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Abstract—Scalable coordination of photovoltaic (PV) invert-
ers, considering the uncertainty in PV and load in distribution
networks (DNs), is challenging due to the lack of real-time com-
munications. Decentralized PV inverter setpoints can be
achieved to address this issue by capitalizing on the abundance
of data from smart utility meters and the scalable architecture
of artificial neural networks (ANNs). To this end, we first use
an offline, centralized data-driven conservative convex approxi-
mation of chance-constrained optimal power flow (CVaR-OPF)
in which conditional value-at-risk (CVaR) is used to compute re-
active power setpoints of PV inverter, taking into account PV
and load uncertainties in DNs. Following that, an artificial neu-
ral network (ANN) controller is trained for each PV inverter to
emulate the optimal behavior of the centralized control set-
points of PV inverter in a decentralized fashion. Additionally,
the voltage regulation performance of the developed ANN con-
trollers is compared with other decentralized designs (local con-
trollers) developed using model-based learning (regression-
based controller), optimization (affine feedback controller), and
case-based learning (mapping) approaches. Numerical tests us-
ing real-world feeders corroborate the effectiveness of ANN con-
trollers in voltage regulation and loss minimization.

Index Terms—Chance constraint, decentralized control, dis-
tributed energy resource (DER), data-driven control, neural net-
work, voltage regulation.

1. INTRODUCTION

N recent years, distributed energy resources (DERs) have
complicated distribution network (DN) operations. Main-
taining nodal voltages within operating tolerances is particu-
larly difficult given the uncertain and intermittent nature of
DERs. As a result, step-voltage regulators and shunt capaci-
tors must work harder to maintain voltages in DNs [1]. This
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consequence degrades their operating mechanism, reduces
device lifetime, and can cause power quality, stability, and
reliability issues. In order to overcome this challenge, photo-
voltaic (PV) inverters are allowed to operate at a non-unity
power factor to provide reactive power support for voltage
regulation. Earlier efforts have focused on developing local
control strategies such as volt-var and watt-var curves. These
strategies entail each PV inverter adjusting its reactive pow-
er output based on local measurements [2], [3]. However,
these strategies require extensive tuning to find an appropri-
ate curve for every PV inverter. Hence, they may become
impractical in real time, where hundreds of PV inverters
could be installed over a DN. Therefore, it is challenging to
design a scalable framework to compute reactive power set-
points of PV inverters under limited real-time communica-
tions in DNs.

Reactive power setpoints of PV inverters can be computed
from optimal power flow (OPF) problems in DNs. The non-
convex nature of OPF renders the optimization problem diffi-
cult to solve. With recent theoretical advancements in optimi-
zation, different convex relaxations have been proposed [4].
Additionally, there exists a related stream of literature on dif-
ferent variants of OPF techniques (e.g., robust and stochas-
tic), which aim at developing PV inverter controls in a cen-
tralized, decentralized, or distributed framework to compute
the optimal setpoints in real time (e.g., [1], [5]-[12]).

Centralized control strategies [1] generally yield optimal
operating costs, although they require extensive monitoring
and communication infrastructure for system-wide optimal
operation. Decentralized schemes, on the other hand, require
no communication and only use local information to modify
the DER behavior [5]-[10]. Distributed approaches in [11],
[12] use limited communication between neighboring DERs
to achieve close-to-optimal operation. However, such ap-
proaches may still suffer from communication delays and er-
rors.

As a part of the recent transition to the smart grid, there
is an abundance of readily available historical data from utili-
ty smart meters [13]. This has led to an increase in research
in data-driven approaches for OPF using machine learning
techniques (e.g., [14] for a survey). Particularly, [15]-[20]
propose data-driven approaches for voltage regulation in
DNs. Reference [16] proposes multiple linear regression
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models to find a local control policy that maps the local his-
torical data of each PV inverter to the optimal reactive pow-
er setpoints computed by using an OPF. However, the previ-
ous reference uses a deterministic OPF to compute the reac-
tive power setpoints, while neglecting the uncertainty in user
load and PV generation. Reference [17] introduces support
vector machines to design volt-var curves utilizing an offline
centralized algorithm based on chance-constrained OPF
while considering only PV uncertainty. As it is using chance-
constrained optimization, an approach is needed to estimate
the tightening, which represents the uncertainty margins. In
the previous reference, the authors propose using Monte-Car-
lo simulations to implement the tightening. Another ap-
proach in [18] uses kernels to learn nonlinear PV inverter
control policies and calculate real-time reactive power injec-
tions based on a linearized OPF problem. However, deter-
mining the best kernels can be a challenging task.

Notwithstanding the increasing availability of data and ma-
chine learning approaches that could be leveraged to map lo-
cal historical data to optimal PV inverter setpoints, it re-
mains a difficult task to take PV and load uncertainty into
account in OPF for any data-driven learning design. For in-
stance, an effective approach to mitigate DER and load un-
certainty is to enforce probabilistic specifications for viola-
tions of voltage and PV reactive power constraints, leading
to chance-constrained (CC) OPF formulations. The CC-OPF
is nonconvex and challenging to solve. In order to bypass
the nonconvexity, the Gaussianity assumption has been tradi-
tionally invoked to model the uncertainty distribution (e.g.,
[8]), which is not usually valid. Convex surrogates can also
replace the chance constraints, such as the conditional-value-
at-risk (CVaR) or distributionally robust formulations (e.g.,
[19], [21]-[23]). The advantage of CVaR-OPF is that it is da-
ta-driven and distribution agnostic. Nevertheless, data-driven
machine learning approaches for PV reactive power control
are not explored in [21]-[23]. Therefore, leveraging the CVaR-
OPF approach to compute the optimal PV reactive power set-
points and then using machine learning techniques to learn
the mapping is an interesting research direction to capture
uncertainty in historical data and learn the probabilistic guar-
antees associated with the voltage regulation constraint. Fur-
thermore, using artificial neural networks (ANNs) to learn
the mapping is advantageous as ANNs can accommodate
any degree of nonlinearity and generally constitute a model-
free approach. Next, we list the literature pertaining to the
application of ANNSs in DNs.

In the past, research has been published concerning the ap-
plication of ANNSs to solve various DN problems [24]-[26].
One such application is the coordination of distribution sys-
tem assets such as tap changers, shunt capacitors, and step-
voltage regulators [24]. A single neural network is trained
from deterministic offline optimization approaches to infer
active and reactive power setpoints of the DERs in a central-
ized manner, replacing the role of distribution system opera-
tor (DSO) in real time [25]. A large-scale communication in-
frastructure required to communicate the optimal setpoints
predicted from the centralized ANN to other DERs in real
time is assumed [25]. In [26], ANNs are used to estimate

nodal voltages in DNs using real-time smart meter data.

Most recently, [27] integrates deep neural networks
(DNNs) for PV inverter control policy directly into the
CVaR-OPF by considering load and PV uncertainty. Specifi-
cally, the DNN training is directly incorporated into the
CVaR-OPF problem where the DNN weights are trained us-
ing back-propagation and upon computing gradients of loss-
es and voltages with respect to inverter reactive power injec-
tions. Gradient-free variants are also explored in order to op-
timize the DNN weights. Albeit DNN specific parameters
can be learned directly by solving the CVaR-OPF, incorporat-
ing additional network objectives or constraints remains diffi-
cult. Reference [28] uses deterministic optimization for data-
driven learning. Also, the CVaR objective along with mean-
square error (MSE) is used during ANN training to infer the
reactive power setpoints. Furthermore, the mini-batch gradi-
ent descent algorithm is developed by carefully selecting the
mini-batches to speed up the training process of the ANNSs.
Therefore, evaluating the performance of ANNs for data-
driven decentralized voltage regulation using the optimal re-
active power setpoints computed from CC-OPF is thus re-
quired, which was carried out in the conference precursor of
our work [19]. Specifically, in [19], the ANNSs are trained us-
ing optimal reactive power setpoints obtained by solving the
CC-OPF problem without incorporating the training process
directly into the optimization, and the capability of voltage
regulation and loss minimization of the developed ANN
model is compared with that of a tree-based regression mod-
el for a smaller network (IEEE 13-node) and for a longer
timescale (1-hour).

The contributions of this paper are listed as follows.

1) A methodology for using ANNs to learn the mapping
from load and PV generation uncertainties to inverter reac-
tive power setpoints from data optimized by the CVaR-OPF
is developed. The CVaR-OPF formulation and the ANN
structure with different activation functions and training pro-
cess are presented in detail.

2) We extend the previous work in [19] to accommodate
larger networks with reasonable number of PVs and show-
case the benefits of a scalable implementation of the data-
driven decentralized learning approach. Results are show-
cased in the Arizona SB 129-node feeder [29].

3) The decentralized controllers are implemented using a
faster timescale of 15 min and are tested for under- and over-
voltage test cases.

4) It is investigated whether the trained ANNs generalize
the uncertainty in data sufficiently over a longer period by
respecting the probabilistic specification of voltage con-
straints.

5) The developed ANN controllers are compared in terms
of voltage regulation and thermal loss minimization with the
following data-driven approaches: regression-based control-
lers [16], case-based learning [30], and optimized affine feed-
back schemes [23]. Specifically, we develop regression-
based controllers by adopting the CVaR-OPF problem,
which is not performed in [16]. The end result is to present
the trade-offs of various decentralized designs concerning
voltage regulation and thermal loss minimization while com-
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plying with the probabilistic specification on the voltages
and PV inverter constraints. The ANNs perform remarkably
well in terms of probabilistic voltage regulation and thermal
loss minimization compared with regression-based, case-
based, and optimization-based affine control schemes.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and the data-driven central-
ized offiline stochastic OPF. The voltage regulation problem
with generic chance constraints and their data-driven approxi-
mations used to obtain optimal DER setpoints are also for-
mulated. Data-driven local designs for reactive power con-
trol using linear and nonlinear policies are the theme of Sec-
tion III. Section IV details the numerical tests, including the
network setup and data collection process. Thorough compar-
isons are presented between the performance of the devel-
oped ANN controller and other designs in terms of voltage
regulation and thermal loss minimization. Finally, conclu-
sions are drawn in Section V.

II. SYSTEM MODEL AND DATA-DRIVEN CENTRALIZED
OFFLINE STOCHASTIC OPF

The network and resource model adopted in this paper are
detailed first, followed by the methodology to account for
the uncertainty in user load and PV generation using CVaR
optimization [19], [23].

A. Power Distribution System Model

Consider a single-feeder radial distribution network mod-
eled by a tree graph with N+ 1 buses (nodes) and lines (edg-
es) connecting these buses. Let N;:={0, 1, ..., N} denote the
set of all buses and £:={1,2, ..., L} denote the set of lines.
The substation is indexed by n=0. All nodes except the sub-
station are included in the set N:={1,2, ..., N} and represent
user nodes. Let v, denote the squared voltage magnitude at
bus n € N, where v, is fixed, and let v collect all nodal volt-
ages for n e V. Let s,=p, +]jq, denote the complex power in-
jected to bus n. For each line ne L, z,=r,+jx, denotes its
impedance, and S,=P,+jQ, is the complex power flow to
the bus n. Also, let b%" be the reactive power injected at bus
n (e.g., due to shunt capacitors) at nominal voltage of 1.0 p.
u.. We collect all nodal quantities into vectors p, ¢, b™, and
v, and correspondingly, r, x, P, and Q for lines. Let z=r+]x,
and §=P+j0 denote the respective complex vectors. The re-
lationship between voltage magnitudes, power injections,
and line power flows is captured by the LinDistFlow model
[31] in p.u..

P=—F'p (1)
Q=—F"q-F"-diag(6™)- v 2)
Av=2Re(Z" (P+jQ))-a,v, 3)

where 4 € R**" results from removing the first column of the
network edge-to-node incidence matrix A =[a,,A]e R¥*V*D;
we also have F=-A"" with the property that Fa,=1, and Z=
diag(z) [31]; v, is the squared voltage magnitude at the slack
bus; and a, is the first column in A [31]. For a given Nx 1
vector z, diag(z) returns an N x N matrix with the elements of
z on its diagonal. Further, I, denotes an Nx N identity ma-
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trix; and 0, and 1, are the N-dimensional vectors with all ze-
roes and ones, respectively.
Substituting (1) and (2) into (3) and premultiplying (3)
with —F yields:
v=K, (Rp+Xq+1,v,) 4)
where R:=2F-diag(r)- F"; X:=2F-diag(x)-F"; and K ;=
(I,—X)", X:=X-diag(6™). It is assumed that the network
parameters in X and b™ render (I N—X’ ) invertible. The model
in (4) approximates squared voltage magnitude as affine
functions of power injections p and ¢, and generalizes [31]
to include shunt capacitors.

B. Generation and Load Model

The network has N, distributed PV generator units whose
connection to the buses is described by the PV-to-node inci-
dence matrix I'e R"**. Due to solar intermittency, the real
power pt’ of PV unit k=1,2, ...,va can be modeled as a ran-
dom variable, while its reactive power injection g}* can be
actively controlled. Further, we collect the solar generation
and reactive power injections from all PV buses in vectors
P e R"™ and ¢" € R"", respectively. If Simax 18 the apparent
power capacity for inverter k, the reactive power injections
respect the capacity constraints:

g | gD =/ (SPh = (P2 ) (5)

The DN also includes N, constant-power loads, whose
connection to network buses is given by the load-to-node in-
cidence matrix ¥ € R"*". The load active and reactive pow-
er consumptions p; and ¢; (k=1,2,...,N) are modeled as
random variables. The nodal active and reactive power con-
sumptions are collected in vectors p‘=[pi,p5,...py I'e R

and  ¢°=[q5.q5,...q5 1" € R™, respectively. Vector w=
(P, (g, (p™) " e RV collects all system distur-
bances, which are uncontrollable. Finally, we express the net
active and reactive power injections p and ¢ in terms of con-
trolled input # and disturbance w as follows:

p=B,w

q=Tu+K w
where B, =[-%,0,, e RV u=[g g2, .. g} ]e
R"; and K,=[0,, vo — P O0yy ]E RY*®Y*") Upon substitut-

ing (6) into (4), it can be observed that the nodal voltages
are reformulated as linear functions of u and w:

v(u,w)=Du+Ew+V,
where D=K, XI'e R"";
and v,=K 1,v, € R".

(6)

(M
E=K,(RB,+XK,)c R" N+,

C. Objective Function

This paper considers the objective of minimizing the ther-
mal losses on the lines, which are approximated by
NooPErQ2 .
zrn%. Utilizing the fact that P, and O, can be writ-
n=1 0
ten as linear functions of p, and ¢, (cf. (1) and (2)), it fol-
lows that the losses are quadratic in p and ¢. Furthermore, it
can be observed from (6) that p and ¢ are linear functions of
u and w. Therefore, the thermal losses can be expressed as
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quadratic functions of # and w as follows:

N P2+ 2
zrn n Qn :J(u7 w) (8)
n=1 Vo
1
S, w)= 5 - (W' Ru+w' R w+w' R, u+
0
W' R, w+siu+s.w+h] 9
where R, R, R, and R, are the appropriate matrices; s,

and s, are the appropriate vectors; and / is a scalar.

D. Chance-constrained Voltage Regulation

Equation (7) directly demonstrates that the uncertainty in
w will cause random fluctuations in the nodal voltages.
Therefore, it is hard to ensure that voltages remain within
bounds vl an and v, as specified by ANSI Standard C84.1
[32], i.e., it may not be possible to ensure that v , <(Du+
Ew+f)0)S V.. holds at all times. Instead, we enforce the lat-
ter constraint in a probabilistic fashion. In order to cope
with the variability in w, we describe the voltage regulation
problem first with generic chance constraints followed by
their data-driven convex approximation. Consider the follow-
ing optimization problem (P1) subject to (5), (7), (11)
and (12).

1, max

(PD) Hunvn E(J (u, w)) (10)
Pr{V >v1 mm}>ai (11)
Priv,<v, wt2a; i=1,2,...N (12)

It follows from (9) that the dependence of thermal losses
on w renders the objective function random; therefore, the
expected value of the losses is minimized. In addition, con-
straint (5) may be enforced for all w (i.e., with probability
1) or as a chance constraint with probability f,. The motiva-
tion for the latter is to allow for more flexible reactive pow-
er policies in the design phase; and the bounds of (5) will be
respected in real time.

Unless the uncertainty has a favorable distribution, it is
well-known that chance-constrained optimization is generally
nonconvex and thus hard. The CVaR presents itself as a suit-
able risk measure that can be used as a convex surrogate of
the chance constraint [33]. Specifically, CVaR can be uti-
lized to shape the tail of a distribution. Consider a function
f(u,w) of the decision vector and the uncertainty, which en-
ters in a probability constraint as Pr{f(u,w)<0}. The CVaR
at level a is defined as CVaR, (f(u,w))= tlgﬂg {t+(1 -

a) '"B(f(,w)—1)"}, where ():=max{,0}. It can be ob-
serverd that a CVaR constraint serves as a conservative sur-
rogate of the chance constraint, in the sense that if
CVaR ,(f(u,w))<0, then Pr{f(u,w)<0}>0a follows [33].
Therefore, CVaR is a conservative surrogate of the chance
constraint. In other words, satisfying the CVaR constraint
guarantees that the original chance constraint is respected as
well. If f(u,w) is convex in u, CVaR offers a convex restric-
tion to the original chance constraint as:

inf {1+ - ) B(f @6, w)~ 1) } <0 (13)

Thus, the chance constraints in the voltage regulation
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problem (P1) are replaced by the CVaR constraints. Then,
the following operations are performed. The auxiliary vari-
able over which the infimum is taken in (13) is included as
optimization variable; the max operator in (-)" is removed by
the epigraph trick; and the expectation in (13) is replaced by
its average sample approximation. To this end, a set of train-
ing scenarios {w, }N" (realization of the random variable w)

is assumed to be available, where N, is the number of train-
ing scenarios. For notational s1mphclty, define uy, =gy, =

JESE = i )* as the scenario-dependent maximum reac-

tive power capacity; and ukm;“——q,w =—uy, . The resulting
CVaR-based data-driven voltage regulation problem (P2) is
stated as (14), subject to (7), (15)-(23)

(P2)  min - zJ(u,,,w)

tr ng= (14)
Cpdiug, v, )
1 Ny
—_— <
+Vzmm ZLis‘gi,m (16)
1 Ny
N 20050 a7
Vln Vi,max :u<goi.ns (18)
1 :BA tr;«zpkm_o (19
ukn+u};ni:1 Ck pkn (20)
5+ liv <0 1)
1- ﬁk trn=1 ko
U, — Uy =0k SV, (22)
35 00pevi}, 20 Vi=12,.. N Vn =12, .. N,
Vk=1,2,...N, (23)

Upon solving optimization problem (P2), the optimal con-
trol setpoints of the k" PV inverter for scenario n,, i.e., g,
are projected within the interval [-g}’,, g}, ] to respect (5)
and are given as q"“’J

Notice that the reactive power setpoints of the £™ PV in-
verter computed from problem (P2) are adaptive, i.e., the re-
active power setpoints qprOJ correspond to each scenario w,
without any restriction on the reactive power control policy.
In addition, to dispatch the PV reactive power setpoints in re-
al time, the DSO repeatedly solves the optimization problem
(P2), which can be taxing computationally and communica-
tion-wise if w, changes more frequently, and therefore, de-
ploying the control rules in real time becomes obsolete.

To overcome the above-mentioned issues and to expedite
the process of adjusting the DER setpoints adaptively based
on time-varying w,, we focus on developing local control
policies, where the reactive power of the k™ PV inverter is cap-
tured by previously optimized inputs/outputs, i.c., (dk.ns,qgffjf ,
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where d,, contains only the local historical information of
w, to be defined shortly. To accomplish this task, we lever-

age: (D machine learning approaches, precisely ANN and re-
gression-based approaches that learn the nonlinear mapping
between d;, and qif,‘j{; and @ optimization-based approach-
es, wherein the linear control policy is included during opti-
mization to compute inverter specific coefficients. This is
the theme of the ensuing section.

IIT. DATA-DRIVEN LOCAL DESIGNS FOR REACTIVE POWER
CONTROL USING LINEAR AND NONLINEAR POLICIES

This section details the various designs for individual lo-
cal open-loop linear and nonlinear control policies for each
inverter. Specifically, we develop an ANN-based controller
for each PV inverter, trained using the optimal PV setpoints
with their local historical information (dkfn‘,qﬁffﬁ{). Similarly,
we design linear and nonlinear control policies, variations of
which have been pursued in the literature to compute PV in-
verter set points (e.g., [8]-[10], [16]), but not brought togeth-
er under a unifying umbrella for comparison.

Let us consider the training data set corresponding to the
k™ PV inverter obtained from training optimization (P2) as
{dy,.q3 }ve,. Vector d, is the local input to the k" PV in-

verter whose entries are given by the following base vari-

net

ables: net real power demand (p}, =p;, —pp, ), reactive
power demand qﬁrﬁj, and the maximum reactive power capaci-
ty g, given by (5). It should be noted that the voltage v,
which is dynamically coupled to the local control action qzr;’f
may also be appended to d,,; however, the stability of the

resulting controller is difficult to analyze (e.g., [34]). There-
fore, the nodal voltage v, , is not an input to the local poli-

cies developed in the present work. The goal of machine
learning techniques (ANN and regression) used in Designs I-
IV is to find a (generally nonlinear) control policy €:
fild,,)—> qﬁf,‘?; that maps the local information of the k™ PV

inverter to its projected optimal setpoint using the previously
optimized available input-outputs f, ({d, , },"., )—>{q}y }," .
Once the control policy has been designed, it can be local-
ly applied in real time given the present net real power de-
mand, reactive power demand, and available reactive power
capacity, to determine the reactive power setpoint for each
inverter. Specifically, the real and reactive power demands p;
and ¢} are typically available by a smart meter, while the re-
al power generation p}* is determined by the maximum pow-
er point tracking of PV generator or similar algorithm. In the
present paper, the performance of the local policies is as-
sessed using a set of NV test (not previously seen) scenarios.
The set of local inputs corresponding to the test data is de-
noted by {d;,, W

n=1+

In this paper, we devise ANN controllers to approximate
the mapping Q. The ANN structure amounts to a two-layer
feed-forward network that consists of one hidden layer (HL)
and one output layer (OL) for all PV inverters considered in
this paper, as shown in Fig. 1. The first layer includes four
hidden neurons and with parameters (@}, ") which repre-
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sent weights and biases corresponding to the inputs of the
k™ PV inverter, respectively. Similarly, (82", 4") represent
the output layer parameters. We use a nonlinear activation
function ¢"" for computation at the HL; and for the OL we
use a linear activation function ¢°". Given training input vec-

tor d, ,, the layer-wise computations are given as follows.
Win =90 (O d,, +4,") (24)
Wi =00 ) il + 20 (25)

where the vector-valued function ¢} is applying the nonlin-
ear activation function ¢(-), elementwise.

HL
d,, Input layer %.\
Ui,
ap, >./
o/, ;1T \‘./

ANN architecture for k™ PV inverter.

GGG

®

Fig. 1.

For notational simplicity, let IT, collect the trainable pa-
rameters (@,4) of all layers for the ANN corresponding to
the k™ PV inverter. In the task of supervised learning, the
ANN is trained using back-propagation algorithms based on
gradient descent which minimize the training loss defined as:

IR i
mny, Slar-a@ml e

where g, (d,,;IT,) represents the composite mapping given

by (3). The choice of training loss is task specific and in this
study we use the MSE. Upon training, the optimal parame-
ters II, are available, and the trained ANN is used to esti-
mate the reactive power setpoints for the actual test data
d;, }Z‘lv which is expressed as:

gy, =g (d],  II;) 27)

1) Design I: ANN-based controller with tangent-sigmoid
activation function. In this design, for nonlinear activation
function ¢} () of each neuron in the HL, we use the tangent-
sigmoid function fanh. One advantage of tangent-sigmoid
neurons is that the negative inputs are strongly negative and
the zero inputs are close to zero, allowing them to have out-
puts over a wide range of input space. A linear activation
function is used for the neuron in the output layer.

2) Design II: ANN-based controller with rectified linear
unit (ReLU) activation function. In this design, the transfer
function in the HL of the neural network developed in De-
sign I is replaced by the ReLU activation function, which is
used by the majority of ANN applications in recent years.
This is because of the fact that ReLU is computationally less
expensive as it involves less mathematical operations and is
easier to implement [35].

The training algorithm for Designs I and II is presented
herein. In this paper, the Bayesian regularization algorithm is
used as a training algorithm implemented using the com-
mand 7rainBr in MATLAB [36] for Designs I and II to up-
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date the weight and bias values of the ANN models. The
Bayesian regularization algorithm minimizes the combina-
tion of squared errors and weights, and then determines the
correct combination so as to produce a network that general-
izes well [37]. Since the ANN training starts with random
initial weights, different results are obtained by different
training algorithm runs. Therefore, every training is rerun un-
til the best solution is obtained in terms of performance
[26]. It is noteworthy to mention that, since we consider on-
ly three base variables to estimate the optimal setpoints, the
sensitivity of the estimation to the number of neurons in the
hidden layer stabilizes for four neurons for all the test cases.
The training parameters and corresponding values for De-
signs I and II are listed in Table I for all test cases.

TABLE I
TRAINING PARAMETERS AND CORRESPONDING VALUES FOR
DESIGNS I AND 11

Parameter Explanation Value
Epochs The maximum number of epochs to train 1000
Goal Performance goal (MSE) 0
min,,,, The minimum improvement from one epoch to the next 107
valy, The maximum validation failures 15
Hie Marquardt adjustment parameter 107
Hine Increase factor for u 10
Haoe Decrease factor for u 1072

3) Design III: regression-based controller with quadratic
interactions and Bayesian information criterion (BIC). This
design specifically uses regression [16] for deriving local
control of individual DERs in a decentralized fashion. Also,
this design assumes the quadratic transformations of the base
variables which contain additional nonlinear terms including
the pairwise products and quadratic terms of base variables.
The base variables are selected based on the BIC criterion
[16]. In this design, the mapping 2 is approximated by the
function  f, (1, }fX‘; D=7+ {d,, }2{“:1 +..+id], }f,vj: "
where 7/, 7/, ..
ated upon minimizing

Y. 2
S UET AL

tr ng=1

., 7; are the coefficients that are to be evalu-
the MSE loss function, i.e.,

4) Design IV: regression-based controller with linear inter-
actions and sum of squared estimate of errors (SSE). This de-
sign also uses regression and replaces the quadratic transfor-
mations with linear transformations of the base variables and
further uses SSE criterion for model selection. Vector d,,

contains an intercept (constant term), linear term of each
base variable, and all pairwise products of distinct base vari-
ables (no quadratic terms).

The regression-based Designs III and IV are trained using
the stepwiselm command from the statistics and machine
learning toolbox in MATLAB [36]. It is worth emphasizing
that the regression-based controllers in [16] have been devel-
oped using deterministic OPF. However, the regression-
based controllers in this study are developed by adopting the
CVaR-based data-driven voltage regulation problem (P2),

lending them scenario-based adaptivity in a probabilistic
fashion.

5) Design V: Case-based learning approach. In this design,
the training information along with target data {d,,q}’ Z":l
is stored in a database of past cases. The actual test realiza-
tion {d/, }Z‘;l, for which the reactive power setpoints are to
be computed, are called the present cases. The present case
vector d/, is compared to all past cases in the database to

find the best match in the least Euclidean distance sense.

Specifically, the distance is defined as H dl, —d,, ‘ . Then
o, ~ G, ||,

the corresponding setpoint g™

", from the past case with the
smallest distance is used as the estimation for the present
case. This technique has been implemented to predict build-
ing energy consumption in [30], and more generally, the Eu-
clidean distance has been used in various case-based learn-
ing applications [38], [39]. This technique would be difficult
to implement in a real-time setup due to the time needed to
compute distances to all cases in the database and find the
best estimate. It may also exhibit a large generalization error.

6) Design VI: affine feedback control policy. In this de-
sign, the control policy for the k™ PV inverter is restricted to
have a linear form ¢} (w)=m;w+rt,, where m, and 7, are
the optimization variables for the k™ PV inverter [8]-[10].
The coefficients m, select the entries of w corresponding to
the k™ PV inverter (and are set to zero otherwise), yielding a
decentralized linear policy. The decentralized linear policy
can be optimized by including in the optimization problem
(P2) additional constraints u, =Mw, +7 [23] with appropri-

: N, x(2N_+N, N,
ate sparse matrix M € R">*®**) and vector 7 € R"™.

The flow diagram depicting the open-loop local control de-
signs and validation process is shown in Fig. 2. The load
consumption and PV generation data are first collected to
solve the centralized CVaR-OPF (P2) and compute the opti-
mal PV setpoints for Designs I through V, as well as the op-
timal coefficients m,, 7, per inverter for Design VI. The opti-
mal PV setpoints produced by the CVaR-OPF solution are
projected back to their feasible regions to respect the device
limits and the projected data are used to train Designs I
through IV. The reactive power controllers produced by all
designs are then used to compute the setpoints for the actual
test data. It is worth emphasizing that the test data used for
validation are different from the ones used for training. The
computed setpoints for the actual test data are projected
back to their feasible regions and the resulting reactive pow-
er injections are then given as inputs to a nonlinear power
flow solver, namely the Z-bus method [40], to obtain the
nodal voltages across the network. The latter are used to vali-
date the performance of the different designs in terms of
voltage regulation and loss improvement. Specifically, the
empirical probability of voltage violation is assessed in the
ensuing section.

Figure 3 illustrates that the reactive power setpoint com-
puted by the decentralized policy such as the ANN of De-
sign I or Design II is fed into the traditional power control-
ler, current controller, and switching logic module of the in-
verter.
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Fig. 2. Flow diagram depicting open-loop local control designs and validation process.
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Fig. 3. Implementation of local ANN controller for the k™ PV inverter in
Designs I and II.

Remark 1: extension to multi-phase DNs. The proposed
data-driven local control designs can be extended to multi-
phase DNs. The counterpart of LinDistFlow in (2) is
LinDist3Flow approximation upon ignoring losses and other
high-order terms [41], which we have recently extended to
handle step-voltage regulator tap selection in the OPF [42].
Upon solving the resultant optimization problem, the optimal
reactive power setpoints can be used to train the ANNS.

IV. NUMERICAL TESTS

A. Network and Test Case Setup

The network used in this paper is the Arizona SB 129-
node test feeder, whose line parameters, nominal load val-
ues, and PV locations are adopted from [29]. Further, we as-
sume V,.=4.16 kV and S, .=2 MVA for all the test cases
considered in this paper. The voltage limits v, and v, are
set to be 0.95 p.u. and 1.05 p.u., respectively, for all test cas-

€S.

min

B. Data Collection

The data for solving the optimization problem (P2) are
collected from the homes installed with smart meters located
on Pecan Street in Austin, Texas, USA [43]. Historical load
consumption and PV generation data are obtained for the
month of July 2015. The data are collected in both hourly
and minute-based resolution. Since the Pecan Street data in-
clude only active power, the reactive power consumptions
are generated by ¢°=p° tan¢ assuming lagging power factor.
The data from each home are then aggregated to match the

nominal load of the node. Details on data aggregation can be
found in [19]. A variety of under- and over-voltage scenari-
os, control resolutions, and chance constraint specifications
are investigated, as described next.

C. Test Cases

1) Test Cases A and B (Under-voltage, Slow Time-scale)

Test cases A and B are to investigate the performance of
various designs for the under-voltage scenario in DNs. In
test cases A and B, we consider a one-hour resolution of his-
torical data. The optimization is performed based on the data
for the first 30 days of the month (N,=720 scenarios) to
generate the training scenarios, and the performances of the
developed control designs (Designs I-VI) are evaluated for
the last day (N,=24 scenarios). Further, the maximum PV
generation is assumed to be 80% of the nominal consump-
tion p°. The apparent power capacity SP is set to be 185%
of P . Moreover, a lagging power factor of 0.95 is as-
sumed for all loads. For test case A, the voltage violation
probability o is set to be 0.9 and the PV inverter reactive
power capacity violation probability £ is assumed to be 0.95
in the optimization problem (P2). The difference in test case
B is that the probability specifications are tightened in the
optimization, which poses a challenge for the decentralized
designs not to exceed the desired violation probabilities. Pre-
cisely, the voltage violation probability is tightened to 0.95
and the PV inverter capacity violation probability is further
tightened to 0.99.

2) Test Cases C and D (Over-voltage, Fast Time-scale)

Test cases C and D are the investigations into over-volt-
age scenarios in the DNs (SB 129-node modified) while us-
ing the 15-min data-point resolution. For the 15-min data-
point resolution, the 1-min data-point resolution load con-
sumption and PV generation profiles are first considered.
The values are then averaged every 15 min to construct 15-
min based profiles. Furthermore, we assume the power fac-
tor of 0.99 (lagging) for all loads to compute the reactive
power profiles. To create over-voltage scenarios, the original
SB 129-node feeder for test cases C and D is modified by
adding eight additional PV inverters and 6 shunt capacitors
with ratings [1.5,100,5,5,5,3]kvar. Voltage violation and PV
inverter probability specifications are both set to be 0.95.
Furthermore, the maximum PV generation is assumed to be
130% of the actual nominal consumption p°. The apparent
power capacity SP is set to be 120% of P%, . Also, nominal
loads are scaled down to 10% of their actual values. The op-
timization for test case C is performed in a similar way as
test cases A and B, i.e., the optimization is performed for 30
days of July 2015 (V,=2880 scenarios) and the performance
of the developed control designs is evaluated for the last day
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(N =96 scenarios). For test case D, the optimization is per-
formed for the first 24 days (V,=2304 scenarios). Then, the
control designs are tested on the last seven days of July
2015 (N, =672 scenarios). In other words, the difference in
test case D is that we test for the last seven days instead of
the last day. The objective is to investigate the generalization
over a longer period of time.

The optimization problem for test cases A, B, C, and D is
programmed in MATLAB invoking CVX [44] with MOSEK
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Solver. Specifically, test cases A and B are solved using a
PC with 32 GB RAM, and test cases C and D are solved us-
ing a high-performance computing cluster.

Table II lists the maximum voltage probability violations
in percentage for the terminal node (node 129) in all designs
and test cases. Voltage violations are shown in bold. Figure
4 depicts a bar graph comparing the results in Table II.
More detailed analysis of the results per test case are provid-
ed next.

TABLE I
THE MAXIMUM VOLTAGE PROBABILITY VIOLATIONS FOR NODE 129

The maximum voltage probability

violation (%)

Test case

Allowed voltage violation (%)

Design I Design II Design 111 Design IV Design V Design VI No control
A 8.33 8.33 25.00 16.67 8.33 4.17 62.50 10
B 4.17 8.33 25.00 16.67 8.33 0.00 62.50
C 1.04 1.04 1.04 6.25 9.38 0.00 21.88
D 2.83 2.38 2.83 3.13 2.38 0.00 26.70
30

[ ® Test case A
Test case B

m Test case C

+ ® Test case D

—_ = NN
“wn O wn O W
T T T

The maximum voltage
probability violation (%)

(=]

111

v
Design

\% VI

Fig. 4. The maximum voltage probability violations in percentage for node
129.

1) Test case A: it can be observed from Table II that both
regression controllers (Designs III and IV) violate the volt-
age specification, i.e., the voltage probability violations are
above 10%. From Fig. 4, it can also be observed that De-
signs III and IV perform significantly worse for test case A.
Both ANN controllers (Designs I and II) and the case-based
learning (Design V) pass the voltage specification, and have
the same performance outcome of 8.33%. The affine control-
ler (Design 1V) performs the best for test case A, with a
probability of 4.17%.

2) Test case B: by observing Table II, it can be observed
that only two designs passed the voltage specification, i.e.,
the ANN with tangent-sigmoid (Design I) and the affine con-
troller (Design VI). From Fig. 4, it can be observed again
that both regression controllers perform significantly more
poorly in comparison to the other designs for test case B.
The ANN with tangent-sigmoid (Design I) performs better in
test case B compared with test case A, with voltage probabil-
ity violation of 4.17%. The affine controller (Design VI) per-
forms the best compared with the other designs, for test case
B with zero probability of voltage violations.

3) Test case C: for this test, the ANN controllers (Designs
I and II) and the regression with quadratic interactions (De-
sign III) all show good performance with 1.04% probability
violation, and the affine controller (Design VI) again per-
forms the best with zero probability of voltage violations.

From Table II and Fig. 4, it can be observed that the regres-
sion without quadratic interactions (Design IV) and the case-
based learning (Design V) both exceed the allowed voltage
violation specification of 5%, with violation probabilities of
6.25% and 9.38%, respectively.

4) Test case D: for this test case, all designs pass the volt-
age violation specification of 5%. Design IV performs slight-
ly worse to the other designs at probability violation of
3.13%. ANN with tangent-sigmoid (Design ) and affine con-
troller (Design IV) perform the best with 2.38%.

The empirical cumulative distribution functions (CDFs)
for the voltage at node 129, which is the node with the high-
est probability violation using different designs in various
test cases, are depicted in Figs. 5 and 6. The y-axis in Fig. 5
depicts the probability of voltage violation for node 129 be-
ing below the minimum voltage limit (p.u.), i.e., Pr{v,,,<
0.95}. Similarly, the y-axis in Fig. 6 depicts the probability
of voltage violation for node 129 being above the maximum
voltage limit, i.e., Pr{v,,,>1.05}. The x-axis, x, is the volt-
age violation specification in Figs. 5 and 6.

1.0
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0.8+ — Design V
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:/Q‘ 061 No-control
2 05¢f
= 04}
~
0.3+
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oL L L L L L L L L L L a
0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
K
Fig. 5. Empirical CDF of voltage at node 129 for Designs I, III, V, VI,

and no-control for test case B using actual test data (July 31) and upon solv-
ing nonlinear power flows with Z-bus method.

The network-wide voltage profiles using Designs 1, III, V,
and VI with respect to no-control for test cases B and C are
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also shown in Figs. 7 and 8, respectively. The y-axis in Fig.
7 depicts the smallest voltage across the network for each
time period in the x-axis. The duration over which each
curve stays below the horizontal line of 0.95 p.u. corre-
sponds to the voltage probability violation; likewise for Fig.
8 and the over-voltage case.

(1)(9) r ---Design [
’ -+-Design III
0.8} —— Design V
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:‘ 0.6 No control
2305¢
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K

Fig. 6. Empirical CDF of voltage at node 129 for Designs I, III, V, VI,
and no-control for test case C using actual test data (July 31) and upon solv-
ing nonlinear power flows with Z-bus method.
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Fig. 7. Network-wide voltage profile for Designs I, III, V, VI, and no-con-
trol for test case B using actual test data (July 31) and upon solving nonlin-
ear power flows with Z-bus method.
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Fig. 8. Network-wide voltage profile for Designs I, III, V, VI, and no-con-
trol for test case C using actual test data (July 31) and upon solving nonlin-
ear power flows with Z-bus method.

D. Percentage Improvement in Thermal Losses

Table III lists the percent improvement (or reduction) of
average thermal losses under the considered control designs
versus the case where no reactive power control is applied.
The regression-based controllers (Designs III and IV)
achieve the best percent improvement compared with the oth-
er designs. The ANN controllers (Designs I and II) and case-
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based learning (Design V) show similar improvement, only
slightly less than the regression designs. Interestingly, the af-
fine controller (Design VI) performs the worst in terms of
thermal loss improvement, whereby losses have actually in-
creased for test case D.

TABLE III
PERCENTAGE IMPROVEMENT OF AVERAGE THERMAL LOSSES

Test Percentage improvement (%)

case I I 11 v \% VI
A 8.60 8.70 9.96 9.93 8.10 3.88
B 8.21 8.23 9.96 9.92 8.10 0.83
C 13.65 13.84 13.87 14.04 13.50 11.90
D 2.23 2.26 2.51 2.52 1.66 —0.53

Overall, while the regression-based controllers (Designs
IIT and IV) show good thermal loss improvement, they per-
form poorly for under-voltage scenarios, i.e., test cases A
and B. The affine controller (Design VI), on the other hand,
outperforms all the other designs concerning voltage regula-
tion. However, this superior performance comes at the cost
of the poor improvement in average thermal losses. ANN
with ReLU (Design II) results in slightly better improvement
to thermal losses compared with ANN with tangent-sigmoid
(Design 1), but exhibits voltage violation for test case B. The
ANN with tangent-sigmoid controller (Design I) provides a
good middle ground, with low probability of voltage viola-
tions in both under- and over-voltage scenarios, and simulta-
neously achieves large improvement in terms of thermal loss-
es.

V. CONCLUSION

This paper develops a data-driven control based on ANNs
to compute the reactive power setpoints utilizing conserva-
tive convex approximations of chance constraints. The con-
trollers can be implemented in a decentralized fashion, with-
out the need for monitoring and communication infrastruc-
ture. The developed ANN controllers are compared with re-
gression-based ones, as well as optimization approaches fea-
turing affine feedback rules and a case-based learning ap-
proach. ANN controllers turn out to be robust to uncertain-
ties for voltage regulation when compared with other control
polices. In future research, we will focus on extending this
approach considering more types of possible DERs such as
battery energy storage systems and electric vehicles. It is al-
so worth investigating the effect of coordinating different dis-
tribution system assets (e.g., step-voltage regulators and
shunt capacitors) utilizing a stochastic optimization frame-
work combined with data-driven control. Future research
will also look into real-time implementation of the proposed
ANN controllers using hardware-in-loop.
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