
 

  
Abstract— This work challenges the common assumption in 

physical human-robot interaction (pHRI) that the movement 
intention of a human user can be simply modeled with dynamic 
equations relating forces to movements, regardless of the user. 
Studies in physical human-human interaction (pHHI) suggest 
that interaction forces carry sophisticated information that 
reveals motor skills and roles in the partnership and even 
promotes adaptation and motor learning. In this view, simple 
force-displacement equations often used in pHRI studies may 
not be sufficient. To test this, this work measured and analyzed 
the interaction forces (F) between two humans as the leader 
guided the blindfolded follower on a randomly chosen path. The 
actual trajectory of the follower was transformed to the velocity 
commands (V) that would allow a hypothetical robot follower to 
track the same trajectory. Then, possible analytical relationships 
between F and V were obtained using neural network training. 
Results suggest that while F helps predict V, the relationship is 
not straightforward, that seemingly irrelevant components of F 
may be important, that force-velocity relationships are unique to 
each human follower, and that human neural control of 
movement may affect the prediction of the movement intent. It 
is suggested that user-specific, stereotype-free controllers may 
more accurately decode human intent in pHRI. 
 

Index Terms — Human-robot interaction, intention detection, 
interaction forces, neural network 

I. INTRODUCTION 
N the near future, robots are expected to seamlessly interact 
with humans through physical coupling. Such applications 

include patient rehabilitation in physical medicine [1–6], 
surgeon-robot interaction [7], [8], or Wearable robots [9–11]. 
In these physical human-robot interaction (pHRI) tasks, the 
key is for the robot to understand the human partner’s 
movement intention through non-verbal, physical 
communications. A reasonable starting point of interpreting 
the human intent would be through analyzing the interaction 
forces [12]. For example, a push on the robot would be the 
sign of the human operator wanting the robot to move away 
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from him, whereas a pull would be the sign of the opposite 
movement [13]. The assumption is that the movement 
intention of a human user can be simply modeled with 
dynamic equations relating forces to movements. Details of 
the human intent, such as the velocity of the movement or the 
precise direction, are inferred using the forces and the time-
invariant, delay-free, and general (i.e., not user-specific) 
equations of motions of the human-robot pair. This approach 
has been successfully applied in several pHRI studies, 
particularly in partnered dancing [12–14] or during walking 
[15], [16] with a robot. 

On the other hand, evidence from studies in physical 
human-human interaction (pHHI) implies that motor 
communication through interaction forces may be much more 
sophisticated. Between two human partners, physical 
interaction with forces can lead to the distinction of the skill 
levels of the partner [17], leader-follower role assignments 
[18], improved performance without explicitly shared motor 
goals [19], [20], or even motor adaptation between the 
partners [21], [22]. Admitting that humans are much better 
than robots in physical collaboration, cooperation, and 
assistance with another human [23], pHRI robots have the 
potential to be smarter like in pHHI, in which the motor 
communication is more sophisticated and intelligent beyond 
what physics-based dynamic equations allow. 

To this end, the aim of this study is to capture the 
movement intention embedded in the interaction forces in 
pHHI using empirical modeling and to investigate whether 
such interpretation could be general enough to be practical in 
future pHRI applications for guiding a robot [24], [25]. We 
present a pHHI experiment in which the follower needs to 
understand the leader’s intention as the leader guides the 
blindfolded follower in one of four randomly chosen paths. 
Assuming that the interaction forces correctly conveyed the 
information for the follower to stay on the path, the measured 
force profile is mapped onto the speculated movement 
commands issued by the leader using artificial neural 
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networks (NN). The characteristics of the resulting force-
command relationship are then discussed focusing on the 
generalizability and human-specific features.  

II. METHODS 

A. Technical Framework and Approach 
This work is built upon a specific and practical scenario of 

pHHI in which a helper (or the leader) helps a vision-deprived 
person (the follower) to walk on an unknown path (Fig. 1). 
There is no verbal communication; all information and intent 
exchange is done through the physical coupling of hands. As 
the pair move across the room, there will be a constant 
negotiation of non-verbal cues of how each person is 
expecting the other to move. This is measured by a force 
sensor (Mini 45, ATI Industrial Automation, MA, USA) on a 
handle connecting the pair. For simplicity, it is assumed that 
the interaction forces convey the intent of the leader only and 
that the follower simply ‘listens’ to it. This assumption is 
based on the experimental setup that 1) the follower, who is 
blindfolded, is explicitly instructed to follow the guidance of 
the leader, 2) the leader is explicitly instructed to guide the 
follower on a specific path at a relatively constant speed, and 
3) only the leader, and not the follower, knows the exact path. 
Then, if the follower was successful in following the path 
despite being vision-deprived, the interaction forces 
generated by the leader must have conveyed the necessary 
information that the follower can interpret as movement 
commands.  

To decode the interaction forces (F), it is necessary to first 
obtain the movement command. The movement command is 
extracted from the follower’s movement trajectory measured 
by a 3D motion-capture system (Flex 3, Optitrack, OR, USA) 
as follows: It is first assumed that the same interaction force 
profile from the leader is provided to a hypothetical robot 
follower, which is expected to reproduce the human 
follower’s trajectory. In this work, the follower is a 
differential-drive wheeled robot (dr12, Cubictek co. ltd.) with 
a kinematic controller [26–28]. This robot platform has 
kinematic and dynamic constraints that must be adhered to, to 
ensure safety and stability. Guided by the extensive prior 
work on differential drive robot modeling [26], [28], [29] and 
control [30], [31], the movement trajectory can be turned into 
the velocity commands for the robot through a dynamics 
simulator (Virtual Robotics Experimentation Platform, 
VREP) with the kinematic controller gains of k1 = 2, k2 = 2, 
and k3 = 1 [32], [33]. The resulting linear and angular velocity 

profile (V) is regarded to be the movement intent embedded 
in the interaction forces from the human leader. More details 
can be found in [34]. 

Then, multiple considerations are made in order to find the 
mapping from the interaction forces to the movement 
command of a follower (F → V). Currently, there are no 
algorithms that relate human interaction forces to robot 
velocities. Also, the force data contains components that are 
fundamentally different from one another (forces in [N] and 
torques in [Nm]). As a result, the scale of the data varies 
considerably. Further, the mapping algorithm would need to 
take into consideration large amounts of multidimensional 
datasets. This work addresses this problem by using a 
multilayer perceptron artificial Neural Network to capture the 
mapping. If there exists a mapping between the interaction 
forces and the movement command (which there clearly 
should be because the blindfolded follower was successful in 
interpreting the leader’s intent), the NN will be able to capture 
it [35]. In addition to the ability to process a dataset with 
mixed data types, the biomimetic nature of the NN which is 
inherently designed to loosely mimic the function of the 
human nervous system makes a NN a reasonable choice for 
research involving human motor control processes. 

B. Experiment Protocol 
The human participants were recruited under the rules and 

regulations set forth by the CITI Program Human Subjects 
Research protocol, and the entire experimentation process 
was approved by the Institutional Review Board of Missouri 
University of Science and Technology. A designated research 
personnel served as a human leader while a naïve, recruited 
participant was the follower. Together, their task is to jointly 
move on a predefined trajectory that is known only to the 
leader (Fig. 1). The leader’s goal was to guide the trajectory 
of the force handle to be above a chosen trajectory, whereas 
the blindfolded follower was instructed to simply follow the 
guidance provided by the leader. Verbal communication was 
not allowed between the participants. At the start of a trial, the 
human pair held the force handle between them and stood at 
the starting point of the trajectory. Then, from the four 
possible trajectories, only the leader is notified of the specific 
trajectory to guide the follower. These trajectories were 
traversed by the human pair at a moderately slow, constant 
walking speed (approximately 1 m/s). There were no stops, 

 
Fig. 1.  Top view of the pHHI experiment. At each trial, the follower is led 
through one of the four (red, blue, green, or purple) trajectories known only to 
the leader. The actual trajectory of the follower is measured using a 3D 
motion-capture system. 
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XY
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Motion-capture cameras TABLE I 
NEURAL NETWORK TRAINING PARAMETERS 

Parameter Value 
Test fraction 20% 
Neurons per layer 100 
Epochs 3500 
Learning rate 0.001 
Hidden layers 3 
NN inputs 6 inputs, [Fx, Fy, Fz, Tx, Ty, Tz] 
NN outputs 2 outputs, [v, w] 
Validation split 0.2 
Activation function Sigmoid 
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and the motion was generally smooth in the forward direction. 
A total of 24 trials per participant were collected, consisting 
of a random ordering of 6 repetitions of each of the four 
trajectories in Fig. 1. In each trial, the data collected included 
the movement trajectory of the handle and the interaction 
forces and torques between the human pair. There was a total 
of two follower participants in this experiment (2 males, 
average 21.5 years old). 

C. Data Correlation and Neural Network Training 
To investigate if any of the 6 force elements (F = [Fx, Fy, 

Fz, Tx, Ty, Tz]) relate directly to the velocity commands (V = 
[v, w], where v and w are linear and angular velocities, 
respectively), and also to provide an initial qualitative and 
quantitative assessment of the data for the training of the NN, 
marginal distribution plots and Pearson's product-moment 
correlation coefficient (r) were obtained between F and V 
(Fig. 2). However, because no apparent direct correlation 
between any force element to any velocity element was found 

(see Results), a NN mapping was then investigated (Fig. 3). 
The input F with mixed data types ([N] and [Nm]) was 
normalized using the Z-score normalization. Then, the 
parameters in Table I were used with a multilayer perceptron 
trained using backpropagation, whose initial weights were 
randomly assigned. These parameter values were selected 
initially by examining the marginal distribution plots (e.g., 
Fig. 2), Pearson’s correlation coefficient, and raw data 
statistics. The values were refined by experimentation, 
observing the training performance, and tuning values 
accordingly. For a given participant, 80% of the experimental 
data were used as the training set (64% of the total data) and 
the validation set (16% of the total data). The remaining 20% 
of the data were set aside as the testing set, with which the 
performance of the training was addressed. The predicted 
velocity commands (Vp) from the testing set was then 
compared to the actual velocity command (V) to address the 
performance of the NN training. 

D. Research Questions and Analysis 
With the above scenario and technical framework, four 

questions were identified which this research seeks to answer. 
Q0: Are there signatures in the human-human interaction 

force data to infer the appropriate robot velocities - that is, is 
V strongly correlated with F? This question is addressed by 
directly comparing the elements of F to the elements of V 
using Pearson's product-moment correlation coefficient (r) as 
well as qualitatively using marginal distribution plots. This 
analysis is aimed at revealing any direct, intuitive coding of 
human intent in F. In addition, after training the NN for each 
participant, the predicted (Vp) and actual (V) commands are 
compared using the coefficient of determination (R2), where 
R2 = 1 means perfect prediction and R2 < 0 implies that a 
simple average of the data provides a better fit than the NN 
prediction. We considered the coefficient of determination 
above 0.5 to be good. This second analysis is aimed at 
revealing an indirect coding of human intent in F that was not 
apparent in direct comparison. 

Q0-1: A sub-question to Q0 is the following: Do forces and 
moments in certain directions contain most of the human-
robot interaction signature information, such that training the 
neural network with this data alone gives good performance? 
If there are signatures within the six forces/torques to infer the 
velocity command (Q0), perhaps only a subset of the force 
data needs to be used to understand the mapping 
appropriately. Indeed, since the movement trajectory is 2D, it 
is not unreasonable to assume that only forces and moments 
on this 2D plane would contain the movement intention. If 
this hypothesis is supported, it provides the mapping 
algorithm a variety of benefits related to efficiency. The 
analysis method for Q0-1 is identical to the method for Q0. 

Q1: Does the neural network generalize across different 
participants? If a mapping is found to exist between F and V 
for a given participant, how well does that mapping work for 
another participant(s)? This is a way of testing the universality 
of the force-velocity mapping. First, each participant’s data 
are used to obtain the individual participant’s NN (NN1 and 

 
Fig. 2.  Marginal distribution plot with Pearson Correlation Coefficient (r) of 
the interaction force and velocity command components from participant 1’s 
data.  
 

 
Fig. 3.  Schematic of the NN training and testing. Q0: testing of the 
predictability of the velocity commands of each NN trained from the same 
participant’s data. Q1: cross-testing of the velocity command predictability of 
each NN given another participant’s testing data set. 
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NN2, respectively). Then, the testing set of participant 2 is 
provided to NN1. The performance of NN1 in decoding F 
from participant 2 is evaluated using R2. The same is repeated 
for the testing set of participant 1 and NN2. 

Q2: Does F from a near-past better predict the current V 
than the current F does? It is well known that human motor 
control comes with signal delays and processing time from 
the human nervous system in the order of 100 ms [36]. Then, 
it is reasonable to assume that there would be a similar delay 
between the input forces to the output motion during human-
human interaction, and that current velocities may be better 
inferred by past forces. For both of the participants’ data, the 
following time delays were applied: 50, 100, 150, 200, 300 
ms, shifting force inputs early. For each of the five cases, 
individual neural networks were trained for both participants, 
using six-direction force inputs. Then, the performances of 
these NN from time-shifted data were compared to the 
performance of the trained with original data with no time 
offset. This is a way of testing the effect of the nature of the 
human biosystem to the force-velocity mapping. 

III. RESULTS 

A. Raw force statistics and the Controller Performance 
The interaction forces between humans were in the range 

of -24.54-13.18 N (linear forces) and -0.5-0.58 Nm (torque). 

These values are comparable with the force values in another 
pHHI study [17]. Also, the kinematic controller was 
successful in tracking the movement trajectory of the 
follower. In VREP simulation, the dr12 robot with the 
velocity command (V) was able to track the measured 
trajectory of the human follower with a mean squared error of 
only 0.074 m. As expected, the trajectory error decreases 
through the course of each trial as the simulated robot 
followed the velocity command – a known feature of the 
kinematic controller. The linear velocity converged to 
approximately 1.4 m/s which is similar to the average human 
walking speed. Hence, we can regard the velocity commands 
(V) generated by the kinematic controller to reflect the human 
leader’s intention to guide the follower, whether it is a human 
or the dr12 robot. 

B. Interaction Force-to-Velocity Command Mapping 
The marginal distribution plot with Pearson Correlation 

Coefficient, r (Fig. 2), did not show a notable direct 
relationship between an element in F = [Fx, Fy, Fz, Tx, Ty, Tz] 
and an element in the velocity commands, V = [v, w]. The 
highest correlation coefficient observed was 0.26 between Ty 
and v of participant 2. On the other hand, NN training with all 
6 forces and torques as the inputs showed the coefficient of 
determination (R2) between 0.66-0.82 (Fig. 4).  

While this result indicates that there exists some useful 
mapping from forces to velocities, it is possible that not all six 
force/torque inputs may be necessary to obtain a good enough 
prediction of the follower’s velocity. For example, because 

 
Fig. 4.  The actual velocity commands versus the NN-predicted velocities. Left 
column: Participant 1. Right column: Participant 2. Top row: linear velocity 
(v). Bottom row: angular velocity (w). 
 

  
Fig. 5.  The predictability of the NN after training with only three inputs, Fx, 
Fz and Ty. Left column: Participant 1. Right column: Participant 2. Top row: 
linear velocity (v). Bottom row: angular velocity (w). 
 

 
Fig. 6.  Performance of the individual participant’s neural network (NN) 
when used to estimate the velocity commands from another participant’s 
data. Left column: Participant 1’s NN given Participant 2’s data. Right 
column: Participant 2’s NN given Participant 1’s data. Top row: linear 
velocity (v). Bottom row: angular velocity (w). 
  TABLE II 

EFFECT OF TIME SHIFT TO NN PERFORMANCE 

Time shift (ms) 
Participant 1 Participant 2 

R2 of v R2 of w R2 of v R2 of w 
0 (baseline) 0.82 0.79 0.80 0.66 

50 0.69 0.64 0.73 0.67 
100 0.74 0.64 0.80 0.66 
150 0.78 0.71 0.75 0.63 
200 0.85 0.76 0.80 0.75 
300 0.83 0.75 0.81 0.76 

*Gray cells indicate better prediction than baseline. 
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the follower’s trajectory is on the x-z plane, forces and torques 
on this plane (Fx, Fz, and Ty) may possess most of the velocity 
information. However, our NN training with only these three 
inputs showed a much poorer prediction of the velocity 
commands (Fig. 5) with R2 between 0.36-0.54. 

C. Generalizability of the Force-Velocity Mapping 
We tested whether the NN1 trained from the training set 

data of participant 1 could predict the velocity commands of 
the testing set data of participant 2, and vice versa (Fig. 3). In 
contrast to how each NN performed well in estimating the 
velocity commands from each participant’s data, they were 
not able to estimate the velocity commands in another 
participant’s data. For example, NN1 showed a very low 
coefficient of determination (R2 < 0, Fig. 6) given the testing 
set of participant 2. Similarly, NN2 did not predict the 
velocity commands from the testing set of participant 1. This 
is significant given that both participants were interacting 
with the same leader following the same paths and speed. 

D. Effect of Time Shift 
It was found that when the force data preceded the velocity 

data by 200~300 ms, the trained NN performed similar or 
better than the baseline scenario when no time-shift was 
presented (Table II). In particular, in participant 2, the angular 
velocity was better predicted using time-shifted data than the 
baseline. In contrast, time shifts of 50, 100, or 150 ms tended 
to reduce the fit values. 

IV. DISCUSSION 
The crucial consideration in this work is to identify the 

correct velocity commands themselves. Given a measured 2D 
trajectory, one may derive the linear and angular velocities by 
a simple differentiation in time. However, this velocity input 
does not guarantee specific wheeled robot hardware to follow 
the original trajectory. The dynamics of the robot, which is 
affected by many design factors, may steer it off the desired 
path. Hence, instead of simple differentiation of a trajectory, 
it is more logical to derive the velocity command for a specific 
robot that is proven to generate the desired trajectory for that 
robot - in this case, through the kinematic controller and 
VREP simulation. 

The results imply that, while there is not a direct 
relationship between the elements of F and those of V, the 
interaction forces as a whole encode the leader’s movement 
intent (Q0 in section II.D). The low r in direct comparison 
(Fig. 2) suggests that there is no simple and obvious 
relationship exists between a force in a specific direction and 
the velocities, contrary to intuition. For example, forward 
force (Fx) was not correlated with the forward movement (v). 
Similarly, turning torque (Ty) was not correlated with the 
turning movement (w). The seemingly obvious kinematic 
relationships between F and V did not hold. However, this 
relationship was, in fact, deeply embedded within the 
interaction forces, such that it was revealed only after the NN 
training. With interaction forces as inputs, the NN was able to 
predict the velocity commands reasonably well (R2 > 0.66). 

The result in Fig. 5 implies that the seemingly irrelevant Fy, 

Tx, and Tz are necessary to predict the leader’s intent well (Q0-
1 in section II.D). It is thus suggested that all six forces and 
torques be used as the inputs for the trajectory control of a 
future mobile robot without prematurely assuming that some 
force or torque components do not matter. 

The generalizability result in Fig. 6 implies that the trained 
NNs are specific to the participant of the dataset it is trained 
with, further implying that each participant may be unique in 
how they interpret the interaction forces to determine their 
movement (Q1 in section II.D). Even though both participants 
had a common leader as well as the fact that their movement 
trajectories were similar, the force-velocity relationship may 
be highly individualized. From the perspective of developing 
a robot to guide a human follower through force, the guidance 
strategy should be user-specific and may not be generalized. 
The robot must be informed of the change of users if it occurs 
and should be able to adapt to that by switching to the user-
specific guidance strategy. 

the results in Table II may be interpreted as a possible 
opportunity to improve the NN prediction of velocities (Q2 in 
section II.D). Despite that 1) the length of the time-shifted 
data was shorter than the length of the data for baseline NN 
training, and 2) the NN parameters in Table I were tailored 
for the no-shift data and not the time-shifted data, the 
performance of the NN trained with 200~300 ms shifted data 
were at least comparable with the performance of the NN in 
Fig. 4 in predicting V (Table II). While the presented result is 
only from two participants, it is consistent with the widely 
known characteristics of human-in-the-loop control. It further 
suggests that it may be beneficial for the robot to consider the 
inevitable delay in human neuro-mechanics while interpreting 
the interaction forces imposed by humans. 

It is noted that the analyses and interpretations in this work 
assume that the interaction force profiles are determined by 
the leader. While this assumption may be reasonable in this 
work as mentioned earlier, it is also important to note that in 
general, the effect from the follower’s reaction cannot be fully 
neglected. For example, the mechanical impedance of the 
arms of both the leader and the follower affect the force 
profile. This may be the reason behind the non-
generalizability of the NN mapping in different follower 
participants. For this reason, future robots for pHRI may 
benefit from human-like dynamic characteristics, such as a 
robot arm that matches the low human arm stiffness for 
sensing small interaction forces [37]. 

In this experiment, it was entirely up to the leader to ensure 
that the follower was on the correct trajectory. The 
blindfolded followers could not receive any visual feedback 
on how ‘good’ their trajectory was, neither during nor after a 
trial. However, in future pHRI applications where the 
follower could also adapt, the individual differences may not 
become as relevant. Indeed, in [17], pairs of expert dancers 
adapted to their partners as the experiment progressed. While 
this work did not analyze the existence of learning, future 
experiments may investigate the possible convergence of the 
guidance strategies (such as NN1 and NN2) when both the 
leader and the follower are allowed to learn and adapt. 
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V. SUMMARY AND CONCLUSION 
This work was motivated by the ability of humans to 

effectively interact with another human through physical 
coupling that is beyond what simple kinematics or dynamic 
equations can explain. By studying how humans interact with 
one another in an overground physical human-human 
interaction task, notable implications were found regarding 
using interaction forces to design future interactive robots to 
follow a human’s lead. These include the need to interpret the 
interaction forces in an integrated manner (for example, by 
using a NN and including all directions of forces without 
stereotype), the need for a personalized decoder, and the 
possible improvement in interpreting human intent using 
near-past interaction forces. Together, these results suggest 
important features to incorporate in designing physical 
medicine robots that have human-like interaction. 
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