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Abstract— The adoption of distributed energy resources such as
photovoltaics (PVs) has increased dramatically during the previous
decade. The increased penetration of PVs into distribution networks
(DNs) can cause voltage fluctuations that have to be mitigated. One of
the key utility assets employed to this end are step-voltage regulators
(SVRs). It is desirable to include tap selection of SVRs in optimal power
flow (OPF) routines, a task that turns out to be challenging because the
resultant OPF problem is nonconvex with added complexities stemming
from accurate SVR modeling. While several convex relaxations based
on semi-definite programming (SDP) have been presented in the
literature for optimal tap selection, SDP based schemes do not scale
well and are challenging to implement in large-scale planning or
operational frameworks. This paper deals with the optimal tap selection
(OPTS) problem for wye-connected SVRs using linear approximations
of power flow equations. Specifically, the LinDist3Flow model is
adopted and the effective SVR ratio is assumed to be continuous–
enabling the formulation of a problem called LinDist3Flow-OPTS, which
amounts to a linear program. The scalability and optimality gap of
LinDist3Flow-OPTS are evaluated with respect to existing SDP-based
and nonlinear programming techniques for optimal tap selection in
three standard feeders, namely, the IEEE 13-bus, 123-bus, and 8500-
node DNs. For all DNs considered, LinDist3Flow-OPTS achieves an
optimality gap of approximately 1% or less while significantly lowering
the computational burden.

Index Terms— Power distribution networks, step-voltage regulators,
optimal power flow, linear approximations

I. INTRODUCTION

To combat climate change while reaping health and economic
benefits, a 100 % renewable energy power system adoption by
2045, if not sooner, is required [1]. Furthermore, as the cost
of domestic-scale distributed energy resources (DERs) such as
photovoltaic (PV) systems and electric vehicles has decreased,
DER adoption is expected to accelerate in the near future. The
integration of DERs into distribution networks results in time-
varying active power injections and frequently reversing power flow,
causing frequent voltage fluctuations. As a result, maintaining bus
voltage magnitudes within desirable levels is critically challenged.
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In response, the settings of utility owned equipment such as step-
voltage regulators (SVRs) need to be re-adjusted to cope with the
reversing power flow. Wear and tear of SVRs due to excessive tap
changes as a result of DER fluctuation is also a concern [2]–[4].

To avoid the aforementioned issues, utilities employ tap selection
into their optimal power flow (OPF) routines. However, incor-
porating SVR taps as decision variables in OPF is challenging.
Specifically, the nonconvex equality constraints of the multi-phase
power flow equations, combined with the discrete mechanical
settings of SVRs, in general render the OPF into a mixed-integer
nonlinear programming (MINLP) problem. The literature pertaining
to the optimal tap selection problem is reviewed next.

The work in [5] develops a mixed-integer second-order cone
programming (MISOCP) model for tap selection of on-load tap-
changer transformers, where the trilinear scalar constraint in trans-
former taps and voltages is converted to an exact mixed-binary
linear constraint via binary expansion and big-M approaches. The
computational performance of the MISOCP model is further eval-
uated considering single- and multi-period optimization problems
in [6] . The works in [5] and [6] focus on the single-phase DNs to
circumvent the modeling complexity of multi-phase DNs. However,
because real-world DNs are intrinsically unbalanced and require a
complete multi-phase modeling to deliver a reasonable result, these
approaches may not ensure optimal performance.

To tackle the complexity of unbalanced multi-phase DN op-
eration, approximations or convex relaxations of the power flow
equations have been proposed in the literature. Specifically, the
work in [7] introduces an approximate linear power flow LPF model
by ignoring loss components and further assuming that the voltages
across phases have similar magnitude and differ by an angle 120◦,
i.e., they are balanced. Leveraging [7], the work in [8] develops
a bi-level framework for coordinating SVRs and PV inverters,
where discrete taps for SVRs and PV setpoints are decided via
mixed-integer linear programming (MILP) in the first level, and
the resultant PV setpoints are revised using nonlinear programming
(NLP) in the second level by fixing the decisions of SVRs to the
ones computed in the first level. The optimality of the bi-level
method in [8] is not evaluated against convex relaxations in the
context of optimal tap selection, while the formulations are confined
to small-scale DNs.

Focusing on OPF problems for PV reactive power dispatch,
the works in [9] and [10] have shown that approximating loss
terms as constants that are periodically updated based on the
desired operating point significantly improves the optimality of the
LPF model. By generalizing the assumptions on balanced voltages
and higher-order loss terms, [9] and [10] extend the LPF model
of [7] to the LinDist3Flow model. Moreover, it has recently been
demonstrated in [11] that the LinDist3Flow model exhibits smaller
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error when compared to other linear models, e.g., [12] when used
for solving the power flows in unbalanced DNs.

The works in [13], [14] introduce a linearization technique to
represent SVRs in admittance-based OPF. Specifically, to approx-
imate nonlinearities arising from modeling SVRs taps in the bus
admittance matrix, Taylor series expansion is performed around a
known tap position, while linearizations of the rectangular form of
power flow equations are adopted as well.

The work in [15] adopts the nonlinear power flow equations
and focuses on open-delta SVRs. The OPTS problem is solved
by an iterative process based on active-set sequential quadratic
programming algorithm, which falls into the category of NLP. It is
worth noting that NLP formulations are computationally intensive
and cannot in general provide certificates of global optimality.

Another line of works explores convex relaxations based on
semidefinite programming (SDP) [2], [16]–[20]. A full SDP frame-
work for admittance-based OPF is developed in [16] for optimal
tap selection considering wye-connected SVRs. The trilinear matrix
constraint in taps and voltages is relaxed to a linear constraint
by confining the diagonal of the secondary-side voltage to the
minimum and maximum tap ratio range. By exploiting the chordal
SDP relaxation of the admittance-based OPF, the trilinear matrix
constraint in taps and voltages is relaxed to a linear semidefinite
matrix constraint in [17] under the assumption that taps on each
phase of the SVR are equal. The work in [19] develops chordal SDP
relaxation of the admittance-based OPF considering wye, closed-
delta, and open-delta SVRs with independent tap operation. In [20],
a more accurate and computationally stable formulation is proposed
which allows for tap selection of wye, closed-delta, and open-delta
SVRs using the branch flow-based OPF, McCormick envelopes, and
a phase separation assumption on the secondary voltage of the SVR.
The works in [16], [17], [19], [20] assume continuous values for
the effective regulation ratio of SVRs. A branch flow-based SDP
model to optimally dispatch SVRs and PV inverters considering
discrete decisions of SVRs is developed in [2], which renders the
overall formulation into a mixed-integer SDP (MISDP) problem
and is solved using Generalized Benders Decomposition.

SDP approaches are challenging to implement in practice for
large DNs. The challenge is compounded in the presence of
multiple time periods, since the number of variables in SDP grows
significantly with the number of buses [9]. Additionally, including
devices with discrete decisions, e.g., SVR taps, battery energy
storage devices, and capacitor banks, into SDP approaches or
extending these approaches for planning problems pertaining to
optimal SVR placement in unbalanced DNs is challenging. The
reason is that it is hard to solve the resulting MISDP problems,
given the limited performance of off-the-shelf SDP solvers for large-
scale formulations. The previously mentioned problems are critical
for instance in planning studies in the context of 100% renewable
energy integration [1, Ch. VII]. Overall, there is a need to develop
computationally attractive schemes for tap selection in unbalanced
DNs.

Although several linearization techniques techniques have been
proposed in the literature—see e.g., [21]–[24]—the LinDist3Flow
has been extensively used to solve for PV reactive power setpoints
and other DN scheduling tasks demonstrating encouraging results.
However, the LinDist3Flow model has not been fully tested in
the context of optimal tap selection. Therefore, evaluating the
performance of LinDist3Flow model for optimal tap selection
problems remains open and the tradeoff between optimality and
computational effort needs to be investigated.

In this context, this paper investigates the optimal tap selection
with LinDist3Flow power flows enabling the solution of the problem
with less computational burden and a reasonable optimality gap
when benchmarked against SDP relaxations. The focus is on wye-
connected SVRs. Following a similar procedure in [16], the trilinear
matrix constraint in taps and voltages is relaxed to a linear constraint
by confining the primary-side voltage to the minimum and maxi-
mum tap ratio range. The resulting LinDist3Flow optimal tap selec-
tion problem is called LinDist3Flow-OPTS and amounts to a linear
programming (LP) formulation. The LinDist3Flow-OPTS problem
is extensively tested on the IEEE 13-bus, 123-bus, and 8500-node
distribution feeders, which include one-, two-, and three-phase
wye-connected SVRs respectively. Additionally, detailed numerical
comparisons in terms of solution quality, computation time, and
linearization accuracy are provided with respect to SDP approaches
of [16], [17], [20] as well as traditional NLP formulations. In
particular, LinDist3Flow-OPTS provides solutions with approxi-
mately 1% optimality gap and at a much lower computational cost
compared to the conventional NLP and SDP approaches for the
IEEE 8500-node DN.

The remainder of the paper are organized as follows. Sec-
tion II describes the nonconvex branch-flow model for optimal
tap section BF-OPTS. The formulation of LinDist3Flow-OPTS
is detailed in Section III. Section IV provides the case studies
on the standard IEEE feeders and compares the performance of
LinDist3Flow-OPTS with NLP and SDP-based approaches. The
paper concludes in Section V.

Notation: The notation (̄.) is used to denote the complex con-
jugate transpose of (.). Operator Re(.) returns the real part of
complex number. The notation (.)∗ denotes the complex conjugate
of (.). For a vector (.), diag returns the square matrix with elements
of (.) on the main diagonal; for a square matrix (.), diag returns
the vector with elements from the main diagonal of (.).

II. DISTRIBUTION NETWORK MODEL AND

BRANCH FLOW OPTIMAL TAP SELECTION

Consider a multi-phase distribution network (DN) which is
modeled by a directed tree graph (N , E) with buses collected in
set N , where N := {1, . . . , N} ∪ {S}. Set E ⊆ N × N collects
the edges, which are all pointing away from the root. The root is
denoted by node S, which models the secondary of the substation
transformer and is considered the slack bus with known constant
voltage vS ∈ C3. The set of edges represents the network series
elements including distribution lines and transformers collected
in set ET, and step-voltage regulators (SVRs) included in ER;
that is, E = ET

⋃
ER. The set of available phases at bus n ∈

N+ := N \ {S}, may include one, two, or three phases. For the
sake of exposition, we assume that the full set of three phases
{a, b, c} are present in all buses n ∈ N and distribution lines. The
extension to networks with missing phases can be carried out using
more elaborate notation, and the numerical results include tests on
networks with missing phases. Notations (n,m) and n → m are
used interchangeably for edges.

A. Modeling of Series Elements

Let vn, inm ∈ C3, and Znm ∈ C3×3 respectively denote
the vector of phase voltages at bus n ∈ N , the vector of line
currents, and the series impedance of distribution line (n,m) ∈ ET

(neglecting the shunt admittance) [25] or the inverse of the per-unit
shunt admittance for a grounded-wye grounded-wye transformer
(n,m) ∈ ET [26]. The voltage drop across edge (n,m) ∈ ET is
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Fig. 1. Modeling of series element (n,m) ∈ ET (left) and step-voltage
regulator (n, n′) ∈ ER in series with distribution line (right) [26]

described by Ohms’ law
vn = vm + Znminm, (n,m) ∈ ET (1)

A step-voltage regulator is a series element which is installed
either at the feeder head/substation or along the feeder to regulate
voltages of downstream buses. The present work deals with three-,
two-, or one-phase grounded-wye grounded-wye SVRs. The SVR
is modeled as shown in Fig.1 (right) [26], i.e., the SVR is in series
with a distribution line. Specifically, the SVR device is between
buses n and n′, that is, (n, n′) ∈ ER, and the edge from n′ to
m corresponds to the distribution line (n′,m) ∈ ET whose voltage
drop is described by (1). The aforementioned arrangement is typical
in DNs (n′ ∈ N+ is not a fictitious node). Other than edges (n n′)
and (n′ m) no other edges or current sources are connected to bus
n′. The SVR primary is thus connected to bus n and the secondary
is connected to bus n′. Furthermore, the SVR is assumed to be
ideal, i.e., the series impedance of the constituent autotransformers
is negligible [20].

The voltage and current relationships for a type-B SVR on edge
(n, n′) ∈ ER are given by

vn = Ann′vn′ (2)

inn′ = Ā−1
nn′ in′m (3)

Ann′ =

rann′ 0 0

0 rbnn′ 0
0 0 rcnn′

 (4)

where Ann′ is the voltage gain matrix of the SVR. The tap position
of the SVR determines the effective regulator ratio rϕnn′ . Since
each tap changes results in 5

8
% or 0.00625 p.u change in voltage,

the effective regulator ratio is given by rϕnn′ = 1 − 0.00625tϕnn′

where the tap tϕnn′ varies in [−16,+16] [25]. The resulting effective
regulator ratio ranges from rmin = 0.9 to rmax = 1.1. In the present
paper, the effective regulator ratio is assumed to be continuous in
the interval [rmin, rmax] [16], [20]. In addition, the SVR is non-
gang-operated, that is, the effective regulator ratio can be chosen
independently for each phase. The inverse relation between the tap
position tϕnn′ and effective regulator ratio rϕnn′ is given by

tϕnn′ = round

[
1− rϕnn′

0.00625

]
(5)

In case of type-A SVR, voltage relationship (2) is replaced by
vn′ = An′nvn (6)

and the gain matrix remains the same as (4) with effective regulator
ratio given by rϕnn′ = 1+0.00625tϕnn′ . The current relationship (3)
and the ensuing power flow equations and relaxations must be
adjusted accordingly. In the remainder of the development, we focus
on type-B SVR for brevity.

B. Branch Flow Equations

To formulate the power balance at bus m, consider the edges
n→ m→ k, and multiply (1) by īnm:

vn īnm = vm īnm + Znminm īnm (7)
Kirchoff’s current law (KCL) at node m is stated as follows:

īnm + īm =
∑

(m,k)∈E

īmk (8)

Specifically, im ∈ C3 is the net current injection at bus m ∈ N+,
which is generically a sum of currents from constant-power sources
with net complex power scm ∈ C3 and from constant-admittance
elements, such as shunt capacitor banks, with admittance Ym
connected to bus m. The net current injection at bus m is thus
given by

im = diag(v∗m)−1(scm)∗ − Ymvm (9)
Substituting (8) in (7) yields

vn īnm = vm

 ∑
(m,k)∈E

īmk − īm

+ Znminm īnm,

(n,m) ∈ ET (10)
Taking conjugate transpose of (9), substituting in (10), and then
taking diag yields

diag(vn īnm) =
∑

(m,k)∈E

diag(vm īmk)− scm

+ diag(vmv̄mȲm) + diag(Znminm īnm),

(n,m) ∈ ET

(11)
The previous represents the power flow equations for any branch
(n,m) ∈ ET.

Attention is turned next to edges (n, n′) ∈ ER. Specifically, the
power balance at the secondary n′ of an SVR is derived upon taking
conjugate transpose of (3), multiplying from the left with vn, and
invoking (2) to obtain

diag(vn īnn′) = diag(vn′ īn′m), (n, n′) ∈ ER, (n
′,m) ∈ ET

(12)
It is worth noting that (12) holds true for grounded-wye grounded-
wye SVRs because the gain matrix Ann′ in (4) is diagonal [2],
[16], [20].

C. Branch Flow Optimal Tap Selection

The objective is to minimize the real power import from the
substation given by

C = Re

 ∑
(S,m)∈E

1⊤
3 diag(vS īS,m)

 (13)

where 13 is a 3 × 1 vector of all ones. The branch-flow optimal
tap selection (BF-OPTS) problem (P1) is stated next:

(P1) min C (14a)

over {vm}m∈N+ , {inm}(n,m)∈ET
,

{Ann′}(n,n′)∈ER
, {inn′}(n,n′)∈ER

, {rϕnn′}(n,n′)∈ER

(14b)

(1), (2), (3), (4), (11), (12), (13) (14c)

vmin ≤ |vm| ≤ vmax (14d)

rmin ≤ rϕnn′ ≤ rmax, (n, n′) ∈ ER (14e)
The BF-OPTS problem (P1) is nonconvex and hard to solve. The
nonconvexity stems from the bilinear equalities in (2) and (3);
quadratic equalities in (11) and (12); and the left-hand side of (14d).

The ensuing section develops a linear approximation to (P1). The
nonconvexities arising from the power flow equations are alleviated
using the LinDist3Flow model. In addition, the nonconvexities
stemming from the SVR model are relaxed to linear constraints.
These manipulations are presented next.

III. LINDIST3FLOW-BASED OPTIMAL TAP SELECTION

First, the following auxiliary matrix variables are introduced:
Vn = vnv̄n, n ∈ N ; Snm = vn īnm and Inm = inm īnm,
(n,m) ∈ E ; Snn′ = vn īnn′ and Inn′ = inn′ īnn′ , (n, n′) ∈ ER.

3118

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 29,2023 at 01:26:37 UTC from IEEE Xplore.  Restrictions apply. 



Upon multiplying both sides of (1) by their conjugate transposes
(̄.), i.e., v̄n on the left and (v̄m + īnmZ̄nm) on the right, (1) can
be written as

Vn = Vm + 2 Re{vm īnmZ̄nm}+ ZnmInmZ̄nm︸ ︷︷ ︸
Hnm=higher order term

(15)

The higher order term Hnm in (15) represents the change in voltage
associated with loss.

Define next the auxiliary vector variables ṽn = diag(Vn) ∈ R3,
n ∈ N , as the vectors of squared voltage magnitudes, S̃nm =
diag(Snm) ∈ C3, and H̃nm = diag(Hnm) ∈ R3. Define further
the complex line current iϕnm = (S̃ϕnm/v

ϕ
m)∗, (n,m) ∈ E , ϕ ∈

{a, b, c} and rotation matrix Γm =

 1 γabm γacm
γbam 1 γbcm
γcam γcbm 1

 with entries

given by γϕψm =
vϕm

v
ψ
m

, ϕ, ψ ∈ {a, b, c}, and ϕ ̸= ψ. Following [10]
and invoking the previous definitions of the complex current and
rotation matrix, it follows upon taking diag of (15) that
ṽn = ṽm + 2 Re{(Γm ⊙ Z̄nm)S̃nm}+ H̃nm, (n,m) ∈ ET (16)
where the operator ⊙ denotes element-wise product.

Using the definitions of S̃nm, ṽm, and Inm, eq. (11) is written
as

S̃nm =
∑

(m,k)∈E

S̃mk − scm + Ȳmṽm + diag(ZnmInm)︸ ︷︷ ︸
L̃nm=higher order loss term

,

(n,m) ∈ ET, m ∈ N+ (17)
where L̃nm ∈ C3 denotes the higher order loss term.

Note that (16) and (17) are still nonlinear. To derive linear
approximations, two assumptions are adopted [27, Section. II]:
(1) The rotation matrix entries γϕψm are constant; and (2) the
higher order terms in (16) and (17) are constant. With the two
aforementioned assumptions, (16) and (17) become linear, and the
latter is written as
S̃nm =

∑
(m,k)∈ET

S̃mk − scm + Ȳmṽm + L̃mn, (n,m) ∈ ET (18)

where Γm, H̃nm, and L̃nm are constants in (16) and (18).

It is worth pointing out that the aforementioned assumptions are
not overly restrictive, as there are different ways to select the values
of constants Γm, H̃nm, and L̃mn to improve the quality of the
approximation. Specifically, these can be computed from an initial
power flow solution with a specific SVR tap setting (e.g., taps set
to zero) and kept constant afterwards. An even simpler approach is
to set the higher order terms H̃nm and L̃nm to zero and assume
that voltages are approximately balanced (i.e., approximately equal
in magnitude and 120◦ apart), which yields γabm = γbcm = γcam ≈ α
and γacm = γbam = γcbm ≈ α2, with α = 1∠120◦ [7], [10].
Another approach is proposed in [9], which considers a linear
approximation to the higher order terms (rather than treating them
as constant). The rotation matrix and higher order terms may also
be re-computed based on the measured power flows by solving
the LinDist3Flow iteratively in a successive approximation fashion.
The previously mentioned references utilize LinDist3Flow to solve
the OPF problem without optimal tap selection. The selection of
higher order terms for solving the optimal tap selection problem
with LinDist3Flow is explained in Section IV.

Eq. (16) and (18) correspond to the LinDist3Flow-approximated
voltage and power balance equations for non-SVR edges. The
respective constraints for SVR edges are derived next. Follow-
ing [16], (2) is relaxed with valid inequalities as follows:

(rmin)
2ṽn′ ≤ ṽn ≤ (rmax)

2ṽn′ , (n, n′) ∈ ER, (19)
Using the auxiliary variables S̃n′m and S̃nn′ , the SVR power

balance (12) is stated below
S̃nn′ = S̃n′m, (n, n′) ∈ ER, (n

′,m) ∈ ET (20)
It is worth noting that while the power balance in (18) is approx-
imate (since losses are ignored or treated as constant), the power
balance in (20) is exact.

The objective function is written in terms of the new optimization
variables as

C̃ = Re

 ∑
(S,m)∈E

1⊤
3 S̃S,m

 (21)

It should be noted that the objective in (21) is an approximation
to (13), i.e., C̃ ≈ C. Specifically, (13) and (21) would be equal if
the higher order loss terms and the entries of rotation matrix were
computed from the optimal power flow solution, in which case the
relationship S̃S,m = diag(SS,m) = diag(vS īS,m) would be exact.

The linear approximation LinDist3Flow-OPTS to the nonconvex
optimal tap selection problem (P1) is stated next:

(P2) min C̃ (22a)

over {ṽm}m∈N+ , {S̃nm}(n,m)∈ET
, {S̃nn′}(n,n′)∈ER

(22b)

(16), (18), (19), (20) (22c)

(vmin)
2 ≤ ṽm ≤ (vmax)

2 (22d)
It should be noted that the LinDist3Flow-OPTS problem (P2) is
convex. Specifically, it is a linear programming (LP) problem which
can be easily solved using off-the-shelf solvers. The performance
of LinDist3Flow-OPTS is assessed and compared to SDP based
formulations in the next section.

IV. NUMERICAL RESULTS

This section evaluates the performance of LinDist3Flow-OPTS in
comparison to conventional nonlinear and SDP-based approaches
for optimal tap selection.

The standard IEEE 13-bus, 123-bus, and 8500-node networks
with a variety of three-, two-, and one-phase lines are used. Trans-
formers and SVRs are modeled with grounded-wye connections.
Short lines take the place of switches. Line shunt admittances are
ignored, but capacitors are accounted for in accordance with the
documentation. All loads are converted to wye-connected constant-
power loads. The slack bus voltage vS is set to vS = |vS| ×
{1, e−j2

π
3 , ej2

π
3 }, where the value of |vS| is respectively set to

1.0 p.u. for the IEEE 13- and 123-bus DNs and 1.05 p.u. for
the IEEE 8500-node DN [20]. The LinDist3Flow-OPTS is solved
using the MATLAB-based toolbox YALMIP [28] with MOSEK as
optimization solver [29].

The performance of the LinDist3Flow-OPTS is evaluated with
respect to three previously available SDP formulations which
are termed as CI-OPTS (full SDP relaxation of admittance-based
OPTS) [16], CG-OPTS (chordal SDP relaxation of admittance-
based OPTS) [17], and MB-OPTS (tight relaxation of branch
flow-based OPTS) [20] along with a traditional NLP formulation
BF-OPTS in (14). The codes available at https://github.
com/hafezbazrafshan/BranchFlowMultiphaseVRs are
used to solve SDP-relaxations CI-OPTS, CG-OPTS, and MB-OPTS
and NLP formulation BF-OPTS respectively. The SDP relaxations
are solved in CVX [30] using MOSEK with the exception of
CI-OPTS for the IEEE-123 bus DN which is solved with solver
SDPT3 in CVX, while BF-OPTS is solved using YALMIP with
solver IPOPT. All simulations are run on a 2.60-GHz, intel core i7
computer with 16 GB of RAM.

It should be noted that the effective regulator ratio is not an
explicit variable in LinDist3Flow-OPTS problem (P2). Therefore,
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TABLE I
MAXIMUM ABSOLUTE P.U. VOLTAGE MAGNITUDE DIFFERENCE:

LinDist3Flow VS. Z-BUS POWER FLOW

DN phase a phase b phase c min v̌ min v

IEEE 13-bus 0.009 0.007 0.01 0.88 0.89
IEEE 123-bus 0.02 0.008 0.008 0.86 0.88
IEEE 8500-node 0.06 0.04 0.008 0.84 0.90

after solving the LinDist3Flow-OPTS problem, the effective regu-

lator ratio is retrieved using the relation rϕnn′ =

√
ṽ
ϕ
n

ṽ
ϕ

n′
(n, n′) ∈ ER

and the SVR taps are then computed using (5). Furthermore, since
LinDist3Flow-OPTS is an approximation of actual nonlinear power
flows, upon fixing the effective regulator ratios, the Z-Bus method
is run to obtain actual voltage solutions [26], [31]. However, other
methods for obtaining voltages, such as the forward-backward
sweep, may also be used [25].

Prior to solving LinDist3Flow-OPTS, the maximum absolute
p.u. differences between voltage magnitudes computed by the
LinDist3Flow power flow and Z-bus power flow are evaluated by
setting the SVR taps and higer order terms H̃nm, and L̃mn to zero
and reported in Columns 2–5 of Table I. The table indicates that
for the IEEE 8500-node DN, the maximum absolute p.u. difference
of voltage magnitudes varies significantly across phases. This is
because the IEEE 8500-node DN has 1543 single-phase buses, the
majority of which are on phases a and b. Furthermore, Columns 4
and 5 of Table I report the minimum voltage magnitudes computed
from the Z-bus and LinDist3Flow power flow methods defined as
min v̌ = min

n,ϕ
|v̌ϕn| and min v = min

n,ϕ
|vϕn|, where v̌ϕn and vϕn are the

voltage profiles obtained from the Z-bus method and LinDist3Flow
respectively.

Table I suggests that for the IEEE 13-bus, 123-bus, and 8500-
node DNs, LinDist3Flow somewhat overestimates the voltage mag-
nitudes, i.e, min v > min v̌. This is due to the fact that the higher
order terms H̃nm and L̃nm in (15) and (18) have been set to zero.
Therefore, the voltage magnitudes obtained by solving an OPF
utilizing LinDist3Flow such as (P2) while ignoring higher order
terms may turn out to be infeasible when the nonlinear power
flows are computed based on the optimized effective regulator
ratios. To circumvent this issue, the following approaches can be
used: (1) heuristically adjust the minimum voltage limit vmin for
heavily loaded DNs to tackle under-voltage issues (respectively,
vmax in lightly loaded DNs for over-voltage issues) [32]; and (2)
consider nonzero higher order terms [9]. The specific choices for
vmin and the higher order terms adopted in the present paper for
LinDist3Flow-OPTS are detailed next.

Based on the previously mentioned observations, the
LinDist3Flow-OPTS problem is solved upon initializing the
higher order terms H̃nm and L̃nm and the entries of Γm based
on the power flow computed by the Z-bus method with the SVR
taps set to zero. Parameters vmin and vmax are respectively set to
0.9 p.u. and 1.10 p.u. for all SDP-based relaxations (CI-OPTS,
CG-OPTS, and MB-OPTS) and NLP formulation BF-OPTS in
the IEEE 13-bus DN. They are set to 0.93 p.u. and 1.10 p.u. for
LinDist3Flow-OPTS in the IEEE 13-bus DN. Parameters vmin

and vmax are respectively set to 0.9 p.u. and 1.10 p.u. for all
SDP-based relaxations, BF-OPTS, and LinDist3Flow-OPTS, in the
IEEE 123-bus and IEEE 8500-node DNs.

The results of the optimization are summarized in Table II. For-
mulations CI-OPTS, CG-OPTS, and MB-OPTS are relaxations of
the optimal tap selection problem and thus provide lower bounds for

the optimal value of (P1). The resulting optimal values are listed in
Column 3 of Table II under the notation Ĉ. No Ĉ value is reported
for BF-OPTS or LinDist3Flow-OPTS, because these do not provide
a lower bound on the objective. The last row for each network
(No SVR) amounts to power flow with taps set to zero. While
BF-OPTS and MB-OPTS explicitly include the effective regulator
ratio rϕnn′ as optimization variables, problems CI-OPTS, CG-OPTS,
and LinDist3Flow-OPTS do not, and the effective regulator ratio
must be computed from the voltage variables of the corresponding
formulation, using the expression given earlier in this section. For
each of problems CI-OPTS, CG-OPTS, MB-OPTS, BF-OPTS, and
LinDist3Flow-OPTS, the resulting effective regulator ratios rϕnn′ are
used as inputs for the Z-Bus method to produce voltage profiles
denoted by v̌ that conform to the nonlinear power flow equations.

Columns 4–10 provide the results computed based on v̌. The
actual objective value Č reported in Column 4 is computed from
the power flow solution v̌ as follows

Č = Re
{
1⊤
3 diag(vS ˇ̄vȲS)

}
(23)

where YS is the bus admittance matrix from the set N to the
slack bus and the entries of vector v̌ are the phase voltages at
all buses, including the slack bus. The power import objectives
in (13) and (23) are equivalent, and the proof is provided in the
Appendix. The minimum and maximum magnitudes of actual power
flow voltages are respectively given by min v̌ = min

n,ϕ
|v̌ϕn| and

max v̌ = max
n,ϕ

|v̌ϕn| and are listed in Columns 5 and 6. Column 7

reports whether the resulting voltage profile v̌ is feasible, i.e., within
the bounds vmin and vmax. The voltage unbalance v̌unb defined by
ANSI [25, eq. (7.1)] is provided in Column 8. Computation times
are listed in Column 9.

The quantity Gap in Column 10 pertains to the optimality gap
computed based on a feasible objective value Č and a lower
bound Ĉ and defined by Gap = Č−Ĉ

Ĉ
× 100%. No optimality

gap is reported for the IEEE 13-bus, IEEE123-bus, and 8500-
node networks under CI-OPTS because the overall method did not
return feasible voltages for these networks (cf. Columns 5–7). The
optimality gaps for CG-OPTS and MB-OPTS are computed based
on the lower bound provided by the respective relaxation, with
the exception of CG-OPTS for the IEEE 8500-node DN, where
the lower bound provided by MB-OPTS is used (we observe that
Ĉ > Č for CG-OPTS in Table II due to apparent numerical
issues). The optimality gap for BF-OPTS is computed based on
the lower bound from MB-OPTS. For completeness, the optimality
gap of LinDist3Flow-OPTS is reported against all three available
SDP relaxations. The optimality gap is an estimate of how close a
feasible solution is to the optimal value, and it is thus reasonable
to choose the tightest lower bound to the optimal value available
to draw conclusions.

The following key observations are made from Table II:

1) For the IEEE 13- and 123-bus DNs, the LinDistFlow-OPTS
yields an optimal value with optimality gap is 0.5% or
less with respect to all three SDP-based relaxations. The
optimality gap for the IEEE 8500-node network is 1.08%
when benchmarked against the lower bound provided by
MB-OPTS. Overall, the reported optimality gaps are quite
small.

2) Column 8 reveals that solving LinDistFlow-OPTS is signif-
icantly faster than any of the other methods. Specifically,
for the IEEE 8500-node DN, LinDistFlow-OPTS achieves a
remarkable speedup of at least 30 times when compared to
BF-OPTS.
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TABLE II
COMPARISONS BETWEEN SDP-RELAXATIONS, BF-OPTS, AND LinDist3Flow-OPTS

DN Method Ĉ Č min (v̌) max (v̌) feas. v̌unb Time (sec) Gap (%)
13-bus CI-OPTS 0.7121 0.7135 0.99 1.12 infeas. 6.54 1.78 –

CG-OPTS 0.7141 0.7141 0.99 1.10 feas. 6.61 1.91 0
MB-OPTS 0.7135 0.7135 0.99 1.10 feas. 5.55 2.09 0
BF-OPTS – 0.7135 0.99 1.10 feas. 5.68 0.4 0

LinDist3Flow-OPTS – 0.7176 0.92 1.04 feas. 4.15 0.16 0.5 (CI-OPTS), 0.4 (CG-OPTS), 0.5 (MB-OPTS)
No SVR – 0.7198 0.88 1.00 infeas. 6.5 – –

123-bus CI-OPTS 0.7215 0.7219 0.96 1.11 infeas. 4.69 2.85 –
CG-OPTS 0.7222 0.7222 0.95 1.10 feas. 4.55 2.7 0
MB-OPTS 0.7218 0.7218 0.96 1.09 feas. 3.09 3.07 0
BF-OPTS – 0.7218 0.96 1.10 feas. 3.05 3.0 0

LinDist3Flow-OPTS – 0.7246 0.90 1.02 feas. 3.75 0.3 0.4 (CI-OPTS), 0.3 (CG-OPTS), 0.4 (MB-OPTS)
No SVR – 0.7283 0.86 1.00 infeas. 8.1 – –

8500-node CI-OPTS 0.4129 0.4180 0.96 1.13 infeas. 7.64 15 –
CG-OPTS 0.4184 0.4176 0.98 1.10 feas. 6.2 16 0.55
MB-OPTS 0.4161 0.4181 0.93 1.09 feas. 6.00 17 0.47
BF-OPTS – 0.4166 0.98 1.10 feas. 3.0 800 0.12

LinDist3Flow-OPTS – 0.4206 0.94 1.07 feas. 7.95 0.5 1.8 (CI-OPTS), 0.5 (CG-OPTS), 1.08 (MB-OPTS)
No SVR – 0.4252 0.84 1.05 infeas. 12.3 – –

TABLE III
OPTIMAL TAPS OBTAINED BY VARIOUS FORMULATIONS

SVR ID CI-OPTS CG-OPTS MB-OPTS BF-OPTS LinDist3Flow-OPTS

13-1 15, 15, 15 13, 13, 13 15, 13, 15 15, 13, 15 4, -8, 7

123-1 10, 5, 7 3, 3, 3 11, 3, 7 11, 3, 7 4, 1, 2
123-2∗ 9, 4 7, 7 11, 7 11, 7 3, 1
123-3† 7 9 9 9 -15
123-4 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 10, 5, 8

8500-1 9, 9, 8 9, 9, 7 6, 7, 8 9, 9, 8 5, 4, -3
8500-2 3, 5,4 4, 3, -1 4, 3, 1 6, 4, 1 7, 5, 1
8500-3 7, 6, 3 7, 6, 2 12, 10, 2 14, 9, 2 9, 5, -1
8500-4 2, 5, 1 3, 3, -1 0, -1, -14 10, 11, -8 4, 7, 3

∗ SVR ID 2 is two-phase wye † SVR ID 3 is single-phase wye.

3) Although SDP formulations can outperform
LinDist3Flow-OPTS in terms of providing smaller cost,
the number of variables for such formulations grows
significantly faster with the number of buses than their LP
counterpart, in addition to the complexity of accommodating
the positive semidefinite cone constraints. Comparable results
can be achieved with LinDist3Flow-OPTS, while requiring
less computational effort.

4) The LinDist3Flow-OPTS yields feasible voltage profiles for
all test networks verified with the nonlinear power flow solver
provided by the Z-Bus method.

5) The LinDist3Flow-OPTS achieves the lowest voltage un-
balance for the IEEE 13-bus DN when compared to other
formulations, and similar voltage unbalance to the other
methods for the IEEE 123-bus DN. The voltage unbalance
achieved by LinDist3Flow-OPTS in the IEEE 8500-node DN
is only lightly higher than one achieved by SDP formulations.
It is worth noting that no specific objective is included here to
encourage the minimization of voltage unbalance explicitly.

Finally, Table III provides the optimal taps provided by the
different formulations. Although the various methods yield different
tap selections, the quality of the solution for each method can be
better assessed from the results listed in Table II.

V. CONCLUSIONS AND FUTURE WORK

This paper analyzes the performance of LinDist3Flow for optimal
tap selection of wye-connected SVRs. The numerical results carried
out on standard IEEE test distribution feeders reveal that the
LinDist3Flow-OPTS performs reasonably well when compared with
existing SDP-based and nonlinear approaches with an optimal-
ity gap of approximately 1% or less. The chief advantage of
LinDist3Flow-OPTS is the significant reduction in computational
effort. Future work will incorporate other types of SVRs, PV in-
verter dispatch, as well as SVR placement problems that are critical

for enhancing PV hosting capacity in unbalanced DNs. Another
fruitful direction is to evaluate the performance of LinDist3Flow
with respect to other linearizations such as first-order Taylor se-
ries approximation [21], fixed-point linearization [22], generalized
LinDist3Flow [23], and forward-backward sweep methods [24] in
the context of optimal tap selection. It is worth pointing out that
for each of the aforementioned linearizations, it is a research issue
in its own right to include the optimal tap selection owing to
the nonlinear relationships between the constituent SVR variables.
Future work will also focus on evaluating the performance of
LinDist3Flow-OPTS by solving it iteratively in a successive ap-
proximation fashion upon updating the higher order terms.

The LinDist3Flow-OPTS in the present paper implements optimal
tap selection in an open-loop fashion similar to that of [2], [13],
[16], [20]. That is, the LinDist3Flow-OPTS takes into account the
net nodal injections and produces taps to limit the voltages to
respect (22d). It is also possible to formulate the problem in a
closed-loop fashion, whereby the secondary-side voltage is used
as input for tap selection, or even a load center elsewhere in
the network [25], leading to voltage stability considerations; see
e.g., [33] and references therein. Future work will consider pertinent
approximations and linearizations of the power flow equations for
developing and analyzing such closed-loop control laws.

APPENDIX

FORMULATIONS OF POWER IMPORT OBJECTIVE

Suppose for simplicity that a single feeder line denoted by (S,m)
leaves the substation S. By invoking the multidimensional Ohm’s
law for the three-phase DN, the nodal current injections can be
written using the bust admittance matrix as [26][

i
iS,m

]
=

[
Y
YS

]
v (24)

where, i ∈ C3N collects nodal current injections in for all buses
n ∈ N+ (excluding slack bus) and iS,m ∈ C3 is the current injecton
at the slack bus. Vector v ∈ C3(N+1) collects the voltages for
all the buses including the slack bus. The matrices Y and YS

are constructed using the series models of distribution lines, SVRs
(grounded-wye grounded-wye), and the transformers.

Using (24), the current injection at the slack bus iS,m can be
written as

iS,m = YSv (25)
Because it is assumed that a single line leaves the slack bus, the
summation is dropped from (13). Introducing (25) into (13) yields
two equivalent ways to write the power import objective function:
C = Re

{
1⊤
3 diag(vS īS,m)

}
= Re

{
1⊤
3 diag(vSv̄ȲS)

}
. (26)

3121

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 29,2023 at 01:26:37 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] J. Cochran and D. Paul, “The Los Angeles 100% Renewable Energy
Study,” National Renewable Energy Laboratory, Tech. Rep., 2021.

[2] I. Alsaleh and L. Fan, “Multi-Time Co-optimization of Voltage Reg-
ulators and Photovoltaics in Unbalanced Distribution Systems,” IEEE
Transactions on Sustainable Energy, vol. 12, no. 1, pp. 482–491, 2021.

[3] S. Ghosh, F. Ding, J. Simpson, T. Harris, M. Baggu, H. G. Aghamolki,
and W. Ren, “Techno-economic analysis for grid edge intelligence:
A preliminary study on smart voltage regulator controls,” in Proc.
Power Energy Society Innovative Smart Grid Technologies Conference
(ISGT), Washington, DC, USA, Feb. 2019, pp. 1–5.

[4] A. Nagarajan, M. H. Coddington, D. Brown, S. Hassan, L. Franciosa,
and E. Sison-Lebrilla, “Studies on the Effects of High Renewable Pen-
etrations on Driving Point Impedance and Voltage Regulator Perfor-
mance: National Renewable Energy Laboratory/Sacramento Municipal
Utility District Load Tap Changer Driving Point Impedance Project,”
National Renewable Energy Lab.(NREL), Golden, CO (United States),
Tech. Rep., 2018.

[5] W. Wu, Z. Tian, and B. Zhang, “An Exact Linearization Method for
OLTC of Transformer in Branch Flow Model,” IEEE Trans. Power
Syst., vol. 32, no. 3, pp. 2475–2476, 2017.

[6] A. Savasci, A. Inaolaji, S. Paudyal, and S. Kamalasadan, “Efficient
Distribution Grid Optimal Power Flow with Discrete Control of
Legacy Grid Devices,” in Proc. Power Energy Society General Meeting
(PESGM), Washington, DC, USA, Jul. 2021, pp. 1–5.

[7] L. Gan and S. H. Low, “Convex relaxations and linear approximation
for optimal power flow in multiphase radial networks,” in Proc. Power
Systems Computation Conference, Wroclaw, Poland, 2014, pp. 1–9.

[8] R. R. Jha, A. Dubey, C. C. Liu, and K. P. Schneider, “Bi-Level Volt-
VAR Optimization to Coordinate Smart Inverters With Voltage Control
Devices,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 1801–1813,
2019.

[9] B. A. Robbins and A. D. Domı́nguez-Garcı́a, “Optimal reactive power
dispatch for voltage regulation in unbalanced distribution systems,”
IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2903–2913, 2016.

[10] D. B. Arnold, M. Sankur, R. Dobbe, K. Brady, D. S. Callaway,
and A. Von Meier, “Optimal dispatch of reactive power for voltage
regulation and balancing in unbalanced distribution systems,” in Proc.
IEEE Power and Energy Society General Meeting (PESGM), Boston,
MA, USA, Jul. 2016, pp. 1–5.

[11] A. Inaolaji, A. Savasci, S. Paudyal, and S. Kamalasadan, “Accuracy
of Phase-Decoupled and Phase-Coupled Distribution Grid Power Flow
Models,” in Proc. IEEE Power Energy Society Innovative Smart Grid
Technologies Conference (ISGT), Washington, DC, USA, Feb. 2021,
pp. 1–5.

[12] S. V. Dhople, S. S. Guggilam, and Y. C. Chen, “Linear approximations
to ac power flow in rectangular coordinates,” in Proc. Annual Allerton
Conf. Communication, Control, and Computing (Allerton), Monticello,
IL, USA, Sep. 2015, pp. 211–217.

[13] C. Li, V. Rasouli Disfani, Z. Pecenak, S. Mohajeryami, and J. Kleissl,
“Optimal OLTC voltage control scheme to enable high solar penetra-
tions,” Electric Power Systems Research, vol. 160, pp. 318–326, 2018.

[14] C. Li, V. R. Disfani, H. V. Haghi, and J. Kleissl, “Coordination of
OLTC and smart inverters for optimal voltage regulation of unbalanced
distribution networks,” Electric Power Systems Research, vol. 187, p.
106498, 2020.
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