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Guiding a Human Follower with Interaction Forces:
Implications on Physical Human-Robot Interaction

George L. Holmes, Jr., Keyri Moreno Bonnett, Amy Costa, Devin Burns, and Yun Seong Song,
Member, IEEE

Abstract— This work challenges the common assumption in
physical human-robot interaction (pHRI) that the movement
intention of a human user can be simply modeled with dynamic
equations relating forces to movements, regardless of the user.
Studies in physical human-human interaction (pHHI) suggest
that interaction forces carry sophisticated information that
reveals motor skills and roles in the partnership and even
promotes adaptation and motor learning. In this view, simple
force-displacement equations often used in pHRI studies may
not be sufficient. To test this, this work measured and analyzed
the interaction forces (F) between two humans as the leader
guided the blindfolded follower on a randomly chosen path. The
actual trajectory of the follower was transformed to the velocity
commands (V) that would allow a hypothetical robot follower to
track the same trajectory. Then, possible analytical relationships
between F and V were obtained using neural network training.
Results suggest that while F helps predict V, the relationship is
not straightforward, that seemingly irrelevant components of F
may be important, that force-velocity relationships are unique to
each human follower, and that human neural control of
movement may affect the prediction of the movement intent. It
is suggested that user-specific, stereotype-free controllers may
more accurately decode human intent in pHRI.

Index Terms — Human-robot interaction, intention detection,
interaction forces, neural network

I. INTRODUCTION

N the near future, robots are expected to seamlessly interact

with humans through physical coupling. Such applications
include patient rehabilitation in physical medicine [1-6],
surgeon-robot interaction [7], [8], or Wearable robots [9-11].
In these physical human-robot interaction (pHRI) tasks, the
key is for the robot to understand the human partner’s
movement intention through non-verbal, physical
communications. A reasonable starting point of interpreting
the human intent would be through analyzing the interaction
forces [12]. For example, a push on the robot would be the
sign of the human operator wanting the robot to move away

Manuscript submitted on January 24, 2022. This work was supported in
part by the National Science Foundation under Grant #1843892.

George L. Holmes, Jr. was with Missouri University of Science and
Technology, Rolla, MO 65409 USA. He is currently with Hire Henry, Rolla,
MO USA (g.leno.holmes@gmail.com).

Keyri Moreno Bonnett was with Missouri University of Science and
Technology, Rolla, MO 65409 USA. She is currently with Hire Henry, Rolla,
MO USA (knm222(@mst.edu).

Amy Costa was with Missouri University of Science and Technology,
Rolla, MO 65409 USA. She is currently with the Department of

from him, whereas a pull would be the sign of the opposite
movement [13]. The assumption is that the movement
intention of a human user can be simply modeled with
dynamic equations relating forces to movements. Details of
the human intent, such as the velocity of the movement or the
precise direction, are inferred using the forces and the time-
invariant, delay-free, and general (i.e., not user-specific)
equations of motions of the human-robot pair. This approach
has been successfully applied in several pHRI studies,
particularly in partnered dancing [12—-14] or during walking
[15], [16] with a robot.

On the other hand, evidence from studies in physical
human-human interaction (pHHI) implies that motor
communication through interaction forces may be much more
sophisticated. Between two human partners, physical
interaction with forces can lead to the distinction of the skill
levels of the partner [17], leader-follower role assignments
[18], improved performance without explicitly shared motor
goals [19], [20], or even motor adaptation between the
partners [21], [22]. Admitting that humans are much better
than robots in physical collaboration, cooperation, and
assistance with another human [23], pHRI robots have the
potential to be smarter like in pHHI, in which the motor
communication is more sophisticated and intelligent beyond
what physics-based dynamic equations allow.

To this end, the aim of this study is to capture the
movement intention embedded in the interaction forces in
pHHI using empirical modeling and to investigate whether
such interpretation could be general enough to be practical in
future pHRI applications for guiding a robot [24], [25]. We
present a pHHI experiment in which the follower needs to
understand the leader’s intention as the leader guides the
blindfolded follower in one of four randomly chosen paths.
Assuming that the interaction forces correctly conveyed the
information for the follower to stay on the path, the measured
force profile is mapped onto the speculated movement
commands issued by the leader using artificial neural
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Fig. 1. Top view of the pHHI experiment. At each trial, the follower is led
through one of the four (red, blue, green, or purple) trajectories known only to
the leader. The actual trajectory of the follower is measured using a 3D
motion-capture system.

networks (NN). The characteristics of the resulting force-
command relationship are then discussed focusing on the
generalizability and human-specific features.

II. METHODS

A. Technical Framework and Approach

This work is built upon a specific and practical scenario of
pHHI in which a helper (or the leader) helps a vision-deprived
person (the follower) to walk on an unknown path (Fig. 1).
There is no verbal communication; all information and intent
exchange is done through the physical coupling of hands. As
the pair move across the room, there will be a constant
negotiation of non-verbal cues of how each person is
expecting the other to move. This is measured by a force
sensor (Mini 45, ATI Industrial Automation, MA, USA) on a
handle connecting the pair. For simplicity, it is assumed that
the interaction forces convey the intent of the leader only and
that the follower simply ‘listens’ to it. This assumption is
based on the experimental setup that 1) the follower, who is
blindfolded, is explicitly instructed to follow the guidance of
the leader, 2) the leader is explicitly instructed to guide the
follower on a specific path at a relatively constant speed, and
3) only the leader, and not the follower, knows the exact path.
Then, if the follower was successful in following the path
despite being vision-deprived, the interaction forces
generated by the leader must have conveyed the necessary
information that the follower can interpret as movement
commands.

To decode the interaction forces (F), it is necessary to first
obtain the movement command. The movement command is
extracted from the follower’s movement trajectory measured
by a 3D motion-capture system (Flex 3, Optitrack, OR, USA)
as follows: It is first assumed that the same interaction force
profile from the leader is provided to a hypothetical robot
follower, which is expected to reproduce the human
follower’s trajectory. In this work, the follower is a
differential-drive wheeled robot (dr12, Cubictek co. 1td.) with
a kinematic controller [26-28]. This robot platform has
kinematic and dynamic constraints that must be adhered to, to
ensure safety and stability. Guided by the extensive prior
work on differential drive robot modeling [26], [28], [29] and
control [30], [31], the movement trajectory can be turned into
the velocity commands for the robot through a dynamics
simulator (Virtual Robotics Experimentation Platform,
VREP) with the kinematic controller gains of k1 =2, k2 =2,
and k3 =1[32], [33]. The resulting linear and angular velocity

TABLEI
NEURAL NETWORK TRAINING PARAMETERS

Parameter Value
Test fraction 20%
Neurons per layer 100
Epochs 3500
Learning rate 0.001

Hidden layers 3

NN inputs 6 inputs, [Fy, Fy, Fy, Ty, Ty, T]
NN outputs 2 outputs, [v, w]
Validation split 0.2

Activation function Sigmoid

profile (V) is regarded to be the movement intent embedded
in the interaction forces from the human leader. More details
can be found in [34].

Then, multiple considerations are made in order to find the
mapping from the interaction forces to the movement
command of a follower (F — V). Currently, there are no
algorithms that relate human interaction forces to robot
velocities. Also, the force data contains components that are
fundamentally different from one another (forces in [N] and
torques in [Nm]). As a result, the scale of the data varies
considerably. Further, the mapping algorithm would need to
take into consideration large amounts of multidimensional
datasets. This work addresses this problem by using a
multilayer perceptron artificial Neural Network to capture the
mapping. If there exists a mapping between the interaction
forces and the movement command (which there clearly
should be because the blindfolded follower was successful in
interpreting the leader’s intent), the NN will be able to capture
it [35]. In addition to the ability to process a dataset with
mixed data types, the biomimetic nature of the NN which is
inherently designed to loosely mimic the function of the
human nervous system makes a NN a reasonable choice for
research involving human motor control processes.

B. Experiment Protocol

The human participants were recruited under the rules and
regulations set forth by the CITI Program Human Subjects
Research protocol, and the entire experimentation process
was approved by the Institutional Review Board of Missouri
University of Science and Technology. A designated research
personnel served as a human leader while a naive, recruited
participant was the follower. Together, their task is to jointly
move on a predefined trajectory that is known only to the
leader (Fig. 1). The leader’s goal was to guide the trajectory
of the force handle to be above a chosen trajectory, whereas
the blindfolded follower was instructed to simply follow the
guidance provided by the leader. Verbal communication was
not allowed between the participants. At the start of a trial, the
human pair held the force handle between them and stood at
the starting point of the trajectory. Then, from the four
possible trajectories, only the leader is notified of the specific
trajectory to guide the follower. These trajectories were
traversed by the human pair at a moderately slow, constant
walking speed (approximately 1 m/s). There were no stops,
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Fig. 2. Marginal distribution plot with Pearson Correlation Coefficient (r) of
the interaction force and velocity command components from participant 1’s
data.
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and the motion was generally smooth in the forward direction.
A total of 24 trials per participant were collected, consisting
of a random ordering of 6 repetitions of each of the four
trajectories in Fig. 1. In each trial, the data collected included
the movement trajectory of the handle and the interaction
forces and torques between the human pair. There was a total
of two follower participants in this experiment (2 males,
average 21.5 years old).

C. Data Correlation and Neural Network Training

To investigate if any of the 6 force elements (F = [F, Fy,
F,, Ty, Ty, T;]) relate directly to the velocity commands (V=
[v, w], where v and w are linear and angular velocities,
respectively), and also to provide an initial qualitative and
quantitative assessment of the data for the training of the NN,
marginal distribution plots and Pearson's product-moment
correlation coefficient (r) were obtained between F and V
(Fig. 2). However, because no apparent direct correlation
between any force element to any velocity element was found

(see Results), a NN mapping was then investigated (Fig. 3).
The input F with mixed data types ([N] and [Nm]) was
normalized using the Z-score normalization. Then, the
parameters in Table I were used with a multilayer perceptron
trained using backpropagation, whose initial weights were
randomly assigned. These parameter values were selected
initially by examining the marginal distribution plots (e.g.,
Fig. 2), Pearson’s correlation coefficient, and raw data
statistics. The values were refined by experimentation,
observing the training performance, and tuning values
accordingly. For a given participant, 80% of the experimental
data were used as the training set (64% of the total data) and
the validation set (16% of the total data). The remaining 20%
of the data were set aside as the testing set, with which the
performance of the training was addressed. The predicted
velocity commands (V,) from the testing set was then
compared to the actual velocity command (V) to address the
performance of the NN training.

D. Research Questions and Analysis

With the above scenario and technical framework, four
questions were identified which this research seeks to answer.

QO: Are there signatures in the human-human interaction
force data to infer the appropriate robot velocities - that is, is
V strongly correlated with F? This question is addressed by
directly comparing the elements of F to the elements of V'
using Pearson's product-moment correlation coefficient (r) as
well as qualitatively using marginal distribution plots. This
analysis is aimed at revealing any direct, intuitive coding of
human intent in F. In addition, after training the NN for each
participant, the predicted (¥}) and actual (V) commands are
compared using the coefficient of determination (R?), where
R? = 1 means perfect prediction and R? < 0 implies that a
simple average of the data provides a better fit than the NN
prediction. We considered the coefficient of determination
above 0.5 to be good. This second analysis is aimed at
revealing an indirect coding of human intent in F that was not
apparent in direct comparison.

QO0-1: A sub-question to QO is the following: Do forces and
moments in certain directions contain most of the human-
robot interaction signature information, such that training the
neural network with this data alone gives good performance?
If there are signatures within the six forces/torques to infer the
velocity command (QO), perhaps only a subset of the force
data needs to be used to understand the mapping
appropriately. Indeed, since the movement trajectory is 2D, it
is not unreasonable to assume that only forces and moments
on this 2D plane would contain the movement intention. If
this hypothesis is supported, it provides the mapping
algorithm a variety of benefits related to efficiency. The
analysis method for QO-1 is identical to the method for QO.

Q1: Does the neural network generalize across different
participants? If a mapping is found to exist between F and V'
for a given participant, how well does that mapping work for
another participant(s)? This is a way of testing the universality
of the force-velocity mapping. First, each participant’s data
are used to obtain the individual participant’s NN (NN1 and
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Fig. 4. The actual velocity commands versus the NN-predicted velocities. Left
column: Participant 1. Right column: Participant 2. Top row: linear velocity
(v). Bottom row: angular velocity (w).
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Fig. 5. The predictability of the NN after training with only three inputs, Fy,
F, and Ty. Left column: Participant 1. Right column: Participant 2. Top row:
linear velocity (v). Bottom row: angular velocity (w).

NN2, respectively). Then, the testing set of participant 2 is
provided to NN1. The performance of NNI1 in decoding F
from participant 2 is evaluated using R?. The same is repeated
for the testing set of participant 1 and NN2.

Q2: Does F from a near-past better predict the current V'
than the current F does? It is well known that human motor
control comes with signal delays and processing time from
the human nervous system in the order of 100 ms [36]. Then,
it is reasonable to assume that there would be a similar delay
between the input forces to the output motion during human-
human interaction, and that current velocities may be better
inferred by past forces. For both of the participants’ data, the
following time delays were applied: 50, 100, 150, 200, 300
ms, shifting force inputs early. For each of the five cases,
individual neural networks were trained for both participants,
using six-direction force inputs. Then, the performances of
these NN from time-shifted data were compared to the
performance of the trained with original data with no time
offset. This is a way of testing the effect of the nature of the
human biosystem to the force-velocity mapping.

III. RESULTS

A. Raw force statistics and the Controller Performance

The interaction forces between humans were in the range
of -24.54-13.18 N (linear forces) and -0.5-0.58 Nm (torque).
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Fig. 6. Performance of the individual participant’s neural network (NN)
when used to estimate the velocity commands from another participant’s
data. Left column: Participant 1’s NN given Participant 2’s data. Right
column: Participant 2’s NN given Participant 1’s data. Top row: linear
velocity (v). Bottom row: angular velocity (w).

TABLEII
EFFECT OF TIME SHIFT TO NN PERFORMANCE

. . Participant 1 Participant 2
Time shift (ms)
R?of v R?of w R?of v R?ofw
0 (baseline) 0.82 0.79 0.80 0.66
50 0.69 0.64 0.73 0.67
100 0.74 0.64 0.80 0.66
150 0.78 0.71 0.75 0.63
200 0.85 0.76 0.80 0.75
300 0.83 0.75 0.81 0.76

*QGray cells indicate better prediction than baseline.

These values are comparable with the force values in another
pHHI study [17]. Also, the kinematic controller was
successful in tracking the movement trajectory of the
follower. In VREP simulation, the drl2 robot with the
velocity command (V) was able to track the measured
trajectory of the human follower with a mean squared error of
only 0.074 m. As expected, the trajectory error decreases
through the course of each trial as the simulated robot
followed the velocity command — a known feature of the
kinematic controller. The linear velocity converged to
approximately 1.4 m/s which is similar to the average human
walking speed. Hence, we can regard the velocity commands
(V) generated by the kinematic controller to reflect the human
leader’s intention to guide the follower, whether it is a human
or the dr12 robot.

B. Interaction Force-to-Velocity Command Mapping

The marginal distribution plot with Pearson Correlation
Coefficient, r (Fig. 2), did not show a notable direct
relationship between an element in F = [Fx, Fy, F,, Tx, Ty, T;]
and an element in the velocity commands, V = [v, w]. The
highest correlation coefficient observed was 0.26 between 7Ty,
and v of participant 2. On the other hand, NN training with all
6 forces and torques as the inputs showed the coefficient of
determination (R?) between 0.66-0.82 (Fig. 4).

While this result indicates that there exists some useful
mapping from forces to velocities, it is possible that not all six
force/torque inputs may be necessary to obtain a good enough
prediction of the follower’s velocity. For example, because

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on August 01,2023 at 22:06:04 UTC from IEEE Xplore. Restrictions apply.



the follower’s trajectory is on the x-z plane, forces and torques
on this plane (Fx, F7, and Ty) may possess most of the velocity
information. However, our NN training with only these three
inputs showed a much poorer prediction of the velocity
commands (Fig. 5) with R? between 0.36-0.54.

C. Generalizability of the Force-Velocity Mapping

We tested whether the NN1 trained from the training set
data of participant 1 could predict the velocity commands of
the testing set data of participant 2, and vice versa (Fig. 3). In
contrast to how each NN performed well in estimating the
velocity commands from each participant’s data, they were
not able to estimate the velocity commands in another
participant’s data. For example, NN1 showed a very low
coefficient of determination (R*< 0, Fig. 6) given the testing
set of participant 2. Similarly, NN2 did not predict the
velocity commands from the testing set of participant 1. This
is significant given that both participants were interacting
with the same leader following the same paths and speed.

D. Effect of Time Shift

It was found that when the force data preceded the velocity
data by 200~300 ms, the trained NN performed similar or
better than the baseline scenario when no time-shift was
presented (Table II). In particular, in participant 2, the angular
velocity was better predicted using time-shifted data than the
baseline. In contrast, time shifts of 50, 100, or 150 ms tended
to reduce the fit values.

IV. DISCUSSION

The crucial consideration in this work is to identify the
correct velocity commands themselves. Given a measured 2D
trajectory, one may derive the linear and angular velocities by
a simple differentiation in time. However, this velocity input
does not guarantee specific wheeled robot hardware to follow
the original trajectory. The dynamics of the robot, which is
affected by many design factors, may steer it off the desired
path. Hence, instead of simple differentiation of a trajectory,
itis more logical to derive the velocity command for a specific
robot that is proven to generate the desired trajectory for that
robot - in this case, through the kinematic controller and
VREP simulation.

The results imply that, while there is not a direct
relationship between the elements of F and those of ¥, the
interaction forces as a whole encode the leader’s movement
intent (QO in section I.D). The low 7 in direct comparison
(Fig. 2) suggests that there is no simple and obvious
relationship exists between a force in a specific direction and
the velocities, contrary to intuition. For example, forward
force (Fx) was not correlated with the forward movement (v).
Similarly, turning torque (7y) was not correlated with the
turning movement (w). The seemingly obvious kinematic
relationships between F and V did not hold. However, this
relationship was, in fact, deeply embedded within the
interaction forces, such that it was revealed only after the NN
training. With interaction forces as inputs, the NN was able to
predict the velocity commands reasonably well (R? > 0.66).

The result in Fig. 5 implies that the seemingly irrelevant Fy,

T, and T, are necessary to predict the leader’s intent well (QO-
1 in section II.D). It is thus suggested that all six forces and
torques be used as the inputs for the trajectory control of a
future mobile robot without prematurely assuming that some
force or torque components do not matter.

The generalizability result in Fig. 6 implies that the trained
NN are specific to the participant of the dataset it is trained
with, further implying that each participant may be unique in
how they interpret the interaction forces to determine their
movement (Q1 in section I1.D). Even though both participants
had a common leader as well as the fact that their movement
trajectories were similar, the force-velocity relationship may
be highly individualized. From the perspective of developing
a robot to guide a human follower through force, the guidance
strategy should be user-specific and may not be generalized.
The robot must be informed of the change of users if it occurs
and should be able to adapt to that by switching to the user-
specific guidance strategy.

the results in Table II may be interpreted as a possible
opportunity to improve the NN prediction of velocities (Q2 in
section II1.D). Despite that 1) the length of the time-shifted
data was shorter than the length of the data for baseline NN
training, and 2) the NN parameters in Table I were tailored
for the no-shift data and not the time-shifted data, the
performance of the NN trained with 200~300 ms shifted data
were at least comparable with the performance of the NN in
Fig. 4 in predicting V' (Table II). While the presented result is
only from two participants, it is consistent with the widely
known characteristics of human-in-the-loop control. It further
suggests that it may be beneficial for the robot to consider the
inevitable delay in human neuro-mechanics while interpreting
the interaction forces imposed by humans.

It is noted that the analyses and interpretations in this work
assume that the interaction force profiles are determined by
the leader. While this assumption may be reasonable in this
work as mentioned earlier, it is also important to note that in
general, the effect from the follower’s reaction cannot be fully
neglected. For example, the mechanical impedance of the
arms of both the leader and the follower affect the force
profile. This may be the reason behind the non-
generalizability of the NN mapping in different follower
participants. For this reason, future robots for pHRI may
benefit from human-like dynamic characteristics, such as a
robot arm that matches the low human arm stiffness for
sensing small interaction forces [37].

In this experiment, it was entirely up to the leader to ensure
that the follower was on the correct trajectory. The
blindfolded followers could not receive any visual feedback
on how ‘good’ their trajectory was, neither during nor after a
trial. However, in future pHRI applications where the
follower could also adapt, the individual differences may not
become as relevant. Indeed, in [17], pairs of expert dancers
adapted to their partners as the experiment progressed. While
this work did not analyze the existence of learning, future
experiments may investigate the possible convergence of the
guidance strategies (such as NN1 and NN2) when both the
leader and the follower are allowed to learn and adapt.
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V. SUMMARY AND CONCLUSION

This work was motivated by the ability of humans to
effectively interact with another human through physical
coupling that is beyond what simple kinematics or dynamic
equations can explain. By studying how humans interact with
one another in an overground physical human-human
interaction task, notable implications were found regarding
using interaction forces to design future interactive robots to
follow a human’s lead. These include the need to interpret the
interaction forces in an integrated manner (for example, by
using a NN and including all directions of forces without
stereotype), the need for a personalized decoder, and the
possible improvement in interpreting human intent using
near-past interaction forces. Together, these results suggest
important features to incorporate in designing physical
medicine robots that have human-like interaction.
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