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ABSTRACT

With the growing adoption of renewable energy resources in the power grid, co-optimizing the operation
of water and power distribution networks (WDNs and PDNs) increases the flexibility of both systems. The
optimal water power flow problem (OWPF) is formulated to manage resource utilization across the WDNs
and multi-phase PDNs. The nonlinear WDN hydraulic constraints and PDN ac power flow equations render
the OWPF problem nonconvex. This paper formulates a convex optimal water power flow (C-OWPF) problem
adopting successive approximations in WDNs and branch-flow relaxations in PDNs. The C-OWPF problem
is a mixed-integer semidefinite program, which is computationally challenging even for small instances.
Additionally, privacy considerations of WDN and PDN operators motivate the need for solving the C-OWPF in
a distributed fashion. This paper develops a C-OWPF solver based on Benders decomposition that overcomes
computational complexity challenges and preserve the privacy of the respective operators. The merits of the
Benders decomposition-based solver are demonstrated on the IEEE 4-bus PDN coupled with a 3-node WDN
and the IEEE 123-bus PDN coupled with the 36-node WDN.

1. Introduction

Power distribution networks (PDNs) and water distribution net-
works (WDNs) are interdependent critical infrastructures, although
traditionally operated independently. The physical coupling is due to
the significant electrical load presented by water pumps, which provide
the necessary pressure for the water to be delivered at the points of con-
sumption [1]. The optimal water-power flow (OWPF) problem aims at
jointly managing resources at both networks, ranging from distributed
energy resources at PDNs to pumps and tanks at WDNs. Benefits include
energy conservation and reliability of power and water delivery. The
OWPF is a challenging optimization problem due to the nonconvexities
of the power flow equations, and the hydraulics governing water flows
in pipes and pumps. A collaborative effort between PDN and WDN
operators provides an excellent opportunity to reduce peak energy
demand, thereby minimizing both active power losses and violations
of PDN security constraints such as voltage limits [2,3].

The joint management of WDNs and PDNs has been investigated
in e.g., [3-7] and references therein. The majority of existing works
such as [5-7] deal with single-phase PDN models. Furthermore, solving
the OWPF problem in a centralized fashion poses data organization
and privacy concerns in addition to increasing computational burden.

* This work is supported by the U.S. NSF Grant CAREER-1847125.
* Corresponding author.

To address the aforementioned issues, [6,7] develop distributed algo-
rithms for joint management of WDNs and single-phase PDNs. Most
importantly, it is necessary to model pump scheduling in multi-phase
power distribution networks because the pumps in WDNs are connected
to multi-phase induction motors that operate in an unbalanced man-
ner [8] due to unbalanced voltage conditions on the motor side [9] or
mechanical defects within the pump.

Favorable computation times have been reported for the branch-
flow model with semidefinite programming (BFM-SDP) to solve multi-
phase optimal power flow problems (OPF) with a few thousand nodes
[10,11]. However, solving multi-period SDPs with discrete decision
variables remains a significant computational challenge, as has been
reported in the literature; see e.g., [12]. The present work is concerned
with such hard optimization problems arising from WDN pump on/off
scheduling in multi-phase PDNs.

To the best of our knowledge, no existing approaches consider
WDNs integrated with multi-phase PDNs, with the exception of the
work in [4]. In the latter, the pump on/off schedules and water flow
directions are assumed known a priori, which eliminates the com-
binatorial aspects of the problem. In addition, the pump head loss
is modeled as linear, which lends itself to computational efficiency
advantages, though the physics dictate polynomial or power laws.
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Fig. 1. Power (left) and water (right) distribution networks.

Our previous work on WDN operations [13,14] has contributed
linearizations through novel monomial approximations of the WDN
hydraulics, and the coupling with the PDNs incorporating pump opera-
tions in WDNSs using integer variables is explored in [2]. Moreover, [2]
omitted multi-phase PDNs, and the OWPF problem is solved as a mixed-
integer quadratically constrained quadratic program (MIQCQP) in a
centralized fashion.

The contributions of this paper are as follows: (1) We expand our
previous work in [2] to multi-phase PDNs formulating and approach-
ing the OWPF in an effort to lift certain limitations in the existing
literature. Specifically, the on/off scheduling of pumps is modeled
using appropriate binary variables and is coupled with the BFM-SDP
relaxation for the three-phase OPF. By applying the recent monomial
approximations to the nonlinear hydraulics and dropping the SDP
rank-1 constraints for the OPF, the overall formulation amounts to
a mixed-integer semidefinite programming problem called C-OWPF.
(2) To ensure privacy and simultaneously respect the interdependen-
cies between WDNs and PDNs, an efficient solver based on Benders
decomposition is developed. The problem separation provides an at-
tractive approach to integrate the binary decision variables of WDNs
in the OPF and sidesteps the intractability issues with mixed-integer
semidefinite programming. Specifically, the resulting master problem
is solved by the WDN operator yielding mixed-integer linear program-
ming formulations. The subproblem is an SDP problem that pertains
to the PDN operator, but does not include binary variables. (3) The
Benders-based C-OWPF solver is assessed in terms of joint objective im-
provements compared to a traditional rule-based decoupled approach
implemented in the benchmark WDN analysis software EPANET [15].
(4) The Benders-based C-OWPF solver is also compared to a centralized
C-OWPF solver which adopts the LinDist3Flow approximation of the
power flow equations. The performance of the Benders-based C-OWPF
solver in terms of accuracy and feasibility of the nonlinear hydraulics
and power flows is analyzed as well. The IEEE 123-bus PDN is coupled
with a 36-node WDN to this end.

The organization of the paper is given next. Section 2 discusses the
modeling of WDNs and PDNs and the formulation of MISDP-based C-
OWPF problem. Section 3 presents the proposed Benders-based solver.
The simulation results are presented in Section 4, and the conclusions
are drawn in Section 5.

2. WDN and PDN models

This section details the mathematical models for water and power
distribution networks as shown in Fig. 1. In this section, we first
describe the nonconvex optimal water flow problem (OWF) and apply
successive approximations techniques leveraging our works [2], [13],
and [14] to convexify the problem. We then adopt the BFM-SDP relax-
ation [10] for unbalanced distribution networks considering inverter-
interfaced photovoltaic resources (PVs) and formulate the multi-period
OWPF problem.

Electric Power Systems Research 212 (2022) 108584

Water Distribution Network Model: The WDN is modeled by a
directed graph (M, £) where M = {0,..., M} is a set of M + 1 nodes
with M = JJRUK, and J, R, and K respectively denote sets of
junctions, reservoirs, and tanks. Let £ C M x M be the set of links
connecting the nodes partitioned as £ = P|JW, where P and W
respectively denote the sets of pumps and pipes. Also, in this work, we
assume that the pumps are connected to fixed-speed motors, i.e., they
are fixed-speed pumps (FSPs) with constant wire-to-water efficiency
e

The WDN operation is optimized over a horizon 7 = {1, ..., T}, with
& representing the time interval between two consecutive time periods.
It is worth noting that the optimization problem yields the directions of
water flow in pipes. Next, we present the mathematical model of WDN
operational constraints for 1 € T:

> = X Sua=dis JET (1a)
itijel k:jkel
his—hj, = Aij|fij,r|”_1f,~j,p ijew (1b)
1)
My =Ry + A—I < Z Sika = 2 fjk,t) kel (10)
k \i:ikel jijkeLl
Vii .
hi— hjt = _(ho'ij B U'.j.fij"l’)’ .lf Xijt = ! ad
’ ’ unconstrained, if X, =0,ijeP
fij,min xij.; < fijA,t < fij,max xij,;v ij epP (16)
1454 ..
:-J;Y;np= g —hjdfij 1JEP (€83)]
ij.t
hi,=ht, ieR 1g
Rimin S S hjmaxs JETLK (1h)

Constraint (1a) enforces the mass conservation at junction j €
J at time t, where d;, is the estimated water demand at time 7.
Constraint (1b) formulates the head loss in pipe ij € PP which is
approximated by the empirical Hazen-Williams equation [15], where
A = 4.727Cl.’.1'8521il.;4‘871f[j; zf,-/- and i[j are respectively the diameter
and length of a circular pipe; C;; is the Hazen-Williams roughness
coefficient (unitless); y is the flow exponent; and f; g 18 the volumetric
flow rate through pipe ij € W. Constraint (1c¢) models the water tank
head dynamics for tank k € KC with cross-sectional area A, and initial
head h, o (assumed to be known).

Constraint (1d) models the head loss across the FSP connected
between nodes i and j and is modeled according to ([15], Ch. 3),
where h;; is the shutoff head for the pump, ¢;;, v;; are the pump curve
coefficients evaluated at nominal speed, f;;, is the water flow through
the pump and x;;, is the binary variable to indicate whether the pump
ij € P is running at time ¢. Also note that the head loss of FSP h,;
in (1d) is negative when the pump is on, which means that head gam
is provided across the pump. The pump flow is constrained by (1e). The
binary variable x, ., is set to | when pump (ij) € P is on at time 7 and
the constraint (1 d) is active; otherwise no constraint exists between £, ,
and h;,.

A more convenient mathematical formulation is needed to capture
the FSP on/off status and operation logic given by (1d) and (1e).
This task is accomplished using the big-M technique to rewrite the
aforementioned constraints.

M(x;;, =1 < by, + oy = 03;(fij0" ]
<M1 -x;) (2a)
hiy—h;, =h, it (2b)
hlj t < 0 (2C)
x,, €101}, ijeP (2d)

Eq. (2) corresponds to FSP operation, where h;;, is the auxiliary
variable that represents pump head loss (1d).
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The FSP power consumption is captured in (1f), where p and g
respectively denote the water density and standard gravity coefficient.
The fixed reservoir head is given by (1g) which is operational constraint
and the head of the remaining nodes is constrained by (1h). Also, for
simplicity let y,; W—gw, ij eP.

The optlmal water flow problem is described next. In this work, the
objective is to minimize the pump power consumption in WDNs:

pump ___pump
Ly Sy) =m0

ijeP 3)

and the objective Fgutmp(.) is written as

,];u,mp() Yijlhij ol fije 4

where h;;, is given by (2b).

Other pertinent objectives can also be considered, such as wa-
ter consumption costs, pump maintenance costs, and water delivery
costs incurred by the water utility operator [16,17]. However, the
pump power is typically the main contributing factor in WDN costs.
Therefore, this work focuses on minimizing pump power.

The optimal water flow problem (OWF) is formulated as

(P1) min i[zWDN D rf”“‘p] (5a)
= ijeP
over { ij";" ,f,j,}, »
{h,-j‘,,hjy,,x,j’,}hl, ijeLl,jeM
subj. to  (la)-(1c), (1H)—(1h), (2) (5b)

where 4PN denotes the time-varying price of electricity for the WDN.

The OWF (P1) is a mixed-integer nonlinear program (MINLP). The
nonconvexities stem from the head loss models of pipes and pumps (1b)
and (1d). Also, the objective corresponding to pump power consump-
tion (1f) is nonconvex. To bypass the nonconvexity issues, we utilize
the monomial approximations in [13,14]. Specifically, the nonlinear
head loss model for pipes and pumps (1b) and (1d) are respectively
approximated by linear forms around given points (flow values) as
follows:

by =xg+ fij GEW, teT (6a)
;"ij,t =T+ @i i) 1JEP. tET (6b)

Eq. (6) is used to iteratively approximate (1b) and (1d), by updating
Kijs and ¢; e In particular, (6) replaces (1b) and (1d), the resulting
optimization problem is solved, and the produced values f;;, are used
to update «;;, and ¢, via x;, = fij,x(Aij|fij,x|#_l -1 and ¢, =
0ij fija " with 75, = —hg ;.

Also, constraint (6b) is valid when the pump is in the on state.
Therefore we replace the nonlinear pump head loss constraint in (2a)
with its corresponding linear form (6b) while implementing big-M for
the pump head loss, which is not shown here due to space limitations.

Attention is then turned to the nonlinear FSP power consumption.
Substituting (1d) (when x; = 1) in (1f), the FSP power is given as

um vij+l ..
P p(fl]t)_yl_/(hOl]fljf o >7 ijeP @

ut ij,t

concave. Hence, we devise the linear upper bound to (7) as follows

Since (pP'™P(f;;,))” < 0, the FSP power consumption from (7) is

Af:u;np(fu D =Y (aij,tfij,t + ﬂij,r’ﬂ-,-,,) ®

where «;;,, f;;, are constants which are computed from the previous
iteration pump flows f;;,. This entails 5}, ij € P to be linear as
in (8).

The C-OWF problem (convex OWF) (P2) is stated as follows

T
(P2) min Z[/{;’VDN Y r}j“,mp] (9a)
= ijeP
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over {fij‘[,ﬁf;t:“l” ilij,t’ hj‘,,xij’t}tll, (9b)
ije L,P,jeM
subj. to  (1a), (1c), (1g), (1h), (2), (6), (8) (9¢)

with I’ ‘J’“mp = Apj“:“p The C-OWF (P2) is a mixed-integer linear pro-
gram (MILP) and can be solved in a iterative fashion as given in [2].
Specifically, the parameters «;;,, 7;;,, Wij,» @, and §;, (ij € £) in
(P2), are all constants which are evaluated from the flow values of the
previous iteration. We use the term convex in C-OWF to emphasize that
the continuous part of (9) is linear and hence convex.

Power Distribution Network Model: A multi-phase radial PDN is
modeled using a directed graph (N, ), where A is the set of buses
and £ C N'x N is set of distribution lines or transformers. Furthermore,
partition N as N = N, U {0}, where N, and {0} are respectively the
sets of user buses and the slack (root) bus. Furthermore, let va C /\/+
represent the set of PV buses while A" € N, and N¢ C N,
respectively represent set of buses connected to pumps and loads. For
a bus n € NV, an ordered pair (n,m) (interchangeably, n — m) belongs
to set £. For the sake of exposition, we assume that the full set of
three phases {a, b, c} are present in all buses and distribution lines. The
extension to networks with missing phases can be carried out using
more elaborate notation.

Let v,,, iyy, € C* and Z,, € C¥? respectively denote the vector
of phase voltages at bus n € N at time ¢, the vector of line currents,
and the series impedance of the edge (n,m) € & (neglecting the
shunt admittance). The BFM-SDP constraints are derived using Ohms’
law [10]. The voltage drop on (n,m) € £ is

Ot = Vps = Zymipmp(m) €E 1T (10)

where Z,,, is the series impedance of a transmission line [9] or the
inverse of the per-unit shunt admittance for a grounded-wye grounded-
wye transformer [11,18].

Introduce the auxiliary variables V, , = v,,,0,, 1, Vi = Uy Oy (n,m) €
N XN Sppi = Uyilums (n,m) € E; and 1, = i,,m,,f,,m’,,(n,_m) € &. Upon
multiplying both sides of (10) by conjugate transposes (.), i.e., 7,, on
the left and (4, — i, Z,,) on the right, (10) can be written as

Vit = Vet = St Zum + ZmSums) + Zum Lums Zum

nm,t = nm nm= nm, nm*nm,t

m,meé&, teT (11D

To formulate the power balance at bus m, for each n - m — k, (10)
is multiplied by i,,,:

Um,t inm t =V aninm.t inm,r (12)

.

(m,k)e&

nt nm.,t
Ukt — lm,r:| = SnmJ - anlnm,t’

nmyef&, teT (13)

Specifically, i, in (13) is the net current injection at bus m € N,
which is generically a sum of currents from constant-power sources
with net complex power s5,, € C* and from constant-admittance
elements, such as shunt capac1tor banks, with admittance Y,, connected
to bus m. The net current is thus i, , = diag(v}, )~ 1(5m )¢ -Y,v,,. Taking
conjugate transpose of i, ,, substituting in (13), and taking diagonal
(diag) of matrices to return vectors yields

Y, diag(S,.,) -

(mk)e&

Sm,t = diag(Snm,t - anInm,t)

nmye&, meN teT a4

where s,,, = s,,, — diag(V,,,Y,,). The matrix variables V, ,, I, and S,,,,
must satisfy V,,; ® I, = Sypn; © Sy (n,m) € E,n € N1 € T, which
is ensured by the following positive semidefinite (PSD) and rank-1
constraints:

v, S,
Gnm,t = [S wt Inm,t] Z 0 (15)

nm,t nm,t
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rank(G,,,,) = 1 (16)

Furthermore, the slack bus voltage is set to a nominal value v"™ and
the remaining bus voltages are constrained by (18):

Vo, = 0Om5m e T 17

(v mm) 1; < diag(V,,,) < (Umax) 1;, neN,, teT (18)

Constraint (18) ensures voltage regulation dictated by ANSI C.84.1.

The nodal injections s, , are analyzed next, according to the pres-
ence of a pump, PV inverter, or load. Three-phase induction motors
typically drive water pumps in WDNs. This is because three-phase in-
duction motors are easier to design and require less motor maintenance.
Specifically, the pumps in WDNs are connected to three-phase induc-
tion motors that may operate at unbalanced voltage conditions [19].
Induction motors coupled to pumps may also operate in an unbalanced
state due to improper mechanical alignment of the pump and motor
or mechanical defects within the pump. Since (8) relates the pump
active power consumption and the WDN hydraulics, the complex power
consumed by the pump ij connected to bus m at time 1, §; "% € C°, ij €
P,me NP t € T is given as

Apump __ pump | . Apump
Sm,ij,t mllepmljt+‘/ bmeijoam,ijOpmur (19)

where © is the element-wise multiplication operator. The entries in

vector a,,;; are split the total pump power ﬁfn";;lf into three phases
with 17a,,,; = 1, where 15 is a 3 x 1 vector of all ones. The reactive

power consumed by the motor coupled to the pump is given by the
second term in (19) with b, = tan[cos‘]PF]l3 where PF is the power
factor of the motor. Although this method approximately captures the
unbalanced operation of multi-phase induction motors, a more suitable
programming model would be to accurately model the induction motor
using the methods in [19], Ch. 9.

When distributed PV generation is connected to a bus, it is as-
sumed the PV inverter is oversized to ensure reactive power absorp-
tion/consumption during peak solar generation. For a PV at bus m €
NP, the operational region of a three-phase PV inverters is assumed
balanced, that is equal active power is injected per phase, and likewise
for reactive power. The active power is uncontrolled and denoted by
ph» m € Ny, 1 € T. The reactive power per phase is given by

la, |—\/m meNP SN, (20)

The complex power injected by the PV inverter connected to bus m €
NEV is given by sﬂzt = psztl3 + jqfn‘f,13 € C°. Similarly, the complex
power absorbed by the constant-power load connected to bus m € N§
. — . 3
is an.t = pfm +jqu eC-.

Considering the PV model in (20), the constant power demands by
pump loads (19) and the uncontrollable loads s;, ,, the net complex
power from constant power sources s, at bus m € NT' [JN"™
N¢ C N, at time ¢ then becomes

PV _gpump _
St = St T Smijit T St @

where if a PV inverter, pump, or load is not present at bus m, the
corresponding term is omitted from (21). The WDN and PDN are
coupled by (21) with §'"" as the coupling variable. Since p,"" is linear
according to (8), it follows that (21) is a linear equality constralnt

The objective pertaining to PDN at time ¢ is denoted by C, and
different choices are considered in Section 4. The multi-period optimal
water power flow problem is presented next.

Multi-Period Optimal Water Power Flow: Let f, {fijihijecs
Apump Apump 7 — 7 — —
b, = {p,-j,, }ijeP: h = {hij,y}ijeﬁy h, = {h/‘,z}jeM, X, = {xij,z}ijeP!
pv  __ pv ) Apum; _ Apump _ _
S = {Sm,t}mef\/fv’ 5 = { m,ij,t}me/\e’f“mp’ I, = {Inm,r}nmeé" S, =

{Sumitamees Vi = {Uns}nenr,- The multi-period optimal water power
flow problem is formulated involving two groups of variables defined
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as follows: w, := {f,, """ by, h,,x,}, v, := (V;, 1, S,, s, 3"}, The

OWPF problem (P3) can be stated as follows

(P3) min i[@m“ Y f};{‘t’""] + i [AfDNé,] (22a)
t=1 ijeP t=1
over {w,}f:l,{y,}trzl, teT
subj. to (la), (1c), (1g), (1h), (2), (6), (8), (11)
(14), (19), (20), (21), (15),(16), (17), (18) (22b)

where is the PDN time-varying price for electricity. Notice that the
continuous part of the OWPF problem (P3) is nonconvex due to (16).
Dropping (16) renders the continuous part of the problem convex and
the formulation is called C-OWPEF. In Section 4, an exactness check is
performed to verify that the results obtained from solving C-OWPF are
close to satisfying the rank-1 condition.

The C-OWPF problem amounts to a mixed-integer semidefinite pro-
gram (MISDP). Although the computational effort required to solve
the convex optimal water flow problem (C-OWF) (P2) is significantly
reduced due to the successive linearizations that capture the unknown
water flow directions without the use of additional binary variables,
solving the C-OWPF problem (P3) as MISDP in a reasonable time using
off-the-shelf solvers such as YALMIPs’ built-in branch-and-bound (BNB)
is still challenging; see e.g., [12] for experience with a different MISDP.
Additionally, solving centralized problem formulations that necessitate
a single authority overseeing and controlling the entire multi-energy
infrastructure, i.e., WDN and PDN, may overall not be tenable in terms
of data sharing and privacy concerns. Thus, to protect the data privacy
of each energy system and efficiently solve the C-OWPF problem,
Benders decomposition is used. This is the theme of the following
section.

PDN
j'I

3. Benders-based C-OWPF solver

This section develops a distributed solver for the C-OWPF problem
using Benders decomposition following ([20], Ch. 3) and [21]. The C-
OWPF problem is decomposed into a master problem and a subproblem
and the two problems are solved sequentially. In the present setting,
the Benders decomposition is designed such that the master problem
is solved by the WDN operator, and the PDN operator solves the
subproblem. By fixing the coupling variable, i.e., /"™ (implicitly s""") in
the subproblem, the WDN and PDN operators solve smaller optimization
problems in terms of the variables associated with their respective
network and control devices. These optimization problems amount to
a BFM-SDP OPF for the PDN subproblem, and a MILP C-OWF for the
WDN operator master problem, thereby avoiding the aforementioned
complexity in solving the MISDP C-OWPF. The formulations of Benders
master problem and subproblem are presented next.

Subproblem: The master problem is time-coupled, where the cou-
pling across time periods appears only due to tank dynamics (1c).
Decomposing the C-OWPF problem into master problem and subproblem
alleviates the time coupling in the subproblem. This feature is a conse-
quence of the fact that no time coupling constraints pertain to the PDN.
Therefore, the subproblem is formulated as (23) and is solved in parallel
for each time period ¢t € 7. All variables in the subproblem pertain to
Benders iteration ¢:

(P4) min U5 = 2PPNES (23a)

over ytSP
subj. to (11), (14), (19), (20), (21), (15),(16), (17), (18) (23b)
ﬁfump,é’ — ﬁfxump,fixed . Of)ump,{’ te 7- (23C)

The optimization variables pertaining to each subproblem are collected
in the vector yS* defined as

yrsp. {Vg,lf,Sf, Fvc’gfumpi qump§}
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5 pump,fixed
Constraint (23c) fixes variables '™ to a fixed value g™

obtained from the solution of the master problem. Denote pp”mp ofixed _
{primetiedy o The dual variables of*™ ¢ associated with (23c) pro-
vide sensitivities to be used in building Benders cuts for the master
problem. Also note that o™ < ={o} umpgV}, Jep-

It is worth noting that the subproblem amounts to a BFM-SDP OPF
with an additional linear constraint (23c) and is an SDP that can be
efficiently solved using off-the-shelf solvers such as SeDuMi or Mosek.

The optimal objective value of the subproblem is calculated as fol-
lows in (24) to be used later in (25) and master problem (26).

Ut =Y ut 29
teT

Note that subproblem is a restricted version of the original MISDP C-

OWPF problem. Therefore, the upper bound for the optimal value of the

objective function of the original MISDP C-OWPF problem at iteration

¢ is given below:

WDN ie
UL, = U+ 2[/1 >, ] (25)
ijeP
Master Problem: The master problem is formulated next, where all
variables refer to Benders iteration ¢:

T
. ¢ _ WDN f~pump(¢) ¢
(P5) min Uy = 2[/1, DI v ] +06° (26a)
=1 ijeP
MP\T
over {w,"}_,
subj. to (1a), (1¢), (1g), (1h), (2), (6), (8) (26b)
0% > 6% (26¢)
UC + Z ofzju:npi ( A?}uinpé 131.3;;“13,(> < 0¢
ijt
E=1,....c-1 (26d)

The optimization variables pertaining to the master problem are
collected in the following optimization vector:

MP o — (£8P RS RS xE 6% @7

Constraint (26d) includes Benders cuts previously generated in all
previous Benders iterations through ¢ — 1. The Benders cuts are built
using the primal variables 4], < and dual variables o} € passed from
the solution of the subproblem for { = LE- 1 Constraint (260)
imposes a lower bound 6" on #¢, which represents the objective value
of the subproblem, and can be determined from physical or economical
considerations [20]. Constraint (26¢) is necessary to avoid unbounded-
ness of the master problem when ¢ = 1. Master problem (P5) is a MILP
that can be efficiently solved using off-the-shelf solvers such as Gurobi.

The master problem is a relaxed version of the original MISDP
C-OWPF. Therefore, the objective function value UIb of the master
problem is a lower bound for the optimal objective function value of
the MISDP C-OWPF. Upon solving the master problem, the values of
the coupling variables are updated. Specifically, the resulting optimal
solution g™ is passed on to the subproblem as pP"™™ fixed,

It is worth emphasizing that for each Benders iteration cj , a sequence
of problems (P5) is actually solved to update the parameters «;;,, 7;;
Wi % and fi;  necessary to successively approximate the nonlinear
pipe and pump head loss, as described in Section 2.

Note that it is possible for the subproblem to be infeasible for a
given value of the coupling variable passed on from the master problem.
In such cases, the literature suggests formulating an always-feasible
subproblem without using additional Benders feasibility cuts in the
master problem [20,21]. In the present work, the subproblem is feasible
for the case studies under consideration.

Benders-based C-OWPF Solver: The detailed implementation is
summarized in Algorithm 1. The PDN and WDN operators initially
acquire the topology and operational constraints of their respective
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Algorithm 1: Benders-based C-OWPF Algorithm

Input : PDN operator acquires PDN topology and

WDN operator acquires WDN topology

along with their respective operational constraints
Output: {wM?, yt }r .

1 Initialize C 0, small tolerance (tol = 0.0001) to control convergence,

maxlter to 100, 6" =0, and Uj = oo, U} = —0o, set { =1

2 Initialize variables in (27) and place them in ({wMP}7 )oves
3 while |Uf|p - Ufb| > tol OR ¢ < maxlIter do

4 Initialize successive iteration counter w = 1 and 4 = co while
A > successive tolerance = 0.5 do

5 Update parameters of (6a), (6b), (8) using ({tMP}" ) e5
6 WDN operator solves MILP master problem (P5);

7 Set ({wMP)T_ ), as the solution of (P5);

8 Calculate 4 : —norm[< (MY ) = (M D enels

9 Update ({w}™}" ). = ( I"”’}m V> and @ « @ + 1

10 end

1 Set {w)™ )T = (M) e’

12 Communicate { ﬁfumpm“d}f:l to PDN operator

13 for t=1:Tdo

14 PDN operator solves the subproblem (P4) as SDP and

computes o/"";

15 Set ng as the solution of (P4)

16 end

17 Communicate {p"“m"( }, to WDN operator;

18 Calculate Uﬁp and Ufb and set { « ¢ +1
19 end

20 The PDN operator issues setpoints to PV inverters, and the WDN
operator issues scheduling decisions to pumps.

networks. The WDN operator solves a sequence of instances of the
master problem (P5) in Step 4 through 12 and passes the resulting
{#""}L | to the PDN operator during the first Benders iteration. Fol-
lowing that the PDN operator solves the subproblem pertaining to each
time ¢, i.e., Steps 14 and 15, obtains the sensitivities associated with
the fixing constraint (23c), and communicates {pf’“mp"c }L, to the WDN
operator in Step 17. As the iterations continue, the two operators
exchange information about the shared variables to reach a consensus
on the amount of power consumed by the pumps, and the algorithm
terminates in Step 20. It is worth noting that as the number of Benders
iterations (¢) increases, the optimal value of 6% converges to (24),
ie., US.

Remark 1. Computational complexity of iterative master problem. The
water flows in pipes generally change direction during the scheduling
horizon. To deal with this issue, the literature either assumes prior
knowledge of the flow directions [4,6], or a binary variable is intro-
duced per pipe to encode the unknown direction [5]. In contrast, the
proposed formulation in master problem that relies on the successive lin-
earizations in [2,13] can capture the unknown flow directions without
the need for additional binary variables. As an example, for scheduling a
network with |P| pumps and |W| pipes over |7 | time periods, the work
in [5] entails |7||©|(|P| + |W)]) binary variables, where |©| denotes
the number of segments used to linearize the pump and pipe curves.
In contrast, our proposed formulation in the master problem requires
only |7||P| binary variables. Considering that the number of pipes
in typical WDNs is significantly larger than the number of pumps, the
computational savings are noteworthy.

4. Numerical tests
This section evaluates the efficacy of Benders-based C-OWPF in

terms of joint objective improvements over a decoupled design and a
centralized C-OPWF solver in two test cases, namely, the IEEE 4-bus
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Fig. 2. Network-wide normalized PV, load, and water demand profiles for Test
Case A.

PDN coupled with a 3-node WDN (Test Case A) and the IEEE 123-
bus PDN coupled with the 36-node WDN (Test Case B). In particular,
Test Case A compares the performance of Benders-based C-OWPF with
the decoupled design that utilizes the conventional rule-based control
for WDNs implemented in EPANET [15]; resultant pump schedules
are then passed to solve the SDP-based OPF problem. Test Case B
features a comparison of Benders-based C-OWPF with the centralized
C-OWPF solver. The master problem in Benders-based C-OWPF is solved
using Gurobi and the subproblem is solved using Mosek with CVX. The
centralized C-OWPF problem is solved using Gurobi in YALMIP.

All simulations are run on a 2.30-GHz, intel core i7 computer
with 192 GB of RAM. The head unit is feet [ft]; and the flow unit is
gallons per minute [GPM]. The slack bus voltage is fixed to v™™ =
{1,12-120°,1£120°} per unit [pu]. The pump motor operates with PF =
0.9. The pipe lengths, diameters, node elevations, tank diameter, and
junction base demands are obtained from [13,15] for the 3-node and
36-node WDN, respectively. The 36-node WDN in EPANET corresponds
to Net 2 network, which corresponds to a small region of the Cherry
Hill/Brushy Plains WDN.

Test Case A: IEEE 4-bus PDN coupled with 3-node WDN

The modified IEEE 4-bus PDN [9] and modified 3-node WDN [13]
are depicted in Fig. 1. The system is operated over a time horizon of
T = 10 h, beginning at 6 am with § as one hour. For the PDN, V. is
12.47 kV line-to-line and S, is 6 MVA. The bounds on pump flows are
selected as [ fiins fmax] = [0, 20000] GPM. The tank minimum height,
maximum height, and initial level are respectively set to A, = 900 ft,
Rmax = 950 ft, and hy = 905 ft. Furthermore, we consider an FSP with
parameters hy = 533.4 ft, 6 = 1.334 x 107, and v = 2 computed from
EPANET [15]. Similarly, the line, transformer parameters, and nominal
loads of the modified 4-bus PDN are obtained from [9], wherein one
PV inverter is located at bus number 3. Using the default parameters on
NRELs’ PVWatts [22] with ZIP code 78249 for San Antonio, Texas, USA,
the ac power production of a PV system with 1600 kW size is obtained
for July 23, 2021, from 6 am—4 pm. Furthermore, we assume sb,,, to
be 125% of ph,,. The bounds on the squared magnitude voltage (18)
are respectively set to (0.95) and (1.05)? (p.u.)?. The nominal load at
bus number 4 in PDN is further divided into 40% for baseload and 60%
for pumping load, respectively. Fig. 2 depicts the network-wide load,
PV, and water demand profiles for the case study. The values of A\"P°N
and APPN are chosen to be 1. In this test case, the active power losses
across the lines of the PDN are minimized, that is, the objective function
for the PDN is C, = €l where Cl° = ¥ - Tr(Re(Z,,,, I,,)) [12].

The decoupled design in this test case consists of two stages and is
similar to that discussed in [2]. For easier reference, we refer to the
decoupled problem, as Scenario I; and the Benders-based C-OWPF is
referred to as Scenario II.
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Fig. 3. Convergence of Benders-based C-OWPF problem in Test Case A.

Table 1
Comparison of objective function values (in p.u.) for Scenario I and Scenario II in Test
Case A.

Objective function Scenario I Scenario II % Reduction
2 Zyep e 0.5080 0.3750 26.18

Y, Closs 0.050 0.0437 12.6

Total objective 0.5580 0.4180 25.09

Table 1 summarizes the achieved cost in the two scenarios. It is
worth noting that EPANET (Scenario I) calculates the nonlinear pump
power as specified in (4). On the other hand, Scenario II computes an
approximate value for the pump power. To ensure a fair comparison,
the optimal pump schedules computed by Scenario II are entered into
EPANET to determine the actual nonlinear pump power. From Table 1,
it is evident that Scenario II enhances the flexibility, which reduces the
total objective value compared with Scenario I. For example, the total
objective value is respectively reduced by 25.09%. The % reductions in
operational costs are primarily achieved due to operating FSPs during
times of low water and power demand. Notably, in Scenario I, which is
agnostic to the PDN load and PV production, requires the pump to run
for hours 1 through 4 in order to comply with the rules. On the other
hand, in Scenario II, the pump is turned on only at hours 2, 7, and 9,
when PV generation in the PDN is high and water demand in the WDN
is low.

The convergence of the Benders-based C-OWPF solver (Scenario II)
is depicted in Fig. 3. The algorithm converges in Benders iteration
10, where the difference between Ug (upper curve) and Ufb (lower
curve) is smaller than the allowed tolerance 0.0001. It is worth noting
that theoretically, the lower bound should be monotonically increasing.
Nevertheless, a small oscillation is observed in the lower curve of Fig. 3.
Such small numerical issues are possible and have been reported in
the literature before, see e.g., ([21], Fig. 5). The computational time
required to solve the Benders-based C-OWPF Problem (Scenario II) is
less than 15 min for the Test Case A. We also attempted to solve the
MISDP-based C-OWPF problem (P3) using YALMIPs’ built-in BNB solver
in conjunction with MOSEK. The YALMIP-BNB solver did not converge
convergence even when the number of BNB iterations was increased
to 50 000. This finding corroborates the strength of the Benders-based
C-OWPF capability to solve the multi-period MISDP.

Test Case B: IEEE 123-bus PDN coupled with 36-node WDN

The objective of this Test Case is two-fold: (1) to examine the impact
of using a linearized approximate versus the relaxed power flow model
on solving the optimal water power flow problem; and (2) to assess
the scalability of the Benders-based C-OWPF method. Specifically, this
test case compares the Benders-based C-OWPF developed in Section 3
which utilizes SDP-based relaxation for power flow equations with
a C-OWPF solver which uses the LinDist3Flow approximation for
the power flow equations. The LinDist3Flow has been used in [23]
and other pertinent references to solve OPF problems for PV reactive
power control. The LinDist3Flow is also used in the context of op-
timal water power flow in multi-phase PDNs [3], albeit, the on/of f
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Table 2
WDN price (Wsh) in Test Case B.
Time (h) 1 2 3 4 5 6 7 8 9 10 11 12
ANDN 0.12 0.11 0.12 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19
Time (h) 13 14 15 16 17 18 19 20 21 22 23 24
ANDN 0.19 0.2 0.21 0.22 0.23 0.23 0.2 0.18 0.2 0.17 0.13 0.12
. E— PV s Water demand | 1 profile of PDN is adopted from [5]; and the PV profile is obtained from
ook 109 < NRELs’ PVWatts calculator for July 23, 2021. The WDN price, 47PN,
S 08 108 & is shown in Table 2 [14]. The PDN price A*PN is set to 1 for all 7. The
=07l lor 5 WDN ; ;
< 0.7 0.7 3 case of A, =1 for all ¢ is considered as well.
i 0.6 106 % The objective values listed in Table 3 are calculated using the
3 0.51 105 é respective nonlinear solvers, namely, Z-Bus method for PDN [18] and
S o04r 104 ¢ i .
£ :” o 3 EPANET for WDN. Specifically, ¥, ¥, ;cp I™™ in Table 3 corresponds
s Vo 109 &
; 0zl 02 § to the actual pump power determined by EPANET upon fixing the pump
“Z ool 101 % schedules achieved by each solver for each price scenario. The actual
0— : : : : —Jo power import objective ¥, C;"*"" is calculated by passing the optimal
5 10 15 20 25

Time Horizon (Hrs)

Fig. 4. Network-wide normalized PV, load, and water demand profiles for Test
Case B.

schedules and water directions are assumed to be known. Therefore,
the LinDist3Flow appears to be a promising model for power flow
approximation.

To this end, the nonconvex power flow equations are replaced by
their linear counterparts using the LinDist3Flow approximation upon
ignoring losses and other high-order terms and assuming voltages are
approximately balanced [23]. Then, using monomial approximations as
described in Section 2 for the nonlinear hydraulics in WDNs, a convex
optimal water power flow problem C-OWPF is formulated. Specifically,
the LinDist3Flow-based C-OWPF is convex in the continuous variables,
includes 0/1 pump scheduling decisions, and is solved iteratively due
to the monomial approximations of the WDN hydraulics. The exact
formulation is omitted due to space limitation.

The previously mentioned C-OWPF adopting the LinDist3Flow ap-
proximation is solved in a centralized fashion and is therefore referred
to as centralized C-OWPF in this section. The centralized C-OWPF
amounts to a large-scale mixed integer linear or quadratic programming
problem, depending on the choice of objective function for the PDN. It
is worth noting that the Benders-based C-OWPF solver is decentralized
and thus ensures privacy of the respective WDN and PDN operators.

The modified IEEE 123-bus PDN [9] and modified 36-node WDN
[13] are considered. The system is operated over a time horizon of
T = 24 h, and 6 is one hour. For the IEEE 123-bus PDN, transform-
ers are modeled as wye-g—wye-g connections. Switches are replaced
by short lines. Line shunt admittances and voltage regulators are ig-
nored, however, capacitor banks are accounted for. The bounds on
the squared magnitude voltage (18) are respectively set to (0.95)?> and
(1.05)% (p.u.)* in Benders-based C-OWPF. They are set to (0.97)2 and
(1.05)2 (p.u.)2 for the LinDist3Flow-based formulation of centralized
C-OWPF to overcome the inaccuracy of the linear approximation. Fur-
thermore, six PV inverters with a size of 1000 kW each are located
at buses {13,21,25,78, 86,87} with sh. set to 125% of pl.. The PDN
objective minimizes the real power import from the substation, that
is, the objective function for the PDN is ¢, = C"P" and ¢;™" =
Re(lgsm), where s, represents the power flows leaving the substation
at time 1.

The 36-node WDN includes a reservoir with a fixed head of 100
ft and an FSP with parameters h, = 400 ft, ¢ = 2.5 x 1075, and
v = 2 computed from EPANET. Moreover, the pump is connected to
bus 93 of the PDN. Fig. 4 depicts the network-wide water demand, real
power load, and PV profiles considered in Test Case B, where the water
demand profile is taken from EPANETs’ 36-node WDN data; the load

reactive power setpoints of PV inverters and the actual pump powers
computed by the respective methods. Table 4 lists the pump on/of f
statuses with time-varying (top rows) and constant WDN price (bottom
Trows).

The following key observations for Test Case B are highlighted.

» The on/of f schedules reported in Table 4 for Benders-based
C-OWPF and centralized C-OWPF are different.

Under time-varying WDN price, the Benders-based C-OWPF turns
on the pump during low load and high PV generation, i.e., hours
10—12, despite the high WDN price and water demand at hours
10 and 11. Compared to the centralized C-OWPF, this leads to
a slight increase of about 0.36% in pump power consumption
and a 2.9% drop in power import objective. The overall per-
cent reduction is 2.83%, the majority of which is attributed to
decrease in the power import objective. Interestingly, the pump
is turned on during hour 11 by the Benders-based C-OWPF and
centralized C-OWPF. The centralized C-OWPF turns on the pump
during low water demand, i.e., hours 1, 5, and 6, but not during
high PV generation, such as hour 12. This behavior can possi-
bly be attributed to the fact that the centralized C-OWPF uses
the LinDist3Flow, which ignores line losses and other higher-
order terms and may therefore render the voltage constraints
inactive. However, higher-order terms can be included to im-
prove the optimality of LinDist3Flow at the expense of solving
the LinDist3Flow OPF iteratively [23]—which is not presently
carried out in the centralized C-OWPF solver. This highlights the
benefits of the SDP-based relaxations for solving large-scale OWPF
problems in multi-phase PDNs using Benders’ decomposition.
Under constant WDN price, a similar pattern is observed as men-
tioned previously. Overall, the Benders-based C-OWPF achieves a
3.13% reduction in the total objective value when compared to
the centralized C-OWPF.

Table 5 reports the computational time required to solve the
Benders-based C-OWPF and centralized C-OWPF under time-
varying WDN price as 17 min and 35 min respectively. The
Benders-based C-OWPF converges in three iterations as depicted
in Fig. 5. For each Benders’ iteration, the masterproblem is solved
in less than 5 min, and the set of time-decoupled subproblems
is solved in less than 40 s. The SDP implementation of the
subproblem is based on Github codes available at the link in [11].
The parallelcomputingtoolbox of MATLAB is used to reduce the
subproblem computational time. Furthermore, because the central-
ized C-OWPF amounts to solving a sequence of large-scale MILPs,
the optimizer block of YALMIP is used to speed up the centralized
C-OWPF, which prevents the same optimization problem from
being built multiple times. With constant WDN price, the compu-
tational time reported by the Benders-based C-OWPF is 30 min. In
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Table 3

Objective function values (in p.u.) for Benders-based C-OWPF and the centralized C-OWPF in Test Case B. The % reduction is with respect to

the centralized C-OWPF.
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WDN price Method X S I | cimport Total
Time varying AN Benders-C-OWPF 0.1365 6.1448 6.2813
Centralized C-OWPF 0.1360 6.3283 6.4643
% reduction —-0.36 2.9 2.83
/{,WDN =1 Benders-C-OWPF 0.1367 6.1440 6.2807
Centralized C-OWPF 0.1362 6.3522 6.4844
% reduction -0.36 3.2 3.13
Table 4
Pump on/off decisions in Test Case B under time-varying (top rows) and constant (bottom rows) WDN price.
Time (h) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Benders C-OWPF 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Centralized C-OWPF 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Benders C-OWPF 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Centralized C-OWPF 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 5

this case, the Benders-based C-OWPF converges in six iterations.
The computational time reported by the centralized C-OWPF is
38 min, which is slightly higher than the corresponding time of
the Benders-based C-OWPF.

The minimum and maximum magnitudes across all time periods

and buses of the voltage profile J corresponding to actual power
flows computed by the Z-Bus method are reported in Columns 3
and 4 of Table 5. Both Benders-based and the centralized C-OWPF
methods report feasible voltages.

Since Benders-based C-OWPF employs SDP relaxation of the
power flow equations, the optimality gap is assessed in Table 6.

0 . - AN
The % Gap in last row of Table 6 is defined as Gap = -
Tt

100% (assuming APPN = 1), where the objective lower bound
> C‘f is computed by the subproblem for each Benders’ iteration ¢.
A feasible objective value ), Cf is obtained from actual power
flows computed with the Z-Bus method using the PV setpoints and
pump powers of the subproblem at iteration ¢. It is worth noting
that the Benders-based C-OWPF exhibits practically zero optimality
gap at every iteration. For completeness, the optimality gap

pertaining to the LinDist3Flow approximation of the centralized
C-OWPF is evaluated against the SDP relaxation of Benders-based
C-OWPF in the last column of Table 5. The feasible objective
value from Lindist3Flow ), C, is computed based on the actual
power flows, using the setpoints produced by the centralized C-
OWPF. The lower bound is provided by the SDP relaxation ¥, C,.
The LinDist3Flow yields an optimality gap of 2.9% and 3.42%
under time-varying and constant WDN prices, respectively.

Another approach to assess the quality of the SDP relaxation in
the subproblem is to check the ratio of the second largest to the

largest eigenvalue for each PSD matrix [10]. For all PSD matrices
in Test Cases A and B, the eigenvalue ratio over the scheduling
horizon is very small; for instance, it is less than 0.81 x 107
at the final Benders’ iteration. The small ratio confirms that the
relaxation is tight.

Due to the fact that the WDN hydraulics are approximated using
successive linearizations, the modeling accuracy is assessed by
comparing the resulting flows, heads, and pump power consump-
tions to the nonlinear hydraulics produced by EPANET. For the

Test Cases A and B, the two models, i.e., the monomial approx-
imations and the EPANET agree on nodal heads and flows to
within 0.001 ft and 0.02 GPM, respectively. The approximated
pump powers differ from the ones of EPANET by no more than
0.05 kW.

Minimum and maximum voltage magnitudes (p.u.), computational time (min), and
optimality gap (%) for Benders-based C-OWPF and the centralized C-OWPF in Test

Case B.
WDN price Method min () max (§) Time % Gap
Time varying A¥PN  Benders-C-OWPF 0.95 1.05 17 0
centralized C-OWPF  0.952 1.04 35 2.9
AYPN =1 Benders-C-OWPF 0.95 1.04 30 0
centralized C-OWPF  0.953 1.043 38 3.42
Table 6

Optimality gap for SDP subproblem in Benders-based C-OWPF in Test Case B under
time-varying WDN price.

Benders’ iteration ¢ 1 2 3
(X, C)F 6.1496 6.1446 6.1448
X, C)F 6.1496 6.1446 6.1448
% Gap 0 0 0

=)

=

[\®]

=]

Total objective value

Iteration Index (¢)

Fig. 5. Benders-based C-OWPF convergence for Test Case B with time-varying WDN
price.

5. Conclusions and future directions

This paper proposes a convex multi-period scheduling framework
called C-OWPF to optimally operate pumps in WDNs and PV invert-
ers in multi-phase distribution networks accounting for the coupling
between two infrastructures. The C-OWPF problem can be solved as a
MISDP. The capability of modern MISDP solvers in obtaining tractable
solutions is still limited. To this end, this paper leverages Benders
decomposition to circumvent the tractability issues inherent in the
MISDP-based C-OWPF while allowing the WDN and PDN operators
to pursue individual objectives respecting the coupling between the
two networks. The numerical results evince the effectiveness of the
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proposed Benders-based C-OWPF solver compared to a traditional rule-
based decoupled approach and a centralized C-OWPF solver adopting
the LinDist3Flow approximation for the power flow equations. Com-
putation time reductions with implementation of the Benders-based
C-OWPF solver in the open-source programming language Julia will be
explored in the future. Future work will also incorporate variable-speed
pumps and pressure-reducing valves in WDNs as well as step-voltage
regulators and energy storage in multi-phase PDNs. Stochastic frame-
works to account for the uncertainties of power consumption, water
demands, and PV renewable power are worth exploring as well.
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