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We address four issues in response to Osth and Hurlstone’s (2022) commentary on the context retrieval and
updating (CRU) theory of serial order (Logan, 2021). First, we clarify the relations between CRU, chains,
and associations. We show that CRU is not equivalent to a chaining theory and uses similarity rather than
association to retrieve contexts. Second, we fix an error Logan (2021) made in accounting for the tendency to
recall ACB instead of ACD in recalling ABCDEF (fill-in vs. in-fill errors, respectively). When
implemented correctly, the idea that subjects mix the current context with an initial list cue after the first
order error correctly predicts that fill-in errors are more frequent than in-fill errors. Third, we address
position-specific prior-list intrusions, suggesting modifications to CRU and introducing a position-coding
model based on CRU representations to account for them. We suggest that position-specific prior-list
intrusions are evidence for position coding on some proportion of the trials but are not evidence against item
coding on other trials. Finally, we address position-specific between-group intrusions in structured lists,
agreeing with Osth and Hurlstone that reasonable modifications to CRU cannot account for them. We
suggest that such intrusions support position coding on some proportion of the trials but do not rule out
CRU-like item-based codes. We conclude by suggesting that item-independent and item-dependent coding
are alternative strategies for serial recall and we stress the importance of accounting for immediate

performance.
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Serial order is one of the most fundamental problems in psychology
and neuroscience (Lashley, 1951). It challenges our ability to perceive
structure in the world, to act coherently in sequential tasks, and to
remember the order of our experiences (Logan, 2021). We solve these
practical problems routinely in daily life but despite a century and
a half of research on serial order (Ebbinghaus, 1885; Ladd &
Woodworth, 1911; Nipher, 1878), there is no theoretical consensus
on how we solve them. In the last 30 years, research on serial order in
memory has focused primarily on serial recall tasks, like the memory
span task (for comprehensive reviews, see Hurlstone et al., 2014;
Lewandowsky & Farrell, 2008). Early theories based on simple
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chains of associations between successive items (Lewandowsky &
Li, 1994; Lewandowsky & Murdock, 1989; Murdock, 1982, 1993,
1995; Shiffrin & Cook, 1978) were challenged by Henson et al.
(1996), who showed that chaining theories cannot recover from
errors, respond appropriately to manipulations of phonological
similarity, produce transpositions to earlier list positions, or pro-
duce position-specific intrusions from previous lists or from
different groups in the same list. As a result, theories that assume
serial order is based on associations between items and position
codes—contexts that are independent of the items—have come to
dominate the field (Anderson & Matessa, 1997; Brown et al., 2000,
2007; Burgess & Hitch, 1999; Farrell, 2006; Hartley et al., 2016;
Henson, 1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012).

Recently, Logan and colleagues proposed a context retrieval and
updating (CRU) model of serial-order tasks, including serial recall,
that does not assume position codes (Logan, 2018, 2021; Logan &
Cox,2021; Logan et al., 2021). Instead, it assumes that serial order is
represented by associating items with contexts that are built from
fading traces of earlier items, inspired by Howard and Kahana's
(2002) temporal context model (TCM) of free recall and its des-
cendants (Lohnas et al., 2015; Polyn et al., 2009; Sederberg et al.,
2008). Logan (2021) applied CRU to serial recall, whole-report, and
copy-typing tasks, showing that it accounts for several phenomena
in these tasks, including list-length effects, serial position curves,
transposition gradients, lag conditional recall probabilities, distribu-
tions of errors, recovery from errors, and the effects of repeating
items in a single list. Logan (2021) found that CRU does not predict
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2 LOGAN AND COX

the error ratio (transpositions to earlier vs. later positions in the list, e.g.,
recalling ACB rather than ACD when given list ABCD; Page & Norris,
1998). This misprediction is an important limitation on CRU because
virtually all position-coding theories predict the error ratio correctly.

Osth and Hurlstone (2022) provided an extremely valuable and
constructive commentary on CRU, evaluating its ability to account
for critical results that support position-coding theories: the effects
of phonological similarity and position-specific intrusions from
prior lists and from different groups in structured lists. They showed
that CRU could account for phonological similarity effects with its
assumptions that distinguish retrieving an item from selecting a
response to report the retrieved item (Logan, 2018). CRU explains
phonological similarity effects as confusions in response selection
rather than errors in retrieval, much like position-coding theories
(Henson, 1998). Osth and Hurlstone tried several ways to model the
position specificity of intrusions in CRU but were unable to simulate
the correct patterns. They concluded that CRU’s failure to predict
error ratios and position-specific intrusions were serious problems
that warranted further development of the theory.

In this reply to Osth and Hurlstone (2022), we clarify the relations
between CRU and item-dependent context models, revisit error
ratios, suggest ways in which CRU can be amended or combined
with position-coding models to account for position-specific intru-
sions from prior lists and other parts of structured lists.

CRU, Chains, Associations, and Compound Cues

Osth and Hurlstone (2022) interpreted CRU as a member of a
broad class of item-based theories, ranging from classical chains
(Ebbinghaus, 1885) to modern implementations (Lewandowsky &
Murdock, 1989; Murdock, 1995; Solway et al., 2012), because its
contexts are made of fading traces of past items. The broad class
contains theories that overcome notorious problems with pairwise
chains (Henson et al., 1996; Lashley, 1951) by assuming remote
associations and compound cuing. Osth and Hurlstone argued that
the elements of CRU’s contexts are like remote associations and
CRU's retrieval process involves compound cuing, so CRU inherits
the interpretations and predictions of the broad class. Here, we show
that CRU requires different interpretations, and it need not inherit
those predictions. Like all computational models, CRU’s predic-
tions depend jointly on its assumptions about memory representa-
tions and retrieval processes, and the combination yields predictions
that differ from other members of the class.

We contributed to a more general misunderstanding of CRU by
drawing analogies between CRU and chaining models and between
the elements of CRU vectors and strengths of associations to prior
items (Logan, 2018, 2021; Logan & Cox, 2021; Logan et al., 2021).
We did that to relate CRU to familiar concepts, but we intended the
relations to be treated as analogies and not theoretical equivalences.
Osth and Hurlstone (2022) showed that CRU reduces to a pairwise
chaining model if B = 1 (also see Logan & Cox, 2021), but that
model cannot produce errors (the only “competitor” in the retrieval
process is the next item), so it fails to account for major serial-order
phenomena.

To clarify the relations between CRU, chains, associations, and
compound cues, and to demonstrate the consequences of mischar-
acterizing CRU, we compared CRU with the strength-based
associative chaining (SBAC) model of serial learning (Solway
et al., 2012). We chose SBAC for four reasons: (a) it is the most

recent and most successful attempt to model chaining in serial
memory, (b) it explicitly assumes remote backward and forward
associations, (c) the cue for the next retrieval is the just-retrieved
item, in contrast with CRU’s “compound cue,” and (d) its structure
is very similar to CRU’s, which facilitates formal comparison. We
show that it is not equivalent to CRU, that CRU’s elements are not
equivalent to remote associations, and that CRU’s retrieval cues may
be better thought of as configural than compound.

Basic CRU

CRU is a simplification of TCM (Howard & Kahana, 2002) and
its descendants (Lohnas et al., 2015; Polyn et al., 2009; Sederberg
et al., 2008) that is applied to serial memory tasks (Logan, 2018,
2021; Logan & Cox, 2021; Logan et al., 2021). It assumes items and
lists are represented as unit vectors using localist codes. Vectors
representing the list have 1 in the element that corresponds to the list
and 0 in all other elements. Vector representing the items have 1 in
the element that corresponds to the item and 0 in all other elements.
Encoding uses these vectors to create a set of stored context vectors
that represent the list. It begins with the list vector and proceeds by
adding vectors representing the items to the current context vector
according to the TCM updating equation:

Cn+1 = Bry + pen, (D

where cn.; is the updated current context vector, ry is the vector
representing the item that was just presented, B is the weight on the
presented item, cy is the vector representing the context in which the
item was presented, and p is the weight on that vector. (We represent
vectors with lowercase bold italic font and matrices with uppercase
bold italic font.) The value of p is chosen to normalize the updated
context vector cn+1 to unit length. If ry and cy are orthogonal (as
they would be if the new item was not present before in the list), then
Bl
p= 1-B% ()]

If they are not orthogonal (as they would be if the new item is a
repetition of a prior item),
L
p= 1+ P%dry - cyb? - 1 - Bary - oxb, 3)

where ry-cx is the dot product between ry and cn. CRU assumes that
the current item (rn) is associated with the context in which it
appeared (cn) and stored, and then the current context vector is
updated. A set of stored context vectors generated from Equation 1
with B = .6 is presented in the top left panel of Figure 1. They show
how the context vector for each item is a recency-weighted mixture
of the prior items in the list.

Retrieval involves iteratively comparing an evolving current
context with the set of stored contexts by calculating the dot
products between them to retrieve an item and then updating the
current context by adding the retrieved item (and not the retrieved
response; Logan, 2018; Osth & Hurlstone, 2022) to it. The current
context at retrieval is built with the same updating equation used in
encoding (Equation 1). The dot products are drift rates in a racing
diffusion decision process (Tillman et al., 2020), which chooses the
item to be reported.
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Figure 1
CRU and SBAC Compared
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Note. Top left: CRU contexts generated from Equation 1 with § = .6. Top right: SBAC contexts created from CRU contexts with p = .6 and w;, =
.8. The rows represent serial positions. The columns represent items associated with serial positions. Second, third, and fourth from top:
Probability of retrieval for Serial Positions 1-6 as a function of lag. Each row represents a different value of B (.5, .6,.7). In each row, wy, = .8. CRU-
CRU = CRU contexts and CRU retrieval process; CRU-SBAC = CRU contexts and SBAC retrieval process; SBAC-CRU = SBAC contexts and
CRU retrieval process; SBAC-SBAC = SBAC contexts and SBAC retrieval process; CRU = context retrieval and updating; SBAC = strength-
based associative chaining. See the online article for the color version of this figure.

We interpret Equation 1 as a model of the psychological processes
of encoding and retrieval, as if people actually go through the steps of
updating the context as they learn and retrieve lists. Coupled with a
racing diffusion decision process, CRU predicts the accuracy (Logan,
2018, 2021) and latency (Logan et al., 2021) of individual acts of
retrieval. That is a significant strength of the theory that allows it to go
beyond summary statistics like serial position curves and transposi-
tion matrices to address immediate performance (Kragel et al., 2015;
Morton & Polyn, 2016).

Compound Cues and Remote Associations

Osth and Hurlstone (2022) characterize the elements of CRU
vectors as recency-weighted associations between the current item
and past items, as if the current item is connected to each of the past
items with a bond whose strength depends on recency (see their
Equation 3). At retrieval, they characterize the current context vector
as a compound cue that activates the associations, such that the item
with the strongest association is retrieved. While this is a reasonable
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4 LOGAN AND COX

interpretation of the content of CRU’s representations, it mischarac-
terizes the processes CRU applies to those representations to drive
retrieval. Retrieval in CRU is driven by resonance (Ratcliff, 1978)
rather than activation of associations. The current context activates
stored contexts in proportion to their similarity, and the item associated
with the stored context with the greatest activation is retrieved. This
kind of retrieval process is common in theories of categorization,
especially exemplar theories (Hintzman, 1986; Nosofsky, 1986). New
exemplars must be classified by similarity because they have no prior
associations to the category. Retrieval by resonance is part of some
theories of recognition (Ratcliff, 1978) and cued recall (Hintzman,
1988; Shiffrin & Steyvers, 1997). It is a central assumption in CRU.
CRU's current context may be viewed as a compound retrieval cue
(cf. Ratcliff & McKoon, 1988) but, in the language of Dosher and
Rosedale (1997), it is a configural cue that is matched to memory as
a holistic unit (Clark, 1995; Murdock, 1995), in contrast with cues
whose components combine additively (McNamara, 1992, 1994) or
multiplicatively (Humphreys et al., 1989; Raaijmakers & Shifftin,
1981). The match is calculated with the dot product, which measures
the similarity of the pattern of the element values (see Logan, 2021,
Figures 3 and 14). The holistic nature of the match arises because
CRU'’s contexts are all of length 1 (as guaranteed by the updating
equation). As a result, the elements of CRU’s contexts reflect the
relative prominence of different items within the context, not the
strength of an association. Increasing the prominence of one item
necessarily diminishes the prominence of the others. Thus, the multi-
ple items in a CRU context do not combine independently. Instead,
they combine interactively in a nonlinear fashion (the nonlinearity
arising from normalizing contexts by their length rather than their sum)
to form a configural cue. The comparison to SBAC illustrates the
importance of appreciating how contexts operate in CRU.

Basic SBAC

The SBAC model represents serial order in terms of associations
between items, both adjacent and remote. The strength of the
associations decreases with the distance between the items in the
list. It assumes forward associations from the current item to items that
follow it and backward associations from the current item to previous
items in the list. These associations allow SBAC to account for
transitions to remote items in both directions. SBAC specifies the
computations that determine association strengths but, unlike CRU, it
does not interpret those computations as psychological processes.

Solway et al. (2012) configured SBAC to account for serial
learning, in which a list is presented several times until subjects
can recall it in order without error. The increment in forward
association strength between Item i and Item x is given by

AF3i - x,ibp = a4l - F8i- x,iby_ e, 4)

where F is a matrix representing forward associations, a, is a
learning parameter, and e i represents the falloff in association
strength with distance. SBAC assumes backward associations are
weaker than forward associations by a constant, wy, so

ABdi, 1~ xPr = W,AFdi - X,1P;: 5)

The forward and backward association matrices are added to
produce the full association matrix

S=F +B: (6)

SBAC assumes a primacy gradient such that increments in
associative strength decrease exponentially with distance from
the start of the list:

Ha, = Ce™hO1P + min, , (7

s

where [, is the mean learning parameter, ¢ is the strengthening
parameter, ds scales the distance between the current item and the
beginning of the list, and min,_is the minimum value of the learning
parameter. CRU also includes a primacy gradient, such that the
updating weight (B) decreases as an exponential function of distance
from the start of the list (Logan, 2021; Logan et al., 2021). To simplify
analysis, we ignored the primacy gradient in SBAC and CRU.

SBAC assumes that the learning rate a5 varies randomly from trial to
trial, adding Gaussian noise to its value. This random variability is the
source of noise in a SoftMax decision process, which makes SBAC
stochastic instead of deterministic. To simplify analysis, we assume as
is constant over trials and min, = 0. Instead of SoftMax, we use CRU’s
racing diffusion decision procéés, which adds the necessary noise in the
decision process itself (via the diffusion coefficient, set to 1.0) and not
in the parameters (drift rates) that drive the decision.

We employed a simpler single-trial version of SBAC to model
single-trial serial recall. The forward association matrix is defined by

F8i - x,ip = age™dsx ®)
and the backward association matrix is defined by
Bdi,i - xP = wFdi - x,ib: 9)

The top right panel of Figure 1 presents the full matrix (S= F + B)
with as = .6, bs = .8, and wp = .8. At retrieval time, SBAC addresses
single rows of the matrix one after the other. It begins with a list cue
that selects the top row. The cells in the selected row represent
association strengths, which are used as drift rates in a racing diffusion
model to retrieve the item most strongly associated with the retrieval
cue. After an item is retrieved, it serves as a cue to retrieve the next
item, and the row corresponding to that item is selected. Retrieval
proceeds until the end of the list. SBAC is a chaining model because it
uses only the most recently retrieved item as the cue for the next
retrieval, which is determined by the strengths of association between
recallable items and the most recently retrieved item.

Does CRU Mimic SBAC?

The top left panel of Figure 1 presents a matrix representing the
set of stored context vectors CRU would form to represent
the same list, with B = .6 (so p = .8). CRU addresses columns
of the matrix, calculating the dot product between the cue vector
and each of the column vectors in the matrix. CRU differs from
SBAC in that it uses all the rows in the matrix in the retrieval
process while SBAC uses only one. CRU calculates retrieval
strength by premultiplying the matrix with the current context
vector, whereas SBAC calculates retrieval strength by premulti-
plying the matrix with a vector containing 1 in the position of the
most recently recalled item and 0 elsewhere. From this perspective,
CRU could be considered a compound-cuing model, if the SBAC
retrieval process was applied to each row and the results were
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SERIAL ORDER IN CONTEXT 5

summed. Each element in the current context multiplies its correspond-
ing row, the products are summed for each column, and the sums are
used as drift rates in a racing diffusion decision process. We interpret
the mathematics differently: CRU’s context vectors are configural cues,
and the retrieval process is pattern matching of configurations.

It is tempting to think that CRU and SBAC mimic each other
because the elements in the matrices have the same form. In SBAC,

F&i - x,iP = agedsxii, (10)
and in CRU,
Fdi - x,ib = Bp*i: (11)

The functions have the same form: bs = -log(p) because y =
¢'°2Y)_ This equivalence allows us to create SBAC matrices from
CRU matrices. Indeed, the SBAC matrix in Figure 1 was made
from the CRU matrix in in the same Figure. The elements in the top
row of the CRU matrix were multiplied by B. Otherwise, the
clements above the main diagonal are identical in the two matrices,
and the elements below the main diagonal were made by multi-
plying the elements above the diagonal by wy (the weight for
backward associations, in this case, .8).

The elements in the CRU matrix are more constrained than the
elements in the SBAC matrix because p is determined by B
(Equations 2 and 3), whereas as and bs are independent. Also,
the columns in the CRU matrices are normalized to length = 1,
but neither rows nor columns are normalized in SBAC matrices.
Consequently, SBAC is more flexible than CRU. We can convert
all CRU matrices to SBAC matrices, but we cannot convert all
SBAC matrices to CRU matrices. Thus, the memory structures
that support retrieval in the two models do not mimic each other.
SBAC matrices can be constructed from CRU matrices with
appropriate calculations, but those calculations do not represent
meaningful psychological processes. Further, the equivalence in
form does not imply equivalence in psychological interpretation.
The elements in SBAC matrices represent associations between
the items, whereas the elements in CRU matrices represent the
strength with which items are represented in the context. Thus,
CRU does not mimic SBAC despite the equivalence of the
elements of their matrices.

To assess mimicry between CRU and SBAC retrieval processes,
we used CRU and SBAC retrieval cues to probe the CRU and
SBAC matrices in Figure 1. We created matrices for CRU and
SBAC and simulated 100,000 trials in which the CRU contexts
were run through CRU’s retrieval process (CRU-CRU; leftmost
bottom panel of Figure 1), the CRU contexts were run through
SBAC’s retrieval process (CRU-SBAC; second from left), the
SBAC associations were run through CRU’s retrieval process
(SBAC-CRU; third from left), and the SBAC associations were
run through SBAC’s retrieval process (SBAC-SBAC, rightmost).
The result is a 2 x 2 factorial combination of memory representa-
tions (CRU and SBAC matrices) and retrieval processes (CRU and
SBAC cuing). Details of the simulations are presented in the online
Supplemental Material (https://osf.io/3kr5d/).

The bottom panels of Figure 1 show the transposition gradients
for each combination of context and retrieval process with f = .5, .6,
and .7 and w, = .8. Retrieving from CRU contexts with CRU’s
retrieval process produced the familiar symmetrical transposition

gradient (Henson, 1998; Logan, 2021). However, retrieving from
CRU contexts with SBAC’s retrieval process produced a completely
asymmetrical transposition gradient. SBAC never made any back-
ward (negative) transitions because there is nothing corresponding
to backward associations in the CRU contexts. The CRU retrieval
process produces backward transitions because retrieval is driven
by similarity, not association, and the similarity of context vectors
is symmetrical (see Logan, 2021). The SBAC contexts produced
asymmetrical transposition gradients with both CRU and SBAC
retrieval processes. (The near-zero values for -1 transitions are
discussed in the online Supplemental Material.) The asymmetry
suggests that this version of SBAC may not be a viable model of
serial recall. Perhaps with the extra assumptions in the complete
SBAC model that Solway et al. (2012) implemented would produce
symmetrical transitions (see their Figure 4).

Accuracy (Lag 0 in Figure 1) was higher with CRU retrieval
cues (.6530) than with SBAC retrieval cues (.6293), indicating the
advantage of compound cues over single-item cues noted by Osth
and Hurlstone (2022). Accuracy was higher when the retrieval cue
and contexts came from the same model (CRU-CRU = .7427;
SBAC-SBAC = .5878) than when they came from different models
(CRU-SBAC = 6708; SBAC-CRU = .5634). The larger difference
with CRU retrieval cues reflects their configural nature: They work
better when they match the structure of the memory representation.

Together, the analysis and the simulations show that CRU and
SBAC do not mimic each other. The elements of the context and
association matrices may have the same basic form, but they are
constrained more in CRU than in SBAC and have different structure.
There is nothing corresponding to backward associations in CRU’s
matrices, and the simulations that applied the SBAC retrieval process to
CRU representations showed that difference is consequential. The
structure of the retrieval processes is different as well. SBAC addresses
a single row of the matrices, which corresponds to the item that was just
retrieved. CRU addresses columns of the matrices, including both the
row that corresponds to the item that was just retrieved and the other
rows that represent the context in which it appeared. The context can
support retrieval of the correct item even if the previous item was
retrieved incorrectly (Logan, 2018, 2021).

Error Ratio Revisited

When subjects omit item N and report item N + 1 instead, they can
either “fill in” the missing item, recalling N after N + 1, or they can
continue on (“in fill”) and recall the item (N + 2) that follows N + 1.
Given list ABCDEF and recall of ABD, ABDC (“fill in”) is more
likely than ABDE (“in fill,” see Henson, 1998; Logan, 2021; Osth &
Dennis, 2015b; Page & Norris, 1998; Surprenant et al., 2005). The
difference in the relative frequency of these errors is often expressed
as a ratio of fill-ins to in-fills (called the error ratio), which is
typically around 2:1, though there is a large amount of variability in
the ratio. The fill-in and in-fill effects distinguish position coding
from chaining models. Most position-coding models predict the
effect, but simple chaining models with only forward associations
cannot predict it. Logan (2021) found that CRU predicts more in-
fills than fill-ins, opposite to his own experimental results. This
follows mathematically from the structure of the model, which
creates a forward asymmetry following the initial omission.
Logan suggested that the forward asymmetry could be overcome
by adding the initial list cue to the current context after an
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6 LOGAN AND COX

omission error, so the retrieval cue is a weighted average of the
initial list cue and the current context. The initial list cue creates a
primacy gradient (see the top row of the CRU context matrix in
Figure 1), and the weight given to it in the model (the A parameter
in Equation 12) controls the strength of the gradient. Simulations
showed that adding the initial list cue to the current context could
produce more fill-ins than in-fills if the initial list cue is given sufficient
weight. However, when the process of adding the initial list cue was
implemented in the fitting routine, the fits strongly preferred models in
which the weight given to the list cue was effectively zero. Osth and
Hurlstone (2022) argued (correctly) that this failure was a serious
problem for CRU. Logan (2021) agreed.

In preparing this response, we noticed two errors that Logan (2021)
made in implementing the addition of the initial list cue. First and
most important, Logan added the initial list cue for every response on
every trial. This is inconsistent with the idea that adding the list cue
is a response to an omission error. The list cue should only be added
when an omission error occurs. Logan’s second error was in adding
the drift rates for initial and current contexts instead of adding the
context vectors themselves. This error is more subtle and is more
important psychologically than computationally. The theory assumes
that the vectors are combined to form retrieval cues before they
generate drift rates. Drift rates represent similarity computations that
compare retrieval cues with stored contexts, and those computations
logically follow the construction of the retrieval cues.

To address these errors, we refit the data from Logan’s (2021) two
experiments with the correct procedure. Experiment 1 presented strings
of 5, 6, or 7 consonants and required subjects to type them while they
remained on the screen, recall them after a 1 s presentation, or report
them from a 100 ms display. Experiment 2 presented strings of six
letters using the same three tasks (type, recall, report). In half of the
displays, the letters were unique. In the other half, one of the letters was
repeated. Each experiment tested 24 subjects. To reduce computation
time, we only analyzed trials on which fill-in and in-fill errors occurred
and we fixed the B and perceptual discriminability parameters to the
values obtained in the best-fitting models from the article (encoding
decay + serial order decay models). This ensures that the fitted models
will still predict the phenomena they predicted in the original article.
The details of the fitting procedure are presented in the online
Supplemental Material (https://osf.io/3kr5d/).

The fitting routine added the initial context to the current context
only after the first omission error in each trial, following the standard
procedure for identifying fill-in and in-fill errors. The resulting
context, Ceye, Was

Ceue = Ax Cp + }\,x CN> (12)

where c; is the initial context, cy is the current context, A is a free
parameter ranging from 0 to 1, and A’ is chosen to normalize the cue

Table 1

Fits to Fill-In and In-Fill Errors in Logan (2021)

context vector so its length equals 1. We calculated A" using a
version of Equation 3. Because the list context ¢, contains 1 in the
list position and 0 elsewhere, the dot product ¢;-cy = ™!, and N’ is

g
N= 1+ N2 o - ppNI (13)

Each subject was fit individually using the same method as
Logan (2021). Table 1 presents the mean values of the A parame-
ter for type, recall, and report tasks along with the mean numbers
of trials that were fit and the minimum log likelihood obtained by
the fitting routine. The log likelihood values are not meaningful in
themselves without other fits for comparison. We report them for
completeness.

We asked whether adding the initial context in the correct way
improves CRU’s account of fill-in and in-fill errors by counting
the number of subjects for whom A > 0. In Experiment 1, A > 0 for
all subjects in all conditions. In Experiment 2, A > 0 for all
subjects in all conditions except for one who had A = 0 in one
condition (report) and A > 0 for the other conditions (type, recall).
We asked whether the fitted A parameters produce more fill-ins
than in-fills by simulating CRU for each subject with their best-
fitting parameters (the details are in the online Supplemental
Material). The simulated and actual data were scored with the
same routine, calculating the rates of fill-in and in-fill responses
in the same way. Observed and predicted fill-in and in-fill rates
are plotted in Figure 2.

In both experiments, the simulations produced more fill-in
responses than in-fill responses, like the data, though the fits
were far from perfect. They underestimated fill-ins and over-
estimated in-fills. They failed to capture the large fill-in rates in
the recall condition of Experiment 2. We interpret the fits as
proofs of concept, showing that a simple modification of CRU can
produce error ratios greater than 1. This suggests that CRU is capable
of'accounting for fill-in and in-fill effects in fits to the data as well as in
simulations. There is room for improvement, however, and obtaining
better fits to test the predictions more rigorously is an important goal
for future research.

Position-Specific Prior-List Intrusions

In serial recall, serial learning, and free recall, subjects often recall
an item from a prior list. These prior-list intrusions tend to come from
the immediately prior list; their frequency decreases exponentially for
carlier lists (Kahana et al., 2002; Unsworth, 2008). Prior-list intru-
sions are often position-specific—recalled in positions at or near their
serial position in the prior list (Conrad, 1959; Estes, 1991; Fischer-
Baum & McCloskey, 2015; Henson, 1998; Melton & Irwin, 1940;
Melton & von Lackum, 1941; Osth & Dennis, 2015a). Position-
specific prior-list intrusions are called protrusions (Henson, 1998) and

Experiment Plist type Plist recall Plist report Log likelihood N Error
1 2699 .1880 2216 509.92 49.75
2 2443 1644 .1452 556.26 54.88

Note. Estimated plist parameters in fits to Experiments 1 and 2 of Logan (2021), minimum log likelihood, and
number of trials (N) on which fill-in and in-fill errors occurred averaged across 24 subjects in each experiment.
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Figure 2
Transposition and Omission Errors
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errors in copy-typing, serial recall, and whole-report tasks in Logan’s (2021) Experiments 1 and 2.
See the online article for the color version of this figure.

are interpreted as strong support for position-coding theories (Osth &
Hurlstone, 2022): Items in successive lists are associated with the same
set of position codes, so prior items may intrude when their position
codes are activated to recall the current list. As Osth and Hurlstone
(2022) point out, CRU cannot account for protrusions because it only
represents the current list. They extended CRU to represent the prior list
and varied the similarity of the list cues to produce prior-list intrusions.
They found their extension of CRU produced protrusions, but they
occurred in long runs as if the simulation switched to the prior list. Runs
of prior-list intrusions are rare in real data (Osth & Dennis, 2015a). Osth
and Hurlstone argued their findings were strong evidence against this
account of protrusions. We agree.

We took two approaches to accounting for protrusions in CRU.
First, we adopted an approach to context updating published after the
Osth and Hurlstone’s (2022) commentary that produced protrusions
with a chaining model (Caplan et al., 2022) and applied it to CRU

to see if CRU could produce position-specific intrusions without long
runs. Second, we explored the idea that item coding and position
coding are different strategies that people engage simultaneously or
alternatively (Burgess & Hitch, 1992), arguing that protrusions may
reflect trials on which people engaged position coding.

Producing Position Specificity in CRU

Caplan et al. (2022) proposed a chaining model similar to SBAC
that explains protrusions without position codes. They added three
assumptions to the classic chaining model: (a) Memory is not
cleared between lists. Prior lists remain in memory with association
strength reduced by forgetting. (b) The first item in all lists is
associated with the same “start signal.” (c) The retrieval cue for the
next recall attempt is not the most recent item but instead is a vector
representing the activation of traces from the most recent recall
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8 LOGAN AND COX

attempt. The retrieval cue is the evidence that drives the decision that
produces a recall response rather than the selected response itself.
Imagine a current list ABCDEF and a prior list ghjklm each
associated with the same start signal (lowercase represents reduced
strength due to forgetting). The start signal activates A + g, which
leads to a correct response (A) or a protrusion (g) after redintegra-
tion. The Caplan et al. approach uses the retrieval cue vector A + g
as the cue for the next retrieval instead of the retrieved item. A + g
retrieves B + h. Redintegrating h would produce a protrusion. B + h
would then retrieve C + j, and so on, providing an opportunity for a
protrusion in each step. The model avoids runs of protrusions
because cuing with the evidence vector allows recovery from errors
(Lewandowsky & Murdock, 1989), and the current-list items are
always stronger than prior-list items. Caplan et al. fit their model to
several data sets and found it predicted protrusions well without
assuming position codes. Their results are important because they
challenge the fundamental belief that only position-coding theories
can account for protrusions (Henson et al., 1996).

Figure 3
Standard, Caplan, and Adaptive Updating

We adapted the Caplan et al. (2022) version of CRU to see if it
could produce protrusions without switching lists. We made three
assumptions: (a) Prior lists remain in memory with no forgetting.
(b) Items on different lists are associated with start contexts that
differ in similarity. We assumed that the start contexts for each list
were represented by two vector elements. The context for the start of
the first list was [1, 0] and the context for the start of the second list
was [s, sqrt(1 - s?)] where s represents context similarity (if s = 0,
contexts are orthogonal, and if s = 1, they are identical). This
decreased similarity makes the prior list less accessible than the
current list without forgetting (Osth & Hurlstone, 2022). (c) The
retrieval cue for the next recall attempt is the vector of dot products
(drift rates) that drove retrieval on the current trial, representing the
similarity between the current context cue and the set of stored
contexts. Like Caplan et al. (2022), the retrieval cue is the evidence
for recall rather than the result of recall, as it was in standard CRU.
We evaluated these assumptions with simulations of three mod-els,

depicted in Figure 3. Each simulation created stored contexts
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Note. Probing CRU stored contexts from two consecutive lists (ghjklm and ABCDEF) with a current context cue representing the start of the
second list. The dot products in the blue box are input to the racing diffusion decision process that chooses a response (“A”) represented by the
vector ry. Below the contexts are the context updating equations for the standard CRU model, the Caplan version of CRU, and the adaptive version
of CRU. The retrieved item vector ry is input to the updating equation for standard CRU and adaptive CRU. The dot product vector vy is input to
the updating equation for Caplan CRU and adaptive CRU. The B, p, m, and m’ parameters are explained in the text. CRU = context retrieval and

updating. See the online article for the color version of this figure.



publishers.

f the individual user and is not to be disseminated broadly.

=3

yrighted by the American Psychological Association or one of its allied

This document is cop
This article is intended solely for the

personal use o

SERIAL ORDER IN CONTEXT 9

for two lists of six items and modeled recall of the second list by
initiating recall with the second list context and terminating recall
when CRU had produced six items. We set B = 0.9 and the racing
diffusion threshold 6 = 7 for all models. We simulated 5,000 trials
for each model. The results of the simulations are plotted in Figure 4.
Inset in each panel is the proportion of protrusions conditional on
a protrusion on the previous retrieval, Pr(PLI|PLI), where PLI =
prior list intrusion. High values indicate runs of protrusions and a
tendency to switch lists.

First, we simulated a standard version of CRU supplemented with
assumptions (a) to represent prior lists and (b) to make list cues that
differ in similarity, following Osth and Hurlstone (2022). Context
updating at retrieval used the just-recalled item (Equation 1; Figure 3).
When list contexts are sufficiently similar (s 2 0.5), the standard
version makes protrusions (Figure 4 left column). The details are in
the Supplemental Information (https://osf.io/3kr5d/). But as shown in
the insets in Figure 4, protrusions are likely to be followed by more
protrusions, regardless of list context similarity. This confirms Osth
and Hurlstone’s results and is contrary to the data, which do not

Figure 4
Simulations of Standard CRU, Caplan CRU, and Adaptive CRU

Update with item

Update with evidence

contain long runs of protrusions. The standard version produces runs
because updating with a protrusion increases the similarity between
the current context and stored contexts from the prior list, increasing
the likelihood of another protrusion.

Second, we simulated a Caplan et al. approach to CRU incorpo-
rating all three assumptions. Context updating at retrieval used the
vector VNorm Of dot products between the cue context and the stored
contexts in memory—the drift rates in the racing diffusion decision
process—normalized to length 1. This mitigated CRU’s tendency to
produce runs of protrusions when list contexts were not identical
(middle row of Figure 4), but it produced many within-list errors and
a tendency to skip to the end of the list, showing that CRU does not
perform well with compound retrieval cues other than its current
context.

Third, we simulated an adaptive version of CRU that made all
three assumptions and supplemented them with a fourth: Context
updating at retrieval uses a mixture of the just-retrieved item r; and
the vector of dot products vyom. The model is adaptive because the
mixture gives more weight to r; if it was probably correct and more
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Probability of responding as a function of output position for standard CRU (left panels), Caplan CRU (middle panels), and adaptive CRU. The rows

represent different levels of list similarity. Within each panel, the lines represent the probability of responding as a function of input position for each output
position. Blue lines represent the current list. Red lines represent prior-list intrusions. The inset in each panel is the probability of a prior-list intrusion given that the
previous retrieval was a prior-list intrusion. CRU = context retrieval and updating; PLI = prior list intrusion. See the online article for the color version of this figure.
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10 LOGAN AND COX

weight to Vnorm if it was probably an error. The model measured the
likelihood of an error by retrieving the stored context associated with
the retrieved item and comparing it with the current (not yet updated)
context by calculating the dot product m; (this is identical to the ith
entry in the unnormalized vector of dot products v). Then it used m; to
construct a vector Cyjx that represents the mixture:

Cmix = Mifi + M;VNorms, (14)

where

m; = 1+ m%0n  VnomP? — 1 - mdr; * VomP: (15)

Then, cmix Was used to update the current context. If m; = 1, the
just-retrieved item is used in updating (Equation 1), like standard
CRU. If m; = 0, the vector of dot products is used in updating, like
the Caplan version of CRU. If 0 < m; < 1, the vector used in updating
is a mixture of the just-retrieved item and the vector of dot products.
This adaptive version of CRU produced protrusions without long
runs (Figure 4 right column) when list contexts were moderately
similar (s £ 0.5). With moderate similarity, protrusions will produce
smaller values of m; and so will have less influence on the context
that cues the next retrieval. The results suggest that the adaptive
version of CRU may be able to account for protrusions, but much
more work is required before the suggestion is conclusive. The
Caplan et al. (2022) result is important because it showed conclu-
sively that a chaining model like SBAC can produce protrusions.

Position Coding as a Strategy

Prior-list intrusions are errors produced infrequently by experimen-
tal subjects. They are not produced directly by experimental manip-
ulations. Consequently, an observed prior-list intrusion implies that
the subject used position coding on the current trial and the immedi-
ately preceding trial. It does not imply that position coding was used
on other trials on which no prior-list intrusions were produced. Item
coding may be used on the other trials. Position coding may be
a strategy subjects choose to employ on some trials, but not others
(Burgess & Hitch, 1992; Logan & Cox, 2021). Subjects may choose
one or the other and alternate between them over the course of the
experiment. Or item coding may be the default strategy that is used
on every trial and position coding may be used in parallel with it
on some proportion of the trials. (Item coding may be obligatory
because every trial presents an item in the context of other items;
see Logan, 1988.)

We explored these possibilities with simulations, using a standard
version of CRU to implement item coding and a position-coding
version of CRU (CRUposition) to implement position coding
(Logan & Cox, 2021). CRUposition creates a set of generic contexts
representing ordinal positions using the CRU context updating equa-
tion, associating each context with a generic representation of position
(i.e., the third method for generating position codes from CRU in
Logan & Cox, 2021; see Figure 5). At encoding, CRUposition steps
through the generic contexts and associates each item with the generic
position code retrieved from the generic contexts. At retrieval, CRU-
position steps through the generic contexts once again, retrieves
the position codes, and uses the position codes to retrieve the items
associated with them. Instead of updating the current context with a
vector representing the item encountered at each position (by having 1

Figure 5
CRU Position-Coding Model
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Note. The CRU position-coding model represents generic contexts (top)
associated with generic position codes (1-5 and end of list marker). The
current list (FGHIJ) and the prior list (abcde) are associated with the generic
position codes. The strength of association is represented by the texture of the
arrows. Associations to the current list are stronger than associations to the
prior list. Solid arrows represent association strength of 1. Dashed arrows
represent association strengths between 0 and 1 (represented by the Listl-
strength parameter in the simulations). CRU = context retrieval and updating.

in the vector element for that item and O elsewhere), CRUposition
updates the current context with a vector that directly encodes the
position (by having 1 in the vector element representing that position
and 0 elsewhere).

To allow for prior-list intrusions, we assumed that items from the
current list and the prior list were associated with the same CRU-
position codes with different strengths. The strength of association
for the current list was always 1. The strength of association for the
prior list varied from 0 to 1 (the strength parameter is List1strength).
Consequently, current and prior items compete for retrieval, and the
outcome of the competition depends on the relative strengths of the
two lists (Figure 5). We also varied the probability that the simula-
tion would engage in position coding (i.e., use CRUposition), either
as an alternative to CRU or in parallel with it (the mixture parameter
is Pposition). We used the same value of B (.55) for CRU and
CRUposition to put them on even ground and set List1strength = .9.
When CRU and CRUposition ran in parallel, we simulated retrieval
times from each model using CRU’s racing diffusion decision
process and based the response on the faster of the two. Details
of the simulations are reported in the online Supplemental Material
(https://osf.io/3kr5d/).

Figure 6 shows the results of the simulations. The top panels
show transposition gradients for recall of the current list when CRU
and CRUposition alternate (left) and run in parallel (right). The
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Figure 6
CRU Simulations of Prior-List Intrusions
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and CRUposition run in parallel. Top: probability of recalling items from the
current list as a function of lag. B = .55, strength of prior list (List1strength) =
.9. The parameter is the probability of using CRUposition (Pposition). Middle:

probability of recalling items from the prior list (List 1) as a function of lag with

the same parameters as the top panel. Bottom: simulated protrusion errors from

CRUposition (orange) as a function of the strength of the prior list (Listl-
strength; B = .55 and Pposition = 1). Predicted protrusion errors (blue) as a
function of Pposition (B = .55 and Listlstrength = 1). The numbers above the
bars indicate the proportion of trials on which CRU position was engaged
(Pposition). Pposition and prior list strength trade off. CRU = context retrieval
and updating. See the online article for the color version of this figure.

transposition gradients were typical, peaked at lag = 0, and largely
unaffected by varying the probability of using position coding
(Pposition). The middle panel shows prior-list intrusions. They
were clustered around lag = 0, as is typical of real data, and their
probability increased as position coding became more likely
(as Pposition increased). These results show that CRU combined
with CRUposition can produce prior-list intrusions that depend on
position.

The strength of the prior list trades off with the probability
of using position coding. Prior-list intrusions increase with
Listlstrength and decrease with Pposition. The bottom panels
of Figure 6 show this trade-off. The orange bars were generated
from CRUposition by itself with B = .55, Listlstrength varied
from .8 to 1.0 (the range that reliably produces prior-list
intrusions), and Pposition = 1. The blue bars are predictions
generated from CRU and CRUposition combined with f = .55
and Listlstrength = 1. Pposition was adjusted (by hand) to
produce prior-list intrusion rates that matched the rates from
CRUposition by itself. The Pposition values required to match
the intrusion rates are presented above the bars. It is clear from
Figure 6 that Listlstrength and Pposition trade off. Thus, the
observed rate of prior-list intrusions does not imply that position
coding is used on every trial.

Other Sources of Prior-List Intrusions

Studies of serial recall have focused on the position specificity
of prior-list intrusions without much consideration of other sources
of intrusions that are more consistent with item coding (cf. Fischer-
Baum & McCloskey, 2015). Prior-list intrusions tend to follow
items that repeat from the prior list in serial recall (Fischer-Baum &
McCloskey, 2015) and free recall (Kahana et al., 2002; Zaromb
et al., 2006). In studies of proactive interference (Wickens, 1970),
prior-list intrusions are common when items in the current list
are similar semantically to items in the previous list (Loess, 1967).
Lohnas et al. (2015) were able to account for both findings with an
extension of the context maintenance and retrieval (CMR) model
(itself an extension of TCM) to represent prior lists. They attributed
the successful predictions to CMR’s context representation. CMR
is the parent of CRU, so in principle, CRU could be extended in the
same way to capture intrusions following repetitions and intrusions
from semantically similar lists.

Grouping and Position-Specific Intrusions
Between Groups

Memory is often better when lists are divided into groups than
when they presented as a single uninterrupted group (Adams, 1915;
Hurlstone, 2019; Pollack et al., 1959; Ryan, 1969; Wickelgren,
1964; Wishner et al., 1957). Osth and Hurlstone (2022) showed that
CRU can predict the improvement in accuracy in grouped lists. This
is important because grouping and organization are important
phenomena in memory, and it is encouraging to see that CRU
can account for them. Osth and Hurlstone accounted for grouping by
increasing B at the beginning of each group such that B, = B +
bincd1 - b, where B, is the B value for the first member of each
group and 0 < binc < 1 determines the increment (cf. Lohnas et al.,
2015). This is another way that a control process can govern context
updating adaptively.

We replicated Osth and Hurlstone’s (2022) simulations using lists
of nine items grouped in sets of three, using B values of .5, .6, and .7
and binc values of .5, .6, .7, .8, and .9, and we compared the results
with ungrouped lists with the same B values (binc = 0). The details are
in the online Supplemental Material (https://osf.i0o/3kr5d/). The accu-
racy advantage of grouping is presented in Table 2. The different
values of binc produced very similar advantages, but the advantage
was smaller for B =.7 than for the other values of B. The top left plotin


https://doi.org/10.1037/rev0000422.supp
https://osf.io/3kr5d/

publishers.

=3

personal use of the individual user and is not to be disseminated broadly.

I

~

Qo
<
>
Q
o)
3
=
51
st
=
Q
=
«
[
_Q
<
_"/:
=

=3

yrighted by the American Psychological Association or one of its allied

This document is cop

12 LOGAN AND COX

Table 2
Simulated Advantages of Grouping

CRU binc
B 5 6 7 8 9
5 0782 0767 0818 0710 0645
6 0734 0784 .0690 0649 0517
i 0283 0259 0231 0205 0317

Note. Simulated advantages of grouped over ungrouped displays from the
Osth and Hurlstone version of CRU (CRU OH). Data are collapsed across
serial position. Rows are different B parameters. Columns are different binc
parameters. CRU = context retrieval and updating.

Figure 7 shows CRU contexts for B = .5 and binc = .5. Grouped
lists are compared with ungrouped lists in the second row of
Figure 7. The details of these simulations and the others in this
section are presented in the online Supplemental Material. Our
simulations show that CRU can produce grouping advantages,
but they are proofs of concept rather than accounts of actual data.
Fits to data from grouped lists may distinguish between them or
suggest other alternatives. Lohnas et al. (2015) and Polyn et al.
(2009) showed how CRU’s ancestor, CMR, can account for
organization and list discrimination in free recall. Perhaps those
ideas can be applied profitably to serial recall.

While we are encouraged by CRU’s ability to account for the
accuracy advantage of grouping, Osth and Hurlstone’s (2022)
investigation of intrusions between groups is less encouraging.
In experiments that manipulate grouping, items from one group
often intrude into recall of another group, and the intrusions are
position specific: item N of Group x intrudes most often in position
N of Group y (Hitch et al., 1996; Hurlstone, 2019; Ryan, 1969).
Position-coding models account for these intrusions (Farrell, 2012;
Hartley et al., 2016; Henson, 1998). Osth and Hurlstone showed
convincingly that their modification of CRU cannot. We replicated
their findings with their modification. The transposition gradient
with B = .5 and binc = .5, presented in the second row of Figure 7,
shows no increase in intrusions for lags of 3 and 6. We accept Osth
and Hurlstone’s conclusion that position coding is necessary to
account for position-specific intrusions. However, as with prior-
list intrusions, we question the generality of the position-specific
intrusions in grouped lists.

Position-coding theories predict position-specific intrusions by
assuming hierarchical position codes with a higher level that
represents groups and a lower level that represents positions within
groups. CRU’s updating equation provides an account of how such
position codes can be acquired and then accessed during retrieval
(Logan & Cox, 2021). Once acquired, subjects can use hierarchical
position codes strategically at encoding, especially when lists are
structured. The top right panel of Figure 7 shows hierarchical
position codes for a nine-item three-group list derived from CRU
with B = .5 for each level.

We simulated retrieval with these position codes using the
CRU updating process hierarchically. First, it retrieves a position
code for a group, then it retrieves position codes within the
chosen group, and then it retrieves the items associated with
those position codes. All nine items compete at retrieval, but
their contexts are weighted by the similarity of the group con-
texts, p*, where x = {0, 1, 2} is the lag between the selected group

and the competing group. The serial position effect and trans-
position gradient for the simulation are plotted in the right side
of the second row of Figure 7. They show the typical effects:
a scalloped serial position curve and spikes in the transposition
gradient at Positions 3 and 6 that indicate between-group
intrusions.

Like prior-list intrusions, between-group intrusions in grouped
lists are errors that subjects make occasionally. Between-group
intrusions imply that subjects used position coding on trials in
which the intrusions were observed but they do not imply that
position coding was used on the other trials. Subjects could
engage position coding strategically, either alternating between
position coding and item coding or running them in parallel. The
bottom two panels of Figure 7 plot serial position curves and
transposition gradients (respectively) when position coding and
item coding alternate. The probability of engaging position
coding (Pposition) varied from .2 to .8. The scalloped serial
position curve appeared for each value of Pposition and position-
specific spikes in the transposition gradient appeared even with
Pposition = .2. Thus, the observation of position-specific
between-group intrusions indicates that subjects used position
coding on some proportion of the trials but it does not rule out
item coding.

Discussion

Osth and Hurlstone (2022) asked if CRU’s item-dependent
context representations could underlie serial order in cognition,
focusing on four phenomena that challenge classical chaining
theories: phonological confusion effects, error ratios > 1, protru-
sions, and position-specific between-group intrusions. Our re-
sults suggest the answer is “yes.” Osth and Hurlstone showed
CRU could account for phonological confusion effects. We
showed CRU can account for error ratios > 1 (fixing an error in
Logan, 2021), that an adaptive version of CRU may be able to
account for protrusions, and that both protrusions and position-
specific between-group intrusions could be accounted for by a
strategic mixture of CRU item coding and (CRU) position coding.
More broadly, we showed that CRU’s representations are different
from chains of associations. Its similarity-based retrieval process
produces backward transitions without backward associations and
remote transitions without remote associations. On the one hand,
our results motivate a renewed interest in item-dependent contexts
in models of serial order, counteracting 25 years of neglect since the
pivotal Henson et al. (1996) article. On the other hand, our results are
proof of principle at best. It remains to be seen whether models
implementing these changes will fit the range of serial-order phe-
nomena as well as CRU and other models do.

The successful models required substantial changes in CRU. We
had to assume subjects can access the initial list context, the
evidence for their decisions, and stored contexts given an item
when they detect an error. Many of these assumptions are natural
extensions of CRU, having precedents in TCM and its descendants.
We had to assume error monitoring to explain the error ratio and
protrusions, and Logan (2021) had to assume error monitoring to
explain within-list repetition (Ranschburg) effects. Error monitoring
is a control processes that involves choices and (internal) actions that
take time and make errors (Logan, 2017). In the spirit of CRU, these
processes should be modeled and tested on their ability to account
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Top left: Osth and Hurlstone’s CRU contexts (CRU OH) for a nine-item list grouped in 3 s (1, 2, 3) and a nine-item ungrouped list (C) with = .5. B

increased at group boundaries such that Bgroup = P + binc x (1 = ). Top right: hierarchical CRU position codes with B = .5. The top contexts retrieve position
codes associated with each group, which initiate retrieval within groups based on the second row of contexts. The lower level contexts retrieve positions codes,
which retrieve items. Second row: simulated proportions of correct recall as a function of serial position and proportions of responses as a function of
transposition lag for the CRU OH model (left) and the CRU group model (right) with = .5. Third row: Simulated proportions of correct responses as a function
of serial position for mixtures of CRU OH and CRU group with B = .5. The proportion of trials using position coding increases from left to right (.2 to .8).
Bottom row: simulated transposition gradients for mixtures of CRU OH and CRU group. The proportion of trials using position coding increases from left to
right (.2—-.8). CRU = context retrieval and updating. See the online article for the color version of this figure.

for effects in immediate performance. We have made no such tests,
so our revisions to CRU may be better viewed as directions for
future research. We hope our results will inspire more research
on the control processes that guide encoding and retrieval. In the

50 years since Atkinson and Shiffrin’s (1968) clarion call to study
memory structures and control processes, we have learned much
more about memory structures than control processes. It is time to

redress that imbalance.
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An important theme in Osth and Hurlstone’s (2022) commentary
and our reply is that serial recall may depend on both item-
independent and item-dependent contexts. The data support both
theories: Position coding uniquely predicts the position specificity
of prior-list intrusions and between-group intrusions in structure lists
(but see Caplan et al., 2022). Item coding uniquely predicts intrusions
of previous list items that follow an item from the current list
(Fischer-Baum & McCloskey, 2015; Kahana et al., 2002; Zaromb
et al., 2006), intrusions of semantically related items from previous
lists (Loess, 1967; Wickens, 1970), the benefits of compound cues
(Chance & Kahana, 1997; Kahana & Caplan, 2002; Lohnas &
Kahana, 2014), the benefits of sequential constraints on recall of
list items (Baddeley, 1964; Botvinick & Bylsma, 2005; Merikle,
1969; Miller, 1958; Miller & Selfridge, 1950), and the learning of
spin lists that maintain the order of items while varying absolute
position (Kahana et al., 2010; Lindsey & Logan, 2021). Thus, it
may be better to accept the validity of both position coding and
item coding and ask how they work together than to try to determine
which is the One True Theory. The memory system has access to
many kinds of information, and it is likely to exploit different kinds
in different acts of retrieval, responding strategically and adaptively to
task demands (Anderson & Milson, 1989; Shiffrin & Steyvers, 1997).
Sometimes position coding may be advantageous, other times item
coding may work best. Sometimes they may work best in combina-
tion. We hope Osth and Hurlstone’s commentary and our reply will
inspire future research on control processes and strategies in memory
performance within and beyond serial recall.
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