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A B S T R A C T

With the growing adoption of renewable energy resources in the power grid, co-optimizing the operation
of water and power distribution networks (WDNs and PDNs) increases the flexibility of both systems. The
optimal water power flow problem (OWPF) is formulated to manage resource utilization across the WDNs
and multi-phase PDNs. The nonlinear WDN hydraulic constraints and PDN ac power flow equations render
the OWPF problem nonconvex. This paper formulates a convex optimal water power flow (C-OWPF) problem
adopting successive approximations in WDNs and branch-flow relaxations in PDNs. The C-OWPF problem
is a mixed-integer semidefinite program, which is computationally challenging even for small instances.
Additionally, privacy considerations of WDN and PDN operators motivate the need for solving the C-OWPF in
a distributed fashion. This paper develops a C-OWPF solver based on Benders decomposition that overcomes
computational complexity challenges and preserve the privacy of the respective operators. The merits of the
Benders decomposition-based solver are demonstrated on the IEEE 4-bus PDN coupled with a 3-node WDN
and the IEEE 123-bus PDN coupled with the 36-node WDN.
1. Introduction

Power distribution networks (PDNs) and water distribution net-
works (WDNs) are interdependent critical infrastructures, although
traditionally operated independently. The physical coupling is due to
the significant electrical load presented by water pumps, which provide
the necessary pressure for the water to be delivered at the points of con-
sumption [1]. The optimal water-power flow (OWPF) problem aims at
ointly managing resources at both networks, ranging from distributed
nergy resources at PDNs to pumps and tanks at WDNs. Benefits include
nergy conservation and reliability of power and water delivery. The
WPF is a challenging optimization problem due to the nonconvexities
f the power flow equations, and the hydraulics governing water flows
n pipes and pumps. A collaborative effort between PDN and WDN
perators provides an excellent opportunity to reduce peak energy
emand, thereby minimizing both active power losses and violations
f PDN security constraints such as voltage limits [2,3].
The joint management of WDNs and PDNs has been investigated

in e.g., [3–7] and references therein. The majority of existing works
such as [5–7] deal with single-phase PDN models. Furthermore, solving
he OWPF problem in a centralized fashion poses data organization
nd privacy concerns in addition to increasing computational burden.

✩ This work is supported by the U.S. NSF Grant CAREER-1847125.
∗ Corresponding author.
E-mail addresses: krishnasandeep.ayyagari@utsa.edu (K.S. Ayyagari), nikolaos.gatsis@utsa.edu (N. Gatsis).

To address the aforementioned issues, [6,7] develop distributed algo-
rithms for joint management of WDNs and single-phase PDNs. Most
importantly, it is necessary to model pump scheduling in multi-phase
power distribution networks because the pumps in WDNs are connected
to multi-phase induction motors that operate in an unbalanced man-
ner [8] due to unbalanced voltage conditions on the motor side [9] or
mechanical defects within the pump.

Favorable computation times have been reported for the branch-
flow model with semidefinite programming (BFM-SDP) to solve multi-
phase optimal power flow problems (OPF) with a few thousand nodes
[10,11]. However, solving multi-period SDPs with discrete decision
variables remains a significant computational challenge, as has been
reported in the literature; see e.g., [12]. The present work is concerned
with such hard optimization problems arising from WDN pump on/off
scheduling in multi-phase PDNs.

To the best of our knowledge, no existing approaches consider
WDNs integrated with multi-phase PDNs, with the exception of the
work in [4]. In the latter, the pump on/off schedules and water flow
directions are assumed known a priori, which eliminates the com-
binatorial aspects of the problem. In addition, the pump head loss
is modeled as linear, which lends itself to computational efficiency
advantages, though the physics dictate polynomial or power laws.
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Fig. 1. Power (left) and water (right) distribution networks.

Our previous work on WDN operations [13,14] has contributed
inearizations through novel monomial approximations of the WDN
ydraulics, and the coupling with the PDNs incorporating pump opera-
ions in WDNs using integer variables is explored in [2]. Moreover, [2]
mitted multi-phase PDNs, and the OWPF problem is solved as a mixed-
nteger quadratically constrained quadratic program (MIQCQP) in a
entralized fashion.
The contributions of this paper are as follows: (1) We expand our

revious work in [2] to multi-phase PDNs formulating and approach-
ing the OWPF in an effort to lift certain limitations in the existing
literature. Specifically, the on/off scheduling of pumps is modeled
using appropriate binary variables and is coupled with the BFM-SDP
relaxation for the three-phase OPF. By applying the recent monomial
approximations to the nonlinear hydraulics and dropping the SDP
rank-1 constraints for the OPF, the overall formulation amounts to
a mixed-integer semidefinite programming problem called C-OWPF.
(2) To ensure privacy and simultaneously respect the interdependen-
cies between WDNs and PDNs, an efficient solver based on Benders
decomposition is developed. The problem separation provides an at-
tractive approach to integrate the binary decision variables of WDNs
in the OPF and sidesteps the intractability issues with mixed-integer
semidefinite programming. Specifically, the resulting master problem
is solved by the WDN operator yielding mixed-integer linear program-
ming formulations. The subproblem is an SDP problem that pertains
to the PDN operator, but does not include binary variables. (3) The
Benders-based C-OWPF solver is assessed in terms of joint objective im-
provements compared to a traditional rule-based decoupled approach
implemented in the benchmark WDN analysis software EPANET [15].
(4) The Benders-based C-OWPF solver is also compared to a centralized
C-OWPF solver which adopts the LinDist3Flow approximation of the
power flow equations. The performance of the Benders-based C-OWPF
solver in terms of accuracy and feasibility of the nonlinear hydraulics
and power flows is analyzed as well. The IEEE 123-bus PDN is coupled
with a 36-node WDN to this end.

The organization of the paper is given next. Section 2 discusses the
modeling of WDNs and PDNs and the formulation of MISDP-based C-
OWPF problem. Section 3 presents the proposed Benders-based solver.
The simulation results are presented in Section 4, and the conclusions
are drawn in Section 5.

2. WDN and PDN models

This section details the mathematical models for water and power
distribution networks as shown in Fig. 1. In this section, we first
describe the nonconvex optimal water flow problem (OWF) and apply
successive approximations techniques leveraging our works [2], [13],
and [14] to convexify the problem. We then adopt the BFM-SDP relax-
ation [10] for unbalanced distribution networks considering inverter-
interfaced photovoltaic resources (PVs) and formulate the multi-period
OWPF problem.
2

v

Water Distribution Network Model: The WDN is modeled by a
directed graph (M,L) where M = {0,… ,𝑀} is a set of 𝑀 + 1 nodes
with M = J ⋃R⋃K, and J , R, and K respectively denote sets of
junctions, reservoirs, and tanks. Let L ⊆ M × M be the set of links
connecting the nodes partitioned as L = P ⋃W , where P and W
espectively denote the sets of pumps and pipes. Also, in this work, we
ssume that the pumps are connected to fixed-speed motors, i.e., they
re fixed-speed pumps (FSPs) with constant wire-to-water efficiency
ww
𝑖𝑗 .
The WDN operation is optimized over a horizon T = {1,… , 𝑇 }, with

representing the time interval between two consecutive time periods.
t is worth noting that the optimization problem yields the directions of
ater flow in pipes. Next, we present the mathematical model of WDN
perational constraints for 𝑡 ∈ T :
∑

𝑖∶𝑖𝑗∈L
𝑓𝑖𝑗,𝑡 −

∑

𝑘∶𝑗𝑘∈L
𝑓𝑗𝑘,𝑡 = 𝑑𝑗,𝑡, 𝑗 ∈ J (1a)

ℎ𝑖,𝑡 − ℎ𝑗,𝑡 = 𝐴𝑖𝑗 |𝑓𝑖𝑗,𝑡|
𝜇−1𝑓𝑖𝑗,𝑡, 𝑖𝑗 ∈ W (1b)

ℎ𝑘,𝑡 = ℎ𝑘,𝑡−1 +
𝛿𝑡
𝐴𝑘

(

∑

𝑖∶𝑖𝑘∈L
𝑓𝑖𝑘,𝑡 −

∑

𝑗∶𝑗𝑘∈L
𝑓𝑗𝑘,𝑡

)

, 𝑘 ∈ K (1c)

ℎ𝑖,𝑡 − ℎ𝑗,𝑡 =

{

−(ℎ0,𝑖𝑗 − 𝜎𝑖𝑗𝑓
𝜈𝑖𝑗
𝑖𝑗,𝑡), if 𝑥𝑖𝑗,𝑡 = 1

unconstrained, if 𝑥𝑖𝑗,𝑡 = 0, 𝑖𝑗 ∈ P

}

(1d)

𝑓𝑖𝑗,min 𝑥𝑖𝑗,𝑡 ≤ 𝑓𝑖𝑗,𝑡 ≤ 𝑓𝑖𝑗,max 𝑥𝑖𝑗,𝑡, 𝑖𝑗 ∈ P (1e)

𝑝pump
𝑖𝑗,𝑡 =

𝜌𝑔
𝜂ww𝑖𝑗,𝑡

|ℎ𝑖,𝑡 − ℎ𝑗,𝑡|𝑓𝑖𝑗,𝑡, 𝑖𝑗 ∈ P (1f)

ℎ𝑖,𝑡 = ℎR𝑖 , 𝑖 ∈ R (1g)

ℎ𝑗,min ≤ ℎ𝑗,𝑡 ≤ ℎ𝑗,max, 𝑗 ∈ J ,K (1h)

Constraint (1a) enforces the mass conservation at junction 𝑗 ∈
J at time 𝑡, where 𝑑𝑗,𝑡 is the estimated water demand at time 𝑡.
Constraint (1b) formulates the head loss in pipe 𝑖𝑗 ∈ P𝑝 which is
approximated by the empirical Hazen–Williams equation [15], where
𝐴𝑖𝑗 = 4.727𝐶−1.852

𝑖𝑗 𝑑−4.871𝑖𝑗 𝑙𝑖𝑗 ; 𝑑𝑖𝑗 and 𝑙𝑖𝑗 are respectively the diameter
and length of a circular pipe; 𝐶𝑖𝑗 is the Hazen–Williams roughness
oefficient (unitless); 𝜇 is the flow exponent; and 𝑓𝑖𝑗,𝑡 is the volumetric
low rate through pipe 𝑖𝑗 ∈ W . Constraint (1c) models the water tank
ead dynamics for tank 𝑘 ∈ K with cross-sectional area 𝐴𝑘 and initial
ead ℎ𝑘,0 (assumed to be known).
Constraint (1d) models the head loss across the FSP connected

etween nodes 𝑖 and 𝑗 and is modeled according to ([15], Ch. 3),
here ℎ0,𝑖𝑗 is the shutoff head for the pump, 𝜎𝑖𝑗 , 𝜈𝑖𝑗 are the pump curve
oefficients evaluated at nominal speed, 𝑓𝑖𝑗,𝑡 is the water flow through
he pump and 𝑥𝑖𝑗,𝑡 is the binary variable to indicate whether the pump
𝑗 ∈ P is running at time 𝑡. Also note that the head loss of FSP ℎ𝑖𝑗,𝑡
n (1d) is negative when the pump is on, which means that head gain
is provided across the pump. The pump flow is constrained by (1e). The
binary variable 𝑥𝑖𝑗,𝑡 is set to 1 when pump (𝑖𝑗) ∈ P is on at time 𝑡 and
the constraint (1d) is active; otherwise no constraint exists between ℎ𝑖,𝑡
nd ℎ𝑗,𝑡.
A more convenient mathematical formulation is needed to capture

he FSP on/off status and operation logic given by (1d) and (1e).
his task is accomplished using the big-M technique to rewrite the
forementioned constraints.

(𝑥𝑖𝑗,𝑡 − 1) ≤ ℎ𝑖𝑗,𝑡 + [ℎ0,𝑖𝑗 − 𝜎𝑖𝑗 (𝑓𝑖𝑗,𝑡)
𝜈𝑖𝑗 ]

≤𝑀(1 − 𝑥𝑖𝑗,𝑡) (2a)

ℎ𝑖,𝑡 − ℎ𝑗,𝑡 = ℎ𝑖𝑗,𝑡 (2b)

ℎ𝑖𝑗,𝑡 ≤ 0 (2c)

𝑥𝑖𝑗,𝑡 ∈ {0, 1}, 𝑖𝑗 ∈ P (2d)

Eq. (2) corresponds to FSP operation, where ℎ𝑖𝑗,𝑡 is the auxiliary
ariable that represents pump head loss (1d).
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The FSP power consumption is captured in (1f), where 𝜌 and 𝑔
espectively denote the water density and standard gravity coefficient.
he fixed reservoir head is given by (1g) which is operational constraint
nd the head of the remaining nodes is constrained by (1h). Also, for
implicity let 𝛾𝑖𝑗 =

𝜌𝑔
𝜂ww𝑖𝑗

, 𝑖𝑗 ∈ P .
The optimal water flow problem is described next. In this work, the

objective is to minimize the pump power consumption in WDNs:

𝛤 pump
𝑖𝑗,𝑡 (𝑓𝑖𝑗,𝑡) = 𝑝pump

𝑖𝑗,𝑡 , 𝑖𝑗 ∈ P (3)

and the objective 𝛤 pump
𝑖𝑗,𝑡 (.) is written as

pump
𝑖𝑗,𝑡 (.) = 𝛾𝑖𝑗 |ℎ𝑖𝑗,𝑡|𝑓𝑖𝑗,𝑡 (4)

where ℎ𝑖𝑗,𝑡 is given by (2b).
Other pertinent objectives can also be considered, such as wa-

ter consumption costs, pump maintenance costs, and water delivery
costs incurred by the water utility operator [16,17]. However, the
pump power is typically the main contributing factor in WDN costs.
Therefore, this work focuses on minimizing pump power.

The optimal water flow problem (OWF) is formulated as

(P1) min
𝑇
∑

𝑡=1

[

𝜆WDN
𝑡

∑

𝑖𝑗∈P
𝛤 pump
𝑖𝑗,𝑡

]

(5a)

over {𝑝pump
𝑖𝑗,𝑡 , 𝑓𝑖𝑗,𝑡}𝑇𝑡=1,

{ℎ𝑖𝑗,𝑡, ℎ𝑗,𝑡, 𝑥𝑖𝑗,𝑡}𝑇𝑡=1, 𝑖𝑗 ∈ L, 𝑗 ∈ M

subj. to (1a)–(1c), (1f)–(1h), (2) (5b)

where 𝜆WDN
𝑡 denotes the time-varying price of electricity for the WDN.

The OWF (P1) is a mixed-integer nonlinear program (MINLP). The
onconvexities stem from the head loss models of pipes and pumps (1b)
nd (1d). Also, the objective corresponding to pump power consump-
ion (1f) is nonconvex. To bypass the nonconvexity issues, we utilize
he monomial approximations in [13,14]. Specifically, the nonlinear
ead loss model for pipes and pumps (1b) and (1d) are respectively
pproximated by linear forms around given points (flow values) as
ollows:

̂ 𝑖𝑗,𝑡 = 𝜅𝑖𝑗,𝑡 + 𝑓𝑖𝑗,𝑡, 𝑖𝑗 ∈ W , 𝑡 ∈ T (6a)
̂ 𝑖𝑗,𝑡 = (𝜏𝑖𝑗,𝑡 + 𝜑𝑖𝑗,𝑡𝑓𝑖𝑗,𝑡), 𝑖𝑗 ∈ P , 𝑡 ∈ T (6b)

Eq. (6) is used to iteratively approximate (1b) and (1d), by updating
𝑖𝑗,𝑡 and 𝜑𝑖𝑗,𝑡. In particular, (6) replaces (1b) and (1d), the resulting
ptimization problem is solved, and the produced values 𝑓𝑖𝑗,𝑡 are used
to update 𝜅𝑖𝑗,𝑡 and 𝜑𝑖𝑗,𝑡 via 𝜅𝑖𝑗,𝑡 = 𝑓𝑖𝑗,𝑡(𝐴𝑖𝑗 |𝑓𝑖𝑗,𝑡|

𝜇−1 − 1) and 𝜑𝑖𝑗,𝑡 =
𝜎𝑖𝑗𝑓𝑖𝑗,𝑡

𝜈𝑖𝑗−1 with 𝜏𝑖𝑗,𝑡 = −ℎ0,𝑖𝑗 .
Also, constraint (6b) is valid when the pump is in the on state.

Therefore we replace the nonlinear pump head loss constraint in (2a)
with its corresponding linear form (6b) while implementing big-M for
the pump head loss, which is not shown here due to space limitations.

Attention is then turned to the nonlinear FSP power consumption.
Substituting (1d) (when 𝑥𝑖𝑗,𝑡 = 1) in (1f), the FSP power is given as

𝑝pump
𝑖𝑗,𝑡 (𝑓𝑖𝑗,𝑡) = 𝛾𝑖𝑗

(

ℎ0,𝑖𝑗𝑓𝑖𝑗,𝑡 − 𝜎𝑖𝑗𝑓
𝜈𝑖𝑗+1
𝑖𝑗,𝑡

)

, 𝑖𝑗 ∈ P (7)

Since (𝑝pump(𝑓𝑖𝑗,𝑡))′′ ≤ 0, the FSP power consumption from (7) is
concave. Hence, we devise the linear upper bound to (7) as follows

𝑝̂pump
𝑖𝑗,𝑡 (𝑓𝑖𝑗,𝑡) = 𝛾𝑖𝑗

(

𝛼𝑖𝑗,𝑡𝑓𝑖𝑗,𝑡 + 𝛽𝑖𝑗,𝑡𝑥𝑖𝑗,𝑡

)

(8)

where 𝛼𝑖𝑗,𝑡, 𝛽𝑖𝑗,𝑡 are constants which are computed from the previous
iteration pump flows 𝑓𝑖𝑗,𝑡. This entails 𝑝̂

pump
𝑖𝑗,𝑡 , 𝑖𝑗 ∈ P to be linear as

in (8).
The C-OWF problem (convex OWF) (P2) is stated as follows

(P2) min
𝑇
∑

[

𝜆WDN
𝑡

∑

𝛤 pump
𝑖𝑗,𝑡

]

(9a)
3

𝑡=1 𝑖𝑗∈P
over {𝑓𝑖𝑗,𝑡, 𝑝̂
pump
𝑖𝑗,𝑡 , ℎ̂𝑖𝑗,𝑡, ℎ𝑗,𝑡, 𝑥𝑖𝑗,𝑡}

𝑇
𝑡=1, (9b)

𝑖𝑗 ∈ L,P , 𝑗 ∈ M

subj. to (1a), (1c), (1g), (1h), (2), (6), (8) (9c)

ith 𝛤 pump
𝑖𝑗,𝑡 = 𝑝̂pump

𝑖𝑗,𝑡 . The C-OWF (P2) is a mixed-integer linear pro-
ram (MILP) and can be solved in a iterative fashion as given in [2].
pecifically, the parameters 𝜅𝑖𝑗,𝑡, 𝜏𝑖𝑗,𝑡, 𝜓𝑖𝑗,𝑡, 𝛼𝑖𝑗,𝑡, and 𝛽𝑖𝑗,𝑡 (𝑖𝑗 ∈ L) in
P2), are all constants which are evaluated from the flow values of the
revious iteration. We use the term convex in C-OWF to emphasize that
he continuous part of (9) is linear and hence convex.
Power Distribution Network Model: A multi-phase radial PDN is
odeled using a directed graph (N , E ), where N is the set of buses
nd E ⊆ N ×N is set of distribution lines or transformers. Furthermore,
artition N as N = N+ ∪ {0}, where N+ and {0} are respectively the
ets of user buses and the slack (root) bus. Furthermore, let N pv

+ ⊆ N+
epresent the set of PV buses while N pump

+ ⊆ N+ and N 𝑐
+ ⊆ N+

espectively represent set of buses connected to pumps and loads. For
bus 𝑛 ∈ N , an ordered pair (𝑛, 𝑚) (interchangeably, 𝑛 → 𝑚) belongs
o set E . For the sake of exposition, we assume that the full set of
hree phases {𝑎, 𝑏, 𝑐} are present in all buses and distribution lines. The
xtension to networks with missing phases can be carried out using
ore elaborate notation.
Let 𝑣𝑛,𝑡, 𝑖𝑛𝑚,𝑡 ∈ C3 and 𝑍𝑛𝑚 ∈ C3×3 respectively denote the vector

f phase voltages at bus 𝑛 ∈ N at time 𝑡, the vector of line currents,
nd the series impedance of the edge (𝑛, 𝑚) ∈ E (neglecting the
hunt admittance). The BFM-SDP constraints are derived using Ohms’
aw [10]. The voltage drop on (𝑛, 𝑚) ∈ E is

𝑚,𝑡 = 𝑣𝑛,𝑡 −𝑍𝑛𝑚𝑖𝑛𝑚,𝑡, (𝑛, 𝑚) ∈ E 𝑡 ∈ T (10)

here 𝑍𝑛𝑚 is the series impedance of a transmission line [9] or the
nverse of the per-unit shunt admittance for a grounded-wye grounded-
ye transformer [11,18].
Introduce the auxiliary variables 𝑉𝑛,𝑡 = 𝑣𝑛,𝑡𝑣̄𝑛,𝑡, 𝑉𝑚,𝑡 = 𝑣𝑚,𝑡𝑣̄𝑚,𝑡, (𝑛, 𝑚) ∈

N ×N ; 𝑆𝑛𝑚,𝑡 = 𝑣𝑛,𝑡𝑖𝑛𝑚,𝑡, (𝑛, 𝑚) ∈ E ; and 𝐼𝑛𝑚,𝑡 = 𝑖𝑛𝑚,𝑡𝑖𝑛𝑚,𝑡, (𝑛, 𝑚) ∈ E . Upon
ultiplying both sides of (10) by conjugate transposes ̄(.), i.e., 𝑣̄𝑛,𝑡 on

the left and (𝑣̄𝑛,𝑡 − 𝑖𝑛𝑚,𝑡𝑍̄𝑛𝑚) on the right, (10) can be written as

𝑉𝑚,𝑡 = 𝑉𝑛,𝑡 − (𝑆𝑛𝑚,𝑡𝑍̄𝑛𝑚 +𝑍𝑛𝑚𝑆̄𝑛𝑚,𝑡) +𝑍𝑛𝑚𝐼𝑛𝑚,𝑡𝑍̄𝑛𝑚

(𝑛, 𝑚) ∈ E , 𝑡 ∈ T (11)

To formulate the power balance at bus 𝑚, for each 𝑛→ 𝑚 → 𝑘, (10)
is multiplied by 𝑖𝑛𝑚:

𝑣𝑚,𝑡𝑖𝑛𝑚,𝑡 = 𝑣𝑛,𝑡𝑖𝑛𝑚,𝑡 −𝑍𝑛𝑚𝑖𝑛𝑚,𝑡𝑖𝑛𝑚,𝑡 (12)

⇒ 𝑣𝑚,𝑡

[

∑

(𝑚,𝑘)∈E
𝑖𝑚𝑘,𝑡 − 𝑖𝑚,𝑡

]

= 𝑆𝑛𝑚,𝑡 −𝑍𝑛𝑚𝐼𝑛𝑚,𝑡,

(𝑛, 𝑚) ∈ E , 𝑡 ∈ T (13)

Specifically, 𝑖𝑚,𝑡 in (13) is the net current injection at bus 𝑚 ∈ N+,
which is generically a sum of currents from constant-power sources
with net complex power s𝑚,𝑡 ∈ C3 and from constant-admittance
elements, such as shunt capacitor banks, with admittance 𝑌𝑚 connected
to bus 𝑚. The net current is thus 𝑖𝑚,𝑡 = diag(𝑣∗𝑚,𝑡)

−1(s𝑚,𝑡)
∗−𝑌𝑚𝑣𝑚,𝑡. Taking

conjugate transpose of 𝑖𝑚,𝑡, substituting in (13), and taking diagonal
(diag) of matrices to return vectors yields
∑

(𝑚,𝑘)∈E
diag(𝑆𝑚𝑘,𝑡) − 𝑠𝑚,𝑡 = diag(𝑆𝑛𝑚,𝑡 −𝑍𝑛𝑚𝐼𝑛𝑚,𝑡)

(𝑛, 𝑚) ∈ E , 𝑚 ∈ N+ 𝑡 ∈ T (14)

where 𝑠𝑚,𝑡 = s𝑚,𝑡 − diag(𝑉𝑚,𝑡𝑌𝑚). The matrix variables 𝑉𝑛,𝑡, 𝐼𝑛,𝑡, and 𝑆𝑛𝑚,𝑡
must satisfy 𝑉𝑛,𝑡 ⊙ 𝐼𝑛𝑚,𝑡 = 𝑆𝑛𝑚,𝑡 ⊙ 𝑆̄𝑛𝑚,𝑡, (𝑛, 𝑚) ∈ E , 𝑛 ∈ N+, 𝑡 ∈ T , which
is ensured by the following positive semidefinite (PSD) and rank-1
constraints:

𝐺𝑛𝑚,𝑡 =
[

𝑉𝑛,𝑡 𝑆𝑛𝑚,𝑡
]

⪰ 0 (15)

𝑆̄𝑛𝑚,𝑡 𝐼𝑛𝑚,𝑡
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𝑠

p

rank(𝐺𝑛𝑚,𝑡) = 1 (16)

Furthermore, the slack bus voltage is set to a nominal value 𝑣nom and
the remaining bus voltages are constrained by (18):

𝑉0,𝑡 = 𝑣nom𝑣̄nom, 𝑡 ∈ T (17)

(𝑣min)2𝟏3 ≤ diag(𝑉𝑛,𝑡) ≤ (𝑣max)2𝟏3, 𝑛 ∈ N+, 𝑡 ∈ T (18)

Constraint (18) ensures voltage regulation dictated by ANSI C.84.1.
The nodal injections s𝑚,𝑡 are analyzed next, according to the pres-

ence of a pump, PV inverter, or load. Three-phase induction motors
typically drive water pumps in WDNs. This is because three-phase in-
duction motors are easier to design and require less motor maintenance.
Specifically, the pumps in WDNs are connected to three-phase induc-
tion motors that may operate at unbalanced voltage conditions [19].
Induction motors coupled to pumps may also operate in an unbalanced
state due to improper mechanical alignment of the pump and motor
or mechanical defects within the pump. Since (8) relates the pump
active power consumption and the WDN hydraulics, the complex power
consumed by the pump 𝑖𝑗 connected to bus 𝑚 at time 𝑡, 𝑠̂pump

𝑚,𝑖𝑗,𝑡 ∈ C3, 𝑖𝑗 ∈
P , 𝑚 ∈ N pump

+ , 𝑡 ∈ T is given as

̂pump
𝑚,𝑖𝑗,𝑡 = 𝐚𝑚,𝑖𝑗 ⊙ 𝑝̂

pump
𝑚,𝑖𝑗,𝑡 + 𝑗 𝐛𝑚,𝑖𝑗 ⊙ 𝐚𝑚,𝑖𝑗 ⊙ 𝑝̂

pump
𝑚,𝑖𝑗,𝑡 (19)

where ⊙ is the element-wise multiplication operator. The entries in
vector 𝐚𝑚,𝑖𝑗 are split the total pump power 𝑝̂pump

𝑚,𝑖𝑗,𝑡 into three phases
with 𝟏⊤3 𝐚𝑚,𝑖𝑗 = 1, where 𝟏3 is a 3 × 1 vector of all ones. The reactive
power consumed by the motor coupled to the pump is given by the
second term in (19) with 𝐛𝑚,𝑖𝑗 = tan[cos−1PF]𝟏3 where PF is the power
factor of the motor. Although this method approximately captures the
unbalanced operation of multi-phase induction motors, a more suitable
programming model would be to accurately model the induction motor
using the methods in [19], Ch. 9.

When distributed PV generation is connected to a bus, it is as-
sumed the PV inverter is oversized to ensure reactive power absorp-
tion/consumption during peak solar generation. For a PV at bus 𝑚 ∈
N pv

+ , the operational region of a three-phase PV inverters is assumed
balanced, that is equal active power is injected per phase, and likewise
for reactive power. The active power is uncontrolled and denoted by
𝗉pv𝑚,𝑡, 𝑚 ∈ N+, 𝑡 ∈ T . The reactive power per phase is given by

|𝗊pv𝑚,𝑡| ≤
√

(𝑠pv𝑚,max)2 − (𝗉pv𝑚,𝑡)2, 𝑚 ∈ N pv
+ ⊆ N+ (20)

The complex power injected by the PV inverter connected to bus 𝑚 ∈
𝑁pv

+ is given by 𝑠pv𝑚,𝑡 = 𝗉pv𝑚,𝑡𝟏3 + 𝑗𝗊pv𝑚,𝑡𝟏3 ∈ C3. Similarly, the complex
power absorbed by the constant-power load connected to bus 𝑚 ∈ 𝑁𝑐

+
is 𝑠𝑐𝑚,𝑡 = 𝑝𝑐𝑚,𝑡 + 𝑗𝑞

𝑐
𝑚,𝑡 ∈ C3.

Considering the PV model in (20), the constant power demands by
ump loads (19) and the uncontrollable loads 𝑠𝑐𝑚,𝑡, the net complex
power from constant power sources s𝑚,𝑡 at bus 𝑚 ∈ N pv

+
⋃N pump

+
⋃

N c
+ ⊆ N+ at time 𝑡 then becomes

s𝑚,𝑡 = 𝑠pv𝑚,𝑡 − 𝑠̂
pump
𝑚,𝑖𝑗,𝑡 − 𝑠

𝑐
𝑚,𝑡 (21)

where if a PV inverter, pump, or load is not present at bus 𝑚, the
corresponding term is omitted from (21). The WDN and PDN are
coupled by (21) with 𝑠̂pump

𝑚,𝑖𝑗,𝑡 as the coupling variable. Since 𝑝̂
pump
𝑚,𝑖𝑗,𝑡 is linear

according to (8), it follows that (21) is a linear equality constraint.
The objective pertaining to PDN at time 𝑡 is denoted by 𝐶̂𝑡 and

different choices are considered in Section 4. The multi-period optimal
water power flow problem is presented next.

Multi-Period Optimal Water Power Flow: Let 𝑓𝑡 = {𝑓𝑖𝑗,𝑡}𝑖𝑗∈L,
𝑝̂pump
𝑡 = {𝑝̂pump

𝑖𝑗,𝑡 }𝑖𝑗∈P , ℎ̂𝑡 = {ℎ̂𝑖𝑗,𝑡}𝑖𝑗∈L, ℎ𝑡 = {ℎ𝑗,𝑡}𝑗∈M, 𝑥𝑡 = {𝑥𝑖𝑗,𝑡}𝑖𝑗∈P ,
𝑠pv𝑡 = {𝑠pv𝑚,𝑡}𝑚∈N pv

+
, 𝑠̂pump

𝑡 = {𝑠̂pump
𝑚,𝑖𝑗,𝑡}𝑚∈N pump

+
, 𝐼𝑡 = {𝐼𝑛𝑚,𝑡}𝑛𝑚∈E , 𝑆𝑡 =

{𝑆𝑛𝑚,𝑡}𝑛𝑚∈E , 𝑉𝑡 = {𝑣𝑛,𝑡}𝑛∈N+
. The multi-period optimal water power
4

flow problem is formulated involving two groups of variables defined
as follows: 𝑤𝑡 ∶= {𝑓𝑡, 𝑝̂
pump
𝑡 , ℎ̂𝑡, ℎ𝑡, 𝑥𝑡}, 𝑦𝑡 ∶= {𝑉𝑡, 𝐼𝑡, 𝑆𝑡, 𝑠

pv
𝑡 , 𝑠̂

pump
𝑡 }. The

OWPF problem (P3) can be stated as follows

(P3) min
𝑇
∑

𝑡=1

[

𝜆WDN
𝑡

∑

𝑖𝑗∈P
𝛤 pump
𝑖𝑗,𝑡

]

+
𝑇
∑

𝑡=1

[

𝜆PDN𝑡 𝐶̂𝑡

]

(22a)

over {𝑤𝑡}𝑇𝑡=1, {𝑦𝑡}
𝑇
𝑡=1, 𝑡 ∈ T

subj. to (1a), (1c), (1g), (1h), (2), (6), (8), (11)

(14), (19), (20), (21), (15),(16), (17), (18) (22b)

where 𝜆PDN𝑡 is the PDN time-varying price for electricity. Notice that the
continuous part of the OWPF problem (P3) is nonconvex due to (16).
Dropping (16) renders the continuous part of the problem convex and
the formulation is called C-OWPF. In Section 4, an exactness check is
performed to verify that the results obtained from solving C-OWPF are
close to satisfying the rank-1 condition.

The C-OWPF problem amounts to a mixed-integer semidefinite pro-
gram (MISDP). Although the computational effort required to solve
the convex optimal water flow problem (C-OWF) (P2) is significantly
reduced due to the successive linearizations that capture the unknown
water flow directions without the use of additional binary variables,
solving the C-OWPF problem (P3) as MISDP in a reasonable time using
off-the-shelf solvers such as YALMIPs’ built-in branch-and-bound (BNB)
is still challenging; see e.g., [12] for experience with a different MISDP.
Additionally, solving centralized problem formulations that necessitate
a single authority overseeing and controlling the entire multi-energy
infrastructure, i.e., WDN and PDN, may overall not be tenable in terms
of data sharing and privacy concerns. Thus, to protect the data privacy
of each energy system and efficiently solve the C-OWPF problem,
Benders decomposition is used. This is the theme of the following
section.

3. Benders-based C-OWPF solver

This section develops a distributed solver for the C-OWPF problem
using Benders decomposition following ([20], Ch. 3) and [21]. The C-
OWPF problem is decomposed into a master problem and a subproblem
and the two problems are solved sequentially. In the present setting,
the Benders decomposition is designed such that the master problem
is solved by the WDN operator, and the PDN operator solves the
subproblem. By fixing the coupling variable, i.e., 𝑝̂pump

𝑡 (implicitly 𝑠̂pump
𝑡 ) in

the subproblem, the WDN and PDN operators solve smaller optimization
problems in terms of the variables associated with their respective
network and control devices. These optimization problems amount to
a BFM-SDP OPF for the PDN subproblem, and a MILP C-OWF for the
WDN operator master problem, thereby avoiding the aforementioned
complexity in solving the MISDP C-OWPF. The formulations of Benders
master problem and subproblem are presented next.

Subproblem: The master problem is time-coupled, where the cou-
pling across time periods appears only due to tank dynamics (1c).
Decomposing the C-OWPF problem into master problem and subproblem
alleviates the time coupling in the subproblem. This feature is a conse-
quence of the fact that no time coupling constraints pertain to the PDN.
Therefore, the subproblem is formulated as (23) and is solved in parallel
for each time period 𝑡 ∈ T . All variables in the subproblem pertain to
Benders iteration 𝜁 :

(P4) min U𝜁𝑡 = 𝜆PDN𝑡 𝐶̂𝜁𝑡 (23a)
over 𝑦SP𝑡

subj. to (11), (14), (19), (20), (21), (15),(16), (17), (18) (23b)

𝑝̂pump,𝜁
𝑡 = 𝑝̂pump,f ixed

𝑡 ∶ 𝜚pump,𝜁
𝑡 , 𝑡 ∈ T (23c)

The optimization variables pertaining to each subproblem are collected
in the vector 𝑦SP𝑡 defined as
SP 𝜁 𝜁 𝜁 pv,𝜁 pump,𝜁 pump,𝜁
𝑦𝑡 ∶= {𝑉𝑡 , 𝐼𝑡 , 𝑆𝑡 , 𝑠𝑡 , 𝑠̂𝑡 , 𝜚𝑡 }
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Constraint (23c) fixes variables 𝑝̂pump
𝑡 to a fixed value 𝑝̂pump,f ixed

𝑡
btained from the solution of the master problem. Denote 𝑝̂pump,f ixed

𝑡 =
𝑝̂pump,f ixed
𝑖𝑗,𝑡 }𝑖𝑗∈P . The dual variables 𝜚

pump,𝜁
𝑡 associated with (23c) pro-

ide sensitivities to be used in building Benders cuts for the master
roblem. Also note that 𝜚pump,𝜁

𝑡 = {𝜚pump,𝜁
𝑖𝑗,𝑡 }𝑖𝑗∈P .

It is worth noting that the subproblem amounts to a BFM-SDP OPF
ith an additional linear constraint (23c) and is an SDP that can be
fficiently solved using off-the-shelf solvers such as SeDuMi or Mosek.
The optimal objective value of the subproblem is calculated as fol-

ows in (24) to be used later in (25) and master problem (26).
𝜁 =

∑

𝑡∈T
U𝜁𝑡 (24)

ote that subproblem is a restricted version of the original MISDP C-
WPF problem. Therefore, the upper bound for the optimal value of the
bjective function of the original MISDP C-OWPF problem at iteration
is given below:

𝜁
up = U

𝜁 +
𝑇
∑

𝑡=1

[

𝜆WDN
𝑡

∑

𝑖𝑗∈P
𝛤 pump,𝜁
𝑖𝑗,𝑡

]

(25)

Master Problem: The master problem is formulated next, where all
ariables refer to Benders iteration 𝜁 :

P5) min U𝜁lb =
𝑇
∑

𝑡=1

[

𝜆WDN
𝑡

∑

𝑖𝑗∈P
𝛤 pump(𝜁)
𝑖𝑗,𝑡

]

+ 𝜃𝜁 (26a)

over {𝑤MP
𝑡 }𝑇𝑡=1

subj. to (1a), (1c), (1g), (1h), (2), (6), (8) (26b)

𝜃𝜁 ≥ 𝜃lb (26c)

U𝜁 +
∑

𝑖𝑗,𝑡
𝜚pump,𝜁
𝑖𝑗,𝑡

(

𝑝̂pump,𝜁
𝑖𝑗,𝑡 − 𝑝̂pump,𝜁

𝑖𝑗,𝑡

)

≤ 𝜃𝜁

𝜁 = 1,… , 𝜁 − 1 (26d)

The optimization variables pertaining to the master problem are
ollected in the following optimization vector:
MP
𝑡 ∶= {𝑓 𝜁𝑡 , 𝑝̂

pump,𝜁
𝑡 , ℎ̂𝜁𝑡 , ℎ

𝜁
𝑡 , 𝑥

𝜁
𝑡 , 𝜃

𝜁} (27)

Constraint (26d) includes Benders cuts previously generated in all
revious Benders iterations through 𝜁 − 1. The Benders cuts are built
sing the primal variables 𝑝̂pump,𝜁

𝑖𝑗,𝑡 and dual variables 𝜚pump,𝜁
𝑖𝑗,𝑡 passed from

he solution of the subproblem for 𝜁 = 1,… , 𝜁 − 1. Constraint (26c)
mposes a lower bound 𝜃lb on 𝜃𝜁 , which represents the objective value
f the subproblem, and can be determined from physical or economical
onsiderations [20]. Constraint (26c) is necessary to avoid unbounded-
ess of the master problem when 𝜁 = 1. Master problem (P5) is a MILP
hat can be efficiently solved using off-the-shelf solvers such as Gurobi.
The master problem is a relaxed version of the original MISDP

-OWPF. Therefore, the objective function value U𝜁lb of the master
roblem is a lower bound for the optimal objective function value of
he MISDP C-OWPF. Upon solving the master problem, the values of
he coupling variables are updated. Specifically, the resulting optimal
olution 𝑝̂pump,𝜁

𝑡 is passed on to the subproblem as 𝑝̂pump,f ixed
𝑡 .

It is worth emphasizing that for each Benders iteration 𝜁 , a sequence
f problems (P5) is actually solved to update the parameters 𝜅𝑖𝑗,𝑡, 𝜏𝑖𝑗,𝑡,
𝑖𝑗,𝑡, 𝛼𝑖𝑗,𝑡, and 𝛽𝑖𝑗,𝑡 necessary to successively approximate the nonlinear
ipe and pump head loss, as described in Section 2.
Note that it is possible for the subproblem to be infeasible for a

iven value of the coupling variable passed on from the master problem.
n such cases, the literature suggests formulating an always-feasible
ubproblem without using additional Benders feasibility cuts in the
aster problem [20,21]. In the present work, the subproblem is feasible
or the case studies under consideration.
Benders-based C-OWPF Solver: The detailed implementation is

ummarized in Algorithm 1. The PDN and WDN operators initially
cquire the topology and operational constraints of their respective
5

c

Algorithm 1: Benders-based C-OWPF Algorithm
Input : PDN operator acquires PDN topology and

WDN operator acquires WDN topology
along with their respective operational constraints

Output: {𝑤MP
𝑡 , 𝑦SP𝑡 }𝑇𝑡=1

1 Initialize 𝜁 = 0, small tolerance (tol = 0.0001) to control convergence,
maxIter to 100, 𝜃lb = 0, and U0

up = ∞, U0
lb = −∞, set 𝜁 = 1 ;

2 Initialize variables in (27) and place them in ⟨{𝑤MP
𝑡 }𝑇𝑡=1⟩save;

3 while |U𝜁
up − U𝜁

lb| ≥ tol OR 𝜁 ≤ maxIter do
4 Initialize successive iteration counter 𝜔 = 1 and 𝛥 = ∞ while

𝛥 ≥ successive tolerance = 0.5 do
5 Update parameters of (6a), (6b), (8) using ⟨{𝑤MP

𝑡 }𝑇𝑡=1⟩save;
6 WDN operator solves MILP master problem (P5);
7 Set ⟨{𝑤MP

𝑡 }𝑇𝑡=1⟩𝜔 as the solution of (P5);
8 Calculate 𝛥 ∶= norm[⟨{𝑤MP

𝑡 }𝑇𝑡=1⟩𝜔 − ⟨{𝑤MP
𝑡 }𝑇𝑡=1⟩save];

9 Update ⟨{𝑤MP
𝑡 }𝑇𝑡=1⟩save = ⟨{𝑤MP

𝑡 }𝑇𝑡=1⟩𝜔, and 𝜔 ← 𝜔 + 1
10 end
11 Set {𝑤MP,𝜁

𝑡 }𝑇𝑡=1= ⟨{𝑤MP
𝑡 }𝑇𝑡=1⟩save;

12 Communicate {𝑝̂pump,f ixed
𝑡 }𝑇𝑡=1 to PDN operator

13 for 𝑡 = 1 ∶ T do
14 PDN operator solves the subproblem (P4) as SDP and

computes 𝜚pump,𝜁
𝑡 ;

15 Set 𝑦SP,𝜁𝑡 as the solution of (P4)
16 end
17 Communicate {𝜚pump,𝜁

𝑡 }𝑇𝑡=1 to WDN operator;
18 Calculate U𝜁

up and U𝜁
lb and set 𝜁 ← 𝜁 + 1

19 end
20 The PDN operator issues setpoints to PV inverters, and the WDN

operator issues scheduling decisions to pumps.

networks. The WDN operator solves a sequence of instances of the
master problem (P5) in Step 4 through 12 and passes the resulting
{𝑝̂pump
𝑡 }𝑇𝑡=1 to the PDN operator during the first Benders iteration. Fol-

lowing that, the PDN operator solves the subproblem pertaining to each
time 𝑡, i.e., Steps 14 and 15, obtains the sensitivities associated with
the fixing constraint (23c), and communicates {𝜚pump,𝜁

𝑡 }𝑇𝑡=1 to the WDN
operator in Step 17. As the iterations continue, the two operators
exchange information about the shared variables to reach a consensus
on the amount of power consumed by the pumps, and the algorithm
terminates in Step 20. It is worth noting that as the number of Benders
iterations (𝜁) increases, the optimal value of 𝜃𝜁 converges to (24),
i.e., U𝜁 .

Remark 1. Computational complexity of iterative master problem. The
water flows in pipes generally change direction during the scheduling
horizon. To deal with this issue, the literature either assumes prior
knowledge of the flow directions [4,6], or a binary variable is intro-
duced per pipe to encode the unknown direction [5]. In contrast, the
proposed formulation in master problem that relies on the successive lin-
earizations in [2,13] can capture the unknown flow directions without
the need for additional binary variables. As an example, for scheduling a
network with |P | pumps and |W | pipes over |T | time periods, the work
in [5] entails |T ||𝛩|(|P | + |W |) binary variables, where |𝛩| denotes
the number of segments used to linearize the pump and pipe curves.
In contrast, our proposed formulation in the master problem requires
only |T | |P | binary variables. Considering that the number of pipes
n typical WDNs is significantly larger than the number of pumps, the
omputational savings are noteworthy.

. Numerical tests

This section evaluates the efficacy of Benders-based C-OWPF in
erms of joint objective improvements over a decoupled design and a
entralized C-OPWF solver in two test cases, namely, the IEEE 4-bus
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Fig. 2. Network-wide normalized PV, load, and water demand profiles for Test
Case A.

PDN coupled with a 3-node WDN (Test Case A) and the IEEE 123-
bus PDN coupled with the 36-node WDN (Test Case B). In particular,
Test Case A compares the performance of Benders-based C-OWPF with
the decoupled design that utilizes the conventional rule-based control
for WDNs implemented in EPANET [15]; resultant pump schedules
are then passed to solve the SDP-based OPF problem. Test Case B
features a comparison of Benders-based C-OWPF with the centralized
C-OWPF solver. The master problem in Benders-based C-OWPF is solved
using Gurobi and the subproblem is solved using Mosek with CVX. The
centralized C-OWPF problem is solved using Gurobi in YALMIP.

All simulations are run on a 2.30-GHz, intel core i7 computer
with 192 GB of RAM. The head unit is feet [ft]; and the flow unit is
gallons per minute [GPM]. The slack bus voltage is fixed to 𝑣nom =
{1, 1∠−120◦, 1∠120◦} per unit [pu]. The pump motor operates with PF =
0.9. The pipe lengths, diameters, node elevations, tank diameter, and
junction base demands are obtained from [13,15] for the 3-node and
36-node WDN, respectively. The 36-node WDN in EPANET corresponds
to Net 2 network, which corresponds to a small region of the Cherry
Hill/Brushy Plains WDN.

Test Case A: IEEE 4-bus PDN coupled with 3-node WDN
The modified IEEE 4-bus PDN [9] and modified 3-node WDN [13]

are depicted in Fig. 1. The system is operated over a time horizon of
𝑇 = 10 h, beginning at 6 am with 𝛿 as one hour. For the PDN, 𝑉base is
12.47 kV line-to-line and 𝑆base is 6 MVA. The bounds on pump flows are
selected as [𝑓min, 𝑓max] = [0, 20 000] GPM. The tank minimum height,
maximum height, and initial level are respectively set to ℎmin = 900 ft,
ℎmax = 950 ft, and ℎ0 = 905 ft. Furthermore, we consider an FSP with
parameters ℎ0 = 533.4 ft, 𝜎 = 1.334 × 10−6, and 𝜈 = 2 computed from
EPANET [15]. Similarly, the line, transformer parameters, and nominal
loads of the modified 4-bus PDN are obtained from [9], wherein one
PV inverter is located at bus number 3. Using the default parameters on
NRELs’ PVWatts [22] with ZIP code 78249 for San Antonio, Texas, USA,
the ac power production of a PV system with 1600 kW size is obtained
for July 23, 2021, from 6 am−4 pm. Furthermore, we assume 𝐬pvmax to
be 125% of 𝐩pvmax. The bounds on the squared magnitude voltage (18)
are respectively set to (0.95)2 and (1.05)2 (p.u.)2. The nominal load at
bus number 4 in PDN is further divided into 40% for baseload and 60%
for pumping load, respectively. Fig. 2 depicts the network-wide load,
PV, and water demand profiles for the case study. The values of 𝜆WDN

𝑡
and 𝜆PDN𝑡 are chosen to be 1. In this test case, the active power losses
across the lines of the PDN are minimized, that is, the objective function
for the PDN is 𝐶̂𝑡 = 𝐶̂ loss𝑡 where 𝐶̂ loss𝑡 =

∑

(𝑛,𝑚)∈E Tr(Re(𝑍𝑛𝑚𝐼𝑛𝑚,𝑡)) [12].
The decoupled design in this test case consists of two stages and is

similar to that discussed in [2]. For easier reference, we refer to the
decoupled problem, as Scenario I; and the Benders-based C-OWPF is
6

referred to as Scenario II.
Fig. 3. Convergence of Benders-based C-OWPF problem in Test Case A.

Table 1
Comparison of objective function values (in p.u.) for Scenario I and Scenario II in Test
Case A.
Objective function Scenario I Scenario II % Reduction
∑

𝑡
∑

𝑖𝑗∈P 𝛤
pump
𝑖𝑗,𝑡 0.5080 0.3750 26.18

∑

𝑡 𝐶̂ loss𝑡 0.050 0.0437 12.6
Total objective 0.5580 0.4180 25.09

Table 1 summarizes the achieved cost in the two scenarios. It is
orth noting that EPANET (Scenario I) calculates the nonlinear pump
ower as specified in (4). On the other hand, Scenario II computes an
pproximate value for the pump power. To ensure a fair comparison,
he optimal pump schedules computed by Scenario II are entered into
PANET to determine the actual nonlinear pump power. From Table 1,
t is evident that Scenario II enhances the flexibility, which reduces the
otal objective value compared with Scenario I. For example, the total
bjective value is respectively reduced by 25.09%. The % reductions in
perational costs are primarily achieved due to operating FSPs during
imes of low water and power demand. Notably, in Scenario I, which is
gnostic to the PDN load and PV production, requires the pump to run
or hours 1 through 4 in order to comply with the rules. On the other
and, in Scenario II, the pump is turned on only at hours 2, 7, and 9,
hen PV generation in the PDN is high and water demand in the WDN
s low.
The convergence of the Benders-based C-OWPF solver (Scenario II)

s depicted in Fig. 3. The algorithm converges in Benders iteration
0, where the difference between U𝜁up (upper curve) and U𝜁lb (lower
urve) is smaller than the allowed tolerance 0.0001. It is worth noting
hat theoretically, the lower bound should be monotonically increasing.
evertheless, a small oscillation is observed in the lower curve of Fig. 3.
uch small numerical issues are possible and have been reported in
he literature before, see e.g., ([21], Fig. 5). The computational time
equired to solve the Benders-based C-OWPF Problem (Scenario II) is
ess than 15 min for the Test Case A. We also attempted to solve the
ISDP-based C-OWPF problem (P3) using YALMIPs’ built-in BNB solver
n conjunction with MOSEK. The YALMIP-BNB solver did not converge
onvergence even when the number of BNB iterations was increased
o 50000. This finding corroborates the strength of the Benders-based
-OWPF capability to solve the multi-period MISDP.
Test Case B: IEEE 123-bus PDN coupled with 36-node WDN
The objective of this Test Case is two-fold: (1) to examine the impact

f using a linearized approximate versus the relaxed power flow model
n solving the optimal water power flow problem; and (2) to assess
he scalability of the Benders-based C-OWPF method. Specifically, this
est case compares the Benders-based C-OWPF developed in Section 3
hich utilizes SDP-based relaxation for power flow equations with
C-OWPF solver which uses the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 approximation for

he power flow equations. The 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 has been used in [23]
nd other pertinent references to solve OPF problems for PV reactive
ower control. The 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 is also used in the context of op-
imal water power flow in multi-phase PDNs [3], albeit, the 𝑜𝑛∕𝑜𝑓𝑓



Electric Power Systems Research 212 (2022) 108584K.S. Ayyagari and N. Gatsis

a

t
i
a
d
o
t
i
t
f

p
t
a
p
i
a

(
(
C
t
a
o
i
R
a

f

p
d

Table 2
WDN price ( $

kWh ) in Test Case B.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

𝜆WDN
𝑡 0.12 0.11 0.12 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

𝜆WDN
𝑡 0.19 0.2 0.21 0.22 0.23 0.23 0.2 0.18 0.2 0.17 0.13 0.12
p
N
i
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r
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Fig. 4. Network-wide normalized PV, load, and water demand profiles for Test
Case B.

schedules and water directions are assumed to be known. Therefore,
the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 appears to be a promising model for power flow
pproximation.
To this end, the nonconvex power flow equations are replaced by

heir linear counterparts using the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 approximation upon
gnoring losses and other high-order terms and assuming voltages are
pproximately balanced [23]. Then, using monomial approximations as
escribed in Section 2 for the nonlinear hydraulics in WDNs, a convex
ptimal water power flow problem C-OWPF is formulated. Specifically,
he 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤-based C-OWPF is convex in the continuous variables,
ncludes 0/1 pump scheduling decisions, and is solved iteratively due
o the monomial approximations of the WDN hydraulics. The exact
ormulation is omitted due to space limitation.
The previously mentioned C-OWPF adopting the LinDist3Flow ap-

roximation is solved in a centralized fashion and is therefore referred
o as centralized C-OWPF in this section. The centralized C-OWPF
mounts to a large-scale mixed integer linear or quadratic programming
roblem, depending on the choice of objective function for the PDN. It
s worth noting that the Benders-based C-OWPF solver is decentralized
nd thus ensures privacy of the respective WDN and PDN operators.
The modified IEEE 123-bus PDN [9] and modified 36-node WDN

[13] are considered. The system is operated over a time horizon of
𝑇 = 24 h, and 𝛿 is one hour. For the IEEE 123-bus PDN, transform-
ers are modeled as wye-g–wye-g connections. Switches are replaced
by short lines. Line shunt admittances and voltage regulators are ig-
nored, however, capacitor banks are accounted for. The bounds on
the squared magnitude voltage (18) are respectively set to (0.95)2 and
1.05)2 (p.u.)2 in Benders-based C-OWPF. They are set to (0.97)2 and
1.05)2 (p.u.)2 for the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤-based formulation of centralized
-OWPF to overcome the inaccuracy of the linear approximation. Fur-
hermore, six PV inverters with a size of 1000 kW each are located
t buses {13, 21, 25, 78, 86, 87} with 𝑠pvmax set to 125% of 𝑝pvmax. The PDN
bjective minimizes the real power import from the substation, that
s, the objective function for the PDN is 𝐶̂𝑡 = 𝐶̂ import𝑡 and 𝐶̂ import𝑡 =
e(𝟏⊤3 𝑠0,𝑡), where 𝑠0,𝑡 represents the power flows leaving the substation
t time 𝑡.
The 36-node WDN includes a reservoir with a fixed head of 100

t and an FSP with parameters ℎ0 = 400 ft, 𝜎 = 2.5 × 10−5, and
𝜈 = 2 computed from EPANET. Moreover, the pump is connected to
bus 93 of the PDN. Fig. 4 depicts the network-wide water demand, real
ower load, and PV profiles considered in Test Case B, where the water
7

emand profile is taken from EPANETs’ 36-node WDN data; the load
rofile of PDN is adopted from [5]; and the PV profile is obtained from
RELs’ PVWatts calculator for July 23, 2021. The WDN price, 𝜆WDN

𝑡 ,
s shown in Table 2 [14]. The PDN price 𝜆PDN𝑡 is set to 1 for all 𝑡. The
ase of 𝜆WDN

𝑡 = 1 for all 𝑡 is considered as well.
The objective values listed in Table 3 are calculated using the

espective nonlinear solvers, namely, Z-Bus method for PDN [18] and
PANET for WDN. Specifically, ∑𝑡

∑

𝑖𝑗∈P 𝛤
pump
𝑡 in Table 3 corresponds

o the actual pump power determined by EPANET upon fixing the pump
chedules achieved by each solver for each price scenario. The actual
ower import objective ∑

𝑡 𝐶
import
𝑡 is calculated by passing the optimal

eactive power setpoints of PV inverters and the actual pump powers
omputed by the respective methods. Table 4 lists the pump 𝑜𝑛∕𝑜𝑓𝑓
tatuses with time-varying (top rows) and constant WDN price (bottom
ows).
The following key observations for Test Case B are highlighted.

• The 𝑜𝑛∕𝑜𝑓𝑓 schedules reported in Table 4 for Benders-based
C-OWPF and centralized C-OWPF are different.

• Under time-varying WDN price, the Benders-based C-OWPF turns
on the pump during low load and high PV generation, i.e., hours
10—12, despite the high WDN price and water demand at hours
10 and 11. Compared to the centralized C-OWPF, this leads to
a slight increase of about 0.36% in pump power consumption
and a 2.9% drop in power import objective. The overall per-
cent reduction is 2.83%, the majority of which is attributed to
decrease in the power import objective. Interestingly, the pump
is turned on during hour 11 by the Benders-based C-OWPF and
centralized C-OWPF. The centralized C-OWPF turns on the pump
during low water demand, i.e., hours 1, 5, and 6, but not during
high PV generation, such as hour 12. This behavior can possi-
bly be attributed to the fact that the centralized C-OWPF uses
the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤, which ignores line losses and other higher-
order terms and may therefore render the voltage constraints
inactive. However, higher-order terms can be included to im-
prove the optimality of 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 at the expense of solving
the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 OPF iteratively [23]—which is not presently
carried out in the centralized C-OWPF solver. This highlights the
benefits of the SDP-based relaxations for solving large-scale OWPF
problems in multi-phase PDNs using Benders’ decomposition.

• Under constant WDN price, a similar pattern is observed as men-
tioned previously. Overall, the Benders-based C-OWPF achieves a
3.13% reduction in the total objective value when compared to
the centralized C-OWPF.

• Table 5 reports the computational time required to solve the
Benders-based C-OWPF and centralized C-OWPF under time-
varying WDN price as 17 min and 35 min respectively. The
Benders-based C-OWPF converges in three iterations as depicted
in Fig. 5. For each Benders’ iteration, the 𝑚𝑎𝑠𝑡𝑒𝑟𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is solved
in less than 5 min, and the set of time-decoupled 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠
is solved in less than 40 s. The SDP implementation of the
𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is based on Github codes available at the link in [11].
The 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑡𝑜𝑜𝑙𝑏𝑜𝑥 of MATLAB is used to reduce the
𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 computational time. Furthermore, because the central-
ized C-OWPF amounts to solving a sequence of large-scale MILPs,
the 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 block of YALMIP is used to speed up the centralized
C-OWPF, which prevents the same optimization problem from
being built multiple times. With constant WDN price, the compu-

tational time reported by the Benders-based C-OWPF is 30 min. In
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Table 3
Objective function values (in p.u.) for Benders-based C-OWPF and the centralized C-OWPF in Test Case B. The % reduction is with respect to
the centralized C-OWPF.
WDN price Method ∑

𝑡
∑

𝑖𝑗∈P 𝛤
pump
𝑖𝑗,𝑡

∑

𝑡 𝐶
import
𝑡 Total

Time varying 𝜆WDN
𝑡 Benders-C-OWPF 0.1365 6.1448 6.2813

Centralized C-OWPF 0.1360 6.3283 6.4643
% reduction −0.36 2.9 2.83

𝜆WDN
𝑡 = 1 Benders-C-OWPF 0.1367 6.1440 6.2807

Centralized C-OWPF 0.1362 6.3522 6.4844
% reduction −0.36 3.2 3.13
Table 4
Pump on/off decisions in Test Case B under time-varying (top rows) and constant (bottom rows) WDN price.
Time (h) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Benders C-OWPF 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Centralized C-OWPF 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Benders C-OWPF 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Centralized C-OWPF 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
t

this case, the Benders-based C-OWPF converges in six iterations.
The computational time reported by the centralized C-OWPF is
38 min, which is slightly higher than the corresponding time of
the Benders-based C-OWPF.

• The minimum and maximum magnitudes across all time periods
and buses of the voltage profile 𝑣̌ corresponding to actual power
flows computed by the Z-Bus method are reported in Columns 3
and 4 of Table 5. Both Benders-based and the centralized C-OWPF
methods report feasible voltages.

• Since Benders-based C-OWPF employs SDP relaxation of the
power flow equations, the optimality gap is assessed in Table 6.
The % Gap in last row of Table 6 is defined as Gap =

∑

𝑡 𝐶
𝜁
𝑡 −

∑

𝑡 𝐶̂
𝜁
𝑡

∑

𝑡 𝐶̂
𝜁
𝑡

×

100% (assuming 𝜆PDN𝑡 = 1), where the objective lower bound
∑

𝑡 𝐶̂
𝜁
𝑡 is computed by the subproblem for each Benders’ iteration 𝜁 .

A feasible objective value ∑

𝑡 𝐶
𝜁
𝑡 is obtained from actual power

flows computed with the Z-Bus method using the PV setpoints and
pump powers of the subproblem at iteration 𝜁 . It is worth noting
that the Benders-based C-OWPF exhibits practically zero optimality
gap at every iteration. For completeness, the optimality gap
pertaining to the 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 approximation of the centralized
C-OWPF is evaluated against the SDP relaxation of Benders-based
C-OWPF in the last column of Table 5. The feasible objective
value from 𝐿𝑖𝑛𝑑𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤

∑

𝑡 𝐶𝑡 is computed based on the actual
power flows, using the setpoints produced by the centralized C-
OWPF. The lower bound is provided by the SDP relaxation ∑

𝑡 𝐶̂𝑡.
The 𝐿𝑖𝑛𝐷𝑖𝑠𝑡3𝐹 𝑙𝑜𝑤 yields an optimality gap of 2.9% and 3.42%
under time-varying and constant WDN prices, respectively.

• Another approach to assess the quality of the SDP relaxation in
the subproblem is to check the ratio of the second largest to the
largest eigenvalue for each PSD matrix [10]. For all PSD matrices
in Test Cases A and B, the eigenvalue ratio over the scheduling
horizon is very small; for instance, it is less than 0.81 × 10−09

at the final Benders’ iteration. The small ratio confirms that the
relaxation is tight.

• Due to the fact that the WDN hydraulics are approximated using
successive linearizations, the modeling accuracy is assessed by
comparing the resulting flows, heads, and pump power consump-
tions to the nonlinear hydraulics produced by EPANET. For the
Test Cases A and B, the two models, i.e., the monomial approx-
imations and the EPANET agree on nodal heads and flows to
within 0.001 ft and 0.02 GPM, respectively. The approximated
pump powers differ from the ones of EPANET by no more than
0.05 kW.
8

Table 5
Minimum and maximum voltage magnitudes (p.u.), computational time (min), and
optimality gap (%) for Benders-based C-OWPF and the centralized C-OWPF in Test
Case B.
WDN price Method min (𝑣̌) max (𝑣̌) Time % Gap

Time varying 𝜆WDN
𝑡 Benders-C-OWPF 0.95 1.05 17 0

centralized C-OWPF 0.952 1.04 35 2.9

𝜆WDN
𝑡 = 1 Benders-C-OWPF 0.95 1.04 30 0

centralized C-OWPF 0.953 1.043 38 3.42

Table 6
Optimality gap for SDP 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 in Benders-based C-OWPF in Test Case B under
ime-varying WDN price.
Benders’ iteration 𝜁 1 2 3

(
∑

𝑡 𝐶̂𝑡)𝜁 6.1496 6.1446 6.1448
(
∑

𝑡 𝐶𝑡)𝜁 6.1496 6.1446 6.1448
% Gap 0 0 0

Fig. 5. Benders-based C-OWPF convergence for Test Case B with time-varying WDN
price.

5. Conclusions and future directions

This paper proposes a convex multi-period scheduling framework
called C-OWPF to optimally operate pumps in WDNs and PV invert-
ers in multi-phase distribution networks accounting for the coupling
between two infrastructures. The C-OWPF problem can be solved as a
MISDP. The capability of modern MISDP solvers in obtaining tractable
solutions is still limited. To this end, this paper leverages Benders
decomposition to circumvent the tractability issues inherent in the
MISDP-based C-OWPF while allowing the WDN and PDN operators
to pursue individual objectives respecting the coupling between the
two networks. The numerical results evince the effectiveness of the
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proposed Benders-based C-OWPF solver compared to a traditional rule-
based decoupled approach and a centralized C-OWPF solver adopting
the LinDist3Flow approximation for the power flow equations. Com-
putation time reductions with implementation of the Benders-based
C-OWPF solver in the open-source programming language Julia will be
explored in the future. Future work will also incorporate variable-speed
pumps and pressure-reducing valves in WDNs as well as step-voltage
regulators and energy storage in multi-phase PDNs. Stochastic frame-
works to account for the uncertainties of power consumption, water
demands, and PV renewable power are worth exploring as well.
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