
g∈ [L]. Here the mixing matrix W is symmetric and doubly stochas-
tic. In Algorithm 1, we use average consensus at three places. In
the initialization step, to approximate the threshold α and the top
r singular vectors of X0 (which are equal to those of X0X>0) com-
puted using the PM, and in the ProjGD iterations to approximate
the sum of the individual gradients at all the nodes, i.e. compute
∇U f (U,B) = ∑k∈[q] A>k (AkU(bk)−yk)(bk)

>.

2.2. Convergence, sample, time, & communication complexities

We first present the convergence result for the consensus update and
then present the main result.

Proposition 2.1. Consider the average-consensus update in (3) and
let the mixing matrix W be symmetric and doubly stochastic with
eigenvalues ordered as 1 = λ1 > λ2 > . . . ,λL > −1. Define ρ =
max{|λ2|, |λL|}. Let ztrue :=∑

L
g=1 z(g)

in be the true sum. Pick an εcon <

1. If the undirected graph is connected, if Tcon >
log(L1.5/εcon)

log(1/ρ)
, then

max
g
|z(g)

out− ztrue|6 εcon max
g
|z(g)

in − ztrue|.
Proposition 2.1 is an easy consequence of Eq. (1.9) in Propo-

sition 3 of [18]. We use Proposition 2.1 for PM and for GDmin
iterations, to show that, for any g, Ũ(g)

τ and Ũ(1)
τ are close after a suf-

ficient number of consensus iterations, i.e., estimates of any agent g
and the first agent (or any arbitrary agent other than the gth agent)
are close.

Theorem 2.2. Consider Algorithm 1. Assume that the network
is connected, Assumption 1 on X? holds, and that the Aks are
i.i.d. with each containing i.i.d. standard Gaussian entries. For
final desired error ε < 1, set C̃ = 9κ2µ2, η = 0.8/σ?

max
2, T =

Cκ2 log(1
ε
), TPM = Cκ2(logn + logκ), Tcon,α = C log(L)/ log(1

ρ
),

Tcon,PM = C(κ2 log(1
ε
) + logL + logn+ logκ)/ log(1

ρ
), Tcon,GD =

C(κ2 log(1
ε
)+ logL+ logn)/ log(1

ρ
).

If m satisfies mq > Cκ6µ2(n + q)r2 := minitq for the initial-
ization step, and mq > Cκ4µ2(n + q)r2 logκ := mGDq and m >
C max(logL, logq, logn,r) for each GD iteration, then, with proba-
bility (w.p.) at least 1−n−10, for all g ∈ [L],

SD(U(g)
T ,U?)6 ε, and

max
k

‖(x(g)
k)T −x?k

(g)‖
‖x?k

(g)‖
6 1.4ε, ‖X(g)

T −X?‖F 6 1.4ε‖X?‖.

Sample, Time and Communication complexity. The above result
implies that the total number of samples per column mtot := minit +
T ·mGD needs to satisfy mtotq>Cκ6µ2(n+q)r2 log(1/ε) logκ along
with needing mtot >C max(logL, logq, logn,r).

The time complexity of our algorithm is the time needed per
iteration times the total number of consensus iterations. For one
inner loop (consensus) iteration, our algorithm needs to (i) compute

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 01,2023 at 21:49:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Pseudocode of the Dec-AltProjGDmin algorithm for
agent g ∈ [L]. We have omitted (g) in most places except where it is
needed to make things clear (only for input to Avgcons algorithm).

Input: Ak,yk, for all k ∈ [q], set Sg of all agents g ∈ [L], graph G,
consensus iteration Tcon
Output: U(g), B(g) and X(g) = U(g)B(g).
Parameters: Multiplier in specifying α for init step, C̃; GD step
size, η ; Number of consensus iterations, Tcon,α ,Tcon,PM,Tcon,GD,
number of PM iterations, TPM , and number of PM iterations, T .
Sample-split: Partition the measurements and measurement ma-
trices into 2T +2 equal-sized disjoint sets: two sets for initializa-
tion and 2T sets for the iterations. Denote these by y(`)k ,A(`)

k , ` =
00,0,1, . . .2T .

1: Initialization:
2: Let yk ≡ y(00)

k ,Ak ≡ A(00)
k for all k ∈ [q]. Set α (g) ←

AvgCong({α
(g)
in }

L
g=1,G,Tcon,α) with α

(g)
in ← C̃ 1

mq ∑
k∈Sg

m

∑
i=1

y2
ki

3: Let yk ≡ y(0)k ,Ak ≡ A(0)
k for all k ∈ [q]. Define yk,trunc(α

(g)) :=
yk ◦1{|yki| ≤

√
α (g)} for k ∈ Sg, g ∈ [L]

4: Generate U(g)
0 = U0, for g ∈ [L]; the same n× r matrix with i.i.d.

standard Gaussian entries (use the same random seed for all g)
5: PM iterations:
6: for τ = 1 to TPM and for all g ∈ [L] do
7: Ũ(g) ← AvgCong({Ũ

(g)
in }

L
g=1,G,Tcon,PM) with Ũ(g)

in =

((1/m)∑k∈Sg
(A>k yk,trunc(α

(g)))e>k)(·)
>U(g)

τ−1
8: [U(g),R(g)]← QR(Ũ(g))
9: Set U(g)

τ ← U(g)

10: end for
11: AltGDmin iterations:
12: Initialize U(g)

0 ← U(g)
TPM

13: for t = 1 to T and for all g ∈ [L] do
14: Update b(g)

k ,x(g)
k : Let yk = y(t)k ,Ak = A(t)

k for all k ∈ [q]. Set
b(g)

k ← (AkU(g)
t−1)

†yk, x(g)
k ← U(g)

t−1b(g)
k , for all k ∈ [q] with k ∈ Sg

15: Gradient w.r.t. U(g)
t−1: Let yk = y(T+t)

k ,Ak = A(T+t)
k . Com-

pute GradU(g) = AvgCong({∇ fg(U(g),B(g))}L
g=1,G,Tcon,GD)

with ∇ fg(U(g),B(g)) := ∑
q
k=1 A>k (AkU(g)b(g)

k −yk)b
(g)
k
>

16: GD step: Set Ũ(g)← U(g)
t−1− (η/m)GradU(g)

17: Projection step: Compute [U(g),R(g)]← QR(Ũ(g))
18: Set U(g)

t ← U(g)

19: end for
20: return U(g), B(g) and X(g) = U(g)B(g)

AkU for all k ∈ [q], (ii) solve the LS problem for updating bk for
all k ∈ [q], and (iii) compute the gradient w.r.t. U of fk(U,B), i.e.
compute A>k (AkUbk− yk)b>k . Thus, order-wise, the time taken per
iteration is max(q ·mnr,q ·mr2,q ·mnr) = mqnr. The total number
of consensus iterations for initialization is Tcon,α +Tcon,PM ·TPM; this
number for GD is Tcon,GD ·T . Thus, the total number of consensus
iterations needed is Tcon · (TPM +T). Since T > TPM , This simplifies
to O(κ4 log2(1/ε) log(Lnκ)/ log(1/ρ)). Thus, the time complex-
ity of our approach is O(mqnr · κ4 log2(1/ε) log(Lnκ)/ log(1/ρ)).
Treating κ as a numerical constant, this simplifies to O(mqnr ·
log2(1/ε) log(Ln)/ log(1/ρ)).

For communication complexity, notice that, in all consensus it-
erations, the nodes are exchanging approximations to ∇U f (U,B)
which is a matrix of size n× r. In one such iteration, each node

receives nr scalars from its neighbors. Thus the cost per iteration per
node is nr ·deg where deg is the maximum degree of any node. The
cost per iteration for all the nodes is nr ·deg ·L.

2.3. Theoretical comparisons

There are many results that analyze the decentralized GD algorithm
of [7]. However most provide asymptotic convergence guarantees,
but do not provide an explicit bound on how the cost function de-
cays over iterations. We use the result of Yuan et al. [15] for our
comparison because this provides such a bound at least in a certain
regime. Yuan et al. [15] analyzed the decentralized GD algorithm
of [7] which solves the problem of minimizing f (x) = ∑

L
g=1 fg(x),

where x ∈ Rn and each fg is only known to the agent g in a con-
nected network of L agents. DecGD proceeds as follows: each agent
g updates its local variable x(g) ∈ Rn by combining the average of its
neighbors’ with a local negative-gradient step as

x(g)(t +1) =
g

∑
j=1

Wg jx(j)(t)−η∇ fg(x(g)), for each agent.

Here W is the mixing matrix and the (g, j)th entry is non-zero only
if g and j are neighbors or g = j and W is symmetric and doubly
stochastic. The paper of Yuan et al. [15] provides an asymptotic con-
vergence guarantee for this algorithm under certain convexity and
Lipschitz differentiability assumptions. In addition, it bounds the de-
viation of the cost function from its minimum value at each iteration
of this algorithm until the deviation reaches order O(η/(1−ρ)).

Proposition 2.3 (Theorem 2, [15]). Consider a connected network
and assume that the mixing matrix W is symmetric and doubly
stochastic with ρ < 1. For each g = 1,2, . . . ,L, assumes that the
functions fg are proper closed convex, lower bounded, and Lipschitz
differentiable with constant Lg > 0. Define Lmax := maxg{Lg}.
Then, if the step size η ≤ (1+λL(W))/Lmax, then

f (x̄(t))− f ? 6 max{ 1
ηt

,
η

(1−ρ)
},

Here x̄(t) = ∑g x(g)(t)/L and f ∗ = minx f (x) is the minimum cost
function value. Thus, for ε > η

(1−ρ)
, the required number of itera-

tions to reach ε deviation is 1/(ηε). By setting η equal to its allowed
upper bound, this simplifies to Lmax

(1+λL)ε
.

Now consider what our guarantee states. From our bound on
SD(U?,U(g)

t) it is easy to derive a bound on f (U,B)− f ∗ where f ∗ =
f (U?,B?) and f (·, ·) is defined in (2). Clearly, in our case f ∗ = 0.
Using the sub-exponential Bernstein inequality and linear algebra
tricks similar to those used in our proof, it is possible to show that

f (U,B)− f ∗ = f (U,B)6C ·σ?
max

2 ·SD(U?,U(g)
t).

Thus the cost function decays at the same rate as the estimates. Com-
bining this with our main result, f (U,B)− f ∗ ≤ εσ?

max
2 after Ttotal

iterations with

Ttotal := (TPM +T) ·TTcon =Cκ
4 1

log(1/ρ)
log2(1/ε) log(Ln).

To compare our guarantee with that of Yuan et al. given above,
the following can be said.

• Assumptions made by both results are different. Their result,
and most other previous results that provide an asymptotic
analysis of DecGD [7, 9, 10, 15], assume convexity of the cost
function and Lipschitz differentiability of the cost function at

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 01,2023 at 21:49:06 UTC from IEEE Xplore. Restrictions apply.

1.5 2 2.5 3
Execution time (in sec)

10-15

10-10

10-5

100

Centralized
Dec-AltProjGDmin: Tcon=10

Dec-AltProjGDmin: Tcon=100

DecGD

(a) q = 400,L = 20, p = 0.5

0.8 1 1.2 1.4 1.6 1.8
Execution time (in sec)

10-15

10-10

10-5

100

Dec-AltProjGDmin: Tcon=100

Dec-AltProjGDmin: Tcon=10

Centralized
DecGD

(b) q = 200,L = 20, p = 0.5
Fig. 1: Error versus execution time plot with time. We compare performance our fully decentralized algorithm (Dec-AltProjGDmin) with the centralized
AltProjGDmin algorithm in [3] (which is the memory efficient existing approach with guarantees when there is a central server and this is equivalent to the
decentralized setting with Tcon = ∞) and the DecGD algorithm in [15] (which computes average of U(g)’s using consensus algorithm followed by a local GD for
GD step on U). In Figure (1a), n = 100, r = 4, q = 400, m = 40, p = 0.5, and L = 20. In Figure (1b), n = 100, r = 4, q = 200, m = 40, p = 0.5, and L = 20.

each node. On the other hand, our result is for a specific non-
convex optimization problem: the cost function is a specific
one given earlier and we are assuming that our unknown ma-
trix X is LR. In addition, we need the right singular vectors’
incoherence assumption stated earlier. One cannot say which
set of assumptions is stronger.

• Our result is what can be called a constructive convergence
result, it provides the number of iterations needed to reach ε

error for any value of ε > 0. The result of Yuan et al. either
provides an asymptotic convergence guarantee or provides
the explicit number of iterations only for ε > η/(1−ρ).

• In the regime of ε > η/(1−ρ), DecGD deviation from op-
timum decays as 1/t while ours decays exponentially. Thus,
our Ttotal depends on log2(1/ε) while theirs depends on 1/ε .
The latter number of iterations is much larger.

• On first glance, it seems that the guarantee of DecGD does
not depend on the network connectivity at all as long as it
is connected; however this is not true. The second term in
the max expression is η

(1−ρ)
and thus, their result provides an

iteration count only for ε > η/(1− ρ), for this to work for
small enough values of ε , one needs η small and a network
with ρ small (network with fast mixing properties).

3. SIMULATIONS

In this section, we present the numerical experiments of the Dec-
AltProjGDmin algorithm. We used MATLAB for these experiments.
First we generated the dataset, i.e., Ak’s and yk’s, in a random fash-
ion. Then we simulated the a communication network G as an Erdős
Rényi (ER) graph with L vertices and with probability of an edge
between any pair of nodes being p. For an ER graph, if p > (1+
ζ) logL/L, then, for large values of L, with high probability (w.h.p.),
the graph is connected. Also, if L < (1+ ζ) logL/L, then, for large
values of L, w.h.p., the graph is not connected. For a particular
simulated graph, we used the conncomp function in MATLAB to
verify that the graph is connected. The data for our experiment
was generated as follows. We know X? = U?B?, where U? is an
n× r orthonormal matrix. We generated the entries of U? by or-
thonormalizing an i.i.d standard Gaussian matrix and the entries of

B? ∈ Rr×q from a different i.i.d Gaussian distribution. The ma-
trices Aks were i.i.d. standard Gaussian. We set the step size of
GD as η (g) = 0.8/λmax(R(g)

TPM
), where λmax(·) denotes the largest

eigenvalue. We performed two experiments on the generated dataset
which is detailed below. We compared performance our fully de-
centralized algorithm (Dec-AltProjGDmin) with the centralized Alt-
ProjGDmin algorithm in [3] and the decentralized GD algorithm
(DecGD) in [7]. The approach of [7] and the follow-up works de-
signed for standard GD cannot be used for updating U because it
involves averaging the partial estimates U(g), g ∈ [L], obtained lo-
cally at the different nodes. However, since U(g)’s are subspace basis
matrices, their numerical average will not provide a valid “subspace
mean” 1. We validate this through our experiments.

We plot the variation of the matrix estimation error (at the end
of the iteration) SD(U?,U(t)) and the execution time-taken (until the
end of that iteration) on the y-axis and x-axis, respectively. The pa-
rameters are p = 0.5, n = 100, r = 4, m = 40, and L = 20. We
implemented the Dec-AltProjGDmin algorithm for three values of
Tcon, Tcon = 1,10,100 for q = 400 (Fig.1a) and q = 200 (Fig.1b).
To compare with we also implement the centralized algorithm in [3]
and decentralized algorithm in [7]. The experimental results shows
the trade-off between convergence rate and execution time with dif-
ferent number of consensus iterations and the effectiveness of our
approach as compared to [3] and [7].

4. CONCLUSION

In this paper we studied the recently developed Dec-AltProjGDmin
algorithm and presented a constructive convergence guarantee in
terms of the eigenvalues of the weight (mixing) matrix.We compared
our results and algorithm, both theoretically and experimentally,
with the best existing result from the decentralized GD literature
that also provided a convergence time bound for values of ε that
are large enough. While our guarantees hold for any ε > 0, to the
best of our knowledge, there is no convergence guarantee result for
decentralized GD available in the literature for any given ε > 0, and
hence a clear cut comparison is not possible.

1To compute the subspace mean of U(g)’s w.r.t. the subspace distance
SD(·, ·), one would need to solve minŪ ∑g SD2(U(g), Ū). This cannot be done
in closed form and will require an expensive iterative algorithm.

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 01,2023 at 21:49:06 UTC from IEEE Xplore. Restrictions apply.

5. REFERENCES

[1] Shana Moothedath and Namrata Vaswani, “Fully decentral-
ized and federated low rank compressive sensing,” in American
Control Conference (ACC), 2022.

[2] Rakshith Sharma Srinivasa, Kiryung Lee, Marius Junge, and
Justin Romberg, “Decentralized sketching of low rank matri-
ces,” in Neural Information Processing Systems (NeurIPS),
2019, pp. 10101–10110.

[3] S. Nayer and N. Vaswani, “Fast low rank column-wise com-
pressive sensing,” IEEE Transactions on Information Theory,
2022, to appear. Also at arXiv:2102.10217.

[4] S. Nayer and N. Vaswani, “Sample-efficient low rank phase
retrieval,” IEEE Transactions on Information Theory, 2021.

[5] Shana Moothedath and Namrata Vaswani, “Fast,
communication-efficient, and provable decentralized low
rank matrix recovery,” submitted to IEEE Transactions on
Signal Processing, 2022.

[6] Shana Moothedath and Namrata Vaswani, “Dec-AltProjGD:
Fully-decentralized alternating projected gradient descent for
low rank column-wise compressive sensing,” Conference on
Decision and Control (CDC), 2022.

[7] Angelia Nedic and Asuman Ozdaglar, “Distributed subgradi-
ent methods for multi-agent optimization,” IEEE Transactions
on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[8] Alex Olshevsky and John N Tsitsiklis, “Convergence speed in
distributed consensus and averaging,” SIAM journal on control
and optimization, vol. 48, no. 1, pp. 33–55, 2009.

[9] Angelia Nedić, Asuman Ozdaglar, and Pablo A Parrilo, “Con-
strained consensus and optimization in multi-agent networks,”
IEEE Transactions on Automatic Control, vol. 55, no. 4, pp.
922–938, 2010.

[10] Angelia Nedić, “Convergence rate of distributed averaging
dynamics and optimization in networks,” Foundations and
Trends® in Systems and Control, vol. 2, no. 1, pp. 1–100, 2015.

[11] Soomin Lee and Angelia Nedić, “Distributed random projec-
tion algorithm for convex optimization,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 7, no. 2, pp. 221–229,
2013.

[12] Alexander Rogozin and Alexander Gasnikov, “Projected gra-
dient method for decentralized optimization over time-varying
networks,” ArXiv preprint arXiv:1911.08527, 2019.

[13] Firooz Shahriari-Mehr, David Bosch, and Ashkan Panahi, “De-
centralized constrained optimization: Double averaging and
gradient projection,” arXiv preprint arXiv:2106.11408, 2021.

[14] Ilan Lobel and Asuman Ozdaglar, “Distributed subgradi-
ent methods for convex optimization over random networks,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp.
1291–1306, 2010.

[15] Kun Yuan, Qing Ling, and Wotao Yin, “On the convergence of
decentralized gradient descent,” SIAM Journal on Optimiza-
tion, vol. 26, no. 3, pp. 1835–1854, 2016.

[16] S. Lang, Real and Functional Analysis, Springer-Verlag, New
York 10:11–13, 1993.

[17] Roman Vershynin, High-dimensional probability: An intro-
duction with applications in data science, vol. 47, Cambridge
University Press, 2018.

[18] Persi Diaconis and Daniel Stroock, “Geometric bounds for
eigenvalues of markov chains,” The Annals of Applied Proba-
bility, pp. 36–61, 1991.

[19] GW Stewart, “Perturbation bounds for the QR factorization of
a matrix,” SIAM Journal on Numerical Analysis, vol. 14, no.
3, pp. 509–518, 1977.

[20] Ran Xin, Usman A Khan, and Soummya Kar, “A fast random-
ized incremental gradient method for decentralized non-convex
optimization,” IEEE Transactions on Automatic Control, 2021.

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 01,2023 at 21:49:06 UTC from IEEE Xplore. Restrictions apply.

