
56

Guarding Machine Learning Hardware Against Physical
Side-channel Attacks

ANUJ DUBEY, North Carolina State University, USA

ROSARIO CAMMAROTA, Emerging Security Lab, Intel Corporation, USA

VIKRAM SURESH, Circuit Research Lab, Intel Corporation, USA

AYDIN AYSU, North Carolina State University, USA

Machine learning (ML)models can be trade secrets due to their development cost. Hence, they need protection
against malicious forms of reverse engineering (e.g., in IP piracy). With a growing shift of ML to the edge
devices, in part for performance and in part for privacy benefits, the models have become susceptible to the
so-called physical side-channel attacks.

ML being a relatively new target compared to cryptography poses the problem of side-channel analysis
in a context that lacks published literature. The gap between the burgeoning edge-based ML devices and the
research on adequate defenses to provide side-channel security for them thus motivates our study. Our work
develops and combines different flavors of side-channel defenses for ML models in the hardware blocks. We
propose and optimize the first defense based on Boolean masking. We first implement all the masked hardware
blocks. We then present an adder optimization to reduce the area and latency overheads. Finally, we couple
it with a shuffle-based defense.

We quantify that the area-delay overhead of masking ranges from 5.4× to 4.7× depending on the adder
topology used and demonstrate a first-order side-channel security of millions of power traces. Additionally,
the shuffle countermeasure impedes a straightforward second-order attack on our first-order masked imple-
mentation.

CCS Concepts: • Security and privacy→ Side-channel analysis and countermeasures;

Additional Key Words and Phrases: Side-channel attack, neural networks, masking

ACM Reference format:

Anuj Dubey, Rosario Cammarota, Vikram Suresh, and Aydin Aysu. 2022. Guarding Machine Learning Hard-
ware Against Physical Side-channel Attacks. J. Emerg. Technol. Comput. Syst. 18, 3, Article 56 (April 2022),
31 pages.
https://doi.org/10.1145/3465377

1 INTRODUCTION

Machine learning (ML) has become ubiquitous in various domains, such as healthcare [24], au-
tomotive [26], and cybersecurity [54], among others. ML has also made significant advances in

This project is supported in part by NSF under Grants No. 1943245 and No. SRC GRC Task 2908.001.
Authors’ addresses: A. Dubey and A. Aysu, North Carolina State University, 891, Raleigh, North Carolina, USA, 27606;
emails: {aanujdu, aaysu}@ncsu.edu; R. Cammarota, Emerging Security Lab, Intel Corporation, San Diego, California, USA,
92127; V. Suresh, Circuit Research Lab, Intel Corporation, Hillsboro, Oregon, USA, 97124.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1550-4832/2022/04-ART56 $15.00
https://doi.org/10.1145/3465377

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:2 A. Dubey et al.

terms of performance albeit with increased development costs—e.g., training a recent ML model is
estimated to cost over $4.6M [48]. The increasing demand for ML models along with their costly
development has created a favorable market for selling ML models directly as a service to the cus-
tomers [74]. Themodel provider can either host the trainedmodel on the cloud or deploy it directly
on an edge device like a surveillance camera [80]. The recent trend is indeed to directly deploy the
MLmodel on an edge platform for better performance and privacy [103]. These valuable MLmodel
IPs should be kept confidential. High fidelity model extraction attacks have already been proposed
in prior literature that use mathematical and/or cryptanalytic approaches to reverse engineer the
internals of the model [13, 41]. The shift from cloud-based servers to edge devices has addition-
ally exposed the ML models to the easily applicable and extremely potent physical side-channel
attacks [4, 22, 70, 83, 93, 95, 99]. Furthermore, the number of queries for success in side-channels
attacks is orders of magnitude lower than that of the mathematical model extraction attacks. ML
models may also be more vulnerable to such attacks when compared with cryptographic imple-
mentations, because the latter usually has a built-in key-refresh mechanism unlike ML models,
which places an upper-bound on the number of traces that can be captured by an adversary [94].

Physical side-channel attacks exploit the information leakage of the secret through physical
properties of the device like power-consumption and electromagnetic emanations (EM). The
Differential Power Analysis (DPA), for instance, exploits the inherent correlations between
the secret-key dependent data being processed and the power consumption of the device [44].
Many cryptographic implementations have been shown to be vulnerable to such attacks since
then [15, 51, 67]. Researchers have accordingly proposed effective ways to mitigate such at-
tacks [29, 40, 62, 68, 87]. However, the side-channel analysis research focused primarily on protect-
ing cryptographic implementations, because it was the only domain that required confidentiality.
But lately, ML models have also become lucrative targets for side-channel attacks. Stealing the
model internals also assists in adversarial attacks that aim to create misclassifications in the model
for malicious purposes [100].
Physical side-channel attacks are easily applicable if the adversary has physical access to the

device, which is why edge-based ML accelerators are unsurprisingly susceptible to such attacks [4,
22, 93, 99].With the recent developments in remote physical side-channel attacks, it is also possible
to extend reverse engineering of ML models to a multi-tenant cloud-based FPGA setting [57, 77,
101]. However, the research on developing adequate countermeasures is still quite immature. With
the latest market research predicting a tremendous growth in the sales of edge-basedML hardware
in the coming years [37], there is an urgent need to develop efficient and robust side-channel
defenses for ML applications.
The existing works on building countermeasures against power-based side-channel attacks on

ML accelerators extend the ones developed for the cryptographic applications. The only two avail-
able techniques from our earlier works either utilize a combination of masking and hiding for
side-channel resilience or a full Boolean masking approach [21, 22]. Hiding aims to equalize power
consumption throughout the execution typically using a precharge and differential logic-based cir-
cuit. Masking splits (or encodes) the original secret into multiple statistically independent shares
to break the correlation of the secret data with the power consumption. The former approach
is cost-conscious but challenging to implement effectively due to the precise control required in
back-end flow for the hiding countermeasure. The latter approach of using Boolean masking is
relatively easy to implement effectively, because it is an algorithm-level defense and does not re-
quire a precise back-end control. However, it incurs higher performance and area overheads when
implemented trivially.
In this article, we extend our previous work on Boolean masking that was published at the

IEEE/ACM International Conference on Computer Aided Design 2020 [21]. The earlier work

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:3

presents the first fully masked ML accelerator design that provides protection against power side-
channel attacks. The extensions over the previous work include the following.

• Our previous work used a pipelined ripple-carry architecture for the masked adder design,
which had a latency of 100 cycles. In the extension, we design and implement a masked
Kogge-Stone architecture for the adder that reduces its latency from 100 cycles to 31 cycles.
We quantify that such a change improves the area-delay overheads of the whole design from
5.4× to 4.7× without changing the side-channel security. We quantify the area reduction
mainly in terms of the number of look-up tables (LUTs), because LUTs are the limiting
factor in FPGAs; flip flops are available in abundance.1 Section 4.3 discusses the details of
the design, Section 6.2.3 illustrates the side-channel resilience, and Section 6.3 presents the
implementation results.
• We propose a shuffle countermeasure to improve the side-channel resilience and make it
more difficult to conduct a second-order side-channel attack on our first-order masked de-
sign. Specifically, the scheme randomize the sequence in which neurons are computed for
each layer by adopting the random start index (RSI)method originally developed for pro-
tecting AES implementations [55, 92]. Shuffling introduces noise in the temporal domain and
increases the number of measurements for a successful attack by N 2, where N is the number
of hidden layer nodes. We discuss the details of the implementation in Section 5. We also
demonstrate that shuffling helps to increase even the second-order side-channel security of
the design up to at least 3M traces in a low noise setup.
• We also explore an alternative implementation, where we switch our earlier proposed adder
using the pipelined Trichina’s AND gate [90] with a masked LUT having five inputs. We
show that such a design further reduces the area-delay product by 2× but does leak infor-
mation against a first-order side-channel attack. The leakage, however, is relatively smaller
compared to an unprotected design with leakages becoming statistically significant only af-
ter capturing 270k measurements. We discuss the details of the implementation and quantify
the side-channel leakage in Section 7.1.1.

The rest of this manuscript is organized as follows: Section 2 discusses our assumptions on
the adversary and the victim; Section 3 briefly discusses related work on ML model extraction,
existing side-channel defenses in cryptography, neural networks and describes our baseline hard-
ware design; Section 4 describes in detail the hardware design of our proposed masked neural
network components; Section 5 discusses the implementation of the shuffle countermeasure; Sec-
tion 6 presents our results on hardware implementation results and the side-channel evaluation;
Section 7 discusses potential ways to reduce the costs further or provide provable security; finally,
we conclude our article in Section 8.

2 THREAT MODEL

We adopt the standard DPA threat model in which an adversary has direct physical access to the
target device running inference [4, 22, 45], or can obtain power measurements remotely when
the device executes neural network computations [101]. The adversary can control the inputs and
observe the corresponding outputs from the device as in chosen-plaintext attacks.
Figure 1 shows our threat model where the training phase is trusted but the trained model is

deployed to an inference engine operating in an untrusted environment. The adversary is after the
trained model parameters (e.g., weights and biases)—input data privacy is out of scope [93].

1The target FPGA is Spartan-6 in which each slice consists of four LUTs but eight flip-flops.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:4 A. Dubey et al.

Fig. 1. Standard DPA threat model applied to ML model stealing where the trained neural network is de-

ployed on an edge device running in an untrusted environment.

We assume that the trained ML model is stored in a protected memory and the standard tech-
niques are used to securely transfer it (i.e., bus snooping attacks are out of scope) [9]. The adversary,
therefore, has gray-box access to the device, i.e., it knows all the design details up to the level of
each logic gate but does not know the trained ML model. We restrict the secret variables to just
the parameters and not the hyperparameters such as the number of neurons, following earlier
work [22, 42, 89]. In fact, an adversary will still not be able to clone the model with just the hyper-
parameters if it does not possess the required compute power or training dataset. This is analogous
to the scenario in cryptography where an adversary, even after knowing the implementation of a
cipher, cannot break it without the correct key.
We target a hardware implementation of the neural network, not software. The design fully

fits on the FPGA. Therefore, it does not involve any off-chip memory access and executes with
constant-flow in constant time. These attributes make the design resilient to any type of digital
(memory, timing, access-pattern, etc.) side-channel attack. However, the physical side-channels
like power and EM emanations still exist; we address the power-based side-channel leakages in
our work. Other implementation attacks on neural networks such as the fault attacks are out of
scope [7, 8].

3 BACKGROUND AND RELATEDWORK

This section presents related work on the privacy of ML applications, the current state of side-
channel defenses, preliminaries on BNNs, and our BNN hardware design.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:5

3.1 ML Model Extraction

Recent developments in the field of ML point to several motivating scenarios that demand asset
confidentiality. First, training is a computationally intensive process and hence requires the model
provider to invest money in high-performance compute resources (e.g., a GPU cluster). The model
provider might also need to invest money to buy a labeled dataset for training or label an unstruc-
tured dataset. Therefore, knowledge about either the parameters or hyperparameters can provide
an unfair business advantage to the user of the model, which is why the ML model should be
private.
Theoretical model extraction analyzes the query-response pair obtained by repeatedly query-

ing an unknown ML model to steal the parameters [13, 41, 64, 71]. This type of attack is simi-
lar to the class of theoretical cryptanalysis in the cryptography literature. Digital side-channels,
by contrast, exploit the leakage of secret-data dependent intermediate computations like access-
patterns or timing in the neural network computations to steal the parameters [20, 23, 33, 34, 96],
which can usually be mitigated by making the secret computations constant-flow and constant-
time. Physical side-channels target the leak in the physical properties like CMOS power-draw or
electromagnetic emanations that will still exist in a constant-flow/constant-time algorithm’s im-
plementation [4, 22, 83, 93, 95, 99]. Mitigating physical side-channels are thus harder than digital
side-channels in hardware accelerator design and has been extensively studied in the cryptography
community.

3.2 Side-channel Defenses

The researchers have proposed numerous countermeasures against DPA. These countermeasures
can be broadly classified as either hiding-based or masking-based. The former aims to make the
power-consumption constant throughout the computation by using power-balancing techniques
[61, 87, 98]. The latter splits the sensitive variable into multiple statistically independent shares
to ensure that the power consumption is independent of the sensitive variable throughout the
computation [2, 6, 28, 40, 65, 90].

The security provided by hiding-based schemes hinges upon the precision of the back-end de-
sign tools to create a near-perfect power-equalized circuit by balancing the load capacitances and
synchronizing their activity across the leakage prone paths. This is not a trivial task and prior liter-
ature shows how a well-balanced dual-rail-based defense is still vulnerable to localized EM attacks
[36]. By contrast, masking transforms the algorithm itself to work in a secure way by never eval-
uating the secret variables directly. This keeps the security largely independent of the back-end
design and makes masking a favorable choice over hiding.

3.3 Neural Network Classifiers

Neural network algorithms learn how to perform a certain task. In the learning phase, the user
sends a set of inputs and expected outputs to the machine (a.k.a., training), which helps it to ap-
proximate (or learn) the function mapping the input-output pairs. The learned function can then
be used by the machine to generate outputs for unknown inputs (a.k.a., inference).
A neural network consists of units called neurons (or nodes) and these neurons are usually

grouped into layers. The neurons in each layer can be connected to the neurons in the previous
and next layers. Each connection has a weight associated with it, which is computed during the
training. The neurons work in a feed-forward fashion passing information from one layer to the
next.
The weights and biases can be initialized to be random values or a carefully chosen set before

training [66]. These weights and biases are the critical parameters that our countermeasure aims to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:6 A. Dubey et al.

Fig. 2. A typical Binarized Neural Network where the neuron performs weighted summations of the input

pixels with binarized weights, and the activation function is a sign function.

protect. During training, a set of inputs along with the corresponding labels are fed to the network.
The network computes the error between the actual outputs and the labels and tunes the weights
and biases to reduce it, converging to a state where the accuracy is acceptable.

3.4 Binarized Neural Networks

Figure 2 depicts the neuron computation in a fully connected BNN. The weights and biases of
a neural network are typically floating-point numbers. However, high area, storage costs, and
power demands of floating-point hardware do not fare well with the requirements of the resource-
constrained edge devices. Binarized Neural Networks (BNNs) [35], with their low hardware
cost and power needs fit very well in this use-case while providing a reasonable accuracy. BNNs
restrict the weights and activations to binary values (+1 and−1), which can easily be represented in
hardware by a single bit. This reduces the storage costs for the weights from floating-point values
to binary values. The XNOR-POPCOUNT operation implemented using XNOR gates replaces the
large floating-point multipliers resulting in a huge area and performance gain [69]. In Figure 2, the
neuron in the first hidden layer multiplies the input values with their respective binarized weights.
The generated products are added to the bias, and the result is fed to the activation function, which
is a sign function that binarizes the non-negative and negative inputs to +1 to −1, respectively.
Hence, the activations in the subsequent layer are also binarized.
Prior works have demonstrated the computational efficiency of XNOR-POPCOUNT-based arith-

metic operations in DNNs. A prior proposed GPU kernel exploiting the XNOR-POPCOUNT opera-
tions achieved 23× faster matrix multiplication compared to a naive baseline implementation [17].
The designed kernel is 3.4× faster than cuBLAS and the MLP runs 7× faster using the XNOR-
POPCOUNT kernel compared to the baseline. Well known semiconductor companies like Xilinx,
Intel, and Apple are showing interest in BNNs due to these advantages [43, 84, 91]. Owing to their
low memory footprint and lightweight nature of operations, BNNs are considered attractive for
edge applications such as FPGA-accelerators [25], cryptographic neural network inference sys-
tems [50], and for designing low-bitwidth ConvNets [102], among many other applications. De-
spite their low-bitwidth operations, the accuracy obtained by BNNs is comparable to that obtained
by full-precision neural networks. For instance, the accuracy loss of a BNN-ConvNet with 1-bit
weights and activations was found to be less than 0.5% compared to a full-precision ConvNet with
seven convolutional layers and one dense layer [102] when evaluated on the Google Street View
House Number (SVHN) dataset. Similarly, another work [49] achieved less than 5% accuracy loss

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:7

Fig. 3. The hardware design of baseline unmasked BNN. The hardware performsweighted summations using

a single adder in the input layer and using XNOR-POPCOUNT logic in the hidden layers. The sign function is

implemented by simply inverting the MSB of the weighted summation. The output logic finds the maximum

weighted summation out of the 10 output layer nodes sequentially.

on the ImageNet dataset [19], a challenging dataset notorious for its complexity in the computer
vision community, using a ResNet-like network built entirely using binary convolution blocks,
compared to a full precision network.

3.5 Our Baseline BNN Hardware Design

We consider a BNN having an input layer of 784 nodes, three hidden layers of 1,0102 nodes each,
and an output layer of 10 nodes. The 784 input nodes denote the 784 pixel values in the 28 × 28
grayscale images of the Modified National Institute of Standards and Technology (MNIST)

database and 10 output nodes represent the 10 output classes of the handwritten numerical digit.

3.5.1 Weighted Summations. We choose to use a single adder in the design and sequentialize
all the additions in the algorithm to reduce the area costs. Figure 3 shows our baseline BNN design.
The computation starts from the input layer pixel values stored in the Pixel Memory. For each node
of the first hidden layer, the hardwaremultiplies 784 input pixel values one by one and accumulates
the sum of these products. The final summation is added with the bias reusing the adder with a
multiplexed input and fed to the activation function. The hardware uses XNOR and POPCOUNT3

operations to perform weighted summations in the hidden layers. The final layer summations are
sent to the output logic.
In the input layer computations, the hardware multiplies an 8-bit unsigned input pixel value

with its corresponding weight. The weight values are binarized to either 0 or 1 (representing a −1
or +1, respectively). Figure 4 shows the realization of this multiplication with a multiplexer that
takes in the pixel value (a) and its 2’s complement (−a) as the data inputs and weight (±1) as the
select line. The 8-bit unsigned pixel value, when multiplied by ±1, needs to be sign-extended to
9-bits, resulting in a 9-bit 2 × 1 multiplexer.

3.5.2 Activation Function. The activation function binarizes the non-negative and negative in-
puts to +1 and −1, respectively, for each node of the hidden layer. In hardware, this is implemented
using a simple NOT gate that takes the MSB of the summations as its input.

2The number of hidden layer nodes can change based on the type of adder used, which is explained later in the manuscript.
3The POPCOUNT operation also involves an additional step of subtracting the number of nodes (1,010) from the final sum,
which can be done as part of bias addition step.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:8 A. Dubey et al.

Fig. 4. The multiplication of input pixel a with the weight (+1/−1) is implemented as a 9-bit 2 × 1 multiplexer

in the baseline BNN design.

3.5.3 Output Layer. The summations in the output layer represent the confidence score of each
output class for the provided image. Therefore, the final classification result is the class having
the maximum confidence score. Figure 3 shows the hardware for computing the classification
result. As the adder generates output layer summations, they are sent to the output logic block
that performs a rolling update of the max register (max) if the newly received sum is greater than
the previously computed max. In parallel, the hardware also stores the index of the current max
node. The index stored after the final update is sent out as the final output of the neural network.
The hardware takes 2.8M cycles to finish one inference.

Exemplary DPA Attack on Baseline Implementation. A DPA adversary can target the 20-bit accu-
mulator register at the output of the adder in Figure 3. The register accumulates the sum of the
products of image pixels and weights in every cycle. Thus, the power consumption of any of those
cycles can be modeled by using a hamming distance (HD) model. For example, if the adversary
targets the fourth cycle, the power modelM is given as follows:

M = HD ((w0 × p0 +w1 × p1 +w2 × p2), (w0 × p0 +w1 × p1 +w2 × p2 +w3 × p3)),

where pi andwi denote the ith image pixel and weight, respectively. The number of hypotheses in
this case is 16 (24), since the adversary attacks four weightsw0,w1,w2, andw3. Since the hardware
adds the bias in the 785th cycle, the adversary needs to extract the 784 weights first and then
construct the power model for the sum with bias to attack it.

4 FULLY MASKING THE NEURAL NETWORK

This section discusses the hardware design and implementation of all components in the masked
neural network. Prior work on masking of neural networks shows that arithmetic masking alone
cannot mask integer addition due to a leakage in the sign-bit [22]. Hence, we apply gate-level
Boolean masking to perform integer addition in a secure fashion. We express the entire computa-
tion of the neural network as a sequence of AND and XOR operations and apply gate-level masking
on the resulting expression. XORs, being linear, do not require any additional masking, and AND
gates are replaced with secure, Trichina style AND gates [90]. Furthermore, we design specialized
circuits for BNN’s unique components like Masked Multiplexer and Masked Output Layer.
We first explain the notations in equations and figures. Any variable without a subscript or

superscript represents an N-bit number. We use the subscript to refer to a single bit of the N-bit
number. For example, a7 refers to the 8th bit of a. The superscript in masking refers to the different
secret shares of a variable. To refer to a particular share of a particular bit of an N-bit number, we
use both the subscript and the superscript. For example, a14 refers to the second Boolean share of
the 5th bit of a. If a variable only has the superscript (say i), then we are referring to its full N-bit
ith Boolean share; N can also be equal to 1, in which case a is simply a bit. r (or ri) denotes a fresh,
random bit. The operation ⊕ represents a bitwise XOR of operands.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:9

Fig. 5. Trichina’s AND Gate implementation: glitch-prone (left) and glitch-resistant (right). Flip-flops syn-

chronize arrival of asynchronous gate outputs at XOR gates’ inputs to reduce glitches.

4.1 A Glitch-Resilient Trichina’s AND Gate

Among the closely related masking styles [72], we chose to implement Trichina’s method due to its
simplicity and implementation efficiency. Figure 5 (left) shows the basic structure and functionality
of the Trichina’s gate, which implements a 2-bit, masked, AND operation of c = a · b. Each input
(a and b) is split into two shares (a0 and a1 s.t. a = a0 ⊕ a1, b0 and b1 s.t. b = b0 ⊕ b1). These
shares are sequentially processed with a chain of AND gates initiated with a fresh random bit (r).
A single AND operation thus uses three random bits. The technique ensures that output is the
Boolean masked output of the original AND function, i.e., c = c0 ⊕ c1, while all the intermediate
computations are randomized.
Unfortunately, the straightforward adoption of Trichina’s AND gate can lead to information

leakage due to glitches [62]. For instance, in Figure 5 (left) if the products a0 · b0 and a0 · b1 reach
the input of second XOR gate before randommask r reaches the input of first XOR gate, the output
at the XOR gate will evaluate (glitch) to (a0 ·b0) ⊕ (a0 ·b1) = a0 · (b0 ⊕b1) temporarily, which leads
to secret value b being unmasked. Therefore, we opted for an extension of the Trichina’s AND
gate by adding flip-flops to synchronise the arrival of inputs at the XOR gates (see Figure 5 right).
The only XOR gate not having a flip-flop at its input is the leftmost XOR gate in the path of c1,
which is not a problem, because a glitching output at this gate does not combine two shares of the
same variable. Similar techniques have been used in past [3]. Masking styles like the Threshold
gates [52, 53, 86] may be considered for even stronger security guarantees, but theywill add further
area-performance-randomness overhead.

4.2 Masked Ripple Carry Adder

We adopt the ripple-carry style of implementation for the adder first. It is composed of N 1-bit full
adders where the carry-out from each adder is the carry-in for the next adder in the chain, starting
from LSB. Therefore, ripple-carry configuration eases parameterization and modular design of the
Boolean masked adders.

4.2.1 Design of a Masked Full Adder. A 1-bit full adder takes as input two operands and a carry-
in and generates the sum and the carry, which are a function of the two operands and the carry-in.
If the input operand bits are denoted by a and b and carry-in bit by c , then the Boolean equation
of the sum S and the carry C can be described as follows:

S = a ⊕ b ⊕ c, (1)

C = a · b | b · c | c · a. (2)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:10 A. Dubey et al.

Fig. 6. An unmasked Full Adder design (left) and its gate-level masking using Trichina AND Gates (right)

that has a latency of 5 cycles.

However, the non-linear OR operation in the carry function is usually replaced with the linear
XOR operator to simplify the masking of carry:

C = a · b ⊕ b · c ⊕ c · a. (3)

Figure 6 shows the regular, 1-bit full adder (on the left), and the resulting masked adder with
Trichina’s AND gates (on the right). In the rest of the subsection, we will discuss the derivation of
the masked full adder equations.
First step is to split the secret variables (a, b, and c) into Boolean shares. The hardware samples

a fresh, random mask from a uniform distribution and performs XOR with the original variable.
If we represent the random masks as a0, b0, and c0, then the masked values a1, b1, and c1 can be
generated as follows:

a1 = a ⊕ a0, b1 = b ⊕ b0, c1 = c ⊕ c0. (4)

A masking scheme always works on the two shares independently without combining them at any
point in the operation, because that will reconstruct the secret and create a side-channel leak.
The function of sum-generation is linear, making it easy to directly and independently compute

the Boolean shares of S :

S = S0 ⊕ S1,

where

S0 = a0 ⊕ b0 ⊕ c0, S1 = a1 ⊕ b1 ⊕ c1.

Unlike the sum-generation, carry-generation is a non-linear operation due to the presence of
an AND operator. Hence, the hardware cannot directly and independently compute the Boolean
shares C0 and C1 of C . We use the Trichina’s construction explained in Section 4.1 to mask carry-
generation.
The hardware uses three Trichina’s AND gates tomask the three ANDoperations in Equation (3)

using three randommasks. This generates two Boolean shares from each Trichina AND operation.
At this point, the expression is linear again, and therefore, the hardware can redistribute the terms,
similar to the masking of sum operation.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:11

Fig. 7. Modular design of a masked 4-bit adder using Masked Full Adders (top) and its pipelined version

(bottom). Pipelining ensures a throughput of 1 summation per cycle.

In the following equations, we use TG (x ,y, r) to represent the product x · y implemented via
Trichina’s AND Gate as illustrated in the following equation:

x · y = TG (x ,y, r) =m0 ⊕m1,

where m0 and m1 are the two Boolean shares of the product. Replacing each AND operation in
Equation (3) with TG, we can write

TG (a,b, r0) = d
0 ⊕ d1, (5)

TG (b, c, r1) = e0 ⊕ e1, (6)

TG (c,a, r2) = f 0 ⊕ f 1, (7)

where d0, d1, e0, e1, f 0, and f 1 are the output shares from each Trichina Gate. From Equations (3),
(5), (6), and (7), we get

carryout = TG (a,b, r0) ⊕ TG (b, c, r1) ⊕ TG (c,a, r2).

Replacing the TGs from Equations (5), (6), and (7) and rearranging the terms, we get

carryout = (d0 ⊕ e0 ⊕ f 0) ⊕ (d1 ⊕ e1 ⊕ f 1),

which can also be written as a combination of two Boolean shares C0 and C1, where

C0
= d0 ⊕ e0 ⊕ f 0, C1

= d1 ⊕ e1 ⊕ f 1.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:12 A. Dubey et al.

Therefore, we create a masked full adder that takes in the Boolean shares of the two bits to be
added along with a carry-in and gives out the Boolean shares of the sum and carry-out.

4.2.2 The Modular Design of Pipelined N-bit Full Adder. The masked full adders can be chained
together to create an N-bit masked adder that can add two masked N-bit numbers. Figure 7 (top)
shows how to construct a 4-bit masked adder as an example. We pipeline the N-bit adder to yield
a throughput of one by adding registers between the full-adders corresponding to each bit (see
Figure 7 (bottom)).

4.3 Masked Kogge Stone Adder

We also propose and implement the masked design for a baseline Kogge Stone adder (KSA) archi-
tecture. KSA is a type of parallel prefix adder that has a (logarithmically) lower latency compared to
that of the ripple carry adder. KSA builds on the concept of carry look ahead. It starts by computing
the generate (дi) and propagate (pi) bits for each position given by the following equations:

дi = ai · bi , (8)

pi = ai ⊕ bi , (9)

where ai and bi are the ith bits of the operands. The generate bit being 1 implies that the carry will
definitely be asserted at that position. The propagate bit being 1 implies that the carry will only
be asserted if there is an incoming carry from the previous step. Therefore, the carry can only be
asserted if the generate bit is 1 or the propagate bit is 1 with an incoming carry from the previous
position.
This concept of generates and propagates for a single position can be extended to compute the

so-called group generate and group propagate bits that denote if a group of bits do generate or
propagate a carry. For example, the following two equations illustrate how to compute the group
generate (G1:0) and propagate (P1:0) for the group of least significant two bits from the individual
generates and propagates д0,p0,д1, and p1:

G1:0 = д1 ⊕ p1 · д0,

P1:0 = p1 · p0.

Larger groups can be created from smaller groups by combining them in a similar fashion. Let
Gi :k , Pi :k ,Gk :j , and Pk :j represent the group generate and propagate bits for the group of bits from
ith to kth position, and kth to jth position, respectively. The generic equation to combine these
quantities and get a group generate and propagate for the combined group from ith to jth bit is
given below:

Gi :j = Gi :k ⊕ Pi :k ·Gk :j , (10)

Pi :j = Pi :k · Pk :j . (11)

Figure 8 shows the baseline KSA schematic for 8-bit operands.4 First, the KSA computes the
sum bits without carry by element-wise XORing of the operands. Next, it keeps combining the
generates and propagates in parallel until all the group generates and propagates for each position
represents the group from that position until the least significant bit, effectively creating a direct
dependence of each carry to the carry-in of the adder. Finally, the adder computes the carry at
each position directly from the final group generate, group propagate, and the carry-in and XORs
it with the sum without carry to calculate the result.

4We use a 20-bit KSA in the actual design, but illustrate an 8-bit KSA’s schematic here for simplicity.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:13

Fig. 8. Panel (a) shows the topology of an 8-bit KSA and the location of the three different constituents in

the design using circles, hexagons, and squares. Panels (b), (c), and (d) describe the internals of these three

constituents, respectively.

Fig. 9. Part (a) describes the masking of the individual generate and propagate blocks. Part (b) shows the

masked hardware for the group generate and propagate blocks.

We have designed a masked version of the KSA. Figure 9 shows the schematic of this design. The
adder in the masked design receives two Boolean shares of each operand. The function to compute
the sum without carry is an XOR operation, which is linear. Therefore, the adder directly and
independently computes the Boolean shares of the sum without carry. Similarly it also computes
the Boolean shares of the individual propagate bits, because they only involve an XOR operation
(Equation (9)). The computation of the individual generate bits, however, involve the non-linear
AND operation. The adder thus replaces the regular AND gates with the synchronised Trichina’s
AND gate discussed in Section 4.1 to produce the Boolean shares of the generate bits. The produced
generate and propagate bits are propagated down the adder tree and combined in each stage using
the combination function from Equations (10) and (11). The combination function uses 1 XOR and
2 AND gates. The XOR, again, does not require any additional masking, whereas two AND gates
are replaced by two synchronised Trichina’s AND gates. In the final stage, the adder XORs the
respective shares of the sum without carry and the generate bits to calculate the Boolean shares
of the actual sum.
In the masked KSA architecture the adder’s latency is reduced from 100 cycles of masked RCA

to 30 cycles. The reduced latency directly helps to reduce the area of the throughput-optimization
circuitry that is discussed in Section 4.6. The adder latency decides the number of buffers needed
to store the concurrent partial summations and the data width of the corresponding demultiplexer
and multiplexer blocks. For instance, in the RCA-based design the hardware uses 101 buffers to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:14 A. Dubey et al.

Fig. 10. The unmasked activation function (left) is implemented as a NOT gate and the masked version

(right) receives two Boolean shares of MSB from masked adder and inverts one of them.

Fig. 11. Masking of the Output Layer that uses a masked subtractor and a masked multiplexer to find the

node with the maximum confidence score among the 10 output nodes.

compute the summations for 101 nodes concurrently, because the adder only produces 1 output in
101 cycles.

4.4 Masking of Activation Function

The baseline hardware implements the activation function as an inverter as discussed in 3.5.2. In
the masked version, the MSB output from the adder is a pair of Boolean shares. To perform NOT
operation in a masked way, the hardware simply inverts one of the Boolean shares as Figure 10
shows.

4.5 Masking the Output Layer

The hardware stores the 10 output layer summations in the form of Boolean shares. To determine
the classification result, it needs to find the maximum value among the 10 masked output nodes.
Specifically, it needs to compare two signed values expressed as Boolean shares. We transform the
problem of masked comparison to masked subtraction.
Figure 11 shows the hardware design of the masked output layer. The hardware subtracts each

output node value from the current maximum and swaps the current maximum (old max shares)
with the node value (new max shares) if the MSB is 1 using a masked multiplexer. An MSB of 1 sig-
nifies that the difference is negative and hence the new sum is greater than the latest max. Instead
of building a new masked subtractor, we reuse the existing masked adder to also function as a sub-
tractor through a sub flag, which is set while computing max. In parallel, the hardware uses one
more masked multiplexer-based update-circuit to update the Boolean shares of the index corre-
sponding to the current max node (not shown in the figure). This is to prevent known-ciphertext
attacks, ciphertext being the classification result in our case. Finally, the Masked Output Logic
computes the classification result in the form of (Boolean) shares of the node’s index having the
maximum confidence score.
Subtraction is essentially adding a number with the 2’s complement of another number. 2’s

complement is computed by taking bitwise 1’s complement and adding 1 to it. A bitwise inverse
is implemented as an XOR operation with 1 and the addition of 1 is implemented by setting the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:15

Fig. 12. Hardware Design of the Fully Masked Neural Network. The components related to masking are

shown in dark yellow. The register file helps in throughput optimization.

initial carry-in to 1. The additional XOR, being a linear operator, changes nothing with respect to
the masking of the new adder-subtractor circuit.

4.6 Scheduling of Operations

We optimize the scheduling in such a way that the hardware maintains a throughput of 1 addition
per cycle. The latency of the masked 20-bit RCA adder is 100 cycles. Therefore, the result from the
adder will only be available after 101 cycles5 from the time it samples the inputs. The hardware
cannot feed the next input in the sequence until the previous sum is available because of the data
dependency between the accumulated sum and the next accumulated sum. This incurs a stall for
101 cycles leading to a total of 784 ∗ 101 = 79,184 cycles for each node computation. That is a 784×
performance drop over the unmasked implementation with a regular adder.
We solve the problem by finding useful work for the adder that is independent of the summation

in-flight, during the stalls. We observe that computing the weighted summation of one node is
completely independent of the next node’s computation. The hardware utilizes this independence
to improve the throughput by starting the next node computation while the result for the first
node arrives. Similarly, all the nodes up till 101 can be computed upon concurrently using the same
adder and achieve the exact same throughput as the baseline design. This comes at the expense
of additional registers (see Figure 126) for storing 101 summations7 plus some control logic but a
throughput gain of 784× (or 1,010× in hidden layers) is worthwhile. The optimization only works
if the number of next-layer nodes is greater than, and a multiple of 101. This restricts optimizing
the output layer (of 10 nodes) and contributes to the 3.5% increase in the latency of the masked
design.
The masked KSA design extension that we propose has a latency of only 31 cycles. This directly

impacts the size of the throughput optimization circuit. Since the adder produces a result in every
328 cycles, the hardware requires a register file of only 32 entries to store the parallel partial sum-
mations and accordingly a multiplexer and demultiplexer of width 32. Hence, we reduce the area
cost of the throughput optimization circuitry by 3×, which is coherent with the synthesis results
shown in Table 2.

5Need an additional cycle for the accumulator register as well.
6The register file also has a demultiplexing and multiplexing logic to update and consume the correct accumulated sum in
sequence, which is not shown for simplicity.
7This is why we use 1010 neurons, which is a multiple of 101, in the hidden layers.
8Need an additional cycle for the accumulator register.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:16 A. Dubey et al.

5 SHUFFLING THE NEURAL NETWORK COMPUTATIONS

Shuffling is a commonly used technique to defend against side-channel attacks [92]. The premise
of shuffling is to introduce noise in the temporal domain by either randomizing the order of in-
dependent operations and/or by adding random delays within the algorithm. In DPA attacks, the
adversary tries to correlate its hypotheses with the side-channel measurements at a fixed point
of interest over multiple measurements assuming that the targeted operation happens at the same

time in each trace. Since in a shuffled implementation the targeted operation will happen at the
same time instance in a small set of traces, the number of traces needed for a successful attack
increases. Prior work by Mangard et al. demonstrates that the number of traces required for a suc-
cessful attack is p2 if the probability of occurrence of the operation of attack is 1/p [51]. Therefore,
shuffling would increase the number of measurements needed to run a successful side-channel
attack by p2. Shuffling improves the side-channel resilience in general for all orders due to the
temporal perturbation introduced. However, we note that our proposed masking scheme already
provides first-order side-channel security and thus, the adversary will naturally try a second-order
attack as the next step. Therefore, shuffling makes it more difficult to conduct a second-order side-
channel attack on our first-order masked design.
Earlier studies have adopted shuffling as a countermeasure against physical side-channel attacks

on both software and hardware implementations of cryptographic primitives [92]. Depending on
the performance and area budget, the shuffle is implemented either as random permutation

(RP) or as a random starting index (RSI) [55]. RP-based shuffling typically uses the Fisher-
Yates shuffle algorithm9 that generates unbiased permutations of a given sequence withn elements
leading to n! possible permutations. In RSI, the original sequence is cyclically rotated by a random
chosen amount, which is the starting index, leading to n possible permutations. We identify that
the computation of the activation value of each node in a layer is independent of other nodes.
This allows the hardware to shuffle the order of computation of activation values, which is by
default done sequentially in the unshuffled implementation. The RSI-based shuffle is almost free
in hardware, because only the starting read address of the memory storing the parameters needs
to be initialized with a random index. This makes RSI a very good candidate for a low area-budget
design. Given the area overheads and constant-time enforcement challenges of Fisher-Yates shuffle,
we have opted for applying the RSI in this work.

RSI-based shuffling enables the number of possible permutations to be equal to the number of
nodes in a hidden layer, i.e., 1,024. Based on the analysis by Mangard et al. [51], the number of
traces for a successful attack increases by 1, 0242×, i.e., about six orders-of-magnitude. The large
number of independent operations in neural networks helps to provide a significantly higher side-
channel security using RSI, compared to that in block ciphers, which is typically in two orders-of-
magnitude due to fewer independent operations, for instance, the number of SBox computations.
Implementing RP-based shuffling offers a better security but has significant area costs due to the
following reasons. Every step of the Fisher-Yates shuffle requires generating a uniform random
number within a dynamically changing range. However, PRNGs typically generate random num-
bers only within ranges that are powers of 2. One way to confine the generated random number
within the required range is to perform a modulo but that leads to biased permutations [47]. This
is a well-studied problem and one way to solve it is by discarding certain random numbers that
create the bias (a.k.a. rejection sampling) that makes the algorithm variable-time, and possibly in-
troduce timing-based side-channel vulnerabilities. The rejection sampler and modulo operation
with non-powers of 2 incur significant area overheads when implemented on hardware.

9Also known as the Knuth algorithm.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:17

In the shuffled neural network implementation, the hardware generates a random index to start
the node computations in a layer. The hardware then evaluates all the nodes sequentially from
the randomly chosen node until the last node and then the remaining nodes from the first node
until the starting node. The hardware can further shuffle the reads of the input and hidden layer
nodes during weighted summation, because addition is commutative. However, we do not chose
to implement that shuffling in this work, because the number of input layer nodes is 784, which
is not a power of 2 and hence requires a variable time random number generator for an unbiased
generation of numbers between 0 and 783 [47].

6 RESULTS

In this section, we describe the hardware setup used to implement the neural network and capture
power measurements, the leakage assessment methodology that we follow to evaluate the security
of the proposed design, and the hardware implementation results.

6.1 Hardware Setup

We use Verilog for the front-end design and Xilinx ISE 14.7 for the back-end. We use the
DONT_TOUCH synthesis attribute and disable the tool options like LUT combining, register re-
ordering, and so on, to prevent any optimization in the masked components. These are standard
practices in implementing masking schemes on FPGAs.
Our side-channel evaluation platform is the SAKURA-G FPGA board [31]. It hosts Xilinx

Spartan-6 (XC6SLX75-2CSG484C) as the main FPGA that executes the neural network inference.
An on-board amplifier amplifies the voltage drop across a 1Ω shunt resistor on the power supply
line. We use Picoscope 3206D [85] as the oscilloscope to capture the measurements from the board.
We conduct different experiments with varying design and sampling frequencies to shorten the
time of acquisition and evaluation and to also validate a sound measurement setup.

(1) We use the design and sampling frequencies of 24 and 125 MHz, respectively, for the exper-
iments presented in the conference version. Since we evaluate the complete inference time
window for Variant-I, we had to increase the design frequency to shorten the inference
latency and accelerate the validation process.

(2) We use the design and sampling frequencies of 1.5 and 500MHz, respectively, to evaluate the
synchronized Trichina’s AND gate, Variant-II, and Variant-III. Synchronized Trichina’s
AND gate is a small hardware primitive with a latency of only four clock cycles, and we only
capture small time windows to evaluate variants II and III. Therefore, we can decrease the
design frequency without any significant time overheads in the leakage evaluation process.

We discuss more on how the high latency of the design poses challenges in evaluation in
Section 7.2.
We use Riscure’s Inspector SCA [75] software to communicate with the board and initiate a

capture on the oscilloscope. By default, the Inspector software does not support SAKURA-G board
communication. Hence, we develop our own custom software modules to automate the setup. The
modules implement the communication protocol and perform the register reads/writes on the
FPGA to start the inference and capture the result.

6.2 Leakage Evaluation

We perform the leakage assessment of the proposed design using the non-specific fixed versus
random t-tests, which is a common and generic way to assess the side-channel vulnerability in a
given implementation [5]. Each input is an image consisting of 784 8-bit unsigned pixels. Since we
run a non-specific TVLA test, our setup first selects an image to be used as the fixed image. Then,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:18 A. Dubey et al.

Fig. 13. TVLA results of the unmasked (a) and masked (b) RCA-based implementation. The results clearly

show that the unmasked design is insecure, whereas the masked design is secure with 99.99% confidence

(t-scores always below ±4.5).

it sends fixed and random images to the device in a randomly interspersed fashion as prescribed
by Schneider et al. in a prior work [78]. A t-score within the threshold range of ±4.5 implies that
the power traces do not leak any information about the data being processed with up to 99.99%
confidence. Themeasurement and evaluation is quite tedious, andwe refer the reader to Section 7.2
for further details. We demonstrate the security up to 2M traces, which is much greater than the
first-order security of the currently best-known defense [22].

Pseudorandom Number Generators (PRNG) produce the fresh, random masks required for
masking. We choose TRIVIUM [11] as the PRNG, which is a hardware implementation friendly
PRNG specified as an International Standard under ISO/IEC 29192-3, but any cryptographically
secure PRNG can be employed. TRIVIUM generates 264 bits of output from an 80-bit key; hence,
the PRNG has to be re-seeded before the output space is exhausted. Note that this randomness
generation is not a unique problem for masking NN and do exist in masking crypto circuits; hence,
we adopt their approach.

Next, we present the security evaluation for three design variants. Variant-I is the design
that uses only the masked RCA, which is taken from the shorter, conference version of this arti-
cle [21]. Variant-II is the masked KSA-based design that we propose as part of our extensions.
Variant-III incorporates the shuffling of node computations as well along with the masking of
the KSA, which is also a part of the extensions.

6.2.1 First-order Tests on Variant-I. First, we conduct a first-order t-test on the design with
PRNGs disabled, which is equivalent to an unmasked (baseline/unprotected) design. Figure 13(a)
shows the result of this experiment, where we clearly observe significant leakages throughout the
execution, since the t-scores are greater than the standard threshold of ±4.5. Next, we conduct the
same test, but with PRNGs enabled, which is the masked design. Figure 13(b) shows the results
for this case, where we observe that the t-scores never cross the threshold of ±4.5 except a small
portion in the start of the plot.
The leakages in the initial portion of the plot are due to input correlations during the input

layer computations. The hardware loads the input pixel after every 101 cycles and feeds it to the
masked multiplexer. However, the secret variable is the weight and not the input pixel, which
is never exposed, because the masked multiplexer randomises the output using a fresh, random
mask.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:19

Fig. 14. First-order (left) and second-order (right) t-tests on Trichina’s AND gate at a low design frequency

of 1.5 MHz and sampling frequency of 500 MHz.

6.2.2 High Precision First and Second-order Tests on Variant-I. We performed univariate
second-order t-test on the fully masked design [78] but 1M traces were not sufficient to reveal
the leakages. Due to the extremely lengthy measurement and evaluation times it was infeasible
to continue the test for more traces. Therefore, we perform first and second-order evaluation on
the isolated synchronized Trichina’s AND gate, which is one of the main building blocks of the
design. We reduce the design frequency to 1.5 MHz to increase the accuracy of the measurement
and prevent any clock cycle aliasing. The signal-to-noise ratio (SNR) for a single gate was not
sufficient to see leakage even at 10M traces; hence, we amplify the SNR by instantiating 32 inde-
pendent instances of the Trichina’s AND gate in the design, driven by the same inputs. We present
the results for this experiment in Figure 14 that shows no leakage in the first-order t-test but signif-
icant leakages in the second-order t-tests for 500k traces. Thus, the successful second-order t-test
validates the correctness of our measurement setup and the first-order masking implementation.

6.2.3 First-order Tests on Variant-II and Variant-III. The tests involve (i) increasing the
sampling frequency of the oscilloscope to capture potential glitch-caused leakages more effectively
and (ii) evaluating the canonical layers’ computation rather than the entire scheme to achieve a
practical validation. Note that this is a standard practice in side-channel analysis—e.g., only the
first few exponentiations are analyzed in a 1,024-bit RSA scheme [12]. We present our evaluations
for two short time windows out of the overall inference, which involve unique computations, for
Variant-II. The setup captures the first time window when hardware transitions from the input
layer computations to the first hidden layer computations (Figure 15). The second time window is
the complete evaluation of the output layer, which involves the computation of maximum confi-
dence using the newly proposed masked KSA (Figure 16). Figure 15(a) shows that the first-order
t-test with PRNGs disabled clearly leaks during the computations of both the input and hidden
layer. However, in the masked design, i.e., with PRNGs switched on, the t-scores never cross the
threshold of ±4.5 during the hidden layer computations. The results for Variant-III are similar
with an additional decrease in the t-scores because of increased temporal noise due to shuffling.
Figure 15(c) shows the TVLA results for Variant-III.
Figure 16 shows the TVLA results for the entire output layer computation with PRNGs off and

PRNGs on. The results again demonstrate that the unmasked design leaks significantly, whereas
the masked design’s leakage is within the standard threshold of ±4.5 throughout the computation
of the masked classification result.

6.2.4 Evaluation of Frequency Traces. Converting the power traces to frequency domain is one
potential way to nullify the effect of shuffling, because shuffling only introduces noise in the time

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:20 A. Dubey et al.

Fig. 15. First-order t-test results of the KSA-based design with PRNGs off (a), PRNGs on (b), and PRNGs

on coupled with RSI shuffling of the node computations (c). Panel (a) shows clear leakages throughout

the execution, panel (b) only shows leakages during the input layer computations, and panel (c) shows a

significantly lower leakage during the input layer computations as well due to the shuffle.

Fig. 16. First-order t-test results of the output layer computations in the KSA-based design with PRNGs off

(a), PRNGs on (b). Panel (a) shows clear leakages throughout the execution, whereas panel (b) shows that

the t-scores stay confined to the threshold of ±4.5.

domain. Thus, the adversary may conduct a side-channel attack on the frequency domain traces
to extract the secret information. However, masking the design reduces the leakages in the fre-
quency domain as well and resists a first-order DPA on the frequency traces. We conduct a TVLA
test on the frequency domain traces of Variant-III to quantify the side-channel information in
the frequency domain. Prior works have also used frequency domain TVLA analysis to quantify
leakages in the frequency domain [46, 82]. Figure 17 shows the average frequency trace and the
first-order TVLA results with 2M traces. We observe that the t-scores are within the threshold for
the frequency traces implying that the design does not leak information in the frequency domain
as well.

6.3 Masking Overheads

Table 1 summarizes our implementation results for the baseline unmasked design and all the pro-
posed variants. We observe that the Variant-I incurs an area overhead of 5.4× and 6.8× in the
LUTs and FFs compared to the baseline. Variant-II, however, reduces these overheads to 4.7×
and 6.6×, respectively, for the LUTs and FFs. The primary reason for the reduction is the use of KSA
instead of RSA that reduces the latency of the adder and in turn also reduces the hardware cost
for throughput optimization. Variant-III, which incorporates RSI-based shuffling along with
masking, shows a negligible increase of 16 LUTs and 10 FFs compared to Variant-II.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:21

Fig. 17. Average frequency spectrum of masked Variant-III (left) and its TVLA result (right). The TVLA

plot shows that there is no significant leakage in the frequency spectrum of the design when masked.

Table 1. Area (LUT/FF/BRAM) and Latency (in Cycles) Comparison

of the Unmasked and Masked Implementations

Variant Area Latency Change

Unmasked 1,833/1,125/163 2.85 × 106 NA
Variant-I 9,818/7,709/163 2.94 × 106 5.4×/6.8×/1×
Variant-II 8,724/7,483/165 2.94 × 106 4.7×/6.6×/1×
Variant-III 8,740/7,493/165 2.94 × 106 4.7×/6.6×/1×

We also present a block-wise area distribution of the RCA and the KSA-based designs in Table 2
to better understand the reductions. The fourth column shows the increase or decrease in the area
of a particular block in Variant-III compared to Variant-I. As expected, we notice an increase
in the area of the KSA compared to the RSA due to more combinational logic like the generate
and propagate circuitry. The number of PRNGs required is also higher in Variant-III due to an
increase in the number of AND gates in the KSA compared to RSA that demand additional fresh
random masks. However, we can observe the main contributor of the overall area in Variant-I

is the Throughput Optimization circuitry, and we reduce the cost for this block by roughly 3× in
Variant-III. Since the number of nodes in the hidden layers of Variant-III is 1,023 instead
of 1,010 in Variant-I, we observe slight increase in the read-only memories (ROM) that store
the parameters and the read-write memories (RWM) that store the node values. The latency in
both the implementations increases only by a mere 1.03× compared to baseline unmasked design,
primarily due to absence of the throughput optimization in the output layer.
Next, we compare the area-delay product (ADP) of the proposed Variants with the only work

published on side-channel countermeasures for neural networks called MaskedNet [22]. Here, we
define area as the sum of the number of LUTs and FFs, and delay as the latency in number of cycles.
We emphasize that a direct comparison between these approaches in unfair, because MaskedNET
inherently gains an advantage due to its parallelized design (compared to BoMaNET’s sequen-
tialized datapath). Indeed, the comparison of the baseline (unprotected) design of parallel versus
sequential hardware reveals a 68× area-delay product advantage for the parallel hardware. The
ADP increase in the masked versions, i.e., between Variant-II and protected MaskedNet design,
is 80×, which is a relative increase of only 1.18×. Our improved design Variant-III reduces the
relative increase in ADP to 1.08×.
Similar overheads were observed in previous works on bit-sliced masked AES implementa-

tions [97].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:22 A. Dubey et al.

Table 2. Block-level Area Distribution of the Unmasked and Masked

Implementations (LUT/FF/BRAM)

Design Blocks Variant-I Variant-III Fraction (%)

Adder 929/1,135/0 1,572/2,074/0 (+) 1.7/1.8/
PRNGs 1,188/1,314/0 3,112/2,916/0 (+) 2.5/2.4/

Output Layer 54/82/0 50/82/0 (−) 1.08/1/-
Throughput 5,486/4,126/0 1,792/1,338/0 (−) 3.1/3.1/-
Optimization
Controller 1,471/43/0 1,513/56/0 (+) 1.02/1.3/-
ROMs 1,009/670/159 1,027/677/161 (+)1.01/1.01/1
RWMs 0/0/4 0/0/4 -/-/1

“-” denotes no change in the area of the unmasked and masked design.
“(+)/(−)” in Fraction column denotes an increase/decrease in the area of
Variant-III compared to Variant-I.

Fig. 18. TVLA results of LUT-based implementation of Trichina’s AND gate.

7 DISCUSSIONS

7.1 Proof-of-Concept Versus Optimizations

Our solutions utilize simple yet effective techniques to mask an inference engine. But certainly,
there is scope for improvement both in terms of the hardware design and the security counter-
measures. In this section, we discuss possible optimizations/extensions of our work and alternate
approaches taken in the field of privacy for ML.

7.1.1 Design Optimizations. We implement the Trichina’s AND gate as a fully pipelined gate-
level masked structure to resist leakages from the glitches. However, since it only utilizes 5 inputs
and our target platform is an FPGA, it can also be implemented directly as a 5-input masked LUT.
Such a design will significantly simplify the design, and reduce the latency of the masked AND
operation and area costs due to pipeline registers. Reducing the latency of the adder will also
decrease the area cost of the throughput optimization, which is what we observe when we switch
from RCA to KSA as well. Therefore, we conducted TVLA tests on the LUT-based design as well
to quantify the area costs and the security loss. Figure 18 shows the first-order t-test results on
the masked full adder implemented using LUT-based Trichina’s AND gates. We observe that the
design starts leaking around 270k traces and area of the overall design decreases by 3× and 2.7× in
the number of FFs and LUTs, respectively. The leakage is because of the glitches that happen inside
the LUTs of the FPGA due to different arrival times of the inputs. These glitches can temporarily
reconstruct the secret intermediates inside the LUT.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:23

Prior literature discusses other techniques to resist glitches. For instance, the prior work on
TI-based secure versions of RCA and KSA can be extended for this work [79]. Another potential
optimization is to selectively allow only those glitches to happen that do not reconstruct the secret,
and register every other combinational output. This idea has been well explored in the work by
Gross et al. on Domain Oriented Masking [30]. Another prior work tried to prevent glitches inside
the LUTs by disabling the toggles in the first half of the clock cycle using an enable signal as
an input to the LUT [60]. However, it required implementing the AES SBox by manually hard
instantiating each LUT making it somewhat tricky to be extended for larger designs like a neural
network.
The ultimate goal of a side-channel defense is to make the design as secure as the primary-

channel attack, which is theoretical cryptanalysis. For cryptography, this means making the de-
sign secure against an astronomical amount of tests (e.g., 2128 for AES). But this is not necessarily
the case for machine learning. Recent works shows that a high-fidelity, cryptanalytic model ex-
traction succeeds with a few million tests on the types of networks that are similar to those we
evaluate in this work [13]. Therefore, it would be sufficient for the side-channel defense to be se-
cure against a test using a few million traces, because the design will be broken anyhow with that
many tests through a cryptanalytic attack. The lowered security requirement of ML (compared to
cryptographic primitives) would enable designers to opt for a solution that use a glitch-vulnerable
Trichina’s AND gate.

7.1.2 Limitations. We reduce glitch-related vulnerabilities using registers at each stage, which
is a low-cost, practical solution. Other works have proposed stronger countermeasures at the cost
of higher performance and area overheads [30, 62]. The quest for stronger and more efficient coun-
termeasures is never-ending; masking of AES is still being explored, even 20 years after the initial
work [2], due to the advent of more efficient or secure masking schemes [16] and more potent
attacks [58, 90].

Our solution is first-order secure but there is scope for construction of higher-order masked
versions. However, higher-order security is a delicate task; Moos et al. recently showed that a
straightforward extension of masking schemes to higher-order suffers from both local and compo-
sitional flaws [59] and masking extensions were proposed in another recent work [14]. This is the
first work on fully masked neural networks, and we foresee follow ups as we have experienced in
the cryptographic research of AES masking, even after 20 years of intensive study.
We consider fault attacks out of scope for this work but it would be interesting to explore de-

fenses for such attacks. Numerous countermeasures have been proposed to defend cryptographic
implementations against fault attacks [18]. Therefore, one promising direction could be to explore
how to extend those ideas in the context of machine learning algorithms. Another potential re-
search direction is to explore efficient side-channel attacks to extract the model weights and biases,
which might become tedious for deeper networks. For example, if the neural network layers are
similar, then adversary may create a template of power consumption for the initial layer compu-
tations and use it to attack the subsequent layers.

7.2 Measurement Challenges

We faced some unique challenges that are not generally seen with the symmetric-key crypto-
graphic evaluations. Inference becomes a lengthy operation, especially for an area-optimized
design—the inference latency of our design is roughly 3 million cycles. For a design frequency
of 24 MHz, the execution time translates to 122 ms per inference. If the oscilloscope samples at 125
MHz, then the number of sample points to be captured per power trace is equal to 15 million. This
significantly slows down the capturing of power traces. In our case, capturing 2 million power

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:24 A. Dubey et al.

traces took one week, which means capturing 100 million traces as AES evaluation [16] will take
roughly a year. Performing TVLA on such large traces (28 TB, in our case) also takes a significant
amount of time: it took 3 days to get one t-score plot during our evaluations on a high-end PC.10

One possibility to avoid this problem is looking at a small subset of representative traces of the
computation [12]. We conduct a comprehensive evaluation of our design in one variant and an
evaluation on a smaller subset in the other variants.

7.3 Theoretical Versus Side-channel Attacks

Theoretical model extraction by training a proxy model on a synthetically generated dataset us-
ing the predictions from the unknown victim model is an active area of research [13, 41]. These
attacks mostly assume a black-box access to the model and successfully extract the model param-
eters after a certain number of queries. This number ranges typically in the order of 220 [13]. By
contrast, physical side-channel attacks only require a few thousand queries to successfully steal
all the parameters [22]. This is partly due to fact that physical side-channel attacks can extract
information about intermediate computations even in a black-box setting. Physical side-channel
attacks also do not require the generation of the synthetic dataset, unlike most theoretical attacks.

7.4 Orthogonal ML Defences

There has been some work on defending the ML models against stealing of inputs and parameters
using other techniques like Homomorphic Encryption (HE) and Secure Multi-Party Com-

putation (SMPC) [27, 56, 73], Watermarking [1, 76], and Trusted Execution Engines (TEE)

[32, 38, 88]. We refer the interested readers to survey papers published on ML privacy for a more
exhaustive list [10, 39, 63, 81]. Purely HE-based or HE+SMPC solutions initially incurred a large
overhead (30,000× in CryptoNet [27] and 500× in SecureML [56]), but follow-up work made them
more efficient (13× in XONN[73]). We propose masking, which is an extension of SMPC on hard-
ware, and we believe that it is a promising direction for ML side-channel defenses as it has been on
cryptographic applications. Watermarking techniques are punitive methods that cannot prevent
physical side-channel attacks. TEEs are subject to ever-evolving microarchitectural attacks and
typically are not available in edge/IoT nodes.

7.5 Extensions to More Complicated Networks

We believe that some of the solutions we propose can be used to mask other types of neural net-
works as well, and are not just confined to the specific MLP architecture we target in this work.
The masked adder can be used to mask the convolution operation in Convolutional Neural Net-
works. Our masked output layer design can be used to construct a masked MaxPool hardware
that can compute the maximum element in a given pooling window in masked fashion. MaxPool
is typically implemented using OR gates if the network is binarized, because MaxPool becomes
equivalent to an OR operation. Our proposed synchronized Trichina’s AND gate design can be
used to mask the OR operations too.

8 CONCLUSIONS AND FUTURE OUTLOOK

Physical side-channel analysis of neural networks is a new, promising direction in hardware se-
curity where the attacks are rapidly evolving compared to defenses. We proposed the first fully
masked neural network, demonstrated the security with up to 2M traces, and quantified the over-
heads of a potential countermeasure. We addressed the key challenge of masking integer addi-
tion [22] through Boolean masking. We furthermore presented ideas on how to mask the unique

10Intel Core i9-9900K, 64 GB RAM.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:25

linear and non-linear computations of a fully connected neural network that do not exist in cryp-
tographic applications. We also demonstrated how to couple a first-order masked design with a
lightweight shuffle countermeasure to provide additional second-order side-channel security. The
combination of the two defenses can raise the side-channel resilience to a level that succeeding a
theoretical/cryptanalytic attack may need fewer queries.
The large variety in neural network architectures in terms of the quantization-level and the

types of layer operations (e.g., Convolution, Maxpool, Softmax), and activation functions (e.g.,
ReLU, Sigmoid, Tanh) presents a large design space for neural network side-channel defenses.
This work focused on BNNs, because we feel that BNNs are both excellent candidates for resource-
constrained devices deployed at the edge and the closest flavors of ML algorithms to block ciphers
(on which a large chunk of the side-channel literature focuses). Our ideas serve as a benchmark to
analyze the vulnerabilities that exist in neural network computations and to construct more robust
and efficient countermeasures.

ACKNOWLEDGMENTS

We thank Dr. Sohrab Aftabjahani and Dr. Avinash Varna for their valuable feedback on the design.

REFERENCES

[1] Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. 2018. Turning your weakness into a
strength:Watermarking deep neural networks by backdooring. In Proceedings of the 27th USENIX Security Symposium

(USENIX Security’18), William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 1615–1631. Retrieved from
https://www.usenix.org/conference/usenixsecurity18/presentation/adi.

[2] Mehdi-Laurent Akkar and Christophe Giraud. 2001. An implementation of DES andAES, secure against some attacks.
In Proceedings of the 3rd InternationalWorkshop on Cryptographic Hardware and Embedded Systems (CHES’01) (Lecture

Notes in Computer Science), Çetin Kaya Koç, David Naccache, and Christof Paar (Eds.), Vol. 2162. Springer, 309–318.
https://doi.org/10.1007/3-540-44709-1_26

[3] Monjur Alam, Santosh Ghosh, M. J. Mohan, Debdeep Mukhopadhyay, Dipanwita Roy Chowdhury, and Indranil
Sengupta. 2009. Effect of glitches against masked AES S-box implementation and countermeasure. IET Info. Secur. 3,
1 (2009), 34–44. https://doi.org/10.1049/iet-ifs:20080041

[4] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In Proceedings of the 28th USENIX Security Symposium (USENIX

Security’19), Nadia Heninger and Patrick Traynor (Eds.). USENIX Association, 515–532. Retrieved from https://www.
usenix.org/conference/usenixsecurity19/presentation/batina.

[5] Benjamin Jun Gilbert Goodwill, Josh Jaffe, and Pankaj Rohatgi. 2011. A testing methodology for side-channel resis-
tance validation. http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.

[6] Johannes Blömer, Jorge Guajardo, and Volker Krummel. 2004. Provably secure masking of AES. In Proceedings of the

11th International Workshop on Selected Areas in Cryptography (SAC’04) (Lecture Notes in Computer Science), Helena
Handschuh and M. Anwar Hasan (Eds.), Vol. 3357. Springer, 69–83. https://doi.org/10.1007/978-3-540-30564-4_5

[7] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu. 2018. Practical fault attack on deep
neural networks. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’18),
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 2204–2206. https://doi.org/10.
1145/3243734.3278519

[8] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang Liu. 2020. SNIFF: Reverse engineering of neural
networks with fault attacks. Retrieved from https://arxiv.org/abs/2002.11021.

[9] Rosario Cammarota, Indranil Banerjee, and Ofer Rosenberg. 2018. Machine learning IP protection. In Proceedings

of the International Conference on Computer-Aided Design (ICCAD’18), Iris Bahar (Ed.). ACM, 19. https://doi.org/10.
1145/3240765.3270589

[10] Rosario Cammarota, Matthias Schunter, Anand Rajan, Fabian Boemer, Ágnes Kiss, Amos Treiber, Christian
Weinert, Thomas Schneider, Emmanuel Stapf, Ahmad-Reza Sadeghi, Daniel Demmler, Huili Chen, Siam Umar
Hussain, M. Sadegh Riazi, Farinaz Koushanfar, Saransh Gupta, Tajana Simunic Rosing, Kamalika Chaudhuri, Hamid
Nejatollahi, Nikil D. Dutt, Mohsen Imani, Kim Laine, Anuj Dubey, Aydin Aysu, Fateme Sadat Hosseini, Chengmo
Yang, Eric Wallace, and Pamela Norton. 2020. Trustworthy AI inference systems: An industry research view. Re-
trieved from https://arxiv.org/abs/2008.04449.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:26 A. Dubey et al.

[11] Christophe De Cannière and Bart Preneel. 2008. Trivium. In New Stream Cipher Designs—The eSTREAM Finalists,
Matthew J. B. Robshaw and Olivier Billet (Eds.). Lecture Notes in Computer Science, Vol. 4986. Springer, 244–266.
https://doi.org/10.1007/978-3-540-68351-3_18

[12] Mathieu Carbone, Vincent Conin, Marie-Angela Cornelie, François Dassance, Guillaume Dufresne, Cécile Dumas,
Emmanuel Prouff, and Alexandre Venelli. 2019. Deep learning to evaluate secure RSA implementations. IACR Trans.

Cryptogr. Hardw. Embed. Syst. 2019, 2 (2019), 132–161. https://doi.org/10.13154/tches.v2019.i2.132-161
[13] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. 2020. Cryptanalytic extraction of neural network models. In

Proceedings of the 40th Annual International Cryptology Conference (CRYPTO’20) (Lecture Notes in Computer Science),
Daniele Micciancio and Thomas Ristenpart (Eds.), Vol. 12172. Springer, 189–218. https://doi.org/10.1007/978-3-030-
56877-1_7

[14] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert. 2020. Hardware private circuits:
From trivial composition to full verification. IEEE Trans. Comput. (2020), 1. https://doi.org/10.1109/TC.2020.3022979

[15] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt. 2015. Differential power analysis of a
McEliece cryptosystem. In Proceedings of the 13th International Conference on Applied Cryptography and Network

Security (ACNS’15) (Lecture Notes in Computer Science), Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and
Michalis Polychronakis (Eds.), Vol. 9092. Springer, 538–556. https://doi.org/10.1007/978-3-319-28166-7_26

[16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. 2016. Mask-
ing AES with d+1 shares in hardware. In Proceedings of the 18th International Conference on Cryptographic Hardware

and Embedded Systems (CHES’16) (Lecture Notes in Computer Science), Benedikt Gierlichs and Axel Y. Poschmann
(Eds.), Vol. 9813. Springer, 194–212. https://doi.org/10.1007/978-3-662-53140-2_10

[17] Matthieu Courbariaux and Y. Bengio. 2016. BinaryNet: Training deep neural networks with weights and activations
constrained to +1 or −1. Retrieved from https://abs/1602.02830.

[18] Lauren De Meyer, Victor Arribas Abril, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. 2018. M&m: Masks
and macs against physical attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 1 (2018), 25–50.

[19] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 248–255.

[20] Gaofeng Dong, Ping Wang, Ping Chen, Ruizhe Gu, and Honggang Hu. 2019. Floating-point multiplication timing
attack on deep neural network. In Proceedings of the IEEE International Conference on Smart Internet of Things (Smar-

tIoT’19). IEEE, 155–161. https://doi.org/10.1109/SmartIoT.2019.00032
[21] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. BoMaNet: Boolean masking of an entire neural network. In

Proceedings of the IEEE/ACM International Conference On Computer Aided Design (ICCAD’20). IEEE, 1–9. Retrieved
from https://ieeexplore.ieee.org/document/9256785.

[22] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. MaskedNet: The first hardware inference engine aiming
power side-channel protection. In Proceedings of the IEEE International Symposium on Hardware Oriented Security

and Trust (HOST’20). IEEE, 197–208. https://doi.org/10.1109/HOST45689.2020.9300276
[23] Vasisht Duddu, Debasis Samanta, D. Vijay Rao, and Valentina Emilia Balas. 2018. Stealing neural networks via timing

side channels. Retrieved from http://arxiv.org/abs/1812.11720.
[24] Munira Ferdous, Jui Debnath, and Narayan Ranjan Chakraborty. 2020. Machine learning algorithms in healthcare: A

literature survey. In Proceedings of the 11th International Conference on Computing, Communication and Networking

Technologies (ICCCNT’20). IEEE, 1–6. https://doi.org/10.1109/ICCCNT49239.2020.9225642
[25] Cheng Fu, Shilin Zhu, Hao Su, Ching-En Lee, and Jishen Zhao. 2019. Towards fast and energy-efficient binarized neu-

ral network inference on FPGA. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA’19). Association for Computing Machinery, New York, NY, 306. https://doi.org/10.1145/3289602.
3293990

[26] Hongbo Gao, Bo Cheng, Jianqiang Wang, Keqiang Li, Jianhui Zhao, and Deyi Li. 2018. Object classification using
CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans. Ind. Inform. 14, 9 (2018),
4224–4231. https://doi.org/10.1109/TII.2018.2822828

[27] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John Wernsing. 2016. Cryp-
toNets: Applying neural networks to encrypted data with high throughput and accuracy. In Proceedings of the

33rd International Conference on Machine Learning (ICML’16) (JMLR Workshop and Conference Proceedings), Maria-
Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. JMLR.org, 201–210. http://proceedings.mlr.press/v48/gilad-
bachrach16.html.

[28] Jovan Dj. Golic and Christophe Tymen. 2002. Multiplicative masking and power analysis of AES. In Proceedings

of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES’02) (Lecture Notes in

Computer Science), Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar (Eds.), Vol. 2523. Springer, 198–212. https:
//doi.org/10.1007/3-540-36400-5_16

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:27

[29] Louis Goubin and Jacques Patarin. 1999. DES and differential power analysis the “duplication” method. In Crypto-

graphic Hardware and Embedded Systems, Çetin K. Koç and Christof Paar (Eds.). Springer, Berlin, 158–172. https:
//doi.org/10.1007/3-540-48059-5_15

[30] Hannes Groß, Stefan Mangard, and Thomas Korak. 2016. Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order. In Proceedings of the ACM Workshop on Theory of Implementa-

tion Security (TIS@CCS’16), Begül Bilgin, Svetla Nikova, and Vincent Rijmen (Eds.). ACM, 3. https://doi.org/10.1145/
2996366.2996426

[31] Hendra Guntur, Jun Ishii, and Akashi Satoh. 2014. Side-channel AttacK user reference architecture board. In Pro-

ceedings of the IEEE 3rd Global Conference on Consumer Electronics (GCCE’14). IEEE, 271–274. https://doi.org/10.1109/
GCCE.2014.7031104

[32] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin, Michael Backes, and Mario Fritz. 2018.
MLCapsule: Guarded offline deployment of machine learning as a service. Retrieved from http://arxiv.org/abs/1808.
00590.

[33] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xinfeng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sherwood, and
Yuan Xie. 2019. Neural network model extraction attacks in edge devices by hearing architectural hints. Retrieved
from http://arxiv.org/abs/1903.03916.

[34] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. 2018. Reverse engineering convolutional neural networks through
side-channel information leaks. In Proceedings of the 55th Annual Design Automation Conference (DAC’18). ACM,
4:1–4:6. https://doi.org/10.1145/3195970.3196105

[35] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural net-
works. In Proceedings of the Annual Conference on Neural Information Processing Systems, Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 4107–4115. http://papers.nips.cc/paper/
6573-binarized-neural-networks.

[36] Vincent Immler, Robert Specht, and Florian Unterstein. 2017. Your rails cannot hide from localized EM: How dual-rail
logic fails on FPGAs. In Proceedings of the 19th International Conference on Cryptographic Hardware and Embedded

Systems (CHES’17) (Lecture Notes in Computer Science), Wieland Fischer and Naofumi Homma (Eds.), Vol. 10529.
Springer, 403–424. https://doi.org/10.1007/978-3-319-66787-4_20

[37] Deloitte Insights. 2020. Bringing AI to the device: Edge AI chips come into their own. Retrieved from https://www2.
deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html.

[38] Mihailo Isakov, Lake Bu, Hai Cheng, and Michel A. Kinsy. 2018. Preventing neural network model exfiltration in
machine learning hardware accelerators. In Proceedings of the Asian Hardware Oriented Security and Trust Symposium

(AsianHOST’18). IEEE, 62–67. https://doi.org/10.1109/AsianHOST.2018.8607161
[39] Mihailo Isakov, Vijay Gadepally, Karen M. Gettings, and Michel A. Kinsy. 2019. Survey of attacks and defenses

on edge-deployed neural networks. In Proceedings of the IEEE High Performance Extreme Computing Conference

(HPEC’19). IEEE, 1–8. https://doi.org/10.1109/HPEC.2019.8916519
[40] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private circuits: Securing hardware against probing attacks. In

Proceedings of the 23rd Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’03) (Lecture

Notes in Computer Science), Dan Boneh (Ed.), Vol. 2729. Springer, 463–481. https://doi.org/10.1007/978-3-540-45146-
4_27

[41] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. 2020. High accuracy
and high fidelity extraction of neural networks. In Proceedings of the 29th USENIX Security Symposium (USENIX

Security’20), Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 1345–1362. Retrieved from https:
//www.usenix.org/conference/usenixsecurity20/presentation/jagielski.

[42] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. 2019. PRADA: Protecting against DNNmodel stealing
attacks. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P’19). IEEE, 512–527. https:
//doi.org/10.1109/EuroSP.2019.00044

[43] Phil C. Knag, Gregory K. Chen, H. Ekin Sumbul, Raghavan Kumar, Mark A. Anders, Himanshu Kaul, Steven K.
Hsu, Amit Agarwal, Monodeep Kar, Seongjong Kim, et al. 2020. A 617 TOPS/W all digital binary neural network
accelerator in 10nm FinFET CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits. IEEE, 1–2.

[44] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Proceedings of the 19th Annual

International Cryptology Conference on Advances in Cryptology (CRYPTO’99) (Lecture Notes in Computer Science),
Michael J. Wiener (Ed.), Vol. 1666. Springer, 388–397. https://doi.org/10.1007/3-540-48405-1_25

[45] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction to differential power analysis. J.
Cryptogr. Eng. 1, 1 (2011), 5–27. https://doi.org/10.1007/s13389-011-0006-y

[46] Wan Lei, Lihui Wang, Weijun Shan, Kun Jiang, and Qing Li. 2017. A frequency-based leakage assessment method-
ology for side-channel evaluations. In Proceedings of the 13th International Conference on Computational Intelligence

and Security (CIS’17). IEEE, 590–593.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:28 A. Dubey et al.

[47] Daniel Lemire. 2019. Fast random integer generation in an interval. ACM Trans. Model. Comput. Simul. 29, 1 (2019),
3:1–3:12. https://doi.org/10.1145/3230636

[48] Chuan Li. 2020. OpenAI’s GPT-3 languagemodel: A technical overview. Retrieved from https://lambdalabs.com/blog/
demystifying-gpt-3/.

[49] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convolutional neural network. In Ad-

vances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett (Eds.). Curran Associates, 345–353. Retrieved from http://papers.nips.cc/paper/6638-
towards-accurate-binary-convolutional-neural-network.pdf.

[50] Xiaoning Liu, Bang Wu, Xingliang Yuan, and Xun Yi. 2020. Leia: A Lightweight Cryptographic Neural Network
Inference System at the Edge. Cryptology ePrint Archive, Report 2020/463. Retrieved from https://eprint.iacr.org/
2020/463.

[51] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2008. Power Analysis Attacks: Revealing the Secrets of Smart

Cards. Vol. 31. Springer Science & Business Media.
[52] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. 2005. Side-channel leakage of masked CMOS gates. In Pro-

ceedings of the Cryptographers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA’05) (Lecture Notes in

Computer Science), Alfred Menezes (Ed.), Vol. 3376. Springer, 351–365. https://doi.org/10.1007/978-3-540-30574-3_24
[53] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. 2005. Successfully attacking masked AES hardware

implementations. In Proceedings of the 7th International Workshop on Cryptographic Hardware and Embedded Systems

(CHES’05) (Lecture Notes in Computer Science), Josyula R. Rao and Berk Sunar (Eds.), Vol. 3659. Springer, 157–171.
https://doi.org/10.1007/11545262_12

[54] Javier Martinez, Carla Iglesias Comesaña, and Paulino José García Nieto. 2019. Review: Machine learning techniques
applied to cybersecurity. Int. J. Mach. Learn. Cybern. 10, 10 (2019), 2823–2836. https://doi.org/10.1007/s13042-018-
00906-1

[55] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco Regazzoni. 2010. Fresh Re-keying:
Security against side-channel and fault attacks for low-cost devices. In Proceedings of the 3rd International Conference
on Cryptology in Africa on Progress in Cryptology (AFRICACRYPT’10) (Lecture Notes in Computer Science), Daniel J.
Bernstein and Tanja Lange (Eds.), Vol. 6055. Springer, 279–296. https://doi.org/10.1007/978-3-642-12678-9_17

[56] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable privacy-preserving machine learning.
In Proceedings of the IEEE Symposium on Security and Privacy (SP’17). IEEE Computer Society, 19–38. https://doi.org/
10.1109/SP.2017.12

[57] Shayan Moini, Shanquan Tian, Jakub Szefer, Daniel E. Holcomb, and Russell Tessier. 2020. Remote power side-
channel attacks on CNN accelerators in FPGAs. Retrieved from https://arxiv.org/abs/2011.07603.

[58] Thorben Moos, Amir Moradi, and Bastian Richter. 2017. Static power side-channel analysis of a threshold implemen-
tation prototype chip. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE’17),
David Atienza and Giorgio Di Natale (Eds.). IEEE, 1324–1329. https://doi.org/10.23919/DATE.2017.7927198

[59] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert. 2019. Glitch-resistant masking revis-
ited or why proofs in the robust probing model are needed. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2 (2019),
256–292. https://doi.org/10.13154/tches.v2019.i2.256-292

[60] Amir Moradi and Oliver Mischke. 2012. Glitch-free implementation of masking in modern FPGAs. In Proceedings of

the IEEE International Symposium on Hardware-Oriented Security and Trust (HOST’12). IEEE Computer Society, 89–95.
https://doi.org/10.1109/HST.2012.6224326

[61] Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley. 2010. BCDL: A high speed
balanced DPL for FPGA with global precharge and no early evaluation. In Proceedings of the Design, Automation

and Test in Europe (DATE’10), Giovanni De Micheli, Bashir M. Al-Hashimi, Wolfgang Müller, and Enrico Macii (Eds.).
IEEE Computer Society, 849–854. https://doi.org/10.1109/DATE.2010.5456932

[62] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold implementations against side-channel
attacks and glitches. In Proceedings of the 8th International Conference on Information and Communications Security

(ICICS’06) (Lecture Notes in Computer Science), Peng Ning, Sihan Qing, and Ninghui Li (Eds.), Vol. 4307. Springer,
529–545. https://doi.org/10.1007/11935308_38

[63] NIST. 2019. A Taxonomy and Terminology of Adversarial Machine Learning. Retrieved from https://nvlpubs.nist.
gov/nistpubs/ir/2019/NIST.IR.8269-draft.pdf.

[64] Seong Joon Oh, Bernt Schiele, and Mario Fritz. 2019. Towards reverse-engineering black-box neural networks. In
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Wojciech Samek, Grégoire Montavon, Andrea
Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller (Eds.). Lecture Notes in Computer Science, Vol. 11700. Springer,
121–144. https://doi.org/10.1007/978-3-030-28954-6_7

[65] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. 2005. A side-channel analysis resistant
description of the AES S-box. In Proceedings of the 12th International Workshop on Fast Software Encryption (FSE’05)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:29

(Lecture Notes in Computer Science), Henri Gilbert and Helena Handschuh (Eds.), Vol. 3557. Springer, 413–423. https:
//doi.org/10.1007/11502760_28

[66] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10 (2010),
1345–1359. https://doi.org/10.1109/TKDE.2009.191

[67] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. 2018. Side-channel attacks on post-quantum signa-
ture schemes based on multivariate quadratic equations—Rainbow and UOV. IACR Trans. Cryptogr. Hardw. Embed.

Syst. 2018, 3 (2018), 500–523. https://doi.org/10.13154/tches.v2018.i3.500-523
[68] Thomas Popp and Stefan Mangard. 2005. Masked dual-rail pre-charge logic: DPA-resistance without routing con-

straints. In Proceedings of the 7th InternationalWorkshop on Cryptographic Hardware and Embedded Systems (CHES’05)

(Lecture Notes in Computer Science), Josyula R. Rao and Berk Sunar (Eds.), Vol. 3659. Springer, 172–186. https:
//doi.org/10.1007/11545262_13

[69] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet classifica-
tion using binary convolutional neural networks. In Proceedings of the14th European Conference on Computer Vision

(ECCV’16) (Lecture Notes in Computer Science), Bastian Leibe, Jiri Matas, Nicu Sebe, and MaxWelling (Eds.), Vol. 9908.
Springer, 525–542. https://doi.org/10.1007/978-3-319-46493-0_32

[70] Francesco Regazzoni, Shivam Bhasin, Amir Ali Pour, Ihab Alshaer, Furkan Aydin, Aydin Aysu, Vincent Beroulle,
Giorgio Di Natale, Paul Franzon, David Hely, et al. 2020. Machine learning and hardware security: Challenges and
opportunities-invited talk. In Proceedings of the IEEE/ACM International Conference On Computer Aided Design (IC-

CAD’20). IEEE, 1–6.
[71] Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. 2019. Efficiently stealing your machine learning

models. In Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society (WPES@CCS’19), Lorenzo Cav-
allaro, Johannes Kinder, and Josep Domingo-Ferrer (Eds.). ACM, 198–210. https://doi.org/10.1145/3338498.3358646

[72] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. 2016. Additively
homomorphic ring-LWE masking. In Proceedings of the 7th International Workshop on Post-Quantum Cryptography

(PQCrypto’16) (Lecture Notes in Computer Science), Tsuyoshi Takagi (Ed.), Vol. 9606. Springer, 233–244. https://doi.
org/10.1007/978-3-319-29360-8_15

[73] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar. 2019.
XONN: XNOR-based oblivious deep neural network inference. In Proceedings of the 28th USENIX Security Sym-

posium (USENIX Security’19), Nadia Heninger and Patrick Traynor (Eds.). USENIX Association, 1501–1518. https:
//www.usenix.org/conference/usenixsecurity19/presentation/riazi.

[74] Mauro Ribeiro, Katarina Grolinger, and Miriam A. M. Capretz. 2015. MLaaS: Machine learning as a service. In Pro-

ceedings of the 14th IEEE International Conference on Machine Learning and Applications (ICMLA’15), Tao Li, Lukasz A.
Kurgan, Vasile Palade, Randy Goebel, Andreas Holzinger, Karin Verspoor, and M. Arif Wani (Eds.). IEEE, 896–902.
https://doi.org/10.1109/ICMLA.2015.152

[75] Riscure. 2019. Riscure Inspector. Retrieved from https://www.riscure.com/uploads/2017/08/inspector_brochure.pdf.
[76] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2019. DeepSigns: An end-to-end watermarking frame-

work for ownership protection of deep neural networks. In Proceedings of the 24th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS’19), Iris Bahar, Maurice Herlihy, Emmett
Witchel, and Alvin R. Lebeck (Eds.). ACM, 485–497. https://doi.org/10.1145/3297858.3304051

[77] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi Baradaran Tahoori. 2018. An inside job: Remote
power analysis attacks on FPGAs. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition

(DATE’18), Jan Madsen and Ayse K. Coskun (Eds.). IEEE, 1111–1116. https://doi.org/10.23919/DATE.2018.8342177
[78] Tobias Schneider and Amir Moradi. 2015. Leakage assessment methodology—A clear roadmap for side-channel

evaluations. In Proceedings of the 17th International Workshop on Cryptographic Hardware and Embedded Systems

(CHES’15) (Lecture Notes in Computer Science), Tim Güneysu and Helena Handschuh (Eds.), Vol. 9293. Springer,
495–513. https://doi.org/10.1007/978-3-662-48324-4_25

[79] Tobias Schneider, Amir Moradi, and Tim Güneysu. 2015. Arithmetic addition over boolean masking—Towards first-
and second-order resistance in hardware. In Proceedings of the 13th International Conference on Applied Cryptography
and Network Security (ACNS’15) (Lecture Notes in Computer Science), Tal Malkin, Vladimir Kolesnikov, Allison Bishop
Lewko, and Michalis Polychronakis (Eds.), Vol. 9092. Springer, 559–578. https://doi.org/10.1007/978-3-319-28166-
7_27

[80] Security.org. 2020. The Best Indoor Cameras for Artificial Intelligence. Retrieved from https://www.security.org/
security-cameras/best/artificial-intelligence.

[81] Muhammad Shafique, Mahum Naseer, Theocharis Theocharides, Christos Kyrkou, Onur Mutlu, Lois Orosa, and
JungwookChoi. 2020. Robustmachine learning systems: Challenges, current trends, perspectives, and the road ahead.
IEEE Des. Test 37, 2 (2020), 30–57. https://doi.org/10.1109/MDAT.2020.2971217

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

56:30 A. Dubey et al.

[82] Arvind Singh, Monodeep Kar, Sanu K. Mathew, Anand Rajan, Vivek De, and Saibal Mukhopadhyay. 2018. Improved
power/EM side-channel attack resistance of 128-bit AES engines with random fast voltage dithering. IEEE J. Solid-

State Circ. 54, 2 (2018), 569–583.
[83] Go Takatoi, Takeshi Sugawara, Kazuo Sakiyama, and Yang Li. 2020. Simple electromagnetic analysis against acti-

vation functions of deep neural networks. In Proceedings of the Satellite Workshops on Applied Cryptography and

Network Security Workshops (ACNS’20) (Lecture Notes in Computer Science), Jianying Zhou, Mauro Conti, Chuadhry
Mujeeb Ahmed, Man Ho Au, Lejla Batina, Zhou Li, Jingqiang Lin, Eleonora Losiouk, Bo Luo, Suryadipta Majumdar,
Weizhi Meng, Martín Ochoa, Stjepan Picek, Georgios Portokalidis, CongWang, and Kehuan Zhang (Eds.), Vol. 12418.
Springer, 181–197. https://doi.org/10.1007/978-3-030-61638-0_11

[84] Techcrunch. 2020. Apple buys edge-based AI startup Xnor.ai for a reported $200M. Retrieved from https://techcrunch.
com/2020/01/15/apple-buys-edge-based-ai-startup-xnor-ai-for-a-reported-200m/.

[85] Pico Technology. 2020. Retrieved from https://www.picotech.com/oscilloscope/3000/picoscope-3000-oscilloscope-
specifications.

[86] Kris Tiri and Patrick Schaumont. 2006. Changing the odds against masked logic. In Proceedings of the 13th Inter-

national Workshop on Selected Areas in Cryptography (SAC’06) (Lecture Notes in Computer Science), Eli Biham and
Amr M. Youssef (Eds.), Vol. 4356. Springer, 134–146. https://doi.org/10.1007/978-3-540-74462-7_10

[87] Kris Tiri and Ingrid Verbauwhede. 2004. A logic level design methodology for a secure DPA resistant ASIC or FPGA
implementation. In Proceedings of the Design, Automation and Test in Europe Conference and Exposition (DATE’04).
IEEE Computer Society, 246–251. https://doi.org/10.1109/DATE.2004.1268856

[88] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, verifiable and private execution of neural networks in trusted
hardware. In Proceedings of the 7th International Conference on Learning Representations (ICLR’19). OpenReview.net.
https://openreview.net/forum?id=rJVorjCcKQ.

[89] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2016. Stealing machine learning
models via prediction APIs. In Proceedings of the 25th USENIX Security Symposium (USENIX Security’16), Thorsten
Holz and Stefan Savage (Eds.). USENIX Association, 601–618. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/tramer.

[90] Elena Trichina, Tymur Korkishko, and Kyung-Hee Lee. 2004. Small size, low power, side channel-immune AES co-
processor: Design and synthesis results. In Proceedings of the 4th International Conference on Advanced Encryption

Standards (AES’04) (Lecture Notes in Computer Science), Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa (Eds.),
Vol. 3373. Springer, 113–127. https://doi.org/10.1007/11506447_10

[91] Yaman Umuroglu et al. 2017. FINN: A framework for fast, scalable binarized neural network inference. In Proceedings
of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’17).

[92] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-Xavier Standaert. 2012. Shuffling
against side-channel attacks: A comprehensive study with cautionary note. In Proceedings of the 18th International

Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT’12) (Lecture Notes in

Computer Science), Xiaoyun Wang and Kazue Sako (Eds.), Vol. 7658. Springer, 740–757. https://doi.org/10.1007/978-
3-642-34961-4_44

[93] LingxiaoWei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I knowwhat you see: Power side-channel attack on con-
volutional neural network accelerators. In Proceedings of the 34th Annual Computer Security Applications Conference

(ACSAC’18). ACM, 393–406. https://doi.org/10.1145/3274694.3274696
[94] Xiaodan Xi, Aydin Aysu, and Michael Orshansky. 2018. Fresh re-keying with strong PUFs: A new approach to

side-channel security. In Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust

(HOST’18). IEEE Computer Society, 118–125. https://doi.org/10.1109/HST.2018.8383899
[95] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and

Xiaoniu Yang. 2020. Open DNN box by power side-channel attack. IEEE Trans. Circ. Syst. 67-II, 11 (2020), 2717–2721.
https://doi.org/10.1109/TCSII.2020.2973007

[96] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2020. Cache telepathy: Leveraging shared resource at-
tacks to learn DNN architectures. In Proceedings of the 29th USENIX Security Symposium (USENIX Security’20), Srd-
jan Capkun and Franziska Roesner (Eds.). USENIX Association, 2003–2020. Retrieved from https://www.usenix.org/
conference/usenixsecurity20/presentation/yan.

[97] Yuan Yao, Mo Yang, Conor Patrick, Bilgiday Yuce, and Patrick Schaumont. 2018. Fault-assisted side-channel analysis
of masked implementations. In Proceedings of the IEEE International Symposium on Hardware Oriented Security and

Trust (HOST’18). IEEE Computer Society, 57–64. https://doi.org/10.1109/HST.2018.8383891
[98] Pengyuan Yu and Patrick Schaumont. 2007. Secure FPGA circuits using controlled placement and routing. In Proceed-

ings of the 5th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’07), Soon-
hoi Ha, Kiyoung Choi, Nikil D. Dutt, and Jürgen Teich (Eds.). ACM, 45–50. https://doi.org/10.1145/1289816.1289831

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

Guarding Machine Learning Hardware Against Physical Side-channel Attacks 56:31

[99] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020. DeepEM: Deep neural networks model
recovery through EM side-channel information leakage. In 2020 IEEE International Symposium on Hardware Ori-

ented Security and Trust, HOST 2020, San Jose, CA, USA, December 7-11, 2020. IEEE, 209–218. https://doi.org/10.1109/
HOST45689.2020.9300274

[100] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks and defenses for deep learning.
IEEE Trans. Neural Netw. Learn. Syst. 30, 9 (2019), 2805–2824. https://doi.org/10.1109/TNNLS.2018.2886017

[101] Mark Zhao and G. Edward Suh. 2018. FPGA-based remote power side-channel attacks. In Proceedings of the IEEE

Symposium on Security and Privacy (SP 2018). IEEE Computer Society, 229–244. https://doi.org/10.1109/SP.2018.00049
[102] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. Dorefa-net: Training low

bitwidth convolutional neural networks with low bitwidth gradients. Retrieved from https://arXiv:1606.06160.
[103] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge intelligence: Paving the last mile of

artificial intelligence with edge computing. Proc. IEEE 107, 8 (2019), 1738–1762. https://doi.org/10.1109/JPROC.2019.
2918951

Received December 2020; revised May 2021; accepted May 2021

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 56. Pub. date: April 2022.

