
Towards Automated Learning of Access Control Policies Enforced
by Web Applications

Padmavathi Iyer
University at Albany – SUNY

Albany, New York, USA
riyer2@albany.edu

Amir Masoumzadeh
University at Albany – SUNY

Albany, New York, USA
amasoumzadeh@albany.edu

ABSTRACT

Obtaining an accurate specification of the access control policy

enforced by an application is essential in ensuring that it meets our

security/privacy expectations. This is especially important as many

of real-world applications handle a large amount and variety of data

objects that may have different applicable policies. We investigate

the problem of automated learning of access control policies from

web applications. The existing research on mining access control

policies has mainly focused on developing algorithms for inferring

correct and concise policies from low-level authorization infor-

mation. However, little has been done in terms of systematically

gathering the low-level authorization data and applications’ data

models that are prerequisite to such a mining process. In this paper,

we propose a novel black-box approach to inferring those prereq-

uisites and discuss our initial observations on employing such a

framework in learning policies from real-world web applications.

CCS CONCEPTS

• Security and privacy→ Access control; Authorization.

KEYWORDS

policy mining, web application, relationship-based access control,

automated, concrete systems

ACM Reference Format:

Padmavathi Iyer and Amir Masoumzadeh. 2023. Towards Automated Learn-

ing of Access Control Policies Enforced by Web Applications. In Proceedings

of the 28th ACM Symposium on Access Control Models and Technologies (SAC-

MAT ’23), June 7–9, 2023, Trento, Italy. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3589608.3594743

1 INTRODUCTION

As applications adopt more complex access control policies, it be-

comes harder to provide accurate specifications of the enforced

policies. Such an accurate specification is vital both for verifying

the security/privacy provisions in an application and for offering

a clear expectation of those provisions to end users. In this paper,

we explore whether we can learn access control policies from an

existing application. As human users, it is intuitive that when we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’23, June 7–9, 2023, Trento, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0173-3/23/06. . . $15.00
https://doi.org/10.1145/3589608.3594743

work with an application we can make inferences about its enforced

access control policies. However, we note that such inferences can

take time to form and may not be necessarily accurate. Is it possible

to develop a systematic methodology that automates such a learn-

ing process in order to infer a comprehensive access control policy

enforced by an application? This is the question that we explore

more specifically in this paper in the context of web applications

which constitute a majority of everyday applications nowadays. In

this context, we consider learning relationship-based access control

policies (ReBAC) [8, 11, 19] that support expressing authorization

in terms of relationship patterns between application entities.

While approaches to mining access control policies [5, 7, 16, 21]

are useful in addressing the above problem, we note that they can

only provide a part of the solution. Policy mining focuses on infer-

ring high-level policies in a target domain from existing lower-level

authorization information (e.g., access control lists). This process

also often requires access to a model of application data. For exam-

ple, a ReBAC policy miner typically requires two inputs: a system

graph that contains information about entities and their relation-

ships and a set of lower-level authorizations implemented in the

application. In the literature, ReBAC miners have assumed the

provision of both inputs, and have primarily focused on develop-

ing efficient approaches for inferring correct and concise policies.

However, to realize our goal of learning policies from real-world

applications, we need to systematically gather both of those inputs,

preferably in an automated fashion. Furthermore, we propose to

approach these problems in a black-box manner, i.e., making in-

ferences through observing user interactions with the application.

Such an approach assumes a minimal dependency on web protocols,

and is in contrast to developing white-box approaches that have to

depend heavily on the availability and specific languages/models of

application internals (e.g., server-side source code, database, etc.).

In this paper, we present our preliminary results in developing a

black-box framework for learning web application access control

policies by automated inference of the data model of applications

and observing applicable authorizations to that data. We develop

algorithms to infer fine-grained attributes of application data ob-

jects as they are communicated between a web application’s client

and server code (i.e., web requests/responses). We also develop

techniques to re-identify previously inferred data objects and their

attributes in a web application’s pages to make an accurate obser-

vation of applicable authorizations. Our experimental results on

two real-world applications show the feasibility of our framework.

2 BACKGROUND

An application comprises users, resources, and logical components

that may be related to one another based on contextual information.

SACMAT ’23, June 7–9, 2023, Trento, Italy Padmavathi Iyer and Amir Masoumzadeh

We employ the relationship-based access control (ReBAC) [8, 11,

19] model to specify authorizations in such an application with a

rich data model. To capture the authorization state, we employ an

attributed system graph that represents the relationship data among

application entities as well as the entity attributes as a directed

attributed graph. Suppose ! is the set of relationship types. Then,

we denote a system graph as � = 〈+ , �, [〉. Here, + is the set of

nodes in the system graph, which we refer to as data objects. Data

objects correspond to application entities such as users, resources,

and logical components. � ⊆ + ×+ × ! represent various labeled

(from !) relationships that exist between the data objects. The

attribute assignment [is a function that takes a data object E ∈ +

as input and produces the set of attributes associated with E , which

we denote as [(E). We represent [(E) as a set of key-value pairs

{U1 : 31, U2 : 32, . . . , U= : 3=}, where U8 is an attribute name and 38
is the corresponding data value. We use dot notation to indicate an

element within a concept (e.g., � .+ refers to system graph nodes).

To form meaningful system graphs, we employ a graph schema,

G = 〈V, E〉, to constrain the types of nodes and edges. Here, V =

{g1, g2, . . . , g=} indicates a set of data types. Each data type g defines

a group of data objects+g = {E1, E2, . . . , E=}g that have some shared

attributes. So, users, resources, and each logical entity are assigned

different data types. E ⊆ V ×V × ! constraints the relationships

that can exist between two data objects. In the above notations, we

use an abstract character = ≥ 1 to indicate the upper bounds of the

corresponding elements. Let function g (E) return the type of a data

object. Then, for every E ∈ + , it holds that g (E) ∈ V . Also, for every

relationship 〈E8 , E 9 , ;〉 ∈ �, it holds that 〈g (E8), g (E 9), ;〉 ∈ E. We say

such a system graph � is well-formed with respect to schema G.

The well-formedness is implied when we discuss system graphs.

The ReBAC model controls access based on a set of rules. The

ReBAC rules employ relationship patterns that specify different ar-

rangements of labeled edges between the entities in a system graph.

We denote a relationship pattern q as a sequence of relationship

labels [;1, ;2, . . . , ;=], where ;8 ∈ ! and = ≥ 1. We use −; to repre-

sent an edge with label ; ∈ ! traversed in the inverse direction. A

ReBAC policy d = {q [∧ q]} consists of a set of ReBAC authoriza-

tion rules, where each rule is a conjunction of a set of relationship

patterns. E.g., the rule “[friend, friend, owns] ∧ [city,−city, owns]”

allows access by only friends of friends living in the same city as

the owner. An access request, 〈D, A 〉 ∈ + ×+ , will be permitted if it

matches a rule in d , otherwise denied. A request 〈D, A 〉 matches a

rule if it matches every pattern q in the rule, i.e., there is a path

from D to A in � such that the sequence of edge labels in the path

matches the sequence of the labels in q . Alternatively, we say q

applies to 〈D, A 〉 in such a case. We can characterize a ReBAC policy

that is enforced in an application by calculating the access decision

X corresponding to every combination of 〈D, A 〉. We refer to such a

collection of 〈D, A, X〉 as lower-level authorizations, denoted asZ.

3 OVERVIEW OF PROBLEM & SOLUTION

We learn the ReBAC policy from a web application in a black-box

manner. To this end, we observe the user interactions with a web

application and analyze the application’s responses to various user

operations. A user can navigate through an application to view dif-

ferent data objects or can create a data object by inputting its details.

The client machine and the application server need to communi-

cate to render appropriate content on the user interface. We collect

such client-server communication (i.e., web requests/responses)

whenever a user interacts with an application, which includes user-

generated content, the data that the client provides to the server,

and the data generated by the server in response to client data. We

refer to such a collection of web-based interactions as traces.

We generate the authorizations corresponding to what users can

view on an application page both at coarse and fine-grained levels.

Specifically, we consider two types of policies that control access to

application data, namely object-level policy and attribute-level policy.

The former specifies what data objects can a user view on awebpage

(e.g., Alice can view Bobby’s post but not Carol’s), while the latter

specifies what attributes of a visible data object are accessible to a

user (e.g., Alice can view only the name of Bobby’s post but Bobby

can view the location of the post as well). We produce the set of

relationship patterns for both these authorization levels.

Our proposed framework undertakes a two-fold approach. First,

it observes the various user operations that result in accumulating

data in aweb application (by inspecting theweb requests/responses)

to infer a model of the application data encompassing the entities

and their relationships. Second, using the inferred data model, our

approach determines the lower-level authorizations that are appli-

cable to application data by observing the resources that users can

access on application pages. Those include authorization informa-

tion on fine-grained data object attributes for application resources

(e.g., title, author, and time for a post in an online social network).

We remark on some of the assumptions that we make in our

solutions. First, we can observe the complete set of lower-level

authorizations enforced in a web application. If a user can view

a data object on any page, that user is permitted to access the

object. If a user is not able to view a data object on any page of

the application, then we consider the user as being denied access

to that object. Secondly, for the convenience of navigating and

exploring various data objects, we assume that we have listings

pages in a web application. We refer to a listings page as a web

page that displays a list of all existing resources of one type. Such

listings pages existed in the web applications that we experimented

on and an expert who has knowledge of the application provided

us with such listings pages for every type of resource. Finally, the

lower-level authorizations enforced over existing resources do not

invalidate during a complete run of our framework. The entities

can be added as well as relationships can be formed during the

creation of entities. But, the authorizations over existing resources

cannot change when the application has new additions.

4 BLACK-BOX DATA MODEL INFERENCE

In this section, we describe our process for inferring a model of

the data implemented in a web application, which includes: 1) data

typesV , 2) data objects+g for every g ∈ V , 3) data object attributes

[(E) associated with every E ∈ + , 4) relationship constraints E =

{〈g (E8), g (E 9), ;〉} where g (E8) and g (E 9) are members ofV , and 5)

relationships between data-object pairs � = {〈E8 , E 9 , ;〉} where E8 ∈

+g (E8) and E 9 ∈ +g (E9) . Our methodology functions in a black-box

manner by collecting web traces. Althoughwe need only the system

graph to carry out the policy mining task, we are also inferring

Towards Automated Learning of Access Control Policies Enforced by Web Applications SACMAT ’23, June 7–9, 2023, Trento, Italy

its schema because it plays an important role in determining the

relationships that can exist in the corresponding system graph.

4.1 Obtaining Information about Data Objects

Initially, we parse the given web interaction traces and obtain the

potential data object attributes associated with each request. Then,

we merge the obtained attributes to determine different data types.

Parsing Request/Response Contents in Traces. During the data-

model inference, we refer to each request W in the given traces as an

instance of a data-object creation. In other words, each request cor-

responds to a data object, and so the properties associated with the

request can be used to characterize the corresponding data object.

We divide the set of object attributes that we need to infer from the

given traces into client-generated, including user-generated, and

application-generated properties. To capture both kinds of these

properties, we utilize especially two kinds of information in our

traces for every W , namely, request content QW that comprises infor-

mation provided by an end-user when creating a certain type of data

object and response content SW that comprises information that is

generated by the application when a data object is created in order

to identify the object during future retrievals. For each instance of

data-object creation, we parse QW to obtain the values provided by

a user for different fields on the creation page and append them

to AW as a set of “field-value” pairs. Parsing QW also reveals client-

provided values that complement user-provided values, such as

the ID of the post associated with a comment. Furthermore, we

parse SW to obtain application-generated values. For instance, for a

parametric response such as JSON, we simply append the key-value

pairs in the content to AW . On the other hand, for a listing-based

response such as HTML, we calculate the difference in the page

content before and after the addition of the data object to the page.

In this way, we can differentiate the values that are generated by the

application from static, styling-oriented elements on a web page.

Pruning & Merging Data Object Attributes. We want to prune all

spurious data object attributes that are not relevant to real data such

as styling elements that are introduced when a data object is added

to a page. Additionally, we want to observe commonalities between

the attributes of various requests W and group them into different

data types based on the similarity of their attributes. To this end, we

perform a bottom-up hierarchical clustering, where each request W

is initially placed in a separate cluster. In each iteration, we merge

the clusters whose object attributes have the highest similarity,

until the number of clusters equals an expert-provided value. For

every pair of requests W8 and W 9 , we measure the similarity based on

the number of common keys {U} and their corresponding values

{3} in AW8 and AW 9 . Thus, our approach produces a set of clusters

that each represent a different data type g in our data model and

each request in a cluster g corresponds to a data object E of that type,

i.e., E ∈ +g . Moreover, the attributes that are repeating across all the

objects within a cluster g can be safely ignored from consideration

since they do not add any specific knowledge about the respective

data objects, and we obtain [(E) for every E ∈ +g . For example, we

remove the “class” property if it is used for styling all objects of a

particular type, but retain the “id” property.

4.2 Inferring Data-Object Relationships

The pruned and merged graph that was produced still constitutes

an unpolished data model because of the absence of relationships.

To determine the relationships that can exist between a pair of data

types, we observe the commonalities between their respective data

objects, based on their attributes that we inferred previously. There

are two ways in which we determine the connections between a

pair of data objects – 1) when both objects have the same values for

some attribute, i.e., ∃U8 , U 9 , it holds that [(E8).U8 = [(E 9).U 9 , and 2)

when one object contains the value or a part of the value associated

with another object. If we visualize the above process in terms of a

graph, then, in the former case, we obtain the relationship pattern

[U8 ,−U 9] from E8 to E 9 for each data value that is shared between

both objects. (Recall that we use the notation −; to traverse an edge

〈E1, E2, ;〉 in the reverse direction.) For instance, if comments are

present on the same page as their post, then we obtain a pattern

[URL,−URL] that connects individual posts with their comments.

In the latter case, we again have two cases. Suppose the value of

an attribute, say “URL”, for a comment object E8 is a query string,

e.g., “https://example.com/comments?postid=1&postname=sample-

post”. Then, we parse the query string to obtain values “1” and

“sample-post”, which are the values of attributes, say “id” and “name”,

associated with a post object E 9 . So, we obtain relationship patterns

[URL, contains,−id] and [URL, contains,−name] from a comment

to its post. Otherwise, for data values other than query strings,

we segregate the common and distinct components within the

values of some attribute associated with all data objects of a par-

ticular type and determine if the distinct components are equal to

or are contained within some other objects’ values. For instance,

an attribute “container-id” associated with comments has values

“object-1”, “object-2”, “object-3”. Observe that “object” is common

between all values. If the posts in the application have an attribute

called “id” with values “1”, “2”, “3”, then we obtain the pattern

[container-id, contains,−id] from a comment to its respective post.

Thus, our approach produces a mapping {q : [〈E8 , E 9 〉]} between

relationship patterns and the pairs of data objects that are connected

by the corresponding pattern. Relationships exist between two dif-

ferent data objects (because we do not consider loops in our system

graphs) of either the same type (e.g. friend relationship between two

users) or two different types. Subsequently, we consider that the

relationship patterns that we calculated by linking the attributes be-

tween two data objects correspond to potential relationships types

between those objects. Specifically, for each relationship pattern q

in {q : [〈E8 , E 9 〉]}, we add a relationship 〈E8 , E 9 , ;〉 into �, where ; is

an abstract label that is unique for each q and (E8 ∈ +g8 , E 9 ∈ +g 9).

Additionally, for every 〈E8 , E 9 〉, we add the edge 〈g (E8), g (E 9), ;〉 into

E. Finally, we prune redundant relationships by employing two

kinds of heuristics: 1) removing relationships that exist between

all pairs of data objects (irrespective of the data type) and 2) re-

moving relationships that can be derived from other relationships.

We want to ensure that, similar to data object attributes, we find

meaningful object relationships and remove any “noise” that can be

caused when there are different semantics associated with the same

artifact. Consequently, to ensure that � is well-formed with respect

to E, we remove the edges 〈E8 , E 9 , ;〉 corresponding to each pruned

relationship constraint 〈g (E8), g (E 9), ;〉, where (E8 ∈ +g8 , E 9 ∈ +g 9).

SACMAT ’23, June 7–9, 2023, Trento, Italy Padmavathi Iyer and Amir Masoumzadeh

5 INFERRING LOW-LEVEL AUTHORIZATIONS
USING INFERRED DATA MODEL

Previously, we presented our approach for mining an application’s

data model. Our goal is to mine the ReBAC policy enforced in the

application. Mining ReBAC policies requires two inputs, namely

the data model and the complete set of lower-level authorizations

(§ 3). So, in this section, we tackle the problem of mining lower-level

authorizations that, in our context, specify if a user can access a

data object and its associated attributes. We use inferred data model

along with a set of observations in the form of web traces.

5.1 Generating Traces for Authorization Mining

To mine the lower-level authorizations, we need traces that can

describe the contents of different pages relative to different users

when they are logged into a web application. Suppose U be the

set of users in an application and P be all the pages that users can

navigate to. Then, in the context of authorization mining, we denote

the traces TW corresponding to a request W as 〈D, ?,SW 〉 where the

target application produces content SW when D ∈ U navigates to

? ∈ P. The content SW associated with a request will then be used

for re-identifying data objects and their attributes present in SW .

To precisely mine an application’s policy, a miner requires com-

plete knowledge of the lower-level authorizations. So, we need to

have a request for every user navigating to every accessible page.

If a user can view a data object and its attributes on any of those

pages, then we regard the user as being permitted to access the

object. Otherwise, the user is denied access to the object. We exploit

the notationZ from § 2 to represent the authorizations for a given

user D ∈ U asZ(D) and to represent the authorizations for a given

user D and the content SW in response to a request submitted by the

user as Z(D,SW). Thus, we calculate the complete set of authoriza-

tions for each user as Z(D) =
⋃

?∈P
Z(D,SW), where TW = 〈D, ?,SW 〉.

Finally, we repeat the above process for every user D inU.

5.2 Re-identifying Data Objects from Traces

We determine if an object in our data model E ∈ +g , for some g ,

is present in content SW . But, to decide if some data object exists

in the content of some traces, we must have some means to re-

identify that particular object out of all the information present in

the content. Our approach comprises two steps, namely calculating

the identifying information about each data object, which we also

refer to as anchors, and then re-identifying the data objects and

their attributes from the traces by using the obtained anchors.

Mining Anchors from Data Model. There is no abstract notion

of data objects in the real data as found in traces. A data object is

usually characterized by a set of attributes. Therefore, in order to re-

identify a data object E8 ∈ +g , ∃g ∈ V , from some traces, we must

basically check for the existence of its associated attributes [(E8)

in the traces’ content SW . More specifically, we need to determine

the unique values [38] ⊆ [(E8) .U8 , ∀U8 , that can distinguish E8
from all other E ∈ + . (The comparison between data values for

determining uniqueness is based on matching the attribute name as

well as its value.) We refer to such a set of data values that can be

used to uniquely identify a data object from the contents of traces

as anchors. The anchors corresponding to a data object provide

a means to identify if the object is present in some content SW .

We have no prior knowledge about the contents of a page in the

application that a user can navigate to. We can have any type of as

well as any number of data object(s) on a certain page when visited

by a certain user. Moreover, the set of traces given to us TW , for

every W , is simply a collection of observations about what different

users are authorized to see in the application. As a result, there is no

ordering between data objects or provision of any other metadata

as such that can aid in pointing out an object from a traces’ content.

Observing Lower-Level Authorizations using Anchors. We utilize

the anchors in our data model to, initially, determine what objects

and their attributes a user is authorized to view on a given page

of the application, i.e, Z(D,SW), when the user is logged in. For

each data object that is present in page content SW , we now need to

determine whether the data values associated with the object, other

than those included in the anchors, are present in SW . To this end,

we first figure out the order in which data objects appear in SW ,

by retrieving the positions of the first and last occurrences of the

objects’ anchors. Assuming that the values of different data objects

do not completely overlap in SW , we employ a “rolling window” to

obtain a portion of SW that potentially encompasses all the attribute

values corresponding to a visible object. We consider the boundary

of the window corresponding to a data object to be between the

last occurrence of the previously placed object’s anchor and the

first occurrence of the immediately next object’s anchor. Finally, to

determine the set of lower-level authorizations for every user, i.e.,

Z(D), we aggregate all the data objects and their attributes that

are visible to the currently logged-in user on any page of the target

application. That is, by repeating for each ? ∈ P and D ∈ U, and

aggregating the visible data elements, we obtain our desired result.

6 IMPLEMENTATION AND EVALUATION

We performed experiments on two social network web applications,

namely Elgg [1] and Funkwhale [3], to evaluate our approach. Elgg

allows users to add friends, create photo albums as well as view

their friends’ albums and comment on them. Funkwhale is a music-

sharing application that allows users to create libraries and upload

audio files to them as well as access remote libraries. We employed

a state-of-the-art ReBAC mining algorithm from the literature [13]

and mine a ReBAC policy for each system based on the system

graph and lower-level authorization inferred by our prototype. We

first describe our experimental setup followed by observations.

6.1 Setup and Configurations

We employed mitmproxy [4] in our prototype implementation for

capturing the HTTP conversations between client and server. We

executed every experiment 10 times and reported the average result.

6.1.1 Experiment Procedure & User Simulation. Our implementa-

tion first crawls the web application simulating operations like a

normal user and collects HTTP traces, which are inputted into our

algorithm for mining the data model. Then, our implementation

crawls through every page, while logging in as different users, and

the collected HTTP traces, along with the data model, are used for

mining the access log. Finally, our implementation executes the

Towards Automated Learning of Access Control Policies Enforced by Web Applications SACMAT ’23, June 7–9, 2023, Trento, Italy

Table 1: Evaluation of Mined Attribute-Level Policy Based on Different Rules and Data Types. (Meaning of Relationships in

Rules: 1=belongs-to-post, 2=commented, 5 =friends-with, 8=in-library, >=owns-library, ?=posted,F=follows-library.)

Application Rule Data Type Mined Ground-Truth (visible atts.) |m| |⇑| | 6⇑| |⇓|

Elgg

[?] Post 27 19 16 6 5 3

[5 , ?] Post 23 15 12 6 5 3

[?,−1] Comment 20 12 11 3 6 1

[2] Comment 24 16 15 3 6 1

[5 , ?,−1]∧[5 , 2] Comment 20 12 11 3 6 1

Funkwhale
[>,−8] Audio file 35 28 24 6 5 4

[F,−8] Audio file 29 23 20 6 3 3

ReBAC miner while inputting the inferred data model and autho-

rizations, and the mined policy is presented for expert evaluation.

To generate request-response traces, we use UI.Vision RPA Web

Driver [2] for user simulation which facilitates submitting music

and image files during the crawling process. We provide the crawler

with the set of user credentials and possible atomic actions (e.g.,

posting a photo). The crawler then logs into an application and

randomly selects an operation among the set of available atomic

operations for the currently chosen user. Our crawler initially logs

into the admin account and creates a set of users for each applica-

tion – 10 users for Elgg and 15 users for Funkwhale. Throughout the

crawling phase, mitmproxy captures HTTP dumps of these simu-

lated interactions. Our crawling process includes 3 data types, about

200 data objects, and about 2000 relationships for each application.

6.1.2 Evaluation Methodology. Our evaluation is in terms of the

correctness of mined policy at both the object level and attribute

level. That is, in each application and for each data object type, we

compare the object attributes that are visible in an authorized user’s

interface with those specified in themined policy. Also, based on the

mined attributes, we make observations about the authorizations

of data objects associated with those attributes. For ground truth,

we rely on a manual inspection of the application. For assessing

object-level policies, we employ an application’s documentation

as the ground truth. For assessing attribute-level policies, a hu-

man expert determines fine-grained visibility of object attributes

in the application interface by logging in as users with different

relationship patterns (e.g., logging in as owner). The expert may

also inspect an application’s database for verifying the data objects

and their attributes. We emphasize that the ground-truth policy or

access to the database is used only for evaluation purposes.

6.2 Observations

The second column of Table 1 shows the rules in our mined object-

level policy for both Elgg and Funkwhale applications. By checking

against the ground truth, we observed that our approach was able

to capture all the authorizations enforced on data objects, i.e., our

object-level policy is precise. To gain better insight into the perfor-

mance of mining attribute-level policies, we categorize the mined

rules into: 1) those that are correct with respect to the ground truth,

2) those that are not present in the ground truth but not incorrect,

3) those not present in the ground truth and incorrect, and 4) those

that are present in the ground truth but are not in the mined policy.

These four categories are shown in the last four columns of the

Elgg Funkwhale

20

40

60

80

%
A
v
g
.O

v
er

A
ll
R
u
le
s
&

D
at
a
T
y
p
es

in
T
ab
le
1

|m|

|⇑|

| 6⇑|

|⇓|

Figure 1: Visual Comparison of the Performance of Mining

Attribute-Level Policies for Elgg and FunkwhaleApplications

table using the notations |m|, |⇑|, |6⇑|, and |⇓|, respectively, along with

the mined attribute-level rules and the ground-truth attribute-level

policy. Each row in the table represents, for a given object-level rule,

what attributes of a certain type of data object are accessible (i.e.,

visible) to the users who satisfy the pattern in the rule. Below we

summarize our results based on the four performance categories:

|m| For both applications, this is the dominating category. We are

able to mine most of the authorizations enforced on data

object attributes that are visible to users satisfying the corre-

sponding relationship pattern with a data object.

|⇑| This category is often comprised of fewer cases that seem like ex-

tra inferences. But a closer comparison with the application

database reveals that such attribute values describe identify-

ing characteristics of an object such as its id, date-time, and

parent-id, and are usually server-generated.

| 6⇑| This category comprises extra inferences that do not add any

real meaning to data objects. Such attributes are neither

client- nor server-generated; they mostly cover style compo-

nents and other metadata that serve the purpose of giving a

general description of the application and/or its data objects.

|⇓| This category happens due to the constant update of content

containing certain attributes, usually to enhance the user

experience. For instance, the date-time in Elgg is displayed

as “just now” when creating an object but gets updated to,

say, “2 minutes ago” when generating authorization traces.

Although not applied in the above results, it is possible to work

around the classes of |⇑| and |6⇑|. The contents of HTML tags usually

result in displaying data on the user interface. So, if we annotate

SACMAT ’23, June 7–9, 2023, Trento, Italy Padmavathi Iyer and Amir Masoumzadeh

those object attributes that are tag contents as visible, then during

authorization mining we can simply focus on the visible attributes

and ignore the others. Similarly, it is possible to develop heuristics

to deal with the class of |⇓|, but we chose not to for maintaining the

generality of our approach and to manifest the existing challenges.

Figure 1 presents a visual demonstration of Table 1. The results

for both Elgg and Funkwhale are shown side-by-side on the x-axis.

The y-axis measures, for each application, the number of attribute-

level rules that fall into each of the four performance categories

averaged over all the object-level rules and data types, which are

individually described in the table. We can observe that, for both

applications, we were able to mine most of the attributes associated

with all data objects. Interestingly, the number of correct attributes

are more for Funkwhale than Elgg. From a technology standpoint,

Funkwhale uses extensive AJAX communications with its web

server to handle insertion requests/responses and render the user

interface. The AJAX response contains JSON data, i.e., a list of key-

value pairs that we consider as application-generated content. So,

we could avoid retrieving extra components such as style elements

when inferring attributes directly from an application’s content.

7 RELATED WORK

Mining Access Control Policies. This problem has been widely

studied for role-based access control (RBAC) [16, 17], attribute-

based access control (ABAC) [7, 12, 21], and more recently for

relationship-based access control (ReBAC) [5, 6, 13]. These works

assume that lower-level authorizations and information about users

and resources are already provided for the mining task. In contrast,

we treat a web application as a black box and mine its enforced

ReBAC policy by simply observing human interactions with the

application. By collecting web traces, we infer the data model com-

prising relationships among users and resources as well as infer

the lower-level authorizations comprising what users can see on an

application page. Also, using the mined data model and authoriza-

tions, we produce two levels of policies – a course-grained object-

level policy that controls access to data objects and a fine-grained

attribute-level policy that controls access to object attributes.

Black-Box Vulnerability Detection. The problem of detecting vul-

nerabilities in web applications has been widely studied. This in-

cludes alleviating data disclosure vulnerabilities by monitoring

HTTP traffic for users’ data items [18], validating the enforcement

of access control policies that are not clearly documented [14], and

effectively crawling a web application by considering its internal

state to discover more vulnerabilities [9]. Additionally, researchers

have focused on identifying logic vulnerabilities based on different

user interaction patterns [20] as well as on detecting state viola-

tion attacks by extracting invariants and session values from inter-

actions between clients and stateless web application [15]. More

recently, the problem of employing differential traffic analysis for

vulnerability detection in mobile apps has been considered [22],

along with enhancing black-box crawling and scanning of web

applications to detect cross-site scripting vulnerabilities [10]. From

a black-box analysis perspective, while these prior works focused

on behavioral patterns of user interaction and navigation structure

of web application pages, our focus is on the users’ data objects

themselves including recognizing uniquely identifying resource

parameters and different kinds of associations that can be inferred

from them in the context of multi-user applications.

8 CONCLUSION

We proposed a methodology to infer the enforced ReBAC policy

rules in a web application by observing client-server interactions

during the creation of data objects and their visibility in the ap-

plication as viewed by different users. Our experiments on two

social networking applications demonstrated precise mining of

object-level policies in both cases. We were also able to mine the

attribute-level policies fairly accurately considering their visibility

in each application’s interface. As future work, we plan to investi-

gate the efficacy and further automation of our trace generation, and

expand our experiments to a larger set of real-world applications.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 2047623.

REFERENCES
[1] 2004. elgg. https://elgg.org/.
[2] 2016. UI.Vision RPA. https://ui.vision/kantu.
[3] 2017. Funkwhale. https://funkwhale.audio/en_US/.
[4] 2019. mitmproxy. https://mitmproxy.org/.
[5] Thang Bui and Scott D Stoller. 2020. A Decision Tree Learning Approach for

Mining Relationship-Based Access Control Policies. In Proceedings of the 25th
ACM Symposium on Access Control Models and Technologies. 167–178.

[6] Thang Bui, Scott D Stoller, and Jiajie Li. 2019. Greedy and evolutionary algorithms
for mining relationship-based access control policies. Computers & Security 80
(2019), 317–333.

[7] Carlos Cotrini, Thilo Weghorn, and David Basin. 2018. Mining ABAC rules from
sparse logs. In IEEE European Symposium on Security and Privacy. IEEE, 31–46.

[8] Jason Crampton and James Sellwood. 2014. Path conditions and principal match-
ing: a new approach to access control. In Proc. ACM SACMAT. 187–198.

[9] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the state: A state-aware black-box web vulnerability scanner. In
21st USENIX Security Symposium (USENIX Security 12). 523–538.

[10] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black
widow: Blackbox data-driven web scanning. In IEEE S&P. IEEE, 1125–1142.

[11] Philip WL Fong. 2011. Relationship-based access control: protection model and
policy language. In Proc. ACM CODASPY. 191–202.

[12] Padmavathi Iyer and AmirrezaMasoumzadeh. 2018. Mining positive and negative
attribute-based access control policy rules. In Proceedings of the 23nd ACM on
Symposium on Access Control Models and Technologies. 161–172.

[13] Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized Mining of
Relationship-Based Access Control Policies in Evolving Systems. In Proc. 24th
ACM SACMAT. ACM, 135–140.

[14] Ha Thanh Le, Cu Duy Nguyen, Lionel Briand, and Benjamin Hourte. 2015. Auto-
mated inference of access control policies for web applications. In Proc. of the
20th ACM Symposium on Access Control Models and Technologies. ACM, 27–37.

[15] Xiaowei Li and Yuan Xue. 2011. BLOCK: a black-box approach for detection
of state violation attacks towards web applications. In Proceedings of the 27th
Annual Computer Security Applications Conference. ACM, 247–256.

[16] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. 2016. A
survey of role mining. ACM Computing Surveys (CSUR) 48, 4 (2016), 1–37.

[17] IanMolloy, Ninghui Li, Yuan Alan Qi, Jorge Lobo, and Luke Dickens. 2010. Mining
roles with noisy data. In Proc. 15th ACM SACMAT. ACM, 45–54.

[18] Divya Muthukumaran, Dan O’Keeffe, Christian Priebe, David Eyers, Brian Shand,
and Peter Pietzuch. 2015. FlowWatcher: Defending against data disclosure vulner-
abilities in web applications. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 603–615.

[19] Edelmira Pasarella and Jorge Lobo. 2017. A datalog framework for modeling
relationship-based access control policies. In Proc. ACM SACMAT. 91–102.

[20] Giancarlo Pellegrino and Davide Balzarotti. 2014. Toward Black-Box Detection
of Logic Flaws in Web Applications.. In NDSS.

[21] Zhongyuan Xu and Scott D Stoller. 2014. Mining attribute-based access control
policies. IEEE Trans. on Dependable and Secure Computing 12, 5 (2014), 533–545.

[22] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. Authscope: Towards
automatic discovery of vulnerable authorizations in online services. In Proc. 2017
ACM Conference on Computer and Communications Security. ACM, 799–813.

