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ABSTRACT
Semiflexible slender filaments are ubiquitous in nature and cell biology, including in the cytoskeleton, where reorganization of actin filaments
allows the cell to move and divide. Most methods for simulating semiflexible inextensible fibers/polymers are based on discrete (bead-link or
blob-link) models, which become prohibitively expensive in the slender limit when hydrodynamics is accounted for. In this paper, we develop
a novel coarse-grained approach for simulating fluctuating slender filaments with hydrodynamic interactions. Our approach is tailored to
relatively stiff fibers whose persistence length is comparable to or larger than their length and is based on three major contributions. First, we
discretize the filament centerline using a coarse non-uniformChebyshev grid, on which we formulate a discrete constrained Gibbs–Boltzmann
(GB) equilibrium distribution and overdamped Langevin equation for the evolution of unit-length tangent vectors. Second, we define the
hydrodynamic mobility at each point on the filament as an integral of the Rotne–Prager–Yamakawa kernel along the centerline and apply
a spectrally accurate “slender-body” quadrature to accurately resolve the hydrodynamics. Third, we propose a novel midpoint temporal
integrator, which can correctly capture the Ito drift terms that arise in the overdamped Langevin equation. For two separate examples, we
verify that the equilibrium distribution for the Chebyshev grid is a good approximation of the blob-link one and that our temporal integrator
for overdamped Langevin dynamics samples the equilibriumGB distribution for sufficiently small time step sizes. We also study the dynamics
of relaxation of an initially straight filament and find that as few as 12 Chebyshev nodes provide a good approximation to the dynamics while
allowing a time step size two orders of magnitude larger than a resolved blob-link simulation. We conclude by applying our approach to
a suspension of cross-linked semiflexible fibers (neglecting hydrodynamic interactions between fibers), where we study how semiflexible
fluctuations affect bundling dynamics. We find that semiflexible filaments bundle faster than rigid filaments even when the persistence length
is large, but show that semiflexible bending fluctuations only further accelerate agglomeration when the persistence length and fiber length
are of the same order.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144242

I. INTRODUCTION

The closer we look at biological systems, the more we find
slender filaments performing important work. These filaments are
responsible for cell motility and division in prokaryotes1,2 and
eukaryotes,3–6 which makes them indispensable for processes such
as wound healing, stem cell differentiation, and organism growth.
In cells, three kinds of filaments can be distinguished: microtubules,
which are sufficiently stiff as to behave deterministically;7 inter-
mediate filaments, which have small persistence length and are

consequently found in entangled networks in vivo;8–10 and actin fil-
aments, which have visible bending fluctuations driven by thermal
forces, but have sufficient stiffness to maintain a relatively smooth
appearance of the filament centerline.11

We are motivated here by actin filaments, which have been
shown to take on a range of morphologies when combined with
cross-linking proteins in vivo,12 in vitro,13 and in silico.14,15 Our
interest, in particular, is how thermal fluctuations, hydrodynamic
interactions, and cross-linking compete or cooperate with each other
to determine the steady state morphology and stress–strain behavior
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of actin networks.While there have been a number of coarse-grained
theories examining this question,16–18 there is still a need for detailed
simulation of each of the microscopic components in the system
so that assumptions made in deriving coarse-grained theories can
be validated and tested more rigorously. This was the idea behind
our previous work on deterministic actin filaments,15 which looked
at how each of the system components contributes to the behav-
ior of the cross-linked actin network on short and long timescales.
Our ultimate goal is to extend the study of Ref. 15 to fluctuating
(Brownian) actin filaments so that we can determine how thermal
fluctuations affect the viscoelastic gel behavior.

With this goal in mind, we turn here to the simulation of semi-
flexible filaments interacting through a viscous medium. There is
already a large body of literature on this topic, which can be ana-
lyzed by asking the following two questions: Is the chain extensible
(with a penalty for stretching) or constrained to be exactly inex-
tensible? And, is the chain being simulated discrete or continuous?
That is, is the discrete chain considered the truth itself or is it
simply a discretization of a continuum equation that converges in
the limit as the grid spacing goes to zero? This second question is
quite difficult, so we begin our review of the literature with discrete
chains.

Discrete extensible chains (known in the literature as bead-
spring models) are the most commonly used models for fluctuating
filaments because of their simplicity.19–23 In this case, the chain is
represented by a series of beads or blobs connected by springs that
penalize but do not prohibit extensibility and bending. There are,
therefore, no constraints, and it is relatively straightforward to sim-
ulate the overdamped Langevin dynamics using standard algorithms
(Ref. 24, Sec. 3). Actin filaments, which are nearly inextensible and,
therefore, require a high stretching modulus to accurately simulate,
push the boundaries of bead-spring models as the high stretch-
ing and bending moduli restrict the maximum possible time step
size, making long simulations of actin filament systems prohibitive
[see Ref. 25 for the limit on modern graphics processing units
(GPUs)].

It is therefore attractive to constrain the distance between each
bead, which leads to a second class ofmethods known as bead-link or
blob-link models (Ref. 24, Sec. 4) (we will use the lesser-used “blob-
link” terminology because of the coupling with “blob-based” hydro-
dynamics26). This approach, which in theory enables larger time
step sizes and longer simulations, is difficult, in practice, because it
requires the formulation of an overdamped Langevin equation with
the constraint that the chain is inextensible. In previous work, this
has been done by defining a constrained Langevin equation for the
positions of the blobs, which has complicated stochastic drift terms
and requires highly specialized algorithms to simulate.27,28 An alter-
native view, which is the one we adopt here, is to view the degrees of
freedom as the link orientations, as well as the position of the fiber
center. For an inextensible chain, this reduces the problem to a series
of connected rigid rods, for which we canmake use of previous work
by some of us on Langevin equations for rigid bodies.29

The main issue with the blob-link model in our context arises
when we account for the hydrodynamics of the chain. Denoting
the position of bead i by X{i}, hydrodynamic interactions give us
a mobility matrix M̃(X), which describes the relationship between
the forces on the beads F and their velocities U via U = M̃F.
For blob-link or bead-spring models in unbounded domains, the

obvious choice for the mobility matrix is to use a pairwise hydro-
dynamic kernel between the blobs/beads. One such kernel is the
Rotne–Prager–Yamakawa (RPY) tensor,30,31 which is obtained by
approximately solving the mobility problem for a pair of spheres of
radius â an arbitrary distance apart in the fluid. That is, the 3 × 3
mobility block associated with beads i and j in a blob-link model is

M̃{i}{ j} = M̃RPY(X{i},X{ j}; â), (1)

where the 3 × 3 matrix M̃RPY(x, y; â) is defined in (B2). While this
kernel and others like it neglect interactions involving more than
two beads, it is commonly used in polymer physics to describe the
hydrodynamics of a chain32–35 because the RPY kernel is symmet-
ric positive definite for any locations of the two particles. This fact
can also be seen by using an immersed boundary formulation to jus-
tify (1) (Ref. 36, Sec. 2.1). One contribution of this paper will be to
develop a temporal integrator for a fluctuating blob-link chain with
mobility given by (1).

As we will show, however, the blob-link model breaks down in
the limit of very slender fibers, such as actin filaments, which have
a radius of a = 4 nm37 and can have lengths L of a few micrometers
in vivo and tens of micrometers in vitro.38,39 This set of parameters
gives aspect ratios on the order of ϵ = a/L = 10−3, making the hydro-
dynamicsmultiscale in nature. By using a blob-linkmodel with blobs
of radius ∼ a, we are implicitly marrying ourselves to the resolu-
tion of this smallest lengthscale. If we wanted to accurately simulate
very flexible filaments or filaments that are nearly touching, then
there would be no way around this. However, for smoother fila-
ment shapes and non-dense suspensions where we are interested
in looking at the bulk behavior, a heavy price is paid: since the
hydrodynamics we are really interested in occur on lengthscales
L = a/ϵ, the number of required blobs to resolve the hydrodynam-
ics of a slender filaments is approximately L/a ∼ 1/ϵ.40,41 In addition
to being prohibitively expensive in the spatial discretization, this
model also presents a problem for temporal integration since hav-
ing blobs spaced a lengthscale a apart often requires us to temporally
resolve the fluctuations on that lengthscale; i.e., the time step size is
constrained by the smallest lengthscale in the system. Thus, for slen-
der filaments, a blob-link discretization is prohibitively expensive in
both the spatial and temporal variables using existing methods.

Since the hydrodynamics forces such a large number of degrees
of freedom per fiber, a sensible resolution in the slender limit is to
take a continuum limit of the discrete model so that the positions
X of the nodes become a function X(s) of a continuous variable s,
which describes the arclength of a curve (Refs. 42 and 43; see Fig. 1).
Likewise, the links become a continuous function T(s) = ∂sX(s),
and the force on each link becomes a force density f (s) that is
defined everywhere along the filament. The hydrodynamic mobil-
ityM[X(⋅)] that maps force density to velocity can then be defined
as the integral operator,

U(s) = ∫
L

0
MRPY(X(s),X(s′); â)f (s′) ds′ ∶= (Mf )(s). (2)

In Ref. 36, Appendix A, we showed that the RPY integral (2) is
asymptotically equivalent to slender body theory (SBT), which is
the more commonly used mobility for continuum curves in Stokes
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FIG. 1. Conceptual picture of our filament model. We begin with a blob-link chain
at left, for which we need a large number of beads (second from left) to resolve
hydrodynamic interactions. A sensible model then becomes a continuum fila-
ment (second from right), shown as a solid curve, which we then replace by a
fully discrete model based on Chebyshev collocation points (the gold nodes at
right show 16 such points). In our approach, the model on the right is a coarse-
grained approximation of the fully resolved blob-link (second-from-left) model with
the continuum model (second-from-right) used only in elasticity and hydrodynamic
calculations. Figure 2 shows a more detailed look at this discretization.

flow,44–47 if the relationship between the true filament radius a and
the regularization radius â is given by

â =
e3/2

4
a ≈ 1.1204a. (3)

This statement is only true for the translation–translation compo-
nent of the RPY kernel; see Ref. 48 for how this choice of radius
performs in the context of rotation, as well as Ref. 49 for the cor-
responding analysis for regularized Stokeslets,50 and Ref. 40 for a
numerical analysis for the immersed boundary method.51

To simulate this continuum model, we still ultimately need to
choose collocation points at which to represent the fiber positions
and tangent vectors. Because we are interested in actin filaments,
for which the fiber shapes are relatively smooth, an attractive dis-
cretization is a spectral one, where the collocation points are chosen
from a Chebyshev grid in the arclength s. The motivation for using
Chebyshev points comes from classical numerical analysis; since
Chebyshev polynomials give spectrally accurate polynomial inter-
polants, the error in approximating smooth fiber shapes decreases
exponentially in the number of nodes, similar to using a Fourier
basis for a closed loop fiber (Ref. 52, Chap. 10). In addition, the
well-conditioned property of the Chebyshev interpolation matrix
allows us to obtain globally accurate interpolants to the fiber shape,
which are simpler than breaking the fiber into panels. In previous
work on deterministic filaments,36,53 we developed numerical meth-
ods for such global Chebyshev discretizations53 and accompanying
quadrature schemes (Ref. 36, Appendix G) for integral (2) on the
spectral grid. Using these schemes, we showed that the number of
collocation points required to resolve integral (2) is (roughly) inde-
pendent of the fiber aspect ratio ϵ (Ref. 36, Sec. 4.4), which makes
this mobility definition, and the spectral grid that accompanies it,
an appealing choice for smooth slender filaments. In this paper, we

will conduct the same analysis for fluctuating (Brownian) semiflex-
ible filaments, showing that there are indeed significant advantages
to using this model of the mobility over the discrete model, at least
for very slender filaments.

The problem with taking the continuum limit in the pres-
ence of thermal fluctuations is that it leads to ill-posed constrained
Langevin partial-differential equations when dynamics are taken
into account. From equilibrium statistical mechanics, it is known
that for a free inextensible worm-like fiber, the tangent vector T(s)
performs Brownian motion in s on the unit sphere with diffusion
coefficient ℓ−1p , where the persistence length ℓp = κ/kBT is defined as
the ratio of the bending stiffness κ to the thermal energy kBT. On
the other hand, we show in Appendix C that the overdamped Ito
Langevin equation for a blob-link model with dynamics has stochas-
tic drift terms, which are required to obtain the correct equilibrium
statistics (see Fig. 22, where we simulate the Langevin equation with
and without the drift terms). These drift terms, which are a conse-
quence of both the inextensibility constraint and the hydrodynamics,
are only well-defined with respect to discrete orientations of the
tangent vectors and do not converge in the continuum limit. This
issue has either not been treated in previous continuum methods
for filament Brownian dynamics54,55 or been partially sidestepped
by making the filament extensible through a penalty force.56,57 The
latter approach, which has characterized a number of finite element
methods for biopolymers,58–61 takes us back to an extensible chain
(and its aforementioned temporal stiffness) and leaves unclear how
to make sense of the continuum limit for constrained fluctuating
filaments. And if there is no continuum limit, how is a spectral
discretization possible?

While the continuum limit is an interesting object from the
standpoint of applied stochastic analysis, for the purposes of sim-
ulation, it has little relevance since it requires an infinite number
of degrees of freedom. The object that we simulate, like any other
statistical mechanics model, must ultimately be discrete, and so we
will propose a fully discrete or coarse-grained model of a fluctuating
fiber based on a spectral representation of the chain (see Fig. 1). The
important conceptual leap is then to think of the “continuum limit”
only as a way to efficiently approximate the “true” hydrodynamics
of 1/ϵ blobs without actually needing to track that many degrees of
freedom. As such, for a given value of â and L, we define our ref-
erence result to be a discrete blob-link chain with blobs spaced â
apart (L/â = 1/ϵ̂ blobs). Our hope is then to approximate, to rea-
sonable (≈10%) accuracy, the equilibrium statistical mechanics and
dynamics of the blob-link chain using a coarse-grained Chebyshev
discretization with as few nodes as possible. The goal of this, which
we show is achieved at least in part, is to extract the advantages
of blob-link and continuum discretizations into a single numerical
method: by proposing a fully discrete “spectral” chain, we can write
a well-defined overdamped Langevin equation, which samples from
a well-defined discrete equilibrium Gibbs–Boltzmann distribution.
However, by usingmobility (2) to define the velocity at each point on
the fiber, we avoid having to scale the number of collocation points
with the fiber aspect ratio.

Seeing that this is, to our knowledge, the first paper to consider
a spectral discretization of constrained Brownian hydrodynam-
ics, our program is very much experimental, in part, because our
premise is counterintuitive. The conventional wisdom, as taught in a
first semester of numerical analysis, is that spectral methods perform
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well for smooth problems (with exponentially decaying spectra),
while for the nonsmooth ones (power law spectra), a sparse finite
difference method is a better choice. While it is certainly true that
Brownian motion induces a power law spectrum in fiber positions,
our hope is that restricting to semiflexible fibers (with ℓp/L ≳ 1) will
make a spectral discretization tractable by reducing the number of
modes required for accurate simulation. In other words, as long as
the Chebyshev grid resolves the fiber persistence length (as opposed
to radius), many quantities should be approximated well since scales
smaller than ℓp will not contribute. We demonstrate that this is
indeed the case through examples, but it should be noted that this
is just a first step, with the conclusion of this paper laying out much
of the work that remains.

II. LANGEVIN EQUATION FOR SEMIFLEXIBLE
FILAMENTS

In this section, we formulate the overdamped Langevin equa-
tion for the evolution of a discrete inextensible semiflexible filament.
As discussed in the Introduction, we propose a fully discrete spectral
discretization composed of tangent vectors τ, which are defined on
a Chebyshev grid of size N, and node positions X, which are defined
on a Chebyshev grid of size N + 1. Once we formulate the discrete
filament model, we can write the Gibbs–Boltzmann probability dis-
tribution for the fiber energy. The overdamped Langevin equation
then follows once we define the dynamics of how the fibers evolve
deterministically.

A. Discrete fiber model
Let us first formulate a spectral discretization of an inexten-

sible filament, which is well-suited for fluctuating hydrodynamics.
As discussed in the Introduction and shown in Fig. 2, we choose
to track a discrete collection of tangent vectors τ, which evolve as
rigid rods by rotating on the unit sphere. To completely define the
fiber, we need to also track the fiber midpoint XMP. These two quan-
tities give a set of node positions X, which in turn define a smooth
polynomial interpolant X(s) for the fiber centerline. We use this
interpolant to compute elastic energy and, importantly, hydrody-
namic interactions via (2). Once we define a discretization, we can
postulate the constrained Gibbs–Boltzmann distribution in terms
of the tangent vectors τ. This distribution depends on the fiber
elastic energy Ebend, which we discretize in the final part of this
section.

1. Discretization
We define a spectral discretization of an inextensible filament

by transferring the blob-link discretization concept onto a non-
uniform Chebyshev grid (see Fig. 2). We begin with a collection of
N unit-length tangent vectors τ = {τ{p}}Np=1, with τ{p} ⋅ τ{p} = 1 for
p = 1, . . . ,N, on a type 1 Chebyshev grid [i.e., a Chebyshev grid that
does not include the endpoints; here and throughout this paper, τ
refers to a 3N × 1 column-stacked vector of each 3 × 1 tangent vector
τ{p}; the (scalar) pth entry of this vector is denoted as τp]. To obtain
the fiber position, we oversample τ to a (type 2, endpoints-included)
Chebyshev grid of size N + 1 using the evaluation matrix EN→N+1
and then integrate the result exactly using the Chebyshev integration
matrix D†

N+1 (pseudo-inverse of the differentiation matrix DN+1).
This can be written as

FIG. 2. Transferring the fiber discretization for the blob-link model (bottom) to a
spectral grid (top). We show the tangent vector locations as magenta vectors vis-
ible through the “x-ray” inset—for the blob-link discretization, these are the points
exactly between the beads, while for the spectral discretization, they are defined
on a type 1 Chebyshev grid with N points (N = 12 here). The positions, which
can be obtained from τ and XMP (red sphere), are shown as yellow spheres—for
the blob-link discretization, these are evenly spaced points, while for the spec-
tral discretization, they are defined on a type 2 Chebyshev grid with Nx = N + 1
points. Note the clustering of both τ and X near the fiber endpoints in the spec-
tral model, which is a characteristic of the Chebyshev grid. This means that the
tangent vectors no longer connect individual beads as they do for the blob-link
discretization.

X = (D†
N+1EN→N+1 B)

⎛
⎜
⎝

τ

XMP

⎞
⎟
⎠
∶= X τ̄. (4)

The matrix B is such that the midpoint of X on the grid of size
N + 1 is XMP (when N is even, XMP is an actual point on the N + 1
size Chebyshev grid, but N could also be odd, for which the mid-
point is obtained via interpolation). Thus, the nodal points that track
the fiber position X are defined on a grid of size N + 1, whereas τ is
defined on a grid of size N, just as in the blob-link discretization.
To go in the reverse direction, we apply the inverse of X, which is
done by differentiating X on the N + 1 point grid and then down-
sampling to the grid of size N via the matrix EN+1→N . The midpoint
is determined from the N + 1 nodes via sampling the N + 1-term
interpolating polynomial at the midpoint using the matrix EN+1→MP.
Together, this gives

X−1 =
⎛
⎜
⎝

EN+1→NDN+1

EN+1→MP

⎞
⎟
⎠
, (5)

which is the actual inverse ofX because we carefully handle the inte-
gration of N-term Chebyshev polynomials by using a grid of size
N + 1. We contrast this with handling everything on a grid of size N
as we have done previously,36,53 in which case information is lost
when converting the unit-length tangent vectors to the positions
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X. For the deterministic examples we studied in Refs. 36 and 53,
the fibers were relatively smooth, and so the lost (high-frequency)
information had a negligible effect. This is no longer the case for
Brownian filaments, and so the method here is required to correctly
track high-frequency modes. It is important to note, however, that
this formulation only applies to open, two-ended, filaments and not
looped filaments, which require further conditions on τ.

While we motivated (4) using a spectral discretization, these
equations also hold for the standard blob-link discretization;35 in
that case, the mapX−1 is defined by taking finite differences of nodal
points to give values at the links, and the product X is defined by
summing the values of the links to obtain values at the nodes. Thus,
the equations we write in this section are general once the maps X
andX−1 have been specified.

2. Gibbs–Boltzmann distribution
Now that we have introduced our discrete fiber model, we can

write the Gibbs–Boltzmann equilibrium distribution as a function of
the chain degrees of freedom τ̄. Letting Ebend(τ̄) denote the discrete
bending energy of the fiber, which we discretize in Sec. II A 3, we
take the Gibbs–Boltzmann distribution to be

dPeq(τ̄) = Z−1 exp (−Ebend(τ̄)/kBT)dμ0(τ̄),

Peq(τ̄) = Z−1 exp (−Ebend(τ̄)/kBT)
N

∏
p=1

δ(τT{p}τ{p} − 1).
(6)

What we mean by the product of δ functions is really that the
base measure dμ0(τ̄) in the Gibbs–Boltzmann distribution (6) cor-
responds to the tangent vectors τ{p} being independently uniformly
distributed on the unit sphere for p = 1, . . . ,N. For blob-link chains,
the tangent vectors τ{p} are uniformly spaced, as shown in Fig. 2,
and this distribution follows naturally from their inextensibility and
statistical independence in a freely jointed chain, in which case (6)
defines the standard worm-like chain model.

In our spectral discretization, the tangent vectors τ{p} are
defined on a Chebyshev grid, and this model lacks the physical moti-
vation that characterizes the blob-link model (see Fig. 2). In fact, the
base measure dμ0 on a uniform (blob-link) grid has no continuum
limit since a freely jointed continuum chain would require the tan-
gent vector T(s) to perform infinitely fast Brownian motion in s on
the unit sphere; thus, only (6) with the Gibbs–Boltzmann weight
makes sense in continuum. Furthermore, a Chebyshev polynomial
cannot represent an inextensible curve everywhere (since the num-
ber of zeros in T ⋅ T − 1 is limited by the polynomial degree), and
therefore, it is not obvious how to uniquely define a discrete equilib-
rium distribution for a spectral grid that is a good approximation to
the continuum worm-like chain (when the Chebyshev grid resolves
the persistence length).62 In the first step toward a more mathemat-
ically justified approach, we postulate (6) as a reasonable guess, but
do not claim any precise sense of convergence of (6) for a spectral
grid to the equilibrium distribution of a continuumworm-like chain.
We do show (in Sec. IVA andAppendix D) that for a sufficient num-
ber of Chebyshev nodes over the persistence length, the equilibrium
distribution for a spectral chain approximates well the equilibrium
distribution for the blob-link chain in the sense that samples from
the two distributions give the same large-scale statistical properties
of the chain, e.g., its end-to-end distance. Forthcoming work will
justify (6) for spectral chains through the theory of coarse graining.

3. Bending energy and forces
We now turn to the evaluation of the bending energy Ebend and

the resulting force and force density that it generates on the fiber
centerline for free fibers. In continuum, the fiber bending or curva-
ture energy is given by the squared L2 norm of the fiber curvature
vector,

Ebend[X(⋅)] =
κ
2∫

L

0
∂2
s X(s) ⋅ ∂

2
s X(s) ds. (7)

Now, there are two competing ideas for how to generate a force
(or force density) from this energy. In the continuum perspective
we have used in the past,36,53 we take a functional derivative of
Ebend in continuum to yield a force density (inside the integral)
f (s) = −κ∂4

s X, subject to the boundary conditions ∂2
s X(0,L)

= ∂3
s X(0,L) = 0. In a spectral method, we discretize this force den-

sity using rectangular spectral collocation (RSC),63,64 which does not
guarantee that the total force and torque are zero on a nonsmooth
fiber, since the force obtained does not come from differentiating a
discrete energy functional.51 As a result, we cannot write down the
equilibrium distribution we would expect the Brownian dynamics to
obey, even for extensible fibers.

Because of this, it is useful to discretize the energy functional
(7) directly and then use the matrix that results to compute forces,
implementing the boundary conditions naturally. On a spectral grid,
we can put the energy functional (7) in the form of an energy
function Ebend(X) = 1

2X
TLX, where

L = κ(ENx→2NxD
2
)
T
W2Nx(ENx→2NxD

2
) ∶= κ(D2

)
T
W̃D2 (8)

is a matrix that takes two derivatives ofX on a grid of sizeNx = N + 1
and then does an inner product of those derivatives on a 2Nx grid
using Clenshaw–Curtis weights matrix W2Nx . The inner product
on the 2Nx grid is computed with an upsampled representation
ENx→2NxX, where the upsampling matrix ENx→2Nx is applied by using
the pointsX to form the Chebyshev interpolantX(s) and then evalu-
ating the interpolant on the upsampled grid. The purpose of this is to
compute the inner product of the Chebyshev polynomials represent-
ingD2X exactly (this could be done on a slightly smaller grid because
the two derivatives make the polynomial representation D2X have
degree at mostNx − 3). The L2 inner product on the upsampled grid
corresponds to an inner product on RNx with the weights matrix

W̃ = ET
Nx→2NxW2NxENx→2Nx. (9)

Note that an equivalent way to formulate the energy is to use τ̄ as the
degrees of freedom so that

Ebend(τ̄) =
1
2
τ̄ TXTLXτ̄ ∶=

1
2
τ̄ TLτ τ̄. (10)

The force on the fiber nodes is obtained by differentiating the energy
function,

F = −
∂Ebend
∂X

= −LX = −LXτ̄. (11)

When we compute the fiber hydrodynamics, we will need to
input the force density on the centerline. We can obtain this at the
nodes from the force in (11) by
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f = W̃ −1F (12)

and use the Chebyshev interpolant f (s) as a continuum force den-
sity. Note that the matrix W̃, rather than the diagonal matrix W of
weights on the Nx point Chebyshev grid, must be used for the force
density to converge as the spatial discretization is refined. The reason
for this is that the weights matrix (9) enters in the discrete L2 inner
product, and the force density is the representation of the derivative
of energy with respect to that inner product (Ref. 65, Sec. 6), i.e., the
function that satisfies ⟨X, f ⟩ = XTF.66

B. Dynamics
If we substitute energy (10) into the Gibbs–Boltzmann distri-

bution (6), we see that our goal is to write an overdamped Langevin
equation that is in detailed balance with respect to the distribution

Peq(τ̄) = Z−1 exp (−τ̄ TLτ τ̄/(2kBT))
N

∏
p=1

δ(τT{p}τ{p} − 1) (13)

and includes hydrodynamic interactions between points on the
filament. To do this, we first need to discuss how inextensible fil-
aments evolve deterministically. This begins with a description of
the kinematics of discrete inextensible filaments, which are analo-
gous to that of a series of elastically interacting rigid rods. We then
describe the evaluation of hydrodynamic interactions and formulate
the equations of motion in the deterministic setting. The over-
damped Langevin equation can be obtained from these deterministic
considerations and (13) by following a standard formulation.

1. Kinematics
Let us first consider the evolution of the fiber tangent vectors.

Since for any p, τ{p} ⋅ τ{p} = 1 for all time, it follows that the evolution
of the tangent vectors can be described by

∂tτ = Ω × τ ∶= −C[τ]Ω, (14)

where the matrix C[τ] is such that C[τ]Ω = τ ×Ω; we will drop the
explicit τ dependence when clear from context. The matrix C satis-
fies the following properties, which will be useful when we formulate
the overdamped Langevin equation for the fiber evolution:

Cτ = −CTτ = 0, ∂τ ⋅ CT
= 0. (15)

The first equation of Eq. (15) follows from the definition of C as a
cross product with τ, while the second, which is a divergence with τ,
has the jth entry

(∂τ ⋅ CT
)
j
∶=

∂

∂τk
CT

jk =
∂

∂τk
Ck j = 0 (16)

because the kth row of C has no entries that depend on τk; here
and throughout this paper, repeated indices are summed over using
Einstein’s convention. Based on these two properties, we can con-
clude that the time evolution of the tangent vector (14) is analogous
to the time evolution of the unit quaternion describing a rigid body’s
orientation [Ref. 29, Eqs. (5)–(8)], which can be represented as a unit
vector on the unit 4 sphere.

The evolution of the tangent vectors according to (14) auto-
matically implies that the evolution of the positions X is given by

∂tX = X
⎛
⎜
⎝

−C 0

0 I

⎞
⎟
⎠

⎛
⎜
⎝

Ω

UMP

⎞
⎟
⎠
∶= XC̄α ∶= Kα. (17)

Note the analogy with (4), but here, we transform velocity instead of
position using a square 3(N + 1) × 3(N + 1) non-invertible matrix
K . We define a pseudo-inverse of K as

K−1 =
⎛
⎜
⎝

C 0

0 I

⎞
⎟
⎠
X−1 = C̄ TX−1. (18)

Note that the matrices K and K−1 have rank 2N + 3 since the N tan-
gent vectors τ live in the null space of C.67 Thus, K−1 is not a true
inverse of K , but rather

K−1K =
⎛
⎜
⎝

−C2 0

0 I

⎞
⎟
⎠
→ C̄K−1K = C̄, (19)

i.e.,K−1K acts like the identity when applied to C̄ from the right. The
last equality holds because the matrix C2 is block diagonal with pth
block I3 − τ{p}τ{p}, and when multiplied by C, the term involving τ{p}
becomes zero. What (19) also means, in practice, is that

K−1Kα = K−1K
⎛
⎜
⎝

Ω

UMP

⎞
⎟
⎠
=
⎛
⎜
⎝

Ω�

UMP

⎞
⎟
⎠
, (20)

where Ω�
{p} = (I − τ{p}τ{p})Ω{p} (once again, here, we see K−1K

projecting off the parallel parts of Ω since the pth block of K−1K
is I3 − τ{p}τ{p}). Thus, because the fiber evolves according to (14),
it makes no difference whether we use α or K−1Kα for the fiber
velocities. It is for this reason that we use this discretization for K ,
as opposed to those from our prior work,36,53 which viewed Ω as a
continuous function of s, and were consequently plagued by aliasing
errors in trying to recoverΩ from Kα [Ref. 53, Eq. (110)].

While evolution (14) describes how the tangent vectors evolve
in continuous time, in discrete time, the update τ(n+1) = τ(n)
− ΔtCΩ does not preserve the unit-length constraint. Thus, in order
to keep the dynamics on the constraint in discrete time, we will solve
for an angular velocity Ω and then evolve each tangent vector τ(n)

{p}
by rotating byΩ{p},

τ(n+1)
{p} = rotate(τ(n)

{p},Ω{p}Δt), (21)

the explicit formula for which is given in Ref. 53, Eq. (111). We then
update the midpoint XMP via X(n+1)MP = X(n)MP + ΔtU

(n)
MP . In determin-

istic methods,46,53 rotating the tangent vectors in this way keeps the
dynamics on the constraint without needing to introduce penalty
parameters46 that lead to additional stiffness in temporal integration.
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2. Hydrodynamic mobility
We now discuss the discretization of the mobility matrix M̃

that relates the force on the nodal points to their velocities. In
this paper, we will not consider hydrodynamic interactions between
multiple filaments. Thus, the matrix M̃ can be formed separately as
a dense matrix on each fiber, and any operations with M̃, such as
inversions and square roots, done directly by storing the eigenvalue
(or Cholesky if M̃ ≽ 0) decomposition. Extensions to multiple fil-
aments interacting hydrodynamically, in which case M̃ cannot be
formed densely, will be covered in future work.

In Ref. 36, we developed an efficient quadrature scheme for
(2), but this mobility acts on force densities by applying a matrix
M to obtain the relationship U =Mf (we use the notation M̃ for
the matrix mapping force to velocity andM for the matrix mapping
force density to velocity). Thus, to use our quadrature scheme, we
first need to first convert force to force density using (12), which
gives U =MW̃ −1F. If we were to compute the quadratures exactly,
for instance, by upsampling to a fine grid, MW̃ −1 should be a
symmetric positive definite matrix since the work dissipated in the
fluid

∫

L

0
f (s) ⋅U(s) ds = fTW̃U = fTW̃Mf (22)

is always positive, which implies that W̃M (and W̃ −1W̃MW̃ −1

=MW̃ −1) is an SPD matrix. Indeed, upsampling to a fine grid gives
us a reference SPD mobility,

M̃ref = W̃
−1ET

uWuM̃RPY,uWuEuW̃ −1, (23)

where the subscript u denotes a matrix on the fine grid. Walking
through the steps of this calculation, we first convert force to force
density by applying W̃ −1. We then extend the force density to the
upsampled grid and integrate it against the RPY kernel there (the
matrix M̃RPY,u describes the pairwise RPY kernel on the upsampled
grid, andWu gives the integration weights). The first three matrices,
which follow from the symmetry of M̃ref, downsample the velocity
Uu on the upsampled grid to theNx point grid by minimizing the L2

difference between EuUNx and Uu. Note that while we write (23) in
a collocation perspective, it can be shown that the same fundamen-
tal matrix appears in a Galerkin method, where we would expect an
automatically SPD matrix.

When we use our efficient quadrature scheme to approximate
(23), the matrix that results is M̃ =MW̃ −1, which is not guaran-
teed to be symmetric positive definite. Indeed, in Ref. 36, Sec. 4.4.1,
we showed that the mobility matrix M obtained from quadrature
can have negative eigenvalues due to numerical errors, especially for
larger N and ϵ̂. The negative eigenvalues for large N and ϵ̂ are not
altogether surprising; we know that lengthscales in the forcing on
the order ϵ̂ will be filtered by our RPY regularization, resulting in
eigenvalues close to zero. Putting more Chebyshev points, which are
clustered together near the boundary, brings these lengthscales into
play. Combining this with the imperfect accuracy of our quadra-
ture scheme, which is designed for smooth forces, it is not hard to
understand why negative eigenvalues result.

To work around this problem, we define the mobility as the
symmetric matrix,

M̃ =
1
2
(MW̃ −1

+ W̃ −1MT
). (24)

Then, we compute an eigenvalue decomposition of this matrix and
set all eigenvalues less than a threshold σ to be equal to σ. The choice
of σ for a given discretization comes from the smallest eigenvalue
of the reference mobility (23). In our tests, our quadrature-based
mobility, which is slightly modified for the case of random filaments
as described in Appendix B 2, gives the same dynamics for a relax-
ing filament as the reference mobility (23); see Appendix B 4 a.
Thus, the error made in quadrature, symmetrization, and eigenvalue
truncation is small, in practice, even though the quadrature is only
spectrally accurate for smooth fibers.

In Appendix B 4, we also compare the slender body quadra-
ture mobility to two other commonly used mobilities for slender
body hydrodynamics: direct RPY-based quadrature on the Cheby-
shev grid and a local slender body theory.54,55 Our results show that
there are advantages to using the special quadrature both in terms
of resolving spatial scales as ϵ̂→ 0 and in terms of the time step
required for temporal accuracy. With that in mind, Fig. 3 shows
how we use the fiber geometry and special quadrature to apply the
mobility M̃F.

3. Deterministic evolution
We are now ready to put the pieces of our discretization

together to obtain the deterministic evolution of the fiber centerline.
In a deterministic method, the rotation rates andmidpoint velocities
α = (Ω,UMP)

T are given by the solution of the saddle point system
[Ref. 53, Eq. (54)],

Kα = M̃(−LX +Λ),

KTΛ = 0,
(25)

whereK , M̃, L, andKT are all squarematrices of size 3Nx = 3(N + 1)
andΛ is a constraint force. This is a reformulation of Ref. 53, Eq. (54)

FIG. 3. Summary of how we use the fiber configuration to compute the forces F and
mobility M̃. Given (τ, XMP), we apply the mapX from (4) to obtain the Chebyshev
polynomial X(s), which we then use to compute the bending energy Ebend in
(7), force F in (11), and force density f in (12). The velocity M̃F is computed
by applying special quadrature to the force density f ; see Sec. II B 2 (because
the quadrature matrix might have negative eigenvalues, we form M̃ explicitly to
compute and truncate its eigenvalues).
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in terms of force rather than force density as the mobility matrix
M̃(X) relates the velocity of the filament centerline to the forces
at the nodal points. As shown in Appendix A, the deterministic
dynamics (25) can also be obtained by minimizing a constrained
Lagrangian function, which implies that they are dissipative and
have the structure of a gradient descent flow.

Using a Schur complement approach, the Lagrange multipliers
Λ can be eliminated from (25) to yield

∂tX = Kα = −(KNKT
)LX, (26)

where

N = (KTM̃−1K)
†

(27)

is the mobility matrix projected onto the space of inextensible
motions. We can transform this equation to obtain the evolution of
τ̄ by substituting X = X τ̄ into (26) to obtain

∂t τ̄ = −X−1(KNKT
)LXτ̄ = −(C̄NC̄ T

)XTLXτ̄

= −(C̄NC̄ T
)Lτ τ̄. (28)

We note that these equations apply for continuous time. In dis-
crete time, we will solve (25) for α = (Ω,UMP) and then update
the tangent vectors on the unit sphere by ΩΔt using the nonlinear
rotation (21).

4. Overdamped Langevin equation in τ̄

The deterministic equation (28) takes the same form as that for
rigid bodies, and in the blob-link picture, it can be seen as describ-
ing the motion of a series of N connected rigid rods. Following the
same process used to derive the overdamped Ito Langevin equation
[Ref. 29, Eq. (12)] in the rigid body case, we have the overdamped
Ito Langevin equation,

∂t τ̄ = −(C̄NC̄ T
)Lττ + kBT∂τ̄ ⋅ (C̄NC̄ T

) +
√
2kBTC̄N1/2W, (29)

describing the evolution of τ̄. Here, W(t) is a collection of white
noise processes (the formal derivative of Brownian motions), the
divergence with respect to τ̄ is defined in (16), and N1/2 satisfies the
fluctuation–dissipation relation,

N1/2
(N1/2

)
T
= N. (30)

The arguments in Ref. 29, Sec. II B 2 can be used to show that (29)
is time-reversible with respect to the Gibbs–Boltzmann equilibrium
distribution (13). As described there, because we formulate (29) with
respect to τ and not X, there are no additional drift terms arising
from metric/entropic forces.

An important point, in practice, is that N1/2, which is not
unique and only needs to satisfy (30), can be applied by adding
Brownian noise with covariance M̃ to the right-hand side of sad-
dle point system (25). In an Euler–Maruyama discretization, this
corresponds to solving the saddle point system,

Kα = M̃(−LX +Λ) +

√
2kBT
Δt

M̃ 1/2η,

KTΛ = 0,
(31)

where η is an i.i.d. vector of standard normal random variables. As
discussed at length in Ref. 68, Sec. II(B), solving this saddle point
system gives

∂tX = Kα = −(KNKT
)LX +

√
2kBT
Δt
(KNKT

)M̃−1/2η

= −(KNKT
)LX +

√
2kBT
Δt

KN1/2η, (32)

giving N1/2
= NKTM̃−1/2. Thus, generating noise of the form N1/2η

reduces to the simpler process of solving a saddle point system with
right-hand side M̃ 1/2η. For hydrodynamics that is localized to each
fiber, we do this using the eigenvalue decomposition of M̃, which
already must be computed for the purposes of eigenvalue truncation
(see Sec. II B 2). Given that N1/2 can also be computed via dense lin-
ear algebra, the real savings in the saddle point solve come when
we need to generate N1/2 with nonlocal hydrodynamics (between
the many fibers), where dense linear algebra is infeasible, but the
action of M̃ 1/2 can be computed via the Lanczos algorithm69 or the
positively split Ewald (PSE) method.70 While the case of nonlocal
hydrodynamics will not be treated in this paper, the saddle point
method is a useful foundation for future work.

5. Overdamped Langevin equation in X
We now use (29) to derive an overdamped Langevin equation

in terms of X. If we multiply (29) on the left by X and expand Lτ
= XTLX, we obtain

∂tX = −(KNKT
)LX + kBT∂τ̄ ⋅ (KNC̄ T

)

+
√
2kBTKN1/2W. (33)

We use the chain rule to write differentiation with respect to X as

∂ f
∂Xk

=
∂ f
∂τ̄p

∂τ̄p
∂Xk

=
∂ f
∂τ̄p

X −1pk .

We now rewrite the divergence in (33) as

∂

∂τ̄ j
(KNC̄ T

)
i j
=

∂

∂Xk
(KNC̄ T

)
i j

∂Xk

∂τ̄ j

=
∂

∂Xk
(KNC̄ T

)
i j
Xk j =

∂

∂Xk
(KNKT

)
ik

(34)

so that the Ito equation (29) could equivalently be formulated in
terms ofX asmight be expected from the deterministic equation(26),

∂tX = −(KNKT
)LX + kBT∂X ⋅ (KNKT

)

+
√
2kBTKN1/2W (35)

d
= − N̂LX +

√
2kBTN̂ ○ N̂ −1/2W, (36)

where N̂ = KNKT and the second equality denotes that paths of (35)
and (36) have the same probability distribution. Equation (36) is the
Langevin equation written in a split Stratonovich-Ito29 or kinetic71
form, where the terms before the ○ are evaluated at the midpoint of
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a given time step, while the terms after are evaluated at the begin-
ning of the time step [cf. Ref. 29, Eq. (26)]. When we develop our
numerical methods, we will do so with the equation for X in mind
since ultimately we will evolve and track the fiber positions. That
said, it will be simpler when analyzing the Langevin equation to work
with Eq. (29) for τ̄, knowing that the one in X can be obtained by
this simple transformation. Note that (35) is much simpler than the
overdamped equations derived previously for bead-link models.27,28

III. TEMPORAL INTEGRATION
In this section, we discuss our temporal integrator for the over-

damped Langevin equation (29). The scheme, which is in the spirit
of the Fixman method72 and similar to that of Westwood et al. for
rigid bodies,73 is able to integrate the overdamped Langevin equa-
tion using one saddle-point solve per time step. The key idea is to
first move to the midpoint to compute the mobility and then solve a
saddle point system using the midpoint values, which generates the
required drift term in expectation.

Before introducing our numerical scheme, it is helpful to
simplify the drift term in (29). We first separate it into three terms,

∂

∂τ̄ j
(C̄NC̄ T

)
i j
= (∂ jC̄ik)NkpC̄

T
p j + C̄ik(∂ jNkp)C̄

T
p j

+ C̄ikNkp(∂ jC̄T
p j), (37)

where ∂ j is shorthand for ∂/∂τ̄ j . As shown in Ref. 29, Sec.
III(A), rotating the tangent vectors at every time step n using the
Euler–Maruyama method,

τ(n+1) = rotate(τ(n),
√
2kBTΔt(N(n))

1/2
η(n) +O(Δt)), (38)

where η(n) is a vector of i.i.d. standard normal random variables,
is sufficient to capture the first drift term. The third term in (37) is
zero by (16). Therefore, our schemes simply need to generate the
additional drift term,

(kBT)C̄ik(∂ jNkp)C̄
T
p jΔt, i.e., (kBT)C̄(∇τ̄N : C̄ T

)Δt. (39)

Because rotate(τ(n),ΔtΩ) = τ(n) + ΔtCΩ − (Ω ⋅Ω)Δt2τ(n)/8
+O(Δt3), the term (39) corresponds to O(Δt2) to a rotate proce-
dure by an angle Δt(kBT)∇τ̄N ¨̄C T . Thus, our task will be to design
numerical methods to produce the stochastic drift term inΩ,

Drift = (kBT)∇τ̄N : C̄ T , i.e., Driftk = (kBT)(∂ jNkp)C̄ jp, (40)

in expectation, which will give (39) after rotation over time step
size Δt.

A. Implicit methods
We first motivate our temporal discretization of (29) by con-

sidering the discretization of the unconstrained linearized stochastic
differential equation (SDE),

∂tX = −M̃[X0]LΔX +UB, (41)

where X0 is an equilibrium position, ΔX = X − X0, the matrix
L discretizes the energy Ebend = ΔXTLΔX, and UB is the
Brownian velocity given by fluctuation–dissipation balance as
√
2kBT(M̃ [X0])

1/2W(t). Because this SDE is unconstrained, the
equilibrium covariance of ΔX is known from statistical mechanics,

E[ΔXΔXT
] = kBTL−1. (42)

In our case, the bending force resulting from the matrix L is very
stiff (fourth derivative), and so we need to discretize it implicitly.
Our goal is to design numerical methods that preserve the covari-
ance (42) for arbitrary Δt when applied to (41). To do this, we follow
the analysis of Ref. 74, Sec. III(B) to derive the steady state covariance
for a given temporal integrator.

We consider an implicit–explicit method for (41) of the form

X(n+1) = X(n) + Δt(−M̃L(cX(n+1) + (1 − c)X(n)) +U(n)B ),

which can be rearranged to yield

(I + cΔtM̃L)X(n+1) = [(I − (1 − c)ΔtM̃L)X(n) + ΔtU(n)B ].

We now take an outer product of the two sides of the equation and
then substitute the desired covariance from (42), which at steady
state is independent of the time step n, to obtain thematrix equation,

2kBTΔtM̃ + kBT(2c − 1)Δt2M̃LM̃ = Δt2E[UBUT
B].

To obtain the exact covariance for c = 1 (backward Euler), we
therefore set

UB =

√
2kBT
Δt
⎛

⎝
M̃ 1/2η +

√
Δt
2
M̃L1/2η̃

⎞

⎠
, (43)

where η̃ is another standard normal random vector. Another option
is to use Crank–Nicolson (c = 1/2), which gives the exact covariance
for arbitrary Δt with the usual Brownian velocity

√
2kBT/ΔtM̃ 1/2η.

While this choice has been preferred for other applications,74 we find
it to be less accurate than our “modified” backward Euler scheme
for the higher order modes, which take too long to equilibrate using
c = 1/2. As such, we will use c = 1 and the Brownian velocity (43)
throughout this paper, where we can precompute L1/2 via Cholesky
or eigenvalue (dense matrix) decomposition (since L is a block diag-
onal matrix for a suspension of fibers). When we have constraints
and nonlinear updates, the velocity does not generate the exact
covariance for arbitraryΔt, but it gives a covariance which converges
more rapidly to the correct answer.

B. Midpoint scheme
We can now present our “midpoint” method, which can pro-

duce the drift term (40) in expectation with only one saddle-point
solve per time step. Given that an inextensible chain can be viewed as
a collection of interacting rigid rods (tangent vectors), our method
is similar in spirit to that of Westwood et al.73 for rigid body sus-
pensions, but differs in the ways we detail in Appendix C 2 c. The
method as presented here is optimized for dense linear algebra in the
sense that it requires only two mobility evaluations per time step if
those mobilities can be stored as dense matrices. See Appendix C 2 b
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for modifications when the mobility cannot be stored as a dense
matrix.

At each time step n, we perform the following steps:

1. Compute a rotation rate for the tangent vectors based on the
Brownian velocity M̃ 1/2η(n),

α(n,∗) =

√
2kBT
Δt
(K(n))

−1
(M̃ (n)

)
1/2

η(n) =
⎛
⎜
⎝

Ω(n,∗)

U(n,∗)MP

⎞
⎟
⎠
, (44)

where K−1 is defined in (18).
2. Rotate the tangent vectors by Ω(n,∗)Δt/2 to generate a new

configuration,

τ̄ (n+1/2,∗) =
⎛
⎜
⎝

rotate(τ(n), (Δt/2)Ω(n,∗))

X(n)MP + (Δt/2)U
(n,∗)
MP

⎞
⎟
⎠

(45)

=

√
kBTΔt

2
C̄ (n)(K(n))

−1
(M̃ (n)

)
1/2

× η(n) +O(Δt3/2). (46)

3. Evaluate the mobility M̃ (n+1/2,∗) and use it to compute the
additional drift velocity using the random finite difference
(RFD)75 with δ ∼

√
Δt,

U(n)MD =

√
2kBT
Δt
(M̃ (n+1/2,∗)

− M̃ (n)
)

× ((M̃ (n)
)
−1/2
)
T
η(n). (47)

This term might be impractical for large systems because it

is based on solving a resistance problem to obtain (M̃−1/2
)
T
.

Appendix C 2 b has an alternative approach, which generates
the same drift term via an RFD in which M̃ only has to be
applied rather than inverted.

4. To obtain the tangent vector rotation rates, solve the saddle
point system

⎛
⎜
⎝

−M̃ (I + cΔtM̃L)K

KT 0

⎞
⎟
⎠

(n+1/2,∗)
⎛
⎜
⎝

Λ

α

⎞
⎟
⎠

(n+1/2)

=
⎛
⎜
⎝

−M̃ (n+1/2,∗)LX(n) +U(n)B +U(n)MD

0

⎞
⎟
⎠

(48)

for Λ(n+1/2) and α(n+1/2) = (Ω(n+1/2),U(n+1/2)MP ). The Brown-
ian velocityUB is defined in (43), and the first part of it is used
in (44) to generate the midpoint configuration, i.e., the same η
is used in steps 1, 3, and 4.

5. Update the fiber via (21),

τ̄ (n+1) =
⎛
⎜
⎝

rotate(τ(n),ΔtΩ(n+1/2))

X(n)MP + ΔtU
(n+1/2)
MP

⎞
⎟
⎠
. (49)

Solving (48) yields (to leading order in Δt)

α(n+1/2) = (NKTM̃−1
)
(n+1/2,∗)

× (−M̃ (n+1/2,∗)LX +U(n)B +U(n)MD). (50)

In Appendix C 2, we show that using this value of α in the nonlinear
update (50) generates the drift term (40) in expectation. Thus, after
the rotation, we obtain dynamics consistent with (29).

In this paper, we discretize filaments with at most 30 Cheby-
shev nodes and consider hydrodynamics on one filament at
a time. We therefore use direct solvers for the saddle point
system (48) in our implementation, which is available (along
with python files for all dynamic examples in this paper) at
https://github.com/stochasticHydroTools/SlenderBody. To imple-
ment the midpoint method efficiently for a blob-link discretization,
where there are many blobs even on a single filament, we need to use
an iterative solver for (48). In fact, if such solvers are accessible, then
the midpoint temporal integrator can be applied as is using the pos-
itively split Ewald method70 to generate random displacements with
covariance M̃, as has been done for suspensions of rigid bodies.68
Further details will be provided elsewhere; here, we will only use
such an implementation of the blob-link discretization to compare
to our spectral results.

IV. EQUILIBRIUM STATISTICAL MECHANICS
This section is devoted to the equilibrium statistical mechanics

of fluctuating inextensible filaments. We focus first on comparing
the Gibbs–Boltzmann distribution (6) for blob-link and spectral
chains through Markov Chain Monte Carlo (MCMC) calculations
and then transition to showing that our midpoint temporal inte-
grator can also sample from the Gibbs–Boltzmann distribution if
the time step size is sufficiently small. We focus on two examples:
small fluctuations of a filament held near a curved base state, and
free fibers. The former example is advantageous because it allows
us to linearize both the inextensibility constraint (for static calcula-
tions) and the SDE (35) (for dynamics) and then break the dynamics
into a set of modes. We can then compare the variance of each mode
between the blob-link and spectral discretizations. Free fibers, how-
ever, are far more common and relevant in practice, and so they are
our focus in this section. We relegate the details on the curved fila-
ment to Appendix D and here give only a few summary statements
to point to the parallels between the two examples.

For free fibers, we will use the end-to-end distance,

r(t) =
1
L
∥X(s = 0, t) −X(s = L, t)∥, (51)

as a metric to compare statistics across different discretizations.
When configurations are sampled from the equilibrium distribution
of inextensible filaments, the distribution of r is approximately76

G(r) =
1
Z

∞

∑
ℓ=1

1

(ℓ∗p (1 − r))
3/2

× exp(−
(ℓ − 1/2)2

ℓ∗p (1 − r)
)H2

⎛
⎜
⎝

ℓ − 1/2
√

ℓ∗p (1 − r)

⎞
⎟
⎠
r2, (52)
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where ℓ∗p = ℓp/L is the dimensionless persistence length, H2(x)
= 4x2 − 2 is the second Hermite polynomial, and we have
multiplied by the Jacobian factor r2 to effectively compare (52) to
a one-dimensional histogram of distances that we will generate from
our data. We will also look at other distance metrics, including the
distance from the fiber end to its middle, the end to the quarter point,
and the distance between the two interior quarter points (the middle
half of the fiber).

A. Quantifying the Gibbs–Boltzmann distribution
with MCMC sampling

We first examine if the equilibrium distribution (6) for a freely
fluctuating spectral filament approximates well that of a blob-link
chain. To do this, we use MCMC to sample the Gibbs–Boltzmann
measure,

dπ(X)∝ exp(−
E(X)
kBT
)dμ0(X) ∶= π(X)dμ0(X), (53)

where E(X) = 1
2X

TLX and the base measure dμ0(X) is defined in
(6). We generate a proposed configuration X̃ by randomly rotating
the tangent vectors (see Appendix D 2 c for details), which preserves
the base measure. In this case, the probability of acceptance is simply
the Metropolis factor,

pacc = max(
π(ΔX̃)
π(ΔX)

, 1). (54)

We use this MCMC procedure to generate 106–107 sample chains,
removing the first 20% of the chains as a burn-in period. Repeating
this ten times to generate error bars, we report the distribution of

end-to-end, end-to-middle, quarter-to-quarter, and end-to-quarter
distances for both the spectral and blob-link chains in Fig. 4. We
show only ℓp/L = 1 as the relative errors for ℓp/L = 10 are the same
as ℓp/L = 1. The spectral discretization has a relatively small error
even when N = 12, and the distributions it generates move toward
the blob-link ones as N increases. This occurs at a faster rate for
larger scales (end-to-end) than for smaller scales (end-to-quarter),
as expected.

An additional metric we can use to study the equilibrium distri-
bution of a freely fluctuating chain is the correlation in the tangent
vectors ⟨τ(s + Δs) ⋅ τ(s)⟩ for Δs ∈ [0,L]. According to the definition
of persistence length, this correlation should decay exponentially
as e−Δs/ℓp . To measure the correlation function in the spectral dis-
cretization, we compute the correlation for all Δs on the type
1 Chebyshev grid on which τ is defined (see Fig. 2). We then assign
these measurements into bins corresponding to 10 (for N = 12)
or 20 (for N ≥ 24) uniformly spaced values of Δs on [0,L].
Figure 5 shows how our spectral results compare to the the-
ory (and 100 link discretization). While the blob-link chain has
a correlation function which matches the theory exactly, there is
an apparent small bias in our spectral chain at both small and
large distances, with the correlation being larger than expected
for small N. This bias is especially noticeable for ℓp/L = 1, but
larger error bars for larger N make it harder to make a definitive
statement.

In Appendix D 2, we perform a similar analysis for a filament
undergoing small thermal fluctuations around a curved base state.
By breaking the dynamics into a set of modes of the linearized
covariance matrix, we show that the spectral method with N = 12
nodes can successfully give the correct variance of the first tenmodes
(with a larger error for ℓp/L = 1 than for ℓp/L ≳ 10), while N = 24

FIG. 4. MCMC results for a freely
fluctuating spectral fiber with ℓp/L = 1.
We compute distances along the fiber,
including end-to-end (Δs = L, top left),
end-to-middle (Δs = L/2, top right),
quarter-to-quarter (Δs = L/2, bottom
left), and the nearest end-to-quarter
(Δs = L/4, bottom right). Note that
there are twice as many observations
in the right column as the left since we
measure from both the left and right
endpoint. We compare the blob-link data
for 100 links [which is the same with 200
links; the mean end-to-end distance is
(0.851 ± 0.001)L in both cases] with
several spectral discretizations and the
theory (52). The spectral discretization
results are approaching the 100 link
results as N increases (to within error
bars), with a more rapid approach for
larger Δs.
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FIG. 5. Tangent vector correlation func-
tion ⟨τ(s + Δs) ⋅ τ(s)⟩, computed from
MCMC sampling. We show the data for
a blob-link discretization with 100 links
in black and N = 12, 24, and 36 spec-
tral nodes in blue, red, and yellow. The
theory e−Δs/ℓp is shown in green.

and N = 36 are sufficient to give the correct variance of the first 25
modes (see Fig. 18). Thus, whether we consider small or large fluctu-
ations, the Gibbs–Boltzmann distribution (6) for spectral filaments is
a good approximation of the more physical one for blob-link chains.

B. Sampling with the midpoint temporal integrator
We now discuss how the midpoint integrator of Sec. III B

can also give samples from the Gibbs–Boltzmann distribution (6).
To make our analysis in this regard universal, we need to under-
stand how a certain time step size generalizes to a set of arbitrary
parameters. We are once again aided by our example of a filament
with small fluctuations, where we can linearize the SDE (35) around
a certain state and compute a set of eigenmodes and associated
timescales for the dynamics. This analysis, which we carry out in
Appendix D 3 a, is a discrete version of that carried out by Kantsler
and Goldstein77 in continuum, the difference being that the mobility
in the latter case was approximated by local drag so that the calcula-
tions could be done semi-analytically. For free filaments, the largest
timescale in the problem is associated with the first “fundamental”

bendingmode,77 which we show in the inset of Fig. 19. The timescale
associated with this mode is roughly

τfund = 0.003
4πμL4

κ ln (ϵ̂−1)
, (55)

and so we will report time in units of τfund. There is a slight complica-
tion, however, as Fig. 19 shows that the linearized timescales for two
different ϵ̂ do not collapse onto the same curve when rescaled by the
estimate of (55). In fact, the expected log scaling, which comes from
slender body theory,44,45 approximately holds only for the smoothest
modes (k ≲ 10), with the timescales of the high-frequency modes
scaling at a much sharper rate. Indeed, at the shortest scales, we
expect to see ϵ̂−1 scaling, corresponding to the timescales on which
individual blobs relax (Stokes drag law).

1. Required time step for midpoint integrator
To examine the accuracy of the midpoint integrator relative to

our MCMC calculations, we run Langevin dynamics from t = 0 to
t = 10τfund on an initially straight filament using the RPY mobility

FIG. 6. Distribution of end-to-end dis-
tance for the midpoint temporal integra-
tor discussed in Sec. III B with the RPY
mobility and ϵ̂ = 10−3. Time step sizes
are reported as Δt f = Δt/τfund, where
τfund is the slowest system relaxation
time, defined in (55). For each ℓp/L and
N, we show the MCMC results in black,
together with the distributions obtained
from the midpoint integrator with various
time step sizes.

J. Chem. Phys. 158, 154114 (2023); doi: 10.1063/5.0144242 158, 154114-12

Published under an exclusive license by AIP Publishing

 01 August 2023 21:50:15

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

(2) with slenderness ϵ̂ = 10−3. We record a histogram of the end-
to-end distance after the first τfund (burn-in), ignoring the other
distance metrics, which we have already seen behave similarly.

Figure 6 shows that for sufficiently small Δt, the end-to-end
distributions from Langevin dynamics converge to those of MCMC,
validating our temporal integrator. It also gives an indication of how
the required time step sizes change with N and κ (reported in terms
of ℓp/L). Focusing onN first, we see that for a fixed ℓp/L, the required
time step size decreases by a factor of about 15 as N doubles from
12 to 24. In Appendix D 4, we re-interpret this in terms of modes,
finding that we need to resolve roughly twice as many modes when
we doubleN. The scaling of the timescale of eachmode τk ∼ k−4 then
implies a decrease in the time step size of 16, which points to the
limitations of our temporal integrator for larger N.

Switching our focus to κ, Fig. 6 shows that the relative time step
size required as we increase from ℓp/L = 1 to ℓp/L = 10 increases by
a factor of roughly 10. In terms of modal analysis, the number of
modes we need to resolve decreases by about 3 for every factor of
10 increase in κ (see Appendix D 4), hence the increase in relative
time step size. However, since the timescale τfund (and the timescale
of each of the modes) scales like 1/κ, the net effect of this behav-
ior is no change in the absolute time step size required for accurate
equilibrium statistics.

Appendix D 4 also shows how the required time step size
changes with ϵ̂, although the analysis is less straightforward since
there is no simple rescaling of time in this case. Our results show
that the number of modes we need to resolve increases weakly as
ϵ̂ decreases so that our time step size drops by a factor of roughly
5 when we drop from ϵ̂ = 10−2 to ϵ̂ = 10−3.

V. DYNAMICS OF RELAXATION TO EQUILIBRIUM
So far, we have only examined equilibrium statistical

mechanics, finding that samples from the spectral and blob-link
Gibbs–Boltzmann distributions generate similar statistics for a given
set of parameters. But what about dynamics, and in particular,
resolving the hydrodynamic interactions in slender filaments?

The temporal integrator we developed here performs similarly
regardless of the spatial discretization in the sense that the number
of modes we need to resolve scales with N. Thus, if we want to sim-
ulate slender filaments without having to take unreasonably small
time steps, our only hope is to resolve the hydrodynamic interactions
with a small number of collocation points or a number of collocation
points that is independent of ϵ̂. For a direct blob-link discretization,
it has already been established that 1/ϵ̂ beads are required to resolve
hydrodynamics40,41 although one could use an asymptotic theory,
such as slender body theory (SBT), to model the hydrodynamics
approximately.54,55 However, in our spectral discretization, we can
resolve deterministic hydrodynamics withO(1) points (i.e., N inde-
pendent of ϵ̂) (Ref. 36, Sec. 4.4); in this section (and Appendix B 4),
we verify that this is also the case for Brownian hydrodynamics.

To do this, we consider the dynamic problem of an
initially straight semiflexible chain relaxing to its equilibrium
fluctuations.77–80 Our focus here is on the relaxation of the mean
end-to-end distance to its mean value, i.e., to the mean of the dis-
tributions shown in Fig. 6. As discussed in Ref. 79, the scenario
that we simulate is not really physical since it is not possible for
a fluctuating chain to ever reach an exactly straight configuration.

As such, the more physically relevant timescales are those that cor-
respond to long-wavelength modes, where the shorter wavelength
modes (which affect the end-to-end distance relatively little) have
already reached their equilibrium state. Thus, we will accept errors
in the end-to-end distance on short timescales and concentrate on
long-time behavior.80

On long timescales, numerical results verify that the data for
various μ, L, κ, ϵ̂, and kBT can be (roughly) collapsed onto a single
master curve with rescaled time and end-to-end variables,

t∗ =
t
t̄
, t̄ = 0.0008

4πμL4

κ ln (ϵ̂−1)
≈ 0.27τfund, r∗ =

r − r̄
1 − r̄

, (56)

where r̄ is the mean end-to-end distance computed in Sec. IV A and
t̄ is the long-time decay rate, i.e., r∗(t∗ = 1) ≈ e−1 ≈ 0.3. In terms
of our modal analysis, the timescale t̄ is between the longest and
second-longest timescales in the system (see Fig. 19), meaning that
all the modes except the first should be relaxed by t̄. Simulating until
t̄ thus provides a set of intermediate times at which we can measure
non-equilibrium statistics (see Fig. 7 for pictures of the relaxation
process).

To compare the spectral method to a blob-link method, we fix
ℓp/L = 1 and compare four different discretizations of the chain: the
spectral discretization with N = 12 (which requires a time step size
Δt f ≈ 0.003 for accurate dynamics; this time step is the same as that
needed for equilibrium statistical mechanics), N = 24 (time step size
Δt f ≈ 2 × 10−4), and N = 36 (Δt f ≈ 7 × 10−5) and the blob-link dis-
cretization with 100 blobs (required time step size Δt∗ ≈ 10−4). The
blob-link discretization is considerably more expensive to simulate
for small ϵ̂ (even with a GPU-accelerated implementation), which
requires us to limit our comparison to ϵ̂ = 10−2.

Figure 8 shows how the two discretizations compare with each
other for three different statistics: the average end-to-end distance
r∗ = ⟨∥X(0, t) −X(L, t)∥⟩, the mean-square displacement (MSD) of
the center-of-mass r2COM = ⟨∥X(L/2, t) −X(L/2, 0)∥

2
⟩, and the aver-

age square perpendicular displacement ⟨∥X�(s, t)∥2⟩ at t∗ = 0.1. We
normalize the center-of-mass MSD by the value at t = t̄ for a rigid
fiber, which is (2kBTt̄) trace(N tt), where N tt is the 3 × 3 matrix

FIG. 7. Two samples of free fibers with ℓp/L = 1 relaxing to their equilibrium fluc-
tuations. In both cases, ϵ̂ = 10−2, but at left, we use a blob-link discretization,
while at right, we use a spectral discretization with N = 12 nodes (we do not try to
match the random forcing between the two discretizations, so the comparison is
only in the qualitative look of the chain). The fibers are initialized straight (magenta
t∗ = 0 lines) and then assume their equilibrium end-to-end length on the timescale
t̄ [defined in (56)]. In both cases, realizations of the fibers at different times are
artificially staggered along the direction of the arrows for visual clarity. See the
supplementary material for an animated version of this figure.
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FIG. 8. Comparing the spectral and blob-link trajectories for relaxation of a straight filament to its equilibrium fluctuations. We set ℓp/L = 1 and ϵ̂ = 10−2 and simulate
until t∗ = 1, as defined in (56), comparing spectral discretizations with N = 12 (blue), N = 24 (red), and N = 36 (yellow) to the blob-link discretization (black). (a) and (b)
The end-to-end distance over time. In (a), we isolate the dynamic error by normalizing each curve by its average r̄ obtained from MCMC in Sec. IV A (for N = 12, this is
r̄ = 0.865 ± 0.001; for N = 24, it is r̄ = 0.862 ± 0.005; for N = 36, it is r̄ = 0.859 ± 0.006; and for the blob-link, it is r̄ = 0.851 ± 0.001). In (b), we plot δr∥, which is the
change in end-to-end distance in the parallel direction, for the four different discretizations, observing a 1/3 power law scaling at long times. (c) The squared-norm of the
displacement of the center of mass, normalized by the theoretical value for a rigid fiber (see the text for details). (d) The squared perpendicular displacement at t∗ = 0.1.
The inset shows a single sample, where we observe some high-frequency behavior in the blob-link results that is smoothed by the spectral method.

relating forces on a rigid fiber to its translational velocity. The
normalized displacement is denoted as r̄2COM.

To separate the error in the dynamics from that of equilibrium
statistical mechanics, in Fig. 8(a), we normalize r∗ by the average
r̄ obtained from MCMC in Sec. IV A. With this normalization,
there is little difference between the spectral method with N ≥ 24
and the blob-link method at later times, and the difference between
the spectral method with N = 12 and the blob-link method is small.
Combining this with Fig. 8(c), which shows that the diffusion of the
center of mass is the same (within error bars) across the different dis-
cretizations, we can conclude that a small number of spectral nodes
can indeed resolve the dynamics at later times, as desired. This is
an important statement because the spectral method with N = 12
(respectively, N = 24) uses a time step that is two (respectively, one)
orders of magnitude larger than that of the blob-link chains, as well
as a number of collocation points that is an order of magnitude
fewer.

To compare our results to theory, in Fig. 8(b), we plot the short-
ening of the end-to-end distance projected onto the initial tangential
direction, δr∥(t) = ⟨L − (X(L, t) −X(0, t)) ⋅ τ(t = 0)⟩. Because we
no longer normalize by the equilibrium end-to-end distance, we see
a larger difference between the spectral and blob-link codes. Focus-
ing on long times, we see that the data approach a 1/3 power law
for t∗ ≳ 0.1, with a faster growth for short times, matching what is
observed in Ref. 79, Fig. 5(d). This 1/3 exponent is predicted to be

universal independent of the way the initial state is prepared; see the
second column in Ref. 79, Table I.

At early times, we see a more significant difference between
the blob-link and spectral code, which can be explained by the
fast relaxation of high-frequency modes. In Fig. 8(d), we examine
the perpendicular displacement along the curve at an early time of
t∗ = 0.1. In the inset, we show a single sample of the (squared) per-
pendicular displacement and observe the small-length fluctuations
in the blob link code, which appear at short times. These fluctu-
ations, which control the early-time relaxation, are smoothed out
by the spectral code and therefore treated incorrectly. At late times,
their contribution is sufficiently small for the spectral and blob-link
codes to match.

While we cannot obtain statistics for the blob-link code when
ϵ̂ = 10−3 because of the expense in resolving hydrodynamics, we can
still repeat our fiber relaxation test using ϵ̂ = 10−3 in the spectral
method. Figure 9 shows the results of this test in the end-to-end dis-
tance [compare to Figs. 8(a) and 8(b)]. We see that the error between
the three different values of N is roughly the same across the two
aspect ratios, which indicates that the number of points required for
a given accuracy is not sensitive to the fiber aspect ratio. In addition,
we continue to observe the 1/3 universal power law scaling for δr∥
at long times.79 Without blob-link data, it is difficult to say for cer-
tain how the error in the spectral code scales with ϵ̂. Still, the data
strongly suggest that we can effectively resolve hydrodynamics of
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FIG. 9. Fiber relaxation results when
ϵ̂ = 10−3. In this case, the blob-link
method is too expensive to simulate, so
we show the results in the end-to-end
distance for the spectral method only
with N = 12 (blue), N = 24 (red), and
N = 36 (yellow). These plots are anal-
ogous to Figs. 8(a) and 8(b), and the
difference between the two discretiza-
tions is similar to the ϵ̂ = 10−2 case, as
desired.

slender fibers with the same number of points, independent of the
fiber aspect ratio.

VI. BUNDLING OF TRANSIENTLY CROSS-LINKED
SEMIFLEXIBLE FILAMENTS

In previous work,81 some of us examined the dynamics of
bundling in transiently cross-linked actin networks. These networks
form an important part of the cytoskeleton, and their arrange-
ment into bundled structures is a topic of interest for cell divi-
sion and motility.4,82 As such, they have also been reconstituted
in vitro,13,83–85 and the focus of our previous study81 was to com-
pare our computational results to those observed experimentally in
Ref. 13. In Ref. 81, we included fluctuations by modeling the fil-
aments as rigid and made statements about the role of thermal
fluctuations in bundling dynamics for networks of rigid filaments,
leaving semiflexible filaments for future work. Having developed a
temporal integrator for semiflexible filaments, we are now ready to
complete our investigation by studying the role of semiflexible fluc-
tuations in bundling of cross-linked fiber networks. We emphasize
that there are no hydrodynamic interactions between different fibers
in these simulations.

To simulate cross-linking, we couple the filament model devel-
oped here with a Markov chain describing the transiently bound
cross-linkers (CLs). Ourmodel of cross-linking is laid out in detail in
Refs. 15 and 81, so here, we present only a summary. Each filament is
divided intoNu uniformly spaced binding sites separated by distance
Δsu = L/(Nu − 1). Assuming that the CLs diffuse rapidly relative to
the filaments, the binding of one end of a CL to one of these sites can
be approximated by a single rate kon with units 1/(length × time).
Once the first end is bound, the second end can bind to a nearby
filament with rate

kon,s(ℓ′k) = k
0
on,s exp

⎛

⎝
−
Kc

2
(ℓ′k − ℓc)

2

kBT
⎞

⎠
, (57)

where ℓ′k is the deformed length of the CL (distance between the
pair of binding sites), ℓc is the rest length of the CL, and Kc is its
stiffness. The relationship (57) ensures that the CL dynamics are in
detailed balance, that is, the links are passive and do not consume
energy. To efficiently search for nearby pairs of filaments, we limit
ℓ′k to two standard deviations of the Gaussian (57), that is, we only

search for pairs of binding sites 2
√
kBT/Kc apart. Each of the bind-

ing reactions has an associated unbinding (reverse) reaction with a
rate on the order 1/s86 so that there are a total of four possible reac-
tions, which are simulated using a version of the standard Stochastic
simulation/Gillespie algorithm.15,87,88

We use a time splitting algorithm to update the filaments and
cross-linkers in sequence. At each time step, we take a step Δt of
the stochastic simulation algorithmwith the filament positions fixed.
This gives pairs of binding sites that are bound together and, conse-
quently, a force F(CL) exerted on the corresponding filament pairs. In
previous work (Ref. 53, Sec. 6.1), we spread this force as a smoothed
delta function around the cross-linker binding location, ensuring
smoothness of the cross-linking force density and the subsequent
fiber shapes. Since the smoothness assumption does not apply to
fluctuating filaments, it is more physical to use instead the spring
cross-linking energy

ECL =
Kc

2
(∥X(i)(s∗i ) −X

( j)
(s∗j )∥ − ℓc)

2
(58)

between points X(i)(s∗i ) (on fiber i) and X( j)(s∗j ) (on fiber j). If we
introduce thematrixRu, which resamples the Chebyshev interpolant
X at uniformly spaced binding sites, this energy can be rewritten
in terms of the Chebyshev collocation points X(i) and X( j) and the
resulting force computed by differentiating the energy with respect
to X. The final expression for the force F(CL) at point p for a CL
attached to binding site k then becomes the standard force for a
spring (equal and opposite at the two fibers i and j) multiplied by
the (k, p) entry of Ru. These forces at each time step become addi-
tional forces in the Langevin equation (35) so that at each time step,
we solve (for each fiber independently)

∂tX = KNKT
(−LX + F(CL)) + kBT∂X ⋅ (KNKT

)

+
√
2kBTKN1/2W (59)

by replacing −LX(n) with −LX(n) + F(CL)(X(n)) on the right-hand
side of the saddle point solve (48) (that is, we treat the spring forces
explicitly in time). A quantitative comparison of simulations with
the smoothed forcing from Ref. 53, Sec. 6 and the new energy-based
forcing from (58) shows little difference between the two models.

Throughout this section, we will use the parameters given in
Ref. 81, Table 1. Just as in that study, we consider filaments with
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initial mesh size 0.2 μm, which corresponds to 200 filaments of
length L = 1 μm in a periodic domain of edge length Ld = 2 μm and
675 filaments of length L = 1 μm in a periodic domain of edge length
Ld = 3 μm (as discussed in Ref. 81, the results are repeatable as we
increase the domain size until the structure begins to collapse into
1 or 2 bundles). The question we will examine is how the behavior
changes as we increase ℓp/L, so we will leave all parameters con-
stant except the bending stiffness κ. This includes kBT = 4.1 × 10−3
pN μm, which corresponds to the thermal energy at room tempera-
ture. For our spatial and temporal discretization, we use N = 12 and
Δt = 10−4 s over all simulations, having verified that doubling the
number of points and halving the time step size does not change the
results within statistical error. Our explicit treatment of the forces
from the CLs, whose base stiffness of Kc = 10 pN/μm is an order of
magnitude estimate for the effective stiffness of α-actinin,13,89 lim-
its the time step size. In particular, resolving the spring dynamics
automatically resolves the equilibrium statistical mechanics.90

A. Visualizing the bundling process
In previous work,81 we showed that bundling of filaments

occurs via a thermal zippering mechanism, where cross-linkers
stretch to bind nearby pairs of filaments and then contract to their
rest length. This contraction pulls the filaments closer together,
which allows for binding of additional cross-linkers. The resulting
equilibrium configuration contains filaments, which are aligned in
parallel and spaced roughly a distance equal to the cross-linker rest
length (Ref. 81, Fig. 1). In Ref. 81, we showed that this small-scale
ratchetingmechanism also leads to large scale bundling for networks
of rigid diffusing filaments and that the bundling process roughly
occurs in two stages: first, individual filaments come together into
small bundles of a few filaments. Then, the bundles begin to coalesce,
forming bundles of bundles and eventually one very large bundle.
To quantify this process, we map the filament connections to a con-
nected graph, where a connection in the graph exists when at least
two CLs spaced L/4 apart connect the two filaments. The “bundles”
are then connected regions in this graph. We track over time the
bundle density, defined as the number of bundles per unit volume,
and see a peak before the bundles start to coalesce. As discussed in
Ref. 81, our definition of bundle density, while arbitrary, is a good
way to compare the dynamics across multiple systems.

The same fundamental process plays out in networks of semi-
flexible filaments, as shown in Fig. 10, where we show snapshots
of the bundling process at different time points for three different
orders of magnitude of ℓp/L (these plots show 200 filaments with
Ld = 2). The top plots (t = 1.5 s) correspond to the initial stage of
bundling, where there are many bundles of a few filaments, while
subsequent plots begin to show coalescence of the bundles. There
are a few takeaways here: first, we see that the bundle morphol-
ogy looks qualitatively different as we decrease ℓp/L, with smaller
persistence length having more curved fibers and therefore more
curved bundles. Furthermore, the smaller persistence length bun-
dles agglomerate faster, and at a given time, they appear more
clumped (especially t = 6 s). It is not clear, however, to what extent
these differences in bending deformations are driven by CL forces
vs the thermal bending fluctuations (a similar question was stud-
ied in Ref. 7 for microtubule networks, where the authors showed
that large nonthermal forces combine with polymerization dynam-
ics to generate bent microtubule shapes in cells). Indeed, we did

show in previous work81 that agglomeration (the second stage of the
bundling process) happens faster for non-fluctuating filaments that
are less stiff since they are able to be bent easier by the cross-linkers.
Thus, the main question here is whether semiflexible bending fluc-
tuations themselves speed up (or slow down) the bundling process
or whether CL forces dominate.

B. Quantifying the role of semiflexible
bending fluctuations

To get at this question, we need to dissect the evolution of the
actin filaments in a cross-linked network into the three possible ways
they can move: action by CL forces, thermal rotation and transla-
tion (keeping the fiber shape fixed), and bending fluctuations. In
previous work,81 we studied the first two of these, showing, in par-
ticular, that deterministic filaments (those that can only move by CL
forces) behave the same as the rigid ones when ℓp/L ∼ 10. We used
this assumption to justify neglect of thermal bending fluctuations
for actin filaments of length 1 μm, for which ℓp/L ≈ 17.11 In fact, we
neglected any bending and treated the filaments as rigid so that they
evolved under both CL forces and thermal rotation and translation.
We showed that translational and rotational diffusion accelerates the
bundling process significantly since there is more mixing and fil-
aments are able to find each other faster (assuming that there are
sufficiently many CLs to link two filaments that are close together).

In this work, we can finally consider the full system and how
the third possible motion, transverse bending fluctuations, impacts
bundling. It will be important, however, to separate these fluctua-
tions from the rotational and translational diffusion that we have
considered previously. Since our temporal integrator in Sec. III B
does not distinguish between the two kinds of fluctuations, for
comparison, we consider an alternative model where the only fluc-
tuations are translational and rotational diffusion, as if the fibers
were rigid in their current configuration. That is, instead of (59), we
consider the dynamics

∂tX = KNKT
(−LX + F(CL)) +

√
2kBTKrN1/2

r W, (60)

where Kr is the kinematic matrix for a rigid fiber, which acts on a
6-vector (Ω,UMP) to give velocity in an analogous way to (17). The
6 × 6 rigid-body mobility is Nr = (KT

r M̃−1Kr)
†
,91 exactly as in (27).

Our rationale for (60) is that if such semiflexible rigid body motion
(“SF-RBD”) simulations give the same results as those with semiflex-
ible bending (“SF-Bend”) fluctuations, then bending fluctuations are
not important to the bundling process.

To advance the dynamics of SF-RBD filaments, we first take
a step of the stochastic simulation algorithm for the CLs (as for
SF-Bend fibers) and then solve (60) using a splitting scheme. The
splitting scheme is to first perform a rigid body rotation and transla-
tion to add the random term in (60) [see Ref. 81, Eq. (15)] and then
compute the cross-linking forces and perform a deterministic saddle
point solve to capture the deterministic term in (60).

We begin by looking at the differences in bundling dynamics
between semiflexible filaments and the rigid filaments we considered
in Ref. 81. This is actually the same test we performed in Ref. 81, but
this time we consider filament fluctuations in addition to CL forces.
The bundle density (number of bundles divided by periodic cell vol-
ume) and percent of fibers in bundles over time are shown using
darker colors in Fig. 11, where we consider ℓp/L = 1, 10, and 100 and
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FIG. 10. Snapshots of the bundling process in networks of varying fiber stiffness. Colored fibers are actin filaments (colored by bundle), while black fibers are the cross-linkers.
The bundling process is fastest for the most flexible fibers, where the final morphology shows curved bundles.
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FIG. 11. Quantifying the dynamics of bundling in semiflexible fiber networks and determining the role of bending fluctuations. We use the bundle density (left, number of
bundles per unit volume) and percent of fibers in bundles (right) as metrics for bundling dynamics (see Ref. 81 for discussion of these). We compare the semiflexible filaments
with ℓp/L = 1 (blue), ℓp/L = 10 (red), and ℓp/L = 100 (green) to the rigid filament networks we simulated in Ref. 81 (black), finding that ℓp/L = 100 is “stiff enough” to be
rigid. We then separate the effect of bending fluctuations from CL forces and rigid body diffusion by comparing our semiflexible filament simulations (SF-Bend) to filaments
which only fluctuate by rigidly rotating and translating (SF-RBD, lighter colors; see the text for details). The CL forces and rigid body fluctuations are sufficient to account for
the speed-up in bundling when ℓp/L = 10, but not when ℓp/L = 1. See the supplementary material for animations comparing bundling dynamics in SF-Bend and SF-RBD
(or rigid) filaments.

compare the results to the case when the fibers are actually rigid, the
dynamics of which are governed by the overdamped Ito Langevin
equation,

∂tX = KrNrKT
r (−LX + F

(CL)
) +
√
2kBTKrN1/2

r W. (61)

We observe almost complete overlap between the trajectory for
ℓp/L = 100 and that for rigid fibers (except for the bundle density
curve at late times, which is when cross-linkers exert extremely
large forces on the filaments). This is not a surprise, given that we
see bundles of straight filaments when ℓp/L = 100 in Fig. 10, but it
does show the ability of our temporal integrator to remain accu-
rate in the stiff limit (this is not the case for SF-RBD dynamics.91
Dropping to ℓp/L = 10, the pictures in Fig. 10 show curved bundles,
and the plots in Fig. 11 for ℓp/L = 10 show significant deviations
from rigid fibers, especially in the later stages of bundling. The
curves for ℓp/L = 1 do not even match rigid fibers at early times,
which indicates that the semiflexible fluctuations impact the first
stage of bundle formation, in contrast to larger persistence lengths
where the fluctuations appear to only accelerate later stages of bun-
dle agglomeration. Since filaments are weakly cross-linked at early
times, these results suggest that semiflexible bending fluctuations are
accelerating the bundling process when ℓp/L ∼ 1. For ℓp/L ≳ 10, the
deviations from rigid fibers come only when the fibers are strongly
cross-linked, suggesting that CL forces combine with fiber flexibility
to accelerate bundling.

To make this statement more precise, we compare simulations
with (SF-Bend) and without (SF-RBD) thermal bending forces using
lighter colors in Fig. 11. When ℓp/L = 10, we see identical dynamics
between SF-Bend and SF-RBD filaments, which means that bend-
ing fluctuations contribute minimally to the bundling process for
ℓp/L ≥ 10 and demonstrates that the curvature of the bundles we see
in Fig. 10 when ℓp/L = 10 is indeed driven primarily by cross-linking
forces. When ℓp/L = 1, by contrast, we see faster bundling dynamics
with SF-Bend filaments than with SF-RBD filaments, and we also

see bundles in Fig. 10 that appear to have wavy spatial shapes. This
implies that thermal bending fluctuations can accelerate bundling
in both the initial and later stages, but only when the persistence
length is comparable to the contour length of the fiber, in which
case the transverse fluctuations effectively increase the probability
that a CL (which can only stretch a finite amount) can bind two fil-
aments. However, since actin filaments have persistence length on
the order 10–20 μm,11 we can conclude that the bundling dynam-
ics of filaments with length 1–2 μm are not significantly impacted by
semiflexible bending fluctuations.

VII. CONCLUSIONS
This paper represents a first step in applying spectral meth-

ods to fluctuating inextensible filaments in Stokes flow. While the
advantages of spectral methods for simulating smooth fibers are
well known,47,53,92 this paper is to our knowledge the first attempt
to use Chebyshev polynomials to simulate fibers that are inher-
ently nonsmooth due to Brownian bending fluctuations. Our main
motivation for doing this comes from hydrodynamics: our slender
body quadrature scheme developed in Ref. 36 allows us to compute
the hydrodynamic mobility using O(1) points per filament (with
respect to the aspect ratio ϵ), as opposed to the 1/ϵ points required
in traditional blob-link (bead-link) methods.35,40,41 The quadrature
scheme works on a spectral grid since it requires a global interpo-
lating function for the fiber centerline. Thus, to include fluctuations,
we postulated the Gibbs–Boltzmann distribution (6) on the spectral
grid of N nodes and then constructed spatially discrete overdamped
Langevin dynamics that is in detailed balance with respect to that
distribution.

We showed through a series of equilibrium and non-
equilibrium tests that spectral methods can be advantageous in
the regime where the fibers are semiflexible ℓp ≳ L and slender
ϵ = a/L≪ 1, which is therefore the regime where the persistence
length (smallest lengthscale on which fluctuations are visible) is
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much larger than the fiber radius. Since our primary interest is
in relatively stiff (and quite slender) fibers, such as actin, there is
some promise for spectral methods to give good approximations
of blob-link chains by faithfully modeling the hydrodynamics with
fewer degrees of freedom. In this case, the fluctuations on length-
scales a, which are smoothed out by our spectral method, do not
impact the fiber dynamics (other than on very short timescales) or
equilibrium statistics, and so we are able to approximate both well
using a small number of Chebyshev nodes. Our tests on dynamics
showed that the error in the rate of relaxation of a straight chain for
N ≥ 24 is small and dominated by the error from equilibrium statis-
tical mechanics, which means that the main driver of the difference
between the blob-link and spectral methods comes from the differ-
ence between our coarse-grained Gibbs–Boltzmann distribution (6)
and the GB distribution of a refined blob-link chain. Nevertheless,
for ℓp/L = 1 and ϵ ≈ 10−2, we showed that even N = 12 provides a
reasonable approximation to the relaxation dynamics of a stretched
chain, with a time step size two orders of magnitude larger than
the corresponding blob-link discretization with 100 blobs. This sort
of spectral coarse-grained (fully discrete rather than continuum)
representation of semiflexible fibers can allow for large-scale sim-
ulations of networks of fibers over physically relevant timescales,
unlike fully or finely resolved blob-link models, which are better
suited for simulations where the smallO(â) lengthscales need to be
resolved.

Our approach to the spatial discretization as presented in
Sec. II A seems straightforward, but was actually the product of
several months of trial and error. The reason is that the nons-
moothness of thermal fluctuations exposes all the weaknesses of
a particular spectral discretization, especially when that discretiza-
tion fails to properly track high-frequency modes. It is therefore
vital that our discretization be free from aliasing errors. In partic-
ular, it is important that we be able to recover the original tangent
vector rotation rates from the fiber velocity field by “inverting”
the kinematic matrix and thereby develop temporal integrators
that capture the right drift terms in expectation. An open ques-
tion is whether this level of scrupulousness, which is also necessary
because Chebyshev polynomials cannot define everywhere inexten-
sible curves, could have been avoided by using a different (rapidly
converging) series representation for the fiber centerline. Other,
non-Chebyshev, representations for (everywhere) inextensible fil-
aments such as curvature-torsion require higher order derivatives
of τ = ∂sX, which have non-decaying spectra, since for Brownian
filaments, τ is almost everywhere differentiable, but its deriva-
tive is white noise. An optimal representation would be in terms
of some basis functions whose contributions to the fiber shape
decay fast, especially for large persistence lengths. Such a repre-
sentation would ideally nearly diagonalize the bending elasticity
operator and be everywhere inextensible, the latter being vital to
remove ambiguity in how to represent the fiber (tangent vectors vs
positions).

We showed that our spectral method with slender body RPY
quadrature can reduce the number of nodes required to resolve
hydrodynamics and also substantially increase the time step size
required for accuracy relative to both blob-linkmethods and spectral
methods with other hydrodynamic models (such as local slen-
der body theory). This is an important feature because our mid-
point temporal integrator, which is based on taking a Fixman-like

predictor step to the midpoint to capture the drift term in expecta-
tion, can only generate accurate equilibrium statistics and dynamics
when the time step is sufficiently small. By breaking the dynamics
into a set of modes, we showed that to generate the correct equi-
librium statistics, the temporal integrator must resolve a number of
modes that scales linearly with N. Seeing as the timescales of the
modes scale like k−4 for large node index k (see Fig. 19), this means
that our time step size scales roughly as N−4, which means we must
hold the number of modes down if we want to simulate with a rea-
sonable time step size. An alternative approach would be to try to
increase the required time step size by using an exponential integra-
tor. For rotations on the unit sphere, this requires Lie integrators,
such as that used by Schoeller et al. in Ref. 35. Stochastic exponen-
tial Lie integrators have not yet been developed (to our knowledge),
and so they represent an interesting avenue of exploration for future
work.

We ended this paper by applying our algorithm to the bundling
dynamics of transiently cross-linked fluctuating actin filaments.
When the fibers do not turnover, we showed previously81 that there
is nothing stopping them from forming large bundles through a
thermal ratcheting mechanism where cross-linkers (CLs) stretch to
bind filaments and then contract to pull them closer together and
allow additional CL bindings. Here, we showed that the bundling
of fluctuating actin filaments, which have persistence length on the
order 10 μm,11 significantly differs from that of rigid fibers, which
is in contrast to the conclusion we drew previously when filaments
did not fluctuate (and only moved by CL forces).81 However, when
ℓp/L ≳ 10, we showed that these differences can be explained by a
reduced model where actin filaments rotate and translate randomly
and bend via CL forces. In this case, the combination of transla-
tional and rotational rigid-body diffusion with fiber flexibility and
CL forces drives the observed differences from rigid fiber dynamics.
Semiflexible bending fluctuations only accelerate bundling dynam-
ics when ℓp/L ≈ 1, in which case the differences from rigid fibers
can be observed even in the regime when the fibers are weakly
cross-linked.

Our study of bundling dynamics, like our previous work,81
did not consider hydrodynamic interactions between filaments. In
previous work,15 we showed that such interactions slow down the
bundling process for non-fluctuating fibers. An interesting exten-
sion of the work here would be to see if such a conclusion also
holds for fluctuating filaments. Simulating hydrodynamic interac-
tions with fluctuations is in fact possible in (log) linear time with
the midpoint temporal integrator developed here once suitable iter-
ative solvers are developed. For the blob-link discretization, this has
already been done by some of us for triply periodic systems and
will be shared in separate work. For spectral methods, our previous
work,53 which was restricted to the deterministic setting, relied on
splitting the mobility into intra- and inter-fiber hydrodynamics and
then computing the second piece fast using oversampled quadra-
ture on a GPU by the Positively Split Ewald (PSE) method.15,70 This
approach might break down for fluctuating fibers unless we can
guarantee that each piece is separately symmetric positive definite
(SPD).70 A simple solution would be to use oversampled quadrature
for the mobility on all fibers (which Appendix B 4 a shows is what
our special quadrature approximates) so that M and its square root
can be applied fast using the PSEmethod. Other possible approaches
are to use a Galerkin approach, which we have shown is consistent
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with the discretization presented here [see (23)], to define a consis-
tent SPD mobility matrix or use the positive splitting of the RPY
kernel in the PSE method to split the action of the mobility into a
near field special quadrature and a far-field fast summation. After
we formulate the mobility, it will be interesting to see how many
tangent vectors N are required to resolve the hydrodynamics since
in the case of bundled suspensions, the lengthscale of filament inter-
action decreases over time. Presumably, more than N = 12 tangent
vectors would be required to resolve the individual hydrodynamic
interactions, but whether the error made in using a small number
of points affects the overall suspension behavior (e.g., the bundling
time) significantly is hard to predict.

From an application standpoint, the rheology of transiently
cross-linked actin networks with fiber turnover is an exciting open
problem in biological physics. Recent experiments have shown that
the stress relaxation in the actin cytoskeleton is slow, with a vis-
cous modulus that scales as ω1/2 on long timescales.93 Since then,
there have been a number of physical theories seeking to explain this
behavior,18,94–96 all of which are based to some degree on a coarse-
grained relationship between the cross-linker distribution and the
stress relaxation timescales. Thus, the ability to simulate many-fiber
suspensions for long times is vital to justify more rigorously the
assumptions made by continuum theories and study the role of
Brownian motion and bending fluctuations in stress relaxation in
the actin cytoskeleton. For the bundled networks in Sec. VI, we
have already shown15 that both intra- and inter-fiber hydrodynamic
interactions change the viscoelastic moduli in the deterministic set-
ting, and it is therefore interesting to see how or if this conclusion
changes with fluctuations. Doing these calculations will require care,
however, since in rheology, we are looking for quantitative val-
ues of stress, which includes a contribution from Brownian motion
[Ref. 97, Eq. (3.169)] that needs to be formulated carefully for
overdamped inextensible fibers, and computed efficiently numer-
ically. We have already seen how fluctuating fiber numerics can
be quite sensitive to spatial and temporal discretizations. When
we combine this with other (non-equilibrium) dynamics, such as
cross-linker attachment/detachment and oscillatory shear flow, we
will need extra care to ensure that the results are not dominated
by discretization artifacts. The stress also has a contribution from
steric interactions, which are neglected here but can be added in
future work by approximating each fiber with O(1) spherocylin-
ders,98 which resolve the smallest lengthscale on which the fiber
bends (roughly ℓp). Robust quantitative results will give us the
ability to connect microscale Brownian filament hydrodynamics to
macroscopic cytoskeletal behavior.

SUPPLEMENTARY MATERIAL

See the supplementary material for an animation of fiber relax-
ation for blob-link and spectral chains and also the side-by-side
comparisons of bundling dynamics for ℓp/L = 100 vs rigid fibers and
SF-Bend fibers vs SF-RBD fibers when ℓp/L = 10, 1.
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APPENDIX A: SADDLE POINT SYSTEM AS GRADIENT
DESCENT DYNAMICS

In this appendix, we show that the deterministic dynamics (25)
take the form of a constrained gradient descent. Let us consider a
backward Euler integrator for (25) and the Lagrangian

L[X,α,λ] = 1
2
XTLX +

1
2Δt
(X − X(n))

T
(M̃ (n)

)
−1

× (X − X(n)) + λTW̃(K(n)α −
1
Δt
(X − X(n))). (A1)

Here, the matrices K and M̃ are evaluated at time n and, conse-
quently, are constant with respect to X. In (A1), the second term
is Δt/2 times the rate of dissipation in the fluid (velocity × force)
and λ represents a force density, which is a Lagrange multiplier for
the inextensibility constraint. We formulate that constraint as an L2

inner product using the discrete weights matrix W̃ since this gives
the work done by the constraint force density on the fluid.

We now differentiate the Lagrangian with respect to the three
inputs to arrive at our equations of motion,
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δL
δX
= 0→ −LX + W̃λ =

1
Δt
(M̃ (n)

)
−1
(X − X(n)), (A2)

δL
δλ
= 0→ K(n)α =

1
Δt
(X − X(n)), (A3)

δL
δα
= 0→ (K(n))

T
W̃λ = 0. (A4)

Combining (A2) and (A3) and taking Δt → 0, we arrive at the
deterministic saddle point system,

Kα = M̃(−LX +Λ), (A5)

KTΛ = 0. (A6)

Here, we have set the force Λ = W̃λ, which represents another
instance of the conversion between force and force density defined
in (12). In this case, it is easy to see how this conversion arises from
the L2 inner product. Equation (A6) is the principle of virtual work
invoked in our previous work (Ref. 53, Sec. 3.4).

1. Adding fluctuations
With fluctuations, the same variational technique can be used

to derive the saddle point system (31) by adding the work done
(entropy dissipated) by the random force Fstoch,

(
X − X(n)

Δt
)

T

FstochΔt = (
X − X(n)

Δt
)

T√
2kBT
Δt
(M̃ (n)

)
−1/2

η(n)Δt,

to the Lagrangian (A2). However, solving system (31) produces only
the first and last term of the Langevin equation (35), and not the
additional stochastic drift terms, which are required to ensure time-
reversibility (detailed balance). So far, we have not been able to
produce those terms via a variational argument.

APPENDIX B: RPY MOBILITY

In this appendix, we give a more detailed discussion of the RPY
mobility, beginning with the definition of the mobility for two par-
ticles. We then give a few details on modifications of our “slender-
body” quadrature scheme36 for nonsmooth filaments. Specifically,
since our quadrature scheme was developed with smooth filaments
in mind, we assumed that the tangent vectors obtained by differ-
entiating X on the Nx point grid have unit length. This is not
necessarily the case for random filaments as the tangent vectors are
unit length only when confined to the N collocation points track-
ing τ. We therefore have to make a few small modifications, as
detailed in Appendix B 2. In Appendix B 3, we consider the error
incurred in symmetrizing mobility (24) and in truncating its neg-
ative eigenvalues. We do this by looking at the errors with respect
to the symmetric positive definite upsampled mobility (23). Finally,
in Appendix B 4, we compare our special quadrature mobility to
other mobility options for the relaxing filament in Sec. V, showing
that there are significant advantages to using special quadrature from
both a spatial and temporal perspective.

1. RPY kernel
To define the RPY kernel between two points x and y, we first

let r = x − y and r = ∥r∥ with r̂ = r/r. The RPY kernel is based on
linear combinations of the Stokeslet and doublet, which are defined
as

S(x, y) =
1

8πμ
(
I + r̂r̂
r
)

and

D(x, y) =
1

8πμ
(
I − 3r̂r̂
r3
). (B1)

The RPY kernel for an unbounded fluid is then given by30,31,70

M̃RPY(x, y; â) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

S(x, y) +
2â 2

3
D(x, y), r > 2â,

1
8πμ
[(

4
3â
−

3r
8â 2 )I +

1
8â 2r

rr], r ≤ 2â.
(B2)

2. Modifications to slender body
quadrature for nonsmooth filaments

A subtle point in computing the mobility on the grid of size Nx
is that the quadrature schemes we use to compute (2) are based on
having unit-length tangent vectors, i.e., (DX)

{p} ⋅ (DX){p} = 1 for
all p on the grid of size Nx. For random filaments, the length of the
tangent vectors is 1 on theN point grid, butmight differ substantially
(by as much as 50% or so) when these polynomials are resampled to
the Nx = N + 1 point grid. As such, we need to modify the quadra-
ture schemes in Ref. 36, Appendix G to obtain a quadrature scheme
that converges to the continuum integral (2) as the number of points
becomes large.

This is quite straightforward to do. In Ref. 36, Appendix G,
we break the RPY integral into three pieces: the Stokeslet on ∣s − s′∣
> 2â, the doublet on ∣s − s′∣ > 2â, and the piece for ∣s − s′∣ ≤ 2â. The
last piece is done by direct Gauss–Legendre quadrature, so there are
no changes to that in this case. The first two pieces are done using
special quadrature schemes, which involve subtracting the leading
order singularity and integrating what remains. The leading order
singularities in the case of a tangent vector that does not have the
norm one are

S1(s, s′) =
1

8πμ
(
I + ∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥∣s − s′∣

),

D1(s, s′) =
1

8πμ
(
I − 3∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥3∣s − s′∣3

),

where the hat denotes a normalized vector. Thus, the remaining
integrals are

U(int, S)(s) = ∫
D(s)
(S(X(s),X(s′))f (s′) − S1(s, s′)f (s)) ds′,

U(int, D)(s) = ∫
D(s)
(D(X(s),X(s′))f (s′) −D1(s, s′)f (s)) ds′.

Here, D(s) is the domain on which ∣s − s′∣ ≥ 2â for each s, defined in
Ref. 36, Eq. (G.2).
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In Ref. 36, Appendix G, we develop a special quadrature
scheme, which is based on putting the integrals in the form

U(int, S)(s) = ∫
D(s)

g tt(s, s
′
)
(s′ − s)
∣s′ − s∣

ds′,

U(int, D)(s) = ∫
D(s)

gD(s
′, s)
(s′ − s)
∣s′ − s∣3

ds′.

Our special quadrature scheme can be implemented as described
there, but with the followingmodified definitions for tangent vectors
that do not have the norm one:

g tt(s, s
′
) = (S(X(s),X(s′))f (s′) − S1(s, s′)f (s))

∣s′ − s∣
s′ − s

,

gD(s
′, s) = (D(X(s),X(s′))f (s′) −D1(s, s′)f (s))

∣s′ − s∣3

(s′ − s)
.

These functions are nonsingular at s = s′, with the finite limits

lim
s′→s

g tt(s, s′) =
1

8πμ
[ 1
2∥∂sX(s)∥3

(∂sX(s)∂2
sX(s) + ∂2

sX(s)∂sX(s)

− (∂sX(s) ⋅ ∂2
sX(s))(I + 3∂̂sX(s)∂̂sX(s)))f (s)

+ ( I + ∂̂sX(s)∂̂sX(s)∥∂sX(s)∥
)∂sf (s)],

lim
s′→s

gD(s′, s) =
1

8πμ
[ 1
2∥∂sX(s)∥5

(−3(∂sX(s)∂2
sX(s) + ∂2

sX(s)∂sX(s))

− (∂sX(s) ⋅ ∂2
sX(s))(3I − 15∂̂sX(s)∂̂sX(s)))f (s)

+ ( I − 3∂̂sX(s)∂̂sX(s)∥∂sX(s)∥3
)∂sf (s)].

3. Eigenvalues of slender body quadrature
mobility matrix

In this part of the appendix, we look in more detail at how to
determine a systematic threshold for eigenvalue truncation of our
slender body quadrature. We do this by comparing the eigenval-
ues of the symmetrized mobility (24) with the reference mobility

(23).We will useNu = 1000 points for the reference mobility, having
verified that using even more reference points gives the same results.

To motivate the truncation of the negative eigenvalues of (24),
we first compare the eigenvalues of (24) (without any truncation) to
those of the reference mobility (23). To do this, we fix N = 24 and
ℓp/L = 1 and consider a set of ten samples from the equilibrium dis-
tribution studied in Sec. IV A. The mean eigenvalues of M̃ref and
our approximate M̃ are shown in Fig. 12, where we have repeated
the test three times to generate error bars. Fortunately, as we have
observed previously (Ref. 36, Sec. 4.4.1), the eigenvalues of the
mobility are not particularly sensitive to the fiber shape; hence, the
error bars in Fig. 12 are smaller than the symbol size. For ϵ̂ = 10−3,
we observe large errors in the largest eigenvalues, which correspond
to modes that are flat in the fiber interior and peak at the fiber end-
point. These modes are rapidly damped and are associated with fast
timescales.

When we drop to ϵ̂ = 10−2, we begin to see negative eigenvalues
in the quadrature-based mobility. These negative eigenvalues, which
separate themselves from the positive eigenvalues of the reference
mobility, are associated with highly oscillatory modes, which have
a small Rayleigh quotient vTM̃refv using the reference mobility.
Because modes with negative eigenvalues in the quadrature mobil-
ity are high frequency and, therefore, give small Rayleigh quotients
in the reference mobility, a sensible way to truncate the eigenvalues
of M̃ in (24) is to set any eigenvalues less than the smallest eigen-
value of M̃ref to that smallest eigenvalue. That is, we post-process
the eigenvalues of (24) to set any initial λk < σ to λk = σ, where σ
is the smallest eigenvalue of the reference mobility matrix M̃ref for
that N, L, and ϵ̂. In Fig. 12, we do this by averaging over 30 sam-
ples, but, as discussed previously, this makes little difference, and
the eigenvalues for a straight filament could also be used. Thus,
in practice, our Python code sets the threshold σ by computing
the reference mobility (23) for a straight filament with 1/ϵ upsam-
pling points and finding the smallest eigenvalue of the resulting
matrix.

4. Comparing special quadrature to other mobilities
This part of the appendix is concerned with the different

options for the matrix M̃, which maps force to velocity in fluctuating
fibers. We consider four possibilities:

FIG. 12. Eigenvalues of M̃ for ten ran-
dom filaments, sampled from the equi-
librium distribution for ℓp/L = 1 and
N = 24 (here, μ = 1). We show the
eigenvalues of the reference mobility
(23) in blue and those of the sym-
metrized quadrature mobility (24) in red.
The largest eigenvalues are incorrect
for small ϵ̂ because they correspond to
highly nonsmooth modes, which are flat
in the fiber interior and large at the end-
points. For ϵ̂ = 10−2, we start to see
negative eigenvalues in the symmetrized
mobility (24).
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1. RPY special quadrature as discussed in Sec. II B 2, in which
we first compute the matrix M, then symmetrize MW̃ −1, and
truncate its negative eigenvalues.

2. RPY oversampled quadrature on a grid of size Nu, which is
the SPD matrix (23). The main part of this computation is the
action of the matrix M̃RPY,u, whichmaps forces to velocities on
the upsampled grid.

3. Direct evaluation of the RPY kernel on the spectral grid, i.e.,
M̃ = M̃RPY, which is automatically SPD. This makes the action
of the mobility the same as that of the blob-link method, but
with uneven spacing of the grid points. While this calcula-
tion does not formally see the Chebyshev weights if we work
on forces directly, it can still be viewed as Clenshaw–Curtis
quadrature on force density, with the conversion given in (12).

4. The local drag approximation to the matrix M, which is a
block-diagonal matrix with 3 × 3 blocks,

8πμM{i,i} = (
aS(si) + aCLI(si)
∥∂sX(si)∥

+
2â 2

3
aD(si)
∥∂sX(si)∥3

)I

+ (
aS(si) + aCLT(si)
∥∂sX(si)∥

− 2â 2 aD(si)
∥∂sX(si)∥3

)τ{i}τ{i},

(B3)

where τ{i} = ∂sX(si)/∥∂sX(si)∥ and

aS(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(
(L − s)s
4â 2 ), 2â < s < L − 2â,

ln(
(L − s)
2â

), s ≤ 2â,

ln(
s
2â
), s ≥ L − 2â,

(B4)

aD(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4â 2 −

1
2s2
−

1
2(L − s)2

, 2â < s < L − 2â,

1
8â 2 −

1
2(L − s)2

, s ≤ 2â,

1
8â 2 −

1
2s2

, s ≥ L − 2â,

aCLI(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23
6
, 2â < s < L − 2â,

23
12
+

4s
3â
−

3s2

16â 2 , s ≤ 2â,

23
12
+
4(L − s)

3â
−
3(L − s)2

16â 2 , s ≥ L − 2â,

aCLT(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
, 2â < s < L − 2â,

1
4
+

s2

16â 2 , s ≤ 2â,

1
4
+
(L − s)2

16â 2 , s ≥ L − 2â.

The derivation of this formula is given in Ref. 48, but here, we
have made some modifications since the tangent vectors ∂sX(si)
might not be exactly the norm one when the fibers are Brow-
nian. If ∥∂sX(si)∥ = 1, then this formula reduces to Ref. 48, Eq.
(B7). We note that this local drag theory is qualitatively the
same as themore commonly used 8πμM{i,i} = ln (ϵ−2)(I + τ{i}τ{i})
+ (I − 3τ{i}τ{i}), which describes filaments with ellipsoidally
tapered radius functions. Since our filaments are not ellipsoidally
tapered, the RPY-based theory from Ref. 48 is quantitatively more
accurate (the trends we describe about spatial and temporal con-
vergence are unchanged when we use ellipsoidal SBT). As in step
1, we symmetrize the matrix M̃ =MW̃ −1 and truncate its negative
eigenvalues (the matrix is not automatically symmetric) to obtain
the force-velocity mobility matrix.

Throughout this appendix, we will consider the test of an ini-
tially straight single filament relaxing to its equilibrium fluctuations
from Sec. V, utilizing (56) for temporal and spatial rescaling (we will
rescale each trajectory by its equilibrium mean from MCMC). We
will first consider only trajectories that are converged in time so that
our goal is to isolate the difference between spatial discretizations.
We will then zero in on potential temporal convergence problems
for the mobilities that appear advantageous at first.

FIG. 13. End-to-end distance trajectory
comparing special quadrature (SQ) with
oversampled quadrature (OS) with vari-
ous numbers of oversampling points Nu

and a fixed number of N = 12 colloca-
tion points. The left plot shows ϵ̂ = 10−2,
for which we can use a small num-
ber of oversampled points. The more
slender ϵ̂ = 10−3 at right requires many
more oversampled points, but eventu-
ally converges to the special quadrature
results.
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FIG. 14. End-to-end distance trajectory
comparing special quadrature (SQ) with
direct quadrature (CC) with various num-
bers of collocation points. The left plot
shows ϵ̂ = 10−2, for which we can use
a small number of collocation points. The
more slender ϵ̂ = 10−3 at right shows the
weaknesses of direct quadrature (similar
to an under-resolved bead link model).

a. Oversampling converges to special quadrature
We can eliminate the ambiguity between special and over-

sampled quadrature by showing that trajectories using oversampled
quadrature converge to those of symmetrized special quadrature as
Nu increases. Results for this are shown in Fig. 13, where we fix
N = 12 and show that the number of oversampled points Nu
required for the special quadrature to match oversampled quadra-
ture depends on ϵ̂. We require roughly 0.4/ϵ̂ points to obtain
equivalence of the two trajectories: thus, 40 points are acceptable
for ϵ̂ = 10−2, which may make the special quadrature worthless for
this value of ϵ̂. Decreasing to ϵ̂ = 10−3, we need about 400 points for
the trajectory to match special quadrature. Considering that the cost
of the quadrature is constant with respect to ϵ̂, this tell us that, for
sufficiently slender fibers, special quadrature will be advantageous,
and going forward, we will only compare special quadrature to direct
quadrature and local drag.

b. Special vs direct quadrature
Let us now move on to comparing special quadrature to direct

quadrature on the spectral grid. With direct quadrature, the spec-
tral mobility becomes analogous to a blob-link mobility, and so we
would expect fewer collocation points to be acceptable for large ϵ̂.
Figure 14 confirms this result; there, we see that when ϵ̂ = 10−2, the
results for direct quadrature and special quadrature for N ≥ 24 are

all essentially the same. When N = 12, we see that the direct quadra-
ture is actually more accurate than special quadrature (relative to the
blob-link or self-refined solutions) although this may be accidental
(for this specific example).

As when we compared it to oversampled quadrature, the spe-
cial quadrature scheme shines only when we drop to ϵ̂ = 10−3. This
time (right panel of Fig. 14), we see that special quadrature converges
in space (to within statistical error) for N ≥ 24, while direct quadra-
ture fails to give an accurate trajectory even for N = 36. This is not
surprising; for ϵ̂ = 10−3, we would expect at least several hundred
points (not computationally feasible due to the small required time
step size) would be needed to accurately resolve the hydrodynamics
via direct quadrature. Still, it reassuring that those trajectories move
toward the converged special quadrature ones.

c. Local drag
So far, we have established that special quadrature is only effec-

tive in the slender limit, which is also the regime where we expect
local drag to give a correct answer. So what about the difference
between special quadrature and local drag? This is what we study
in this section. We will compare both local drag and special quadra-
ture to special quadrature with N = 36, which matches the blob-link
calculation that is available to us and gives a reference answer for
smaller ϵ̂.

FIG. 15. End-to-end distance trajectory
comparing special quadrature (SQ) with
the local drag theory (B3) with various
numbers of collocation points. We use
special quadrature with N = 36, which
for ϵ̂ = 10−2 gives the same trajectory
as the blob-link code, as a reference
result in both cases. The left plot shows
ϵ̂ = 10−2, while the right shows ϵ̂ =
10−3.
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FIG. 16. Studying temporal convergence
of special quadrature (left) and local
drag (right). Blue colors show N = 12,
while red colors show N = 24. This is for
ϵ̂ = 10−3, where local drag is most effec-
tive. Time step sizes are reported in
terms of Δt f = Δt/τfund, where τfund is
defined in (55).

Figure 15 shows how our local drag theory (B3) compares with
special quadrature for N = 12, 24, and 36 (using special quadra-
ture with N = 36 as a reference). The key takeaway is that local
drag performs better as ϵ̂ decreases, which is not surprising. When
ϵ̂ = 10−2 and N = 12, we see that local drag and special quadrature
have roughly the same error at intermediate times, with local drag
being more accurate at short times (t∗ < 0.1) and special quadra-
ture winning out on long times. For N = 24 and ϵ̂ = 10−2, special
quadrature is a clear winner as the trajectory for local drag, which
is unchanged when we increase to N = 36, gives faster relaxation
than the reference solution. Decreasing to ϵ̂ = 10−3, we see that local
drag performs better: with N = 12, it gives an error identical to spe-
cial quadrature with N = 24. This is likely just a coincidence since
with N = 24 and N = 36, the accuracy of local drag is clearly infe-
rior to that of special quadrature. Still, it certainly provides a good
approximation for ϵ̂ = 10−3.

From a spatial perspective, then, we see that local drag can be
just as effective as special quadrature when ϵ̂ is small. We still have
not, however, considered the temporal convergence of local drag,
which we show in Fig. 16 for ϵ̂ = 10−3. In the left panel, we show
how well behaved the special quadrature is: the data are basically
converged when Δt f = 0.001 for N = 12 (and we could probably use
an even larger Δt) and Δt f = 10−4 for N = 24. The time step sizes for
local drag are much smaller; the right panel shows that we need a
time step size of Δt f = 5 × 10−4 for N = 12 and Δt f = 2 × 10−5 for
N = 24. Thus, while special quadrature might be more expensive
in space, it is ultimately the most efficient since local drag requires
smaller time step sizes to achieve convergence.

APPENDIX C: STOCHASTIC DRIFT TERMS

This appendix is devoted to discussing the stochastic drift term
(40) in the overdamped Ito Langevin equation for the tangent vec-
tor evolution. Our first goal is to show that this drift term is vital
to correctly sample from the equilibrium distribution (6). Because
our midpoint temporal integrator (Sec. III B) captures the drift term
in expectation by moving the fibers to the midpoint, it is not so
simple to turn off the drift term and see what happens. Because of
this, in Appendix C 1, we present a simple numerical scheme, which
captures the drift term via an expensive random finite difference
(RFD).29 In that scheme, we can easily turn off the drift term and
show the disastrous effects that result when it is not included (see
Appendix D 5). After this, in Appendix C 2, we turn to the more

technical details of how the midpoint scheme captures the drift term
(40) in expectation. We note that the midpoint scheme as presented
in the main text is optimized for dense linear algebra as term (47)
minimizes the number of evaluations of M̃, assuming that a dense
inversion is relatively cost-efficient. Here, we present an alternative
method to generate the same drift term, which applies when it is
impossible to form M̃ as a dense matrix. We then compare our tem-
poral integration scheme to the related scheme of Westwood et al.
for rigid bodies73 in Appendix C 2 c.

1. RFD scheme
We first present an RFD scheme, which explicitly tells us what

drift terms are being included, so that we can exclude them to
demonstrate that (29) without the correct drift terms does not give
the correct equilibrium statistical mechanics. This scheme begins by
solving the system of equations,

M̃ (n)
(L(cX(n+1,∗) + (1 − c)X(n)) +Λ) +U(n)B = K(n)α, (C1)

(K(n))
T
Λ = 0,

where

X(n+1,∗) = X(n) + ΔtK(n)α (C2)

is the linearized position at the next time step that we use in the
implicit method determined by the coefficient c. Substituting (C2)
into (C1), we begin by solving the saddle point system,

⎛
⎜
⎝

−M̃ (I + cΔtM̃L)K

KT 0

⎞
⎟
⎠

(n)
⎛
⎜
⎝

Λ

α

⎞
⎟
⎠

(n)

=
⎛
⎜
⎝

−M̃LX(n) +U(n)B

0

⎞
⎟
⎠
, (C3)

where all time-dependent quantities are evaluated at time n, the
Brownian velocity UB is defined in (43), and α = (Ω,UMP). Using
the Schur complement to eliminate Λ, we obtain the solution

α(n) =
⎛

⎝
−NKTLX +

√
2kBT
Δt

N1/2η
⎞

⎠

(n)

+O(Δt)

=
⎛

⎝
−NC̄ TLτ τ̄ +

√
2kBT
Δt

N1/2η
⎞

⎠

(n)

+O(Δt), (C4)
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where the terms of order Δt come from using an implicit method.
Comparing (C4) with the SDE (29), we see that we still need to cap-
ture the drift term (40). To do this, we add a random finite difference
term (Ref. 29, Sec. III C) by setting

τ̄ (n,RFD) =
⎛
⎜
⎜
⎝

rotate(τ(n), δη(n,RFD)
{1:3N} )

XMP + δLη(n,RFD){3N+1:3N+3}

⎞
⎟
⎟
⎠

, (C5)

α(n,RFD) =
kBT
δ
(N(τ̄(n)RFD) −N(τ̄

(n)
)) ×

⎛
⎜
⎝

η(n,RFD)
{1:3N}

L−1η(n,RFD)
{3N+1:3N+3}

⎞
⎟
⎠
, (C6)

where δ≪ 1 is a dimensionless small parameter and η(n,RFD) is gen-
erated independent of η(n). The procedure (C5) corresponds to first
rotating the tangent vectors around a random axis by a random
small angle, which we follow in (C6) by solving two saddle point
systems with the same random numbers on the right-hand side.
The Taylor expansion of the average α(RFD) is (dropping the time
superscript)

E[α(RFD)] = (kBT)∂ j(N ik)E[η
(RFD)
k (τ̄ (RFD) − τ̄)

j
] +O(δ)

= (kBT)∂ j(N ik)E[η
(RFD)
k η(RFD)m ]C̄ jm +O(δ)

= (kBT)∂ j(N ik)C̄ jk,

which is exactly the drift term in (40). In the second equality, we use
the fact that the update (C5) is C̄η to first order in δ. Thus, the RFD
term α(RFD) captures (40) in expectation, and the fiber update

τ(n+1) = rotate(τ(n),Δt(Ω(n) +Ω(n,RFD))),

X(n+1)MP = X(n)MP + Δt(U
(n)
MP +U

(n,RFD)
MP ),

(C7)

is a weakly first-order accurate temporal integrator for (29).

2. Drift terms in midpoint scheme
Proceeding to the midpoint scheme in Sec. III B, we now show

that the tangent vector update (50) generates the drift term (40)
in expectation. To simplify the notation, in this appendix, we will

assume that all time/position-dependent matrices and vectors are
evaluated at time n, unless otherwise indicated. Substituting for UB
and UMD, we expand (50) to read

α(n+1/2,∗) = −(NKT
)
(n+1/2,∗)

LX

+

√
2kBT
Δt
(NKTM̃−1

)
(n+1/2,∗)

M̃ 1/2η

+

√
2kBT
Δt
(NKTM̃−1

)
(n+1/2,∗)

× (M̃ (n+1/2,∗)
− M̃)(M̃−1/2

)
T
η. (C8)

We will Taylor expand the second and third line in succession.
Beginning with the second line, we have

√
2kBT
Δt
[(NKTM̃−1

)
(n+1/2,∗)

M̃ 1/2η]
i

=

√
2kBT
Δt
(NKTM̃−1/2η)

i

+

√
2kBT
Δt

∂ j(NKTM̃−1
)
ih

× (τ̄(n+1/2,∗)j − τ̄ j)M̃1/2
hp ηp +O(Δt).

We recognize the first term from (32) as N1/2η, which is the typical
term associated with the Brownian noise. Substituting the expan-
sion of τ(n+1/2,∗) in (46) into the second line, we get the average
drift

DriftUBi =

√
2kBT
Δt

∂ j(NKTM̃−1
)
ih

×

√
kBTΔt

2
C̄ jaK−1ab M̃

1/2
bc E[ηcηp]M̃

1/2
hp

= (kBT)∂ j(NKTM̃−1
)
ih
(M̃hbK

−T
ba C̄

T
a j),

where in the last equality, we used M̃ = M̃ 1/2
(M̃ 1/2

)
T
. Rearranging

this gives M̃(M̃−1/2
)
T
= M̃ 1/2, which allows us to expand the last

line in (C8) as

DriftUMDi = E
⎡
⎢
⎢
⎢
⎢
⎣

√
2kBT
Δt
(NKTM̃−1

)
ih
∂ j(M̃hp)(τ̄

(n+1/2,∗)
j − τ̄ j)M̃−1/2qp ηq

⎤
⎥
⎥
⎥
⎥
⎦

+O(Δt)

= (kBT)(NKTM̃−1
)
ih
∂ j(M̃hp)C̄ jaK−1ab M̃

1/2
bc E[ηcηq]M̃

−1/2
qp

= (kBT)(NKTM̃−1
)
ih
∂ j(M̃hp)C̄ jaK−1ap

= (kBT)(NKTM̃−1
)
ih
∂ j(M̃hpC̄ jaK−1ap ). (C9)
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The last equality makes use of the identity

N ikK
T
kp∂ j(C̄ jrK−1rp ) = 0, (C10)

which is proven later.
We can now add the two drift terms to obtain the total drift

Drifti = DriftUBi +DriftUMDi

= kBT∂ j((NKTM̃−1
)(M̃K−TC̄ T

))
i j

= kBT∂ j(N(C̄K−1K)
T
)
i j
= kBT∂ j(NC̄ T

)
i j

= kBT∂ j(N ik)C̄
T
k j.

In the last line above, we used (19) in the second equality, thereby
establishing that the one-solve scheme produces the drift (40), as
desired.

a. Proof of (C10)
We now prove that (C10) is indeed zero by substituting the

definitions of K and K−1 to get

N ikK
T
kp∂ j(C̄ jrK−1rp ) = N ikC̄

T
kyX

T
yp∂ j(C̄ jrC̄T

rb)X
−1
bp

= N ikC̄
T
ky∂ j(C̄ jrC̄T

ry).

Now, the matrix (C̄ jrC̄T
rb) is a 3(N + 1) × 3(N + 1) matrix com-

posed of N + 1 diagonal blocks. The first N diagonal blocks are
I3 − τ{p}τ{p}, while the last block is the 3 × 3 identity. It follows that
the derivative

∂

∂τ̄ j
(C̄ jrC̄T

ry) = −4τ̄y (C11)

for b ≤ 3N and zero otherwise (for the parts of τ̄ associated with
constant motions). Multiplying by C̄ T and using (15) gives (C10).

b. Alternate way of obtaining mobility drift
An alternative way of obtaining the drift term (47) is via an

RFD, which avoids potentially expensive resistance problems. The
alternative expression for UMD in this case is

μ(RFD) = K−1η(RFD),

τ(RFD) = rotate(τ, δLμ(RFD)) ≈ τp − δLCK−1η(RFD),

UMD =
kBT
δL
(M̃(τ(RFD)) − M̃(τ))η(RFD),

(C12)

and it is not hard to show that this generates the drift term (C9)
in expectation for small δ. Numerical tests show that using the
expression (47), rather than (C12), gives a closer approximation to
the equilibrium distribution for larger time step sizes, whereas for
smaller time step sizes, the two expressions perform similarly. In this
paper, we use (47), but (C12) will be useful for many-fiber systems
in which we can apply M̃ fast, while inverting M̃ requires an iterative
solver.

c. Comparison to scheme of Westwood et al.73

The midpoint method proposed here applies for any kinematic
matrix K(X) and mobilityM(X) and can therefore be used for sus-
pensions of rigid bodies as well. In fact, our scheme is related to the
generalized drift-correcting (gDC) scheme proposed by Westwood
et al. (Ref. 73, Sec. 4.1) for rigid body suspensions.

For a single rigid body modeled as a rigid-multiblob with blob
positionsXi (generalization tomany rigid bodies is straightforward),
the authors of Ref. 73 defined the kinematic matrixK(X) through its
action on a 6 × 1 rigid body velocity U = [u,ω] so that

∂tXi = u + ω × (Xi − q) = [K(X)U]i, (C13)

where q is an arbitrary tracking point for the rigid structure.
Equation (E5) in Ref. 73 gives the drift term for rigid bodies as

Drifti = (kBT)∂ jN i j. (C14)

Similar to the midpoint scheme presented here, the gDC scheme
captures the thermal drift term by splitting it into two parts,

Drifti = (kBT)∂ jN i j

= (kBT)∂ j(NKTM−1/2M1/2K−T)
i j

= (kBT)∂ j(NKTM−1/2)
ik
(M1/2K−T)

k j

+ kBT(NKTM−1/2)
ik
∂ j(M1/2K−T)

k j
, (C15)

where K−T = K(KTK)
−1

is the left pseudoinverse of KT and can
be computed very efficiently. By contrast, the midpoint scheme
presented in this work splits the drift term according to

Drifti = (kBT)∂ jN i j

= (kBT)∂ j(NKTM−1M1/2M1/2K−T)
i j

= (kBT)∂ j(NKTM−1)
ik
(MK−T)

k j

+ kBT(NKTM−1)
ik
∂ j(MK−T)

k j
. (C16)

While Eqs. (C15) and (C16) appear very similar, the approach used
in our midpoint scheme only requires one application ofM1/2, while
the gDC scheme requires four. In some cases, saving on applications
ofM1/2 can significantly reduce the computational cost of the whole
scheme.

To elaborate on why the gDC scheme requires extra applica-
tions of M1/2, we will briefly summarize how the scheme captures
each term in (C15). The second term is calculated efficiently by using
an RFD for

νk = ∂ j(M1/2K−T)
k j

(C17)

since it does not involve N , while the first term is captured using a
midpoint time integration scheme of the form

X(n+1/2,∗) − X(n) =

√
kBTΔt

2
K−1M1/2η(n), (C18)

J. Chem. Phys. 158, 154114 (2023); doi: 10.1063/5.0144242 158, 154114-27

Published under an exclusive license by AIP Publishing

 01 August 2023 21:50:15

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Ṽ (n+1/2,∗) =

√
2kBT
Δt
(NKTM−1/2)

(n+1/2,∗)
η(n) (C19)

so that

E[Ṽ (n+1/2,∗)] = (kBT)∂ j(NKTM−1/2)
ik
E[η(n)k η(n)r ]

× (K−1M1/2
)
jr

= (kBT)∂ j(NKTM−1/2)
ik
(M1/2K−T)

k j
.

The gDC scheme combines these parts to compute

Drifti = kBT(NKTM−1/2)
ik
νk + E[Ṽ

n+1/2,∗
]

= (kBT)∂ jN i j. (C20)

Note that calculating Ṽ (n+1/2,∗) according to (C19) requires two
applications of M1/2 (one at each time level), and calculating
νk using an RFD requires two additional applications of M1/2.
Hence, the gDC scheme requires four total applications of M1/2,
while the midpoint scheme presented in this work only requires
one.

APPENDIX D: SMALL FLUCTUATIONS OF A CURVED
FIBER

The goal of this appendix, which is meant to accompany the
corresponding calculations for a free filament in Sec. IV, is to study
the performance of our spatial and temporal discretization in the
context of small fluctuations around an equilibrium state. The moti-
vation for studying this problem is both physical and numerical:
physically, it is useful to study because we are eventually interested
in fibers that are constrained by cross-linkers, which roughly hold
them in place while they fluctuate. Numerically, starting with small
fluctuations,77 a curved, rather than straight, fiber allows us to con-
firm that our method correctly handles nonlinearities. We discuss
the curved configuration we choose, and how we keep the dynamics
from drifting away from it, in Appendix D 1.

Because the dynamics are linearized around a particular state,
we can compute a theoretical covariance matrix and break the
dynamics into a set of modes (from the linearized covariance). In
Appendix D 2, we compute the equilibrium variance of each of these
modes via Markov Chain Monte Carlo (MCMC) calculations using
the equilibrium probability distribution (6). By comparing our spec-
tral discretization to a blob-link one, we verify that our equilibrium
distribution (6) gives behavior similar to that of the more physical
one with uniformly spaced links. Following this, we take advantage
of the small fluctuations to linearize the SDE (35) around the base
state X0, which we then diagonalize in Appendix D 3 a to com-
pute relaxation timescales of the fundamental modes. This aids us
in Appendix D 4, where we study the time step size required for
our midpoint temporal integrator to accurately sample from the
equilibrium probability distribution (6).

1. Setup for small fluctuations
For the base state X0, we introduce a curved configuration with

L = 2 μm and

τ0(s) =
1
√
2
(cos (s3(s − L)3), sin (s3(s − L)3), 1), (D1)

with X0 defined as the integral of this on the N + 1 point Chebyshev
grid with XMP = 0. To keep the dynamics near this base state, we
introduce an additional energy, which penalizes the discrete squared
L2 norm of ΔX = X − X0,

EP =
P
2
ΔXTW̃ΔX, P = (1.6 × 104)

kBT
L3

. (D2)

This choice of P ensures that the dimensionless discrete L2

norm ΔXTW̃ΔX/L3 remains constant when kBT and L change.
While this is the required scaling of P to keep the relative magni-
tude of ΔX roughly constant (and small), throughout this section,
we will fix kBT = 4.1 × 10−3 pN μm and L = 2 μm, thus setting
P = 8.2 pN/μm2. To modify the filament’s persistence length, we will
modify the bending stiffness κ in the modified bending energy that
keeps the curved X0 as an equilibrium configuration,

Ebend =
1
2
κΔXT

(D2
)
T
W̃D2ΔX. (D3)

In this case, the Ito Langevin equation (35) can be viewed as an
equation for ΔX rather than X, and the matrix L becomes

L = PW̃ + κ(D2
)
T
W̃D2, (D4)

which is the original definition (8) modified to account for the
penalty force. Note that the first term in the energy (the penalty
term) is independent of κ, while the bending term is propor-
tional to κ. Figure 17 shows X0 along with some samples from the
Gibbs–Boltzmann distribution (6) with this energy.

We will use the covariance in ΔX to determine the accuracy of
our spatial and temporal discretizations. Because the energy is non-
linearly constrained, we cannot write down the exact covariance, but
it is informative to project the modes onto the covariance we would
obtain if we replace the nonlinear inextensibility constraint with
the linearized version ΔX = K[X0]α ∶= K0α. The resulting energy
1
2ΔX

TLΔX = 1
2α

TKT
0 LK0α dictates that α has covariance

Cα = E[ααT] = (kBT)(KT
0 LK0)

†
. (D5)

Now, pre- and post-multiplying by K0, we get the expected
covariance for ΔX as

C = E[ΔXΔXT
] = (kBT)K0(KT

0 LK0)
†
KT

0 , (D6)

which is valid in the limit of small fluctuations.
To check how close the true covariance is to C, we will gen-

erate samples of ΔX through both MCMC sampling and Langevin
dynamics and then use the procedure outlined in Appendix D 1 a
to project the resulting covariance onto the eigenmodes of C. This
amounts to computing the Rayleigh quotient of the eigenmodes
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FIG. 17. Three samples of penalty-
bound blob-link chains (with 100 links)
for various ℓp/L, sampled using MCMC.
We show the “random” filament shapes
X = X 0 + ΔX , where ΔX is sampled
from the equilibrium distribution (53). The
blue line shows X 0.

using the true covariance and normalizing with respect to the eigen-
values of C. We focus on the variance in each of the modes (diagonal
entries of the covariance matrix projected onto the eigenmodes) as
the off-diagonal entries for the smallest persistence length we con-
sider (ℓp/L = 1) are zero within the statistical error of our MCMC
calculations.

a. Covariance calculations
To compare the covariance fromMCMC to (D6), we first use a

blob-link discretization to compute the matrix C exactly as defined
in (D6). In order for the eigenmodes of C to be the same across all
discretizations, we need to ensure that they are orthonormal in L2

and not Rn. This can be accomplished by computing the eigenval-
ues of W̃ 1/2CW̃ 1/2, which is a Hermitian matrix and therefore has
eigendecomposition,

W̃ 1/2CW̃ 1/2
= ṼΛṼ T , Ṽ TṼ = I. (D7)

The matrix W̃ is used to compute the L2 inner prod-
uct, ∥X∥2L2 ≈ X

TW̃X. In the case of the blob-link method,
W̃ = Δs diag (1/2, 1, . . . , 1, 1/2). Now, if we use (D7), we observe
that

C = W̃ −1/2ṼΛ(W̃ −1/2Ṽ)
T
.

Thus, if we define V = W̃ −1/2Ṽ , we have (using the orthonormality
of Ṽ in Rn) the desirable property that

C = VΛVT , VTW̃V = I, (D8)

which means that the columns of V are orthonormal in L2. Then, to
compute the covariance, we can project the modes of ΔX onto the
columns of V in L2 as VTW̃ΔX since

E[ΔXΔXT
] = C,

E[VTW̃ΔX(VTW̃ΔX)
T
] = VTW̃CW̃V = Λ,

using (D8) in the last equality.

2. MCMC estimation of reference covariance
To establish a reference result for the variance of each of the

modes of C, we use MCMC to sample from the Gibbs–Boltzmann

measure (53), but with ΔX = X − X0 taking the place of X in (53)
and (54).

a. Blob-link MCMC
To establish a benchmark for the spectral code, we perform

MCMC on a blob-link chain with L = 2 and N = 100 links. To do
this, we initialize the chain with shape X = X0. Then, at each Monte
Carlo step, we propose a new chain X̃ that is generated by rotating
the tangent vectors by an oriented angle,

Ω̂� = 0.1
√
kBTL−1/2η, (D9)

where η is a 3N + 3 vector of i.i.d standard normal random vari-
ables and the constant of 0.1 is added to make the acceptance ratio
roughly 40%. Note that this proposal is informed by the bending
energy (unconstrained covariance) matrix because there are many
links in the blob-link chain, and so themultiplication of the Gaussian
by L−1/2 effectively projects the proposal onto the expected (uncon-
strained) covariance, which reduces the number of samples required
to equilibrate the higher-order modes. When P = 0 (for a free fiber),
we compute the proposal (D9) using the pseudo-inverse of L since
constant and linear modes have zero eigenvalues. Note that in this
special case, it is possible to construct direct (exact) independent
samplers to obtain the chain configurations, although these were not
used in this work.

b. Results
Figure 17 shows some sample 100-link chains with various val-

ues of κ, which we quantify by the dimensionless persistence length
ℓp/L = κ/(LkBT). While the relative mean-square deviation of the
chains from the blue base state is approximately the same (1%) in all
cases, we see more and more “wiggles” in the chain as we decrease
ℓp/L.

To compute the variance of each mode and compare it to the
expected result (D6), we use the MCMC sampler to generate 106

samples of X for ℓp/L = 100, 10, and 1. We then throw out the first
20% of the samples and compute the covariance of the rest of the
samples. We repeat this ten times to generate error bars and show
the variance in each eigenmode in Fig. 18(a), where we normalize
by the corresponding eigenvalue and do the projection in L2 as dis-
cussed in Appendix D 1 a. In addition to running simulations with
100 links, we also run with 200 links to confirm that the results are
converged in space. We see that, for ℓp/L ≳ 10, the variance of each
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FIG. 18. Covariance of linearized modes for various ℓp/L using blob-link and spectral discretizations, estimated using MCMC sampling. We always project the variance
onto the same set of L2 orthonormal modes given by the eigenvectors of the linearized covariance (D6), as discussed in Appendix D 1 a. (a) The covariance for a blob-link
discretization with 100 links and 101 blobs (203 modes). Results are shown for 100 links (in blue) and 200 links (in red) to verify convergence. (b) Comparison of the variance
of the first 25 modes using a spectral grid with those of the blob-link discretization. The black points show the results of MCMC calculations with 100 links, while the blue,
red, and yellow symbols show results with N = 12, 24, and 36 Chebyshev nodes, respectively. When N = 12 and k ≥ 17, the variance is reduced significantly to about 0.2
and is not shown.

mode is exactly that predicted by the theory (D6).When we decrease
κ so that ℓp/L = 1, some of the intermediate modes (from about 5 to
20) are damped relative to the theoretical prediction. In this case,
the bending fluctuations are sufficiently large for nonlinear effects to
matter.

c. MCMC for spectral discretization
Let us now perform MCMC on a chain discretized using

Chebyshev collocation points, rather than uniformly spaced nodes.
To do this, we choose a number of Chebyshev collocation points N
and set X = X0. Then, we propose a rotation of the tangent vectors
at each of the Chebyshev nodes,

Ω̃{p} =
0.48
N

√
L
ℓp
η
{p}, (D10)

where η{p} is a vector of three i.i.d. standard normal numbers for each
node p, and the constant in front is chosen so that roughly 50% of the
samples are accepted if the tangent vectors are rotated by Ω̃p and the
middle of the fiber is held in place. Note that multiplication of η by
L−1/2 [cf. (D9)] is not necessary since in the spectral discretization,
the number of Chebyshev nodes is intended to be relatively small.

The second part of the proposal is to update the fiber midpoint.
To do this, we propose a new midpoint via

X̃MP = XMP + (7.5 × 10−3)Lη, (D11)

where η is a vector of three i.i.d. standard normal numbers. Now,
note that the scaling of ΔXMP does not depend on N or κ since the
penalty energy is independent of these two quantities. As such, the
constant 7.5 × 10−3 is chosen so that roughly 50% of the samples are
accepted if the tangent vectors are not updated and the fiber only
translates. We combine the two proposals Ω̃p and X̃MP into a single
proposal,

X̃ = X
⎛
⎜
⎝

rotate(τ, Ω̃)

X̃MP

⎞
⎟
⎠
, (D12)

and compute the energy via 1
2ΔX̃

TLΔX̃; the total acceptance ratio is
between 20% and 30%.

Repeating our MCMC procedure on the spectral discretization,
we look at the variance of each of the eigenmodes of the linearized
covariance (D6) in Fig. 18(b). We show three different values of N
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and observe that the spectral equilibrium distribution for N = 12
has variance which diverges slightly from the blob-link variance for
small mode numbers when ℓp/L = 1, and for larger mode numbers
(k ≥ 17) for all ℓp. Increasing to N = 24 and N = 36, we see overlap
with the variance from the blob-link discretization with 100 links
for all values of ℓp, which shows that the spectral method with a
sufficiently large N can properly reproduce the magnitude of the
small equilibrium fluctuations of the blob-link chain (at least for this
example).

3. Dynamics
Our task now is to see if our temporal integrators can be used

to sample from the Gibbs–Boltzmann distribution (6) via Langevin
dynamics. Before doing that, we look at the fundamental timescales
governing system dynamics. The largest of these is τfund, which we
use in the main body of this paper to non-dimensionalize the time
step sizes.

a. Linearized timescales
One of the benefits of considering dynamics that are only

slightly perturbed from the equilibrium configuration X0 is that we
can linearize the SDE (35) and diagonalize the result to compute the
fundamental timescales in the system. Because the linearized mobil-
ity matrix is constant (evaluated atX0), the drift term disappears and
the linearized form of the SDE (35) around X = X0 is

dΔX
dt
= −N̂0LΔX +

√
2kBTN̂1/2

0 W, (D13)

where N̂0 = K0N0KT
0 , with N defined in (27). Since the null space

of N̂0 is the N extensible motions around X = X0, there are 2N + 3
remaining directions, and the SDE (D13) diagonalizes when we con-
sider the first 2N + 3 generalized eigenvectors of N̂†

0 and L, which
satisfy

N̂†
0V = LVΛ, (D14)

where the 2N + 3 eigenvectors, which make up the (3N + 3)
× (2N + 3)matrix V , are normalized such that

VTLV = I → VTN̂†
0V = Λ. (D15)

These equations imply that

N̂†
0V = LVΛVTLV → N̂†

0 = LVΛVTL→ N̂−1/20 = LVΛ1/2, (D16)

which gives a square root of N̂0 as N̂1/2
0 = N̂0N̂−1/20 . Substituting this

into the linearized Langevin equation (D13) and using the definition
of the eigenvalues (D14), we obtain the SDE governing the evolution
of the eigenmodes X̂ = V−1ΔX,

V
dX̂
dt
= −N̂0LVX̂ +

√
2kBTN̂0LVΛ1/2W,

dX̂
dt
= −Λ−1X̂ +

√
2kBTΛ−1/2W.

(D17)

Thus, each of the 2N + 3 inextensible eigenmodes relaxes with char-
acteristic timescale equal to its eigenvalue, and the modes satisfy
the equipartition principle E[X̂X̂ T

] = (kBT)I. The average elastic
energy is then 1

2E[ΔX
TLΔX] = 1

2E[X̂
TVTLVX̂] = (N + 3/2)kBT.

We first examine the dependence of the timescales on N in the
left panel of Fig. 19, beginning by plotting the timescales for N = 12
(blue) andN = 24 (red) with the penalty force included in L. Includ-
ing the penalty force makes L invertible, which gives finite timescales
for the first six modes (three translation and three rotation) that
have zero eigenvalues when P = 0. After the first few modes, the
timescales begin to decay with the expected k−4 scaling78 until the
spatial discretization error causes shorter timescales than we would
obtain in continuum. We see, in particular, that for a given N, we
have about six incorrect timescales from spatial discretization error.
Excepting these modes, we see that increasing N only adds addi-
tional small timescales into the problem since N = 12 is sufficient
to correctly give the timescales of the first 15 or so modes. Since

FIG. 19. Timescales in the linearized filament problem. In each plot, we give the timescales (the 2N + 3 nonzero diagonal entries of Λ in (D14)) made dimensionless by τfund
in (55) (the largest timescale for free fibers) and then mark with a star the time step size required for the midpoint temporal integrator to have an error less than 5% in the
equilibrium variance when ℓp/L = 10 (see Appendix D 4). Left: Dependence of timescales on N. We show the timescales for two different N with (blue and red) and without
(yellow and purple) the penalty force. Right: Dependence on the mobility (aspect ratio ϵ̂) with P = 0. We show ϵ̂ = 10−3 in blue and ϵ̂ = 10−2 in red. Inset: the first three
unique modes for a straight filament [compare to Ref. 77, Fig. 2(a)]. The eigenvalue of the blue mode is the timescale τfund.
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FIG. 20. Convergence of the equilibrium covariance in our midpoint temporal integrator, with Δt expressed in terms of relaxation timescales. In each case, we plot
convergence to the MCMC results (see Fig. 18) as a function of the time step size, which is chosen from the modes in Fig. 19. Top: Dependence of timescales on N with
fixed ℓp/L = 10 and ϵ̂ = 10−3. Bottom: Dependence on the mobility (aspect ratio ϵ̂) with fixed N = 24 and ℓp/L = 10.

the penalty force contributes a fixed multiple of the identity to L,
the largest eigenvalues are changed very little, and so the effect of
the penalty force on the relaxation timescales is negligible for modes
beyond the first 10 or so (see the left panel of Fig. 19).

4. Temporal accuracy
We now use the timescale analysis of Appendix D 3 a to under-

stand the performance of our temporal integrator. For each set
of parameters, we first compute the relevant timescales using the
method of Appendix D 3 a. Then, we choose a subset of the modes
and run the Langevin dynamics with Δt = τk for each k in the set of
modes chosen. To obtain statistics, we initialize the fiber in its equi-
librium state and run until 10τ1, removing the first τ1 as a burn-in
period.We repeat this a total of 20 times to generate amean and then
perform the 20 trials a total of five times to generate error bars. The
resulting variance of eachmode is shown in Figs. 20 and 21. Here, we
follow the pattern of Fig. 19 to systematically vary the parameters N
(top of Fig. 20), ϵ̂ (bottom), and κ (Fig. 21), while keeping the others
constant.

a. Effect of changing N
Beginning with the top of Fig. 20, we see that the number of

modes whose dynamics we need to resolve with Δt depends on N.
For N = 12, where there are a total of 27 modes, we can use a time
step corresponding to the k = 13 mode and obtain an accurate vari-
ance for most modes, while for N = 24, where there are 51 modes,
we need a time step which matches the timescale for the k = 21
mode. Thus, the number of modes we need to resolve increases
with N. Since the timescale of the modes scales as k−4, doubling N
requires a time step refinement of at least 10. This is obviously sub-
optimal and tells us that the optimal way to simulate the dynamics
of the first kmodes is to choose the minimum N that resolves those
kmodes.

b. Effect of changing ϵ̂

We now move on to the variation in Δt with changing ϵ̂ for
N = 24. The bottom row of Fig. 20 shows that, for a fixed relative
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FIG. 21. Convergence of the equilibrium
covariance in our midpoint temporal inte-
grator for changing κ, with Δt expressed
in terms of relaxation timescales. We fix
N = 12 and ϵ̂ = 10−3 and plot the results
for changing κ in terms of ℓp/L.

FIG. 22. Results for linearized
fluctuations with constant mobility
M = I/(8πμ). We fix N = 12 and
ℓp/L = 1 and show the variance of each
of the L2-orthonormal modes of the
linearized covariance matrix (D6) (as
described in Appendix D 1 a) using the
simple RFD scheme in Appendix C 1.
We show the results without (left) and
with (right) the additional RFD drift term
in (C6) with δ = 10−5. In all cases,
the MCMC results in black are those
obtained in Fig. 18(b).

time step size, ϵ̂ = 10−2 gives results closer to the equilibrium distri-
bution. The required time step size for a 5% error in the variance
is about Δt = τ17 for ϵ̂ = 10−2 and Δt = τ21 for ϵ̂ = 10−3. Because the
scaling of the timescales for intermediate modes with ϵ̂ is somewhere
between log scaling (factor of 1.5) and ϵ̂−1 scaling (factor of 10), the
net result of this is that the absolute time step size we need decreases
by a factor of six [see the stars in Fig. 19(b)]. That said, chang-
ing the aspect ratio cannot be accommodated by a simple rescaling
of time since it scales each mode differently depending on its
smoothness.

c. Effect of changing κ

Finally, we consider the variation with ℓp/L in Fig. 21, where
we observe the expected behavior: as we increase ℓp/L, we need
to resolve the dynamics of fewer modes to get the correct vari-
ance. However, we find that the number of modes required does
not scale as 1/κ; rather, we need ≈3 less modes for every factor
of 10 increase in κ since the chain becomes smoother. Because
increasing κ causes the timescale of each mode to decrease, the net
effect of this is that the actual time step size we need is roughly
constant as κ increases (for the range of parameters, we consider
here).

5. Importance of drift terms
To conclude, we look at what happens to the variance

when we exclude the drift terms from the overdamped Langevin
equation (35). We do this with the RFD scheme of Appendix C 1,
which allows us to explicitly exclude the drift terms to see what kind
of covariance we obtain in X. To demonstrate that the drift terms
are important even when the mobility is position-independent, we
use the constant mobility M = I/(8πμ), which we apply to a fiber
with N = 12 tangent vectors and ℓp/L = 1. In Fig. 22, we show the
variance of each of the L2 orthonormal modes with several differ-
ent values of Δt, compared to the results from MCMC, which we
obtained on the spectral grid in Appendix D 2 c. In the left panel,
we show the results when we simulate the dynamics without adding
the RFD term (C6). As Δt → 0, many of the modes (but especially 4
and 7) increase in variance without a visible bound. When we add
the RFD term back in, the right panel shows that the dynamics con-
verge to theMCMC dynamics as Δt → 0. This shows that, even if the
mobility is constant, proper handling of the stochastic drift terms
that arise from the inextensibility constraints is necessary to obtain
the correct dynamics. We also note that the RFD scheme appears
to require all the modes (there are 27 for N = 12) to be resolved to
obtain accurate results, which is in contrast to the midpoint scheme,
which requires less than half.
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are nearly straight, and there are eigenvalues near, but not equal to, zero in
the resistance matrix KT

r M̃
−1Kr . We find that the dynamics for SF-RBD fila-

ments with ℓp/L = 100 are quite sensitive to the tolerance we use, and so we
do not report them here. We find it sufficient to only consider up to ℓp/L
= 10, for which we obtain dynamics that are not sensitive to the tolerance (see
Fig. 11). For ℓp/L = 100, fibers with semiflexible bending fluctuations behave
almost identically to rigid fibers (see Fig. 11), which we can simulate without
difficulty.81
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