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ABSTRACT  

With the rapid development of Internet of Things technologies, the 
next generation trafc monitoring infrastructures are connected 
via the web, to aid trafc data collection and intelligent trafc 
management. One of the most important tasks in trafc is anom-

aly detection, since abnormal drivers can reduce trafc efciency 
and cause safety issues. This work focuses on detecting abnormal 
driving behaviors from trajectories produced by highway video 
surveillance systems. Most of the current abnormal driving behavior 
detection methods focus on a limited category of abnormal behav-
iors that deal with a single vehicle without considering vehicular 
interactions. In this work, we consider the problem of detecting 
a variety of socially abnormal driving behaviors, i.e., behaviors 
that do not conform to the behavior of other nearby drivers. This 
task is complicated by the variety of vehicular interactions and 
the spatial-temporal varying nature of highway trafc. To solve 
this problem, we propose an autoencoder with a Recurrent Graph 
Attention Network that can capture the highway driving behaviors 
contextualized on the surrounding cars, and detect anomalies that 
deviate from learned patterns. Our model is scalable to large free-
ways with thousands of cars. Experiments on data generated from 
trafc simulation software show that our model is the only one that 
can spot the exact vehicle conducting socially abnormal behaviors, 
among the state-of-the-art anomaly detection models. We further 
show the performance on real world HighD trafc dataset, where 
our model detects vehicles that violate the local driving norms. 

CCS  CONCEPTS  

• Information systems → Spatial-temporal systems; Data
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1  INTRODUCTION  

1.1  Motivation  and  challenges  

Nowadays, the development of Internet of Things (IoT) technologies 
has greatly advanced intelligent monitoring and management of 
urban transportation systems. Sensor networks including highway 
surveillance cameras and radar detectors, combined with Web of 
Things (WoT) technologies, have enabled transportation authorities 
to intelligently monitor trafc systems at scales and resolutions 
previously out of reach [17, 43, 44]. One of the emerging tasks 
in intelligent trafc management is anomaly detection, since ab-
normal drivers could have adversarial impact on the smoothness 
of trafc stream, or even pose safety concerns. Yet it is infeasible 
for human operators to manually inspect and analyze all of this 
data, given the now massive amount of data these systems can 
generate. Consequently, there is need to spot the anomalies from 
terabytes of data and highlight the scenes that need further human 
inspection. In this work, we tackle the task of detecting abnormal 
driving behaviors, from trajectories produced by IoT highway video 
surveillance systems. 

The existing approaches to vehicular anomaly detection mainly 
fall into two categories. The frst set of approaches [4, 9, 26, 41, 52] 
focus on detecting severe events that cause vehicles to stop, and turn 
the problem into detecting stalled cars via computer vision from 
surveillance videos. The second set of approaches [3, 16, 31, 34] 
focus on single-car abnormal driving behaviors, such as speeding 
and abrupt braking. Methods ranging from thresholding [8, 15] to 
machine learning [31, 32, 34] are applied on data obtained from a 
single car, e.g. from on-board sensors and GPS devices. 

However, the above approaches only cover a subset of abnormal 
driving behaviors and treat cars in isolation from each other. Vehi-
cles constantly interact with their surroundings, and trafc context 
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is needed for anomaly detection. For example, a car at a constant 
speed of 50 mph might be perfectly normal, yet a car at 50 mph 
on the inner most lane of highway is blocking all the other cars 
driving at 65 mph or above, and should be considered an anomaly 
on highway. As another example, abrupt braking might be consid-
ered abnormal, but if the vehicle is braking because its front car is 
stalled, then we should detect the front car as abnormal, whereas 
the braking car is doing what is expected. Our task is to detect such 
socially abnormal behaviors that do not conform to the commonly

accepted and observed social norms, by developing a contextual 
understanding of vehicle interactions. 

Moreover, most of the existing methods are rule-based [8, 15] 
or supervised-learning method [16, 34], and can only detect pre-
defned types of anomalies such as stalled and speeding cars. Yet 
vehicles can behave anomalously in unexpected ways, and building 
a comprehensive set of rules that includes every possible occasion 
could be hard. Our goal is to build a model that can identify a variety 
of anomalies with unsupervised learning. 

Graph neural networks (GNN) have seen rapid development in 
recent years [23, 46, 49, 50], showing great advantage in modeling 
the complex relationships in graph data. By representing vehicles as 
nodes and their relationships as edges, interactions with neighbors 
can be modeled via a GNN. Two challenges exist in developing a 
GNN for detecting anomalous driving behaviors. First, given the 
spatial-temporally varying nature of trajectories, we need to deal 
with dynamic graphs. This is a nontrivial problem as compared 
to anomaly detection on only a static graph, or only considering 
time-varying signals. Second, we need to take stochasticity into 
consideration, which is intrinsic in driving behaviors. Under a par-
ticular context, there could be a range of acceptable behaviors that 
should all be considered normal. For example, a car can conduct 
lane changing from time to time, or have some variation in speed. A 
deterministic model that fails to capture such normal stochasticity 
would mislabel every lane-changing car as an anomaly. 

1.2  Our  approach  

To detect socially abnormal behaviors on large scale trajectory 
data while addressing the aforementioned challenges, we develop 
a model for Detecting Socially Abnormal Behaviors (DSAB) in high-
way driving via Recurrent Graph Attention Autoencoder. Graph 
attention networks combined with recurrent neural networks is 
used to capture the spatial-temporal pattern of vehicle trajectories, 
while dynamically taking each vehicle’s neighbors into considera-
tion based on vehicle states. To facilitate scalability while capturing 
anomalous driving behaviors occurring over longer periods of time, 
we sample the trajectories over a relatively long-horizon and coarse-
grid time window. We further use a sparse graph where the vehicles 
are only connected to close neighbors to reduce computation. An 
autoencoder structure is used for anomaly detection, which can 
encode and decode normal data well. To address the stochasticity 
in driving behaviors, we reconstruct the probabilistic distribution 
of the trajectories in decoding process. Samples with small recon-
struction probabilities are marked as anomalies. 

With these designs, our model can detect the socialy abnormal 
driving behaviors, and is scalable to thousands of cars over 5 miles 
of highway. We show the efectiveness of our model on both simu-

lation and real-world data. First, we generate large-scale trajectory 

data with ground-truth anomaly labels, via a microscopic trafc 
simulator, to quantitatively evaluate the performance. Compared 
with the existing state-of-the-art methods, our model is the only one 
that can detect the exact vehicle with abnormal behavior, whereas 
the rest models can only detect anomalous scenes We also apply 
our method on the real-world highD trajectory dataset [24], where 
our model detects vehicles that violate the local driving norms. 

To summarize, the contribution of our works is as follows: 

• We propose a new problem of detecting the exact anomalous

vehicles that violate the social interaction norms in highway
driving, and develop a model to solve it, achieving state of
the art performance.

• We develop a DSAB model based on Recurrent Graph Atten-
tion Networks. It well captures the spatial-temporal trajec-
tory dynamics, while considering both the vehicular interac-
tions and the stocasticity in driving behaviors.

• We conduct extensive experiments on both simulation and
real-world data sets, and show the ability of our model to
scale to large highway monitoring systems with thousands
of vehicles, and detect a variety of abnormal behaviors.

2  RELATED  WORK  

Trajectory Modeling. The majority of trajectory modeling work
focuses on the prediction of future trajectories for humans or vehi-
cles, and in this line, modeling the interaction between the agents is 
gaining interest. To aggregate information across agents, a pooling 
mechanism is used in the Social LSTM [2] and the Social GAN [18], 
while an attention mechanism is used in SoPhie [36], and scene con-
text fusion via convolutional neural network is used in Desire [25]. 
With recent development of graph convolutional networks, works 
including [21, 33, 47] model the agents as nodes and their rela-
tionships as edges, and develop spatio-temporal GNN to learn the 
dynamics. 
Anomaly detection. Anomaly detection has been an important

task in transportation. Unexpected autonomous driving condition 
detection is studied in [39, 40]. Extreme event detection in ur-
ban trafc is studied in [19, 20]. Our work detects anomalies on 
graphs, and a comprehensive survey on graph anomaly detection 
can be found in [30]. Common detection methods on graphs in-
clude autoencoder-based methods [5, 14], generative adversarial 
learning [13], and contrastive learning [53]. However, most of 
the existing works are on static graphs, whereas we need to deal 
with dynamic graphs, adding the temporal dimension. The exist-
ing methods for dynamic graph anomaly detection have diferent 
problem settings compared to ours. Specifcally, NetWalk [54] and 
TADDY [29] deal with unattributed graphs with no node or edge 
features; AddGraph [55] and StrGNN [7] detect anomalous edges. 

The most relevant work with ours is STGAE [51], where a spatio-
temporal graph autoencoder is combined with kernel density es-
timation (KDE) to detect abnormal driving behaviors. Yet while 
STGAE works well in experiments with only two vehicles, the time 
complexity of KDE is too high for detection in large numbers of 
vehicles. Moreover, STGAE tackles a diferent task of detecting the 
existence of anomalies among several vehicles over a stretch of road 
over a specifc time, which we term as abnormal scene detection.
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Compared with our task of detecting the specifc abnormal vehi-
cles, abnormal scene detection is an easier task, since an abnormal 
vehicle can have subsequent infuence on its neighbor vehicles. For 
example, a slow or stalled car can cause its following cars to break 
abruptly or change lanes, which could be detected as abnormal, 
but should have been considered normal when looking for the root 
cause. We demonstrate in our experiments that while most baseline 
methods can work well on abnormal scene detection, they achieve 
poor performance on abnormal vehicle detection. 

3 METHOD 

In this section, we formulate the problem mathematically, then 
describe the proposed DSAB model for anomaly detection on high-
ways. In an overview, we frst construct the vehicle trajectories 
as a spatial-temporal dynamic graph. Then we build an autoen-
coder with an encoder to compress the vehicle time series in low-
dimensional vectors, and a decoder to reconstruct the probabilistic 
distribution of original input trajectories. At test time, we use the re-
construction probability as a measurement of anomalous behavior. 
The overview of the model is shown in Fig 1. 

We further make the following considerations to best accommo-

date large scale anomaly detection on highway driving. Unlike most 
works [2, 25, 33] that works on short-term fne-grained trajectories, 
e.g., 3-10 Hz over 1-5s, we choose coarser-grained sampling with
larger time window. In addition to reducing the amount of data
needed to be processed, it also captures the anomalous driving be-
haviors that are expected to occur over longer periods of time. E.g., a
vehicle that is speeding or tailgating will likely persist for more than
a few seconds. While computationally advantageous, sampling at a
more coarse timescale requires a diferent model to be used for lane
changing. Specifcally, the continuous bi-variate Gaussian distribu-
tion, which is commonly used in trajectory modeling [2, 33, 47],
is no longer suitable to capture a discrete lane-changing motion.

Instead, we model longitudinal motions as Gaussian distribution,
and lateral lane location as categorical distribution.

3.1 Problem formulation 

Our model input is the observations of a set of ˜ vehicles on a 
highway over time window T , where ˜ can vary for diferent
time windows. For each vehicle ° at time ˛ ° T , the observation
o
˜ 
= [˝°

˜ , ˆ°
˜ , ˇ°

˜ , ˘°
˜ , �˜° ] includes longitudinal position ˝°

˜ , lateral posi-° 
tion ̂ °

˜ , driving lane id ̌ °
˜ , longitudinal speed ˘°

˜ , and longitudinal

acceleration �˜° .

Given the vehicle observations o°
˜ , ˛̇ ° T , our major goal is to

detect the vehicles that have abnormal behavior during the time

window T . Additionally, we also report the performance of de-
tecting abnormal scenes - dividing the entire highway into short 
stretches of length �˛ , a scene contains all cars on a stretch S during

T , and is labeled as abnormal if it contains any abnormal cars. 

3.2 Graph construction for vehicle trajectories

We frst construct a dynamic graph for the vehicle trajectories
during time window T , denoted as � (T ) = {(V, E1) , (V, E2) , . . . ,

(V, E˝ )} for discrete time steps ̨  ° T = {1, 2, . . . ,� }. The node set
V includes all the vehicles on highway during the time window T .

The number of nodes ˜ = |V| is fxed for the graph of a specifc 

!G #$ !G #$ ! G#$ %&'()* 
+*ctor

. 

%&'()*-

/*'()*-

!! " #! !" " #" !# " ##

$%# %&'()* 
+*ctor!GAT !GAT !GAT . 

$$ $! $#$#%!

$%! 

#& & #! ' ( ' ##!)" " #& !)# " #&!)! " #& 

$%#%! 

Figure 1: DSAB model overview. We construct a spatial-
temporal dynamic graph to represent vehicles. An encoder 
compresses the dynamic graph into a low-dimensional en-
code vector, and a decoder reconstructs the input vehicle 
states, based on Recurrent Graph Attention Network (RGAT). 
In the encoder, X° , E° denotes the node feature matrix and
edge set respectively. In the decoder, X̂° is the node recon-
struction matrix, ET is the union of all input edge sets.

time window, but can vary for graphs of diferent time windows1

At each time step ̨ , the vehicle observations are summarized into a 

° R˙ ×ˆraw observation matrix O° . O° includes the observation
˜
o = [˝°

˜ , ˆ°
˜ , ˇ°

˜ , ˘°
˜ , �°

˜ ] for all vehicles �˜ ° V . There is an edge° 

�
˜ ˇ  

° E° if vehicle ° and � are close at time ˛ , that is, the two° 
vehicles are less than �˘ feet apart longitudinally, and less than
�� lanes apart laterally. This is based on the consideration that in 
reality, the vehicles are most infuenced by their close neighborhood 
vehicles. Thus we limit the neighbor range to reduce storage and 
computational requirements. 

3.3 Encoder 

In this subsection, we explain how we use Recurrent Graph Attention
Network (RGAT) to encode the spatial-temporal vehicle trajectories.
We adopt an RNN which has proven to work well on time series data. 
Furthermore, to consider the dynamic infuence of each vehicle’s 
neighbors, we integrate the graph attention network with RNN. 

Specifcally, we adopt the GRU [10, 11] variant of RNN, which is 
capable of learning long range dependencies in time via a gating 
mechanism. Furthermore, similar to the practice of [27, 38], we 
substitute the matrix multiplications in the original GRU with graph 
convolutions denoted as � , to operate on the input and hiddenG

states and capture neighborhood interactions: 

z𝑡 = 𝜎 (W𝑥𝑧 ∗G X𝑡 +W ∗G H𝑡−1 + b𝑧)ℎ𝑧 ,

r𝑡 = 𝜎 (W𝑥𝑟 ∗G X𝑡 +W ∗G H𝑡−1 + b𝑟 )ℎ𝑟 ,

(1)
H̃𝑡 = tanh(W ∗ (𝑥ℎ G X𝑡 +W ∗ℎℎ G r𝑡 ⊙
 H𝑡−1 + b ))ℎ ,

H𝑡 = z𝑡 ⊙
 H𝑡−1 + (1 − z𝑡 ) ⊙ H̃𝑡 ,

1We explain in implementation details in Section 4.3 how we deal with vehicles that
are not present in the highway during the entire time window.
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where H� ∈ R� ×�ℎ is the hidden state, z� ∈ R� ×�ℎ and r� ∈ R� ×�ℎ 

are the update gate and the reset gate respectively, with hidden 
dimension �ℎ . The weights W�� , Wℎ� , W�� , Wℎ� , W�ℎ , Wℎℎ and 
biases b� , b� , bℎ are trainable parameters. � is the sigmoid function, 

and ⊙ is element-wise multiplication. X� ∈ R� ×�� is the input 
at time step � , derived from the raw observation input O� , and 
consists of numerical observations of position, speed, and acceler-
ation [�� , �� , �� , �� ] ∈ R� ×4 , concatenated with lane embeddings 

hlane� ∈ R� ×�� for categorical observations of driving lane IDs l� . 
Thus, the input feature dimension �� = 4 + �� . Each driving lane ID 
is mapped to a corresponding embedding vector with dimension �� . 
The entries of the lane embedding vectors are initialized at random 
and learned during training. 

In terms of the graph convolution operator ∗G , instead of the 
Chebyshev spectral graph convolutional operator [12] adopted 
by [38], which uses pre-defned edge weights, we adopt graph 
convolutions based on graph attention mechanism [6, 46], which 
determines the relevance of the vehicle’s neighbors dynamically 
based on the vehicle states. Next we introduce the graph attention 
based convolution W ∗G X� operated on the input observation 
matrix X� , whereas W ∗G H� follows the same process on hidden 

�states H� with corresponding weights. Denoting x ∈ R�� as the � 
entry for vehicle � in X� , N

� as the set of neighbors of node � at � ,� 
W ∗G X� works as follows: ∑ 

′� � 
x� = W ∗G X� B ��,� Wx�

� + ��, � Wx� , (2) 
�� ∈N� 

where x ′� ∈ R�ℎ is the output node embedding, W ∈ R�ℎ ×�� is the � 
weight matrix. The term ��, � is the attention score calculated as: 

� � �� 
�

��, � = a
⊤LeakyReLU [Wx

�
� ∥ Wx� ] , 

exp(��, � )
��, � = softmax(��, � ) = Í , 

(3) 

� ∈N� exp(��,� )
� 

where ∥ is the concatenate operator, and a ∈ R2�ℎ is a train-
able weight vector. In (2) and (3), frst every node input feature 
goes through a linear transformation parameterized by W. Then, 
the attention coefcients ��, � are calculated by concatenating the 
transformed node features, followed by a non-linear activation 
(LeakyReLU), and a linear transformation with parameter a. Then, 
for each node, the attention coefcients of all its neighbors are 
normalized by a softmax operator to reach the attention scores 
��, � . Finally, the output node embedding is calculated as the linear 
combination of its neighbor transformed feature vectors, weighted 
by the attention scores. 

Compared with works [33, 51] that pre-defne edge weights as a 
function of physical distances, the attention mechanism we use has 
more expressive power, and can comprehensively determine the 
neighbor relevance based on observation information. Furthermore, 
the real infuence of vehicles in front of and behind an ego car 
is asymmetric (e.g., you must slow down immediately for slow-
moving cars in front of you, but not for slow cars behind you), and 
the attention formulation in (3) can achieve such asymmetry. In 
comparison, when using a function of distance as edge weights [33, 
51], the same importance is assigned to cars that are close to a 
vehicle, regardless if they are in front or behind the ego vehicle. 

Moreover, multi-head attention is used to attend to diferent 
aspects of the neighborhood information, similar to [45, 46]. Specif-
ically, � independent heads is used following (2), and the fnal 
results of the heads are averaged: 

�
1 ∑© ∑ ª 

′� ­�� � ��
� ®x� = ­ �,� W

� 
x� + �, � W

� 
x� ® . (4)

� 
�=1 � ∈N� 

� ¬« 

The hidden states for all vehicles are updated at every time step 
by (1), (2) and (3). The fnal hidden state H� is used as the encoded 
vector embedding. 

3.4  Decoder  

The decoder works in the same way as the encoder, using the 
RGAT structure. To avoid the computation burden of re-calculating 
the edge set thresholded by the reconstructed vehicle position at 
every step, we use the union of all edge sets at encoding time steps, 
ET = E1 ∪ E2 ∪ · · · ∪ E� . The edge set only limits the range of 
neighbors each node attends to, while the importance of neighbors 
are calculated dynamically with attention mechanism. The decoded 

hidden state Ĥ � ∈ R� ×�ℎ further goes through a fully connected 

layer to produce the output vehicle state reconstruction X̂ � . The 

details of X̂ � will be explained in Section 3.5. Then, the output X̂ � is 
used as input for the next recurrent step. We decode the time series 
from time � backwards, since the encoder vector is most relevant 
to the states at time � , which is most recently encoded. The initial 
input into the decoder GAT-RNN is the vehicle states at time � . 

3.5  Loss  function  

For each vehicle � at time � , we assume its longitudinal position ��
� , 

�speed �� , and acceleration �� each follows an univariate Gauss-� � � � � 
ian distribution. That is, �� ∼ N ��� , ��� , �

� ∼ N ��� , ��� ,� � � �� � � � 

��� ∼ N ��� , ��� . Further, we assume the lateral lane position ��
� is 

� � 

a discrete choice among � lanes, with an underlying categorical dis-n o 
tribution �1� , . . . , ��� . The Gaussian distribution and categorical 

� � 

distribution parameters are estimated by decoder output X̂ . Thath i 
�is, x̂ = �̂�� , �̂�� , �̂�� , �̂�� , �̂�� , �̂�� , �̂1� , . . . , �̂�� estimates the mean � � � � � � � � � 

and variance of position, speed, and acceleration, as well as the 
probability of being in each lane. 

Denoting the estimated probability density function of posi-� � � � 
tion, speed, and acceleration as � ��

� |�̂�� , �̂�� , � ��
� |�̂�� , �̂�� , and 

� � � �� � 
��� � |�̂�� , �̂�� respectively, we aim to minimize the negative log-

� � 

likelihoods as follows: 

� � �� 
L�� = −log � ��

� |�̂�� , �̂�� , 
� � �� � �� 

L�� = −log � ��
� |�̂�� , �̂�� , (5)

� � �� � �� 
L�� = −log � ��

� |�̂�� , �̂�� . 
� � � 

As for lane classifcation, we aim to minimize the cross entropy 
loss as follows: 
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∑� � � 
L�� = − 1�� log �̂�� , (6)

� � � 
�=1 

where 1�� = 1 if vehicle � is in lane � at time t and 0 otherwise. The 
�

fnal loss is a weighted sum of the negative log-likelihood losses 
and the cross entropy loss across all agents and all times: 

L� � = �� L�� + �� L�� + �� L�� + �� L�� , � � � � ∑� � (7)∑ 
L = L�

� , 
�=1 �=1 

The weights are set as �� = 1 , �� = 1 , �� = 2 and �� = 2 empirically. 

3.6  Anomaly  detection  

For abnormal vehicle detection, the anomaly score for vehicle � 
over time window T is calculated by averaging the loss over all 
time steps: 

�
1 ∑ 

�� = L�
� , (8)

T � 
�=1 

where � is the length of time window T . For abnormal scene de-
tection, we aggregate the loss of all the vehicles that appear in the 
stretch S during T as the stretch anomaly score: 

� S 
= max(L�

� ), ∀(�, �) that �� ∈ S. (9)
T � 

The maximum aggregation is used instead of the mean for abnormal 
scene detection, so that the score is more sensitive to the existence 
of anomalies, and not averaged out by normal vehicles. Appendix C 
conducts a detailed comparison between maximizing and averaging. 

4  EXPERIMENTS  

In this section, we use two data sources to evaluate the performance 
of our method. First, simulation data is used to quantitatively com-

pare the performance of our method with the baselines, where we 
have the ground truth anomaly labels. Second, highD dataset [24] 
is used to qualitatively show our method works on real-world tra-
jectories. The code is publicly available on GitHub2. 

4.1  Datasets  

The detailed information of the two datasets is as follows. 

4.1.1 Simulation data. TransModeler is a microscopic trafc simu-

lator that generates vehicle trajectories mimicking human driving 
behavior and interactions. In this work, we generate a set of record-
ings at 1Hz on a 5-mile stretch of a 4-lane highway. The recordings 
have diferent trafc fows and vehicle type distribution to include 
diferent trafc conditions and abnormal scenarios. Specifcally, we 
include the following scenarios: 

• Normal trafc. A standard car following model, Modifed 
General Motors [1] is used, which has been demonstrated 
to correlate well with feld trafc data. The desired speed 
of the vehicles follows a typical distribution found in real-
world trafc, with around 5% speeding vehicles and 5% slow 
vehicles. We include both free fow and congested conditions 
with varying trafc demands. 

2https://github.com/yuehu9/DSAB-Detecting-Socially-Abnormal-Drving-Behaviors 

• Speeding. The abnormal speeding cars drive at least 15 mph 
faster than the other vehicles when it is possible to do so. 

• Slow. The abnormal slow cars drive at least 15 mph slower 
than the other vehicles when it is possible to do so. 

• Tailgating. The tailgating vehicle’s headway is less than 0.5s 
from the lead car. We simulate tailgating cars via a Constant 
Time Gap car-following model, where drivers can keep a 
constant desired headway from the leading vehicle [48]. 

• Stalled car. A vehicle randomly stops on the road for a period. 
• Comprehensive scenario. We include all the above abnormal 
scenarios, i.e., speeding, slow, tailgating and stalled vehi-
cles are all present in a single scenario, to comprehensively 
evaluate model detection performance. 

We include both common anomalies (e.g., speeding, tailgating 
and stalled vehicles [3, 4, 31, 34]) as well as those that are not 
commonly studied (e.g., slow driving). Slow driving can create 
moving bottlenecks with adverse impacts on trafc, but are difcult 
to identify using existing single-vehicle approaches, demonstrating 
the importance of developing an interaction-based detector. 

The detailed experimental settings and distributions can be found 
in the Appendix. We adjust the percentages in each abnormal sce-
nario, so that the abnormal behaving cars consist of around 3%-5% 
of total cars, randomly distributed on the road. The actual anom-

aly rate has some variation across diferent recordings because of 
simulation randomness. A total of 180 min of normal trafc is used 
for training. The recordings of speeding, slow, tailgating, stalled 
car and comprehensive scenarios are used for testing, each lasting 
10 min. The training data has 7,886 cars in total, producing 920,311 
trajectories when segmented into 15s windows at 1s stride. The test-
ing sets together have a total of 5,067 cars and 630,718 trajectories. 
Detailed statistics can be found in the Appendix. 

We note that our training dataset is not perfectly clean, but 
contains a small portion of abnormal data (e.g., speeding and slow 
cars). This is intentionally done to simulate the real-world situation 
where we may not have a clean labeled training set that is known 
to be free of anomalous vehicles. Experiments excluding training 
anomalies can be found in Appendix D, which shows similar results. 

4.1.2 Real-world data. The HighD dataset [24] contains high accu-
racy vehicle trajectories extracted from video recordings captured 
via unmanned aerial vehicles over various stretches of German 
highways, each stretching approximately 1300 feet long. We select 
a total of approximately 350 minutes of recordings on three-lane 
highways as our training data, which covers both light and heavy 
trafc conditions, with trafc fow varying from 1200 to 3600 ve-
hicles/lane/hour. Then, we test on an unseen 15-min recording 
with a fow of 2300 vehicles/lane/hour. The training data has 42,106 
cars in total, producing 459,187 trajectories when segmented into 
10s windows at 1s stride. The testing sets together has 1,795 cars 
and 21,840 trajectories. For the HighD data, we do not have the 
ground truth anomaly labels. Thus, we qualitatively examine the 
top anomalies detected by our model. 

4.2  Baselines  and  Metrics  

4.2.1 Baselines. We compare our method with simple heuristic 
methods as well as state-of-the-art methods for anomaly detection 
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on trajectory data. The baselines include: i) Linear temporal inter-
polation (LTI) implemented by [51] that uses a linear interpolation 
between the frst and last position of the vehicle to reconstruct 
the trajectory; ii) Constant Velocity Model (CVM) [37] that assumes 
constant speed as recorded at the frst observation time step to 
reconstruct the trajectory; iii) Robust tensor Recovery (RTR) [20] 
model that captures spatial-temporal correlations via low-rank ten-
sor decomposition, and detects sparse outliers that deviates from 
the normal patterns; iv) Seq2Seq model [42] that encodes and de-
codes the time series with two LSTM networks, and uses Mean 
Square Error (MSE) as the reconstruction loss; v) Spatio-temporal 
graph auto-encoder (STGAE) [51] that uses convolutional networks 
temporally and graph convolutional networks spatially, and uses 
bi-variate Gaussian reconstruction error to build autoencoder to 
derive anomaly score3; vi) DSAB-biv, which is the variant of our 
model, that uses the same RGAT structure, but uses the bi-variate 
Gaussian loss as in [33, 51]. Each of the baseline methods produces 
an anomaly score for the vehicles in each time step within a time 
window, and the same process is used following Eq (8) and (9) to 
calculate the vehicle and scene anomaly scores. 

Out of all the baselines, Seq2Seq, RTR, CVM and LTI consider 
only each vehicle’s own trajectory, and STGAE considers the re-
lationships between vehicles. The heuristic models CVM and LTI 
are able to detect non-free-fow scenarios where the vehicle speed 
changes dramatically. The tensor PCA can capture linear correla-
tions among trajectories, and the neural-network methods Seq2seq 
and STGAE can further capture non-linear patterns. 

4.2.2 Metrics. We follow the practice used in the anomaly detec-
tion works [13, 28, 35], and include the following standard metrics: 
i) ROC-AUC score, which is widely used for anomaly detection. ii) 
Average precision, which summarizes the precision-recall curve 
into a single value. iii) Precision@k. In settings where one is only 
able to e.g., manually verify a fxed number of anomalies, Preci-
sion@k measures the relevance of the samples we check. 

4.3  Implementation  details  

The model setting for DSAB is as follows. For simulated data: For 
graph construction, the distance threshold �� is 0.1 miles, and the 
lane threshold �� = 1, i.e., vehicles only attend to its own and imme-

diate neighboring lanes within 0.1 miles upstream and downstream. 
The window size � is 15s, and sampling interval is 1s. The model 
hidden size �ℎ = 5, the number of attention heads � = 3. In training, 
the model is trained for 500 epochs, with a batch size of 64. The 
initial learning rate is 0.05, and decreases by half every 50 epochs. 
Gradient clipping is used to avoid exploding gradients, with max 
norm of 1. For abnormal scene detection, the stretch length �� is 
set to 0.15 miles. For the highD data: The window size � is 10s. The 
distance threshold �� is 0.2 mile. The batch size is set to 256. All 
other confgurations are the same as the simulation data above. 

Our model requires a constant number of vehicles in a single 
time window. For vehicles with incomplete trajectories, due to 
vehicles entering or leaving the observed stretch, two approaches 

3We use the STGAE-biv variant from the paper, since the version with KDE is compu-
tationally too expensive. With � trajectories in the training set, and � trajectories in 
the testing set, the KDE complexity is � (��) . The KDE did not complete given two 
days of computation time. 

Table 1: Abnormal vehicle detection performance on the test 
set of comprehensive scenario, where all abnormal behaviors 
exist on the highway. Our model is the only one that can 
identify anomalous cars in trafc. 

Pre@100 Pre@200 Pre@500 Avg Pre AUC 

LTI 0.21 0.205 0.210 0.093 0.623 
CVM 0.15 0.140 0.142 0.089 0.617 
RTR 0.16 0.190 0.228 0.109 0.598 
Seq2seq 0.56 0.435 0.310 0.132 0.770 
STGAE 0.18 0.180 0.178 0.093 0.641 
DSAB-biv 0.15 0.150 0.114 0.062 0.655 
DSAB (Ours) 0.82 0.775 0.726 0.381 0.900 

Table 2: Abnormal scene detection performance. While iden-
tifying abnormal scene is an easier task than identifying 
specifc abnormal cars, and most method can perform well, 
ours is still the best in performance, with an increase of 0.1 
in ROC-AUC score and average precision. 

Pre@100 Pre@200 Pre@500 Avg Pre AUC 

LTI 0.89 0.860 0.834 0.690 0.726 
CVM 0.67 0.625 0.640 0.662 0.714 
RTR 0.89 0.895 0.864 0.769 0.744 
Seq2seq 0.87 0.870 0.860 0.742 0.745 
STGAE 0.82 0.740 0.776 0.666 0.678 
DSAB-biv 0.73 0.665 0.610 0.470 0.551 
DSAB (Ours) 0.93 0.950 0.912 0.859 0.841 

can be used: i) discard the vehicles with incomplete trajectories; or 
ii) linearly extrapolate the trajectories assuming constant velocity 
dynamics, and then mask the extrapolated part when calculating the 
loss. The frst approach is used for simulation data on long stretches 
with a small portion of incomplete trajectories. the second approach 
is used for real-world highD data with short stretches, and a large 
fraction of incomplete trajectories. 

4.4  Results  and  analysis  

In this section, we quantitatively compare our method with the 
baselines on simulation data. We also conduct ablation studies to 
see the infuence of each model component on performance. 

4.4.1 Model comparison. We frst benchmark the methods on the 
test set of the comprehensive scenario, where all abnormal behav-
iors exist on the highway. The result for abnormal vehicle detection 
is shown in Table 1. We can see that our model is the only one that 
can identify the specifc car that behaves abnormally in the trafc. 
The precision scores at diferent k vales are constantly above 0.7 in 
our method. For the other methods, the precision score are around 
0.2 most of the time, and are never higher than 0.6. Our average 
precision is also around 0.3 higher than the second best method. 
The ROC-AUC score for our method is 0.9, which is more than 0.1 
higher than the second best method. This shows that without con-
sideration of neighboring vehicles, Seq2Seq, RTR, CVM and LTI are 
unable to detect the social anomalies. Meanwhile, although STGAE 
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Table 3: Abnormal car detection performance on each individual anomaly scenario. Our method is the only one that can detect 
slow and stalled car in trafc, and is also the best at detecting speeding cars. 

slow speeding tailgating stalled 

Pre@100 Avg Pre AUC Pre@100 Avg Pre AUC Pre@100 Avg Pre AUC Pre@100 Avg Pre AUC 

LTI 
CVM 
RTR 
Seq2seq 
STGAE 
DSAB-biv 
DSAB (Ours) 

0.00 
0.01 
0.00 
0.02 
0.01 
0.00 
0.97 

0.023 
0.023 
0.030 
0.046 
0.048 
0.025 
0.246 

0.443 
0.432 
0.466 
0.668 
0.573 
0.465 
0.841 

0.82 
0.67 
0.61 
0.85 
0.83 
0.29 
1.00 

0.512 
0.472 
0.365 
0.549 
0.335 
0.092 
0.907 

0.877 
0.871 
0.655 
0.923 
0.712 
0.600 
0.995 

0.02 
0.06 
0.08 
0.18 
0.01 
0.05 
0.33 

0.161 
0.177 
0.102 
0.091 
0.055 
0.043 
0.148 

0.835 
0.840 
0.400 
0.709 
0.491 
0.436 
0.747 

0.00 
0.00 
0.00 
0.03 
0.00 
0.13 
0.98 

0.030 
0.030 
0.046 
0.056 
0.025 
0.066 
0.148 

0.010 
0.010 
0.410 
0.676 
0.454 
0.696 
0.762 

(a) attention heads (b) hidden dimension (c) attention distance (d) sample time (e) window size 

Figure 2: Infuence of diferent parameters. The model benefts from having more than one attention head, and is not sensitive 
to the number of heads and hidden dimensions otherwise. On spatio-temporal graph construction, when attention distance 
threshhold equals zero, a car does not attend to any neighbor, and the performance signifcantly drops. Otherwise, the model is 
not sensitive to the window size and sample frequency, allowing us fexibility to choose parameters. 

and DSAB-biv both model the neighboring vehicle interactions via 
graph neural networks, they use bi-viariate Gaussian trajectory 
loss and cannot well capture the discrete lane-changing behaviors, 
and have similarly poor results. 

We also report the performance of abnormal scene detection for 
all method, shown in Table 2. We can see that the performance of all 
methods have a signifcant improvement. This is because detecting 
abnormal scenes is easier task than detecting the specifc abnormal 
vehicles. For example, a slow or stalled car can cause its following 
cars to brake abruptly, which baseline models like CVM are able to 
detect. Moreover, when aggregating a group of vehicles over space 
and time, the abnormal rate is higher, and the methods work much 
better on a balanced dataset. Nonetheless, our method is still the 
best, with an increase of 0.1 in AUC score and average precision. 

4.4.2 Performance on individual anomaly scenarios. Next, we inves-
tigate the model performance on each individual anomaly scenario. 
The result is shown in Table 3. We can see that our method is the 
only one that can detect slow and stalled cars in trafc, with Pre-
cision@100 score above 0.9, compared with scores constantly less 
than 0.1 for other methods. While all methods perform relatively 
well at detecting speeding cars, our method is the best, with an 
improvement of 0.1 in Precision@100, and a ROC-AUC score near 
1. Our method is relatively less efective in detecting tailgating cars, 
yet the Precision@100 is still the highest among all methods, and 
no method is constantly better than ours in every metric. We note 
that baseline methods can detect tailgating cars, because they have 
diferent car-following dynamics as described in section 4.1. 

4.4.3 Ablation study. In this section, we examine the infuence of 
diferent components of the model, as well as model sensitivity to 
the confgurations of the spatio-temporal graph data. 

First, we study the infuence of the model parameters, with re-
sults shown in Fig 2a and 2b. The infuence of number of attention 
heads is shown in Fig 2a. We can see that the model benefts from 
having more than one attention head, while being not sensitive 
when the number of heads is larger than one. Meanwhile, Fig 2b 
indicates that the model is not sensitive to the hidden dimension. 
Thus we choose 5 as hidden dimension for a smaller model size. 

Next, we study the infuence of spatio-temporal graph parame-

ters, with results shown in Fig 2c, 2e and 2d. Spatially, the threshold 
of attention distance determines how far away in distance one vehi-
cle attends to as its neighboring car. A threshold of zero means a car 
do not attend to any neighbor, and consequently the spatial graph is 
not used. We can see in Fig 2c that when the threshold equals zero, 
the performance signifcantly drops by 0.3 in Precision@100. When 
threshold is larger than 0.05 miles, the performance is not sensitive 
to the threshold value. The result indicates that the neighboring 
vehicles within 0.05 miles around the ego vehicle is the most impor-

tant. Temporally, we study the infuence of the time window size 
and the sample frequency. We frst fx the sampling interval at 1s 
and vary the window size from 2s to 20s, then fx the window size 
at 15s and vary the sampling interval from 1s to 4s. Fig 2e and Fig 2d 
show the results. We can see that the model performs best when 
interval is less or equal to 3s, and is not sensitive to the window 
size and sample frequency otherwise. This allows us fexibility to 
choose a larger window size and coarser sampling frequency to aid 
computational efciency. 
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(a) Normal trafc condition. The typical speed varies by lane. From leftmost 
to rightmost lane, the average speed are 76, 69 and 56 mph respectively, 

calculated from training data 

(b) Vehicle with largest anomaly score. The abnormal vehicle 1 is cutting in 
front of vehicle 2, while having dramatic deceleration, forcing vehicle 2 to 
change lane as well. 

(c) Vehicle with second largest anomaly score. The abnormal vehicle 1 is 

driving too fast with respect to the lane it is in. The reconstruction actually 

puts vehicle 1 in the middle lane which has larger typical speed. 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Hu et al. 

4.5 Qualitative Results 

In this section, we qualitatively show the performance of our model 
on real-world HighD data. The trafc in this data has unique char-
acteristics, and our model is able to learn the norms and capture 
the anomalies that deviates from the norm. 

Specifcally, the speed limit for German highways is very loose, 
at least 75 mph, or no speed limits in some parts. And it is not 
uncommon to observe speeds larger than 80 mph. Thus, speeding 
is not ranked among the largest anomalies. On the other hand, the 
typical trafc speed varies signifcantly by lane, as shown in Fig 3a. 
From leftmost to rightmost lane, the average speed are 76, 69 and 56 
mph respectively, calculated from training data. That is to say, the 
faster the car, the more to the left the car tends to be. Accordingly, 
the vehicle with much higher speed than its corresponding lane is 
detected as abnormal, even though the speed is absolutely normal 
when lanes are not considered. We manually inspect the vehicles 
with top anomaly scores, and found them to be abnormal either be-
cause of aggressive driving with dramatic acceleration/deceleration, 
or because of speed range violation with respect to the lane. 

We show some of the top anomalies in Fig 3. Each line denotes 
the trajectory of a single car, with a dot denoting the starting point 
and triangle the end point. We add small perturbations laterally to 
aid visualization. The speed, acceleration and vehicle anomaly score 
at the corresponding time are shown. The reconstruction shows the 
trajectories with the largest probability. Fig 3b shows the vehicle 
with largest anomaly score. The abnormal vehicle 1 is cutting in 
front of vehicle 2, while having dramatic deceleration, forcing the 
other car to change lane as well. Fig 3c shows the vehicle with 
second largest anomaly score. The abnormal vehicle 1 is driving 
too fast with respect to the lane it is in ś 20 mph larger than the 
typical speed in rightmost lane. The reconstruction actually puts 
vehicle 1 in the middle lane which has larger typical speed. 

While we presented the top two anomalies as identifed by DSAB, 
with more examples in Appendix E, the result illustrates that the 
method is applicable to real world datasets. 

5 CONCLUSION 
Advanced connectivity and sensing will continue to transform in-
telligent trafc management. In this work, we tackle an important 
problem of abnormal driving behavior detection, using trajectories 
produced by IoT highway video surveillance systems. Specifcally 
we detect the exact anomalous vehicles considering the vehicular 
interaction with DSAB, an autoencoder based on Recurrent Graph 
Attention Networks. The results demonstrate the method captures 
the spatial-temporal trajectory dynamics, while considering both 
the neighbor interactions and the stocasticity in driving behaviors. 
Extensive experiments on both simulation and real-world data sets 
show the ability of our model to scale to large highway monitor-

ing systems with thousands of vehicles, and detect a variety of 
abnormal behaviors. The performance on identifying single vehicle 
anomalies is state of the art, indicating potential to pinpoint specifc 
problematic vehicles in a large trafc stream. Figure 3: Qualitative study of real-world HighD trafc data 
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Table 4: Dataset statistics i) area under the receiver operating characteristic curve (ROC-
AUC) score. The ROC curve plots the true positive rate (TPR) against 

Car count Trajectory count 

Simulation 

training 
comprehensive 
slow 
speeding 
tailgating 
stalled 

7,886 
1,281 
636 
583 
645 
1,922 

920,311 
147,254 
75,809 
65,685 
78,600 
263,370 

HighD 
training 
Testing 

42,106 
1,795 

459,187 
21,840 

A  DATA  DETAILS  

We describe the detailed settings for simulation data, then provide 
the data statistics for both simulation and highD data. 

• Normal trafc. A standard car following model, Modifed

General Motors [1] is used, which has been demonstrated to
correlate well with feld trafc data. The desired speed of the
vehicles follows a typical distribution found in real-world
trafc, with the majority between 65-80 mph, only 5% above
85 mph and 5% below 60 mph. Recordings of varying trafc

demands from 500 to 1600 vehicles/lane/hour are included,
covering both free fow and congested conditions.

• Speeding scenario. We set 70% of the vehicles drive at a
desired speed of 65 mph, and 30% above 85 mph. The trafc

demand is 500 veh/l/hr.
• Slow scenario. We set 98% of the vehicles drive at a desired
speed of 65 mph, and 2% below 50 mph. The trafc demand

is 500 veh/l/hr.
• Tailgating scenario. We set 46.80% cars to follow a Constant
Time Gap model and only a proportion of them could be
tailgaters according to trafc conditions. The trafc demand

is 500 veh/l/hr.
• Stalled car scenario. We randomly select 15 cars, each stop-
ping for 5 minutes. The trafc demand is 1500 veh/l/hr.

• Comprehensive scenario. We set 89% of the vehicles drive
at a desired speed of 65 mph, 10% at 85 mph, and 1% at 50
mph. In addition, we set 46.80% cars following Constant Time

Gap model and only a proportion of them could be tailgaters
according to trafc condition. We set 2 cars to each stall for
3 min. The trafc demand is 1000 veh/l/hr.

Cars are labeled anomaly only when it is actually behaving 
anomalously (e.g., when a car with desired speed of 85 mph can 
only drive at 65 mph because of trafc conditions, it is not an 
anomaly at the corresponding time). 

Table 4 shows the statistics of car count, and the total trajectory 
count when divided into 10-15s time windows with 1s stride. We 
note that in simulation data, the trafc fow in stalled car and 
comprehensive scenarios are higher, because we want to check if 
we can detect the source anomaly car even if the stalled car causes 
upstream congestion. 

B  DESCRIPTION  OF  METRICS  

In this section, we describe the evaluation metrics. 

the false positive rate (FPR), and the ROC-AUC score calculates 
the area under the ROC curve. An ROC-AUC score of 0.5 means 
the model is not able to discriminate anomalies, and an ROC-AUC 
score of 1 means perfect anomaly detection. 

ii) Average precision, which summarizes the precision-recall
curve into a single value, and is calculated as the weighted mean of 
previsions achieved at each threshold, the weight being the increase 
in recall from the previous threshold. 

iii) Precision@k, which calculates the percentage of true anomaly

among the top k samples scored by the models to be anomalies. 
We note that for vehicle detection problem, since the anomaly 

rate is only 3%-5%, severe data imbalance issue exists. It is shown 
in [22] that in heavily imbalanced datasets, metrics like F1 score 
downgrades exponentially with data skewness, thus we do not 
include F1 metrics. Meanwhile, ROC-AUC score is less infuenced 
by data imbalance, but with a caveat that model with distinctive 
performance could have very similar ROC-AUC score. Precision@k 
shows how well we rank anomalies over normal samples, and works 
well on imbalanced datasets where our focus is on the relatively 
rarely occurring anomalies. 

C  AGGREGATOR  

We briefy describe the choice of loss aggregation over time and 
vehicles in section 3.6. Averaging the losses is more conservative 
than maximizing. For vehicle detection, since many abnormal be-
haviors persist for relatively long time periods over several seconds, 
we choose to average over time. Maximization results in around 
0.1 decrease in average precision. For scene detection, we choose 
maximization to avoid abnormal vehicles being averaged out by nor-
mal vehicles. Averaging results in around 0.06 decrease in average 
precision. 

D  ROBUSTNESS  ANALYSIS  

We briefy explore the model robustness to anomalies in training 
data. As described in section 4.1, our training data contains a small 
portion of anomalies, to simulate the real-world situation of not 
having a perfectly clean normal dataset. To evaluate the infuence 
of training anomalies, we compare the performance with model 
trained on clean training data. Table 5 shows the result. We can 
see that the results are similar, with diferences in scores all less 
than 0.05. There is also no clear trend of one dataset better than 
the other. The result shows the model is robust to small number of 
anomalies in the training data. 

E  HIGHD  ANOMALY  DESCRIPTION  

In this section, we provide more examples of the qualitative results 
for top ranked anomalies in the HighD real-world data. We note 
that during ranking, there might be samples with overlapping time 
windows, and we eliminate the repetitions for diversity. The results 
are shown in Fig 4 and Fig 5. Out of the top anomalies, most are 
because of drastic deceleration, as well as a signifcant diference in 
speed relative to the speed of the surrounding cars, or to the typical 
speed of the corresponding lane it is in. 
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(a) Vehicle with 5th largest anomaly score. The abnormal vehicle

(marked �) is having dramatic deceleration.

(b) Vehicle with 6th largest anomaly score. The abnormal vehicle
(marked �) is having dramatic deceleration, while also driving too
slow with respect to the lane it is in, therefore reconstructed to
rightmost lane which has smaller typical speed.

Figure 5: Additional qualitative study of real-world HighD 
trafc data (Part 2) 

Table 5: Infuence of anomalies in the training data. The 
performance of two training sets are comparable, with dif-
ferences in scores all less than 0.05. 

Training 
data 

Pre@100 Pre@200 Avg Pre AUC 

vehicle Clean 0.79 0.815 0.336 0.888 
detection Polluted 0.82 0.775 0.381 0.900 

scene Clean 0.97 0.965 0.852 0.834 
detection Polluted 0.93 0.950 0.859 0.841 

(a) Vehicle with 3rd largest anomaly score. The abnormal vehicle
(marked �) is having dramatic deceleration and drives signif-
cantly slower than other cars in its lane.

(b) Vehicle with 4th largest anomaly score. The abnormal vehicle
(marked ) is having dramatic deceleration.�

Figure 4: Additional qualitative study of real-world HighD 
trafc data (Part1) 
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