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The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) conducts an
experimental search for certain forms of dark matter based on their spatiotemporal signatures
imprinted on a global array of synchronized atomic magnetometers. The experiment described here
looks for a gradient coupling of axion-like particles (ALPs) with proton spins as a signature of locally
dense dark matter objects such as domain walls. In this work, stochastic optimization with machine
learning is proposed for use in a search for ALP domain walls based on GNOME data. The validity and
reliability of this method were verified using binary classification. The projected sensitivity of this new
analysis method for ALP domain-wall crossing events is presented.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Even though there is a considerable amount of evidence for
the existence of dark matter, the nature of dark matter is not fully
understood [ 1]. Up to now, there have been a number of hypothe-
ses proposed to explain the existence of dark matter [2-10]. One
of the most well-motivated dark matter candidates is an axion,
which was originally proposed to solve the strong CP problem
in quantum chromodynamics (QCD) [11,12]. These QCD axions
are weakly-coupled light pseudo-scalar particles generated from
the spontaneously broken Peccei-Quinn U(1)pg symmetry [13-
18]. This concept can be generalized to a class of light pseudo
scalar particles which are collectively referred to as axion-like
particles (ALPs). They are motivated by a spontaneously broken
global U(1) symmetry beyond the Standard Model (SM), such as
those appearing in string theory [19-21]. The generalized ALP
field a can include non-gravitational couplings arising from the
following interaction Lagrangian
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where fi, and fquaq are the effective linear and quadratic interac-
tion scales in energy units, ¥ is a fermion field in SM [22-24].
This allows ALPs to couple to atomic spins through a gradient
interaction.

In most direct searches for dark matter, the density of dark
matter in the solar system is assumed to be relatively uni-
form [25]. However, in addition to this conventional model of
dark matter distribution, it is possible that the local dark matter
density is highly nonuniform. This can occur as a result of the
formation process of pseudo-scalar fields during cosmological
inflation [26,27]. An example is the Kibble mechanism [28] which
describes a cosmological phase transition during the cooling
down of the early Universe, The phase transitions associated with
symmetry breaking might induce local selections of broken sym-
metry and eventually result in separated domains with locally
degenerate broken symmetry. Then, this can naturally lead to
topological defects if the separation between domains are too
far to communicate. The type of defect mainly depends on the
property of the broken symmetry and the characteristics of the
phase transition but can be classified based on their dimensional-
ity: monopoles in 0D, strings in 1D, and domain walls (DWs) in 2D
or higher dimensions. Among them, the DWs are objects formed
from the discrete broken symmetry at the phase transition, and
a network of such DWs may divide the universe into different
sections. The size of DWs is assumed to be on the scale of d ~
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1/mg where d is the thickness of the DW and m, is the mass of
the ALP,

DWs may contribute to the dark matter in the universe.
However, stable DWs of QCD axions would be cosmologically
disastrous because they would store too much energy [29,30].
Nevertheless, ALP DW could exist up to the modern epoch in
the post-inflation scenario since ALP fields are not restricted
by the QCD phenomenology [31-36]. If they indeed exist, such
ALP DW dark matter would have a highly nonuniform local
density. Recently, a series of experiments have been proposed to
attempt the direct detection of locally dense dark matter [22,37-
46]. The Global Network of Optical Magnetometers for Exotic
physics searches (GNOME) is the first experiment to look for
localized dark matter governed by transient spin-dependent in-
teractions between the dark matter and atomic spins [37,47-49].
At present, the GNOME consists of more than ten dedicated
optical atomic magnetometers located at stations throughout the
world as shown in Table 2. The magnetometric sensitivity of each
GNOME sensor is roughly in a range of ~ 100 fT/+/Hz over a
bandwidth of ~ 100 Hz. Each magnetometer is located within a
multi-layered magnetic shield to reduce the influence of magnetic
noise and perturbations. Even with the magnetic shielding, there
is inevitably some level of transient signals and noise associated
with the local environment. Therefore, each GNOME sensor uses
auxiliary unshielded magnetometers and other sensors (such
as accelerometers and gyroscopes) to measure relevant envi-
ronmental conditions, enabling exclusion/vetoing of data with
known systematic issues. The signals from the GNOME sen-
sors are recorded with accurate timing provided by the global
positioning system (GPS) using a custom GPS-disciplined data
acquisition system and have a characteristic temporal resolution
of < 10 ms enabling resolution of events that propagate at
the speed of light (or slower) across the Earth. Because of the
broad geographical distribution of sensors, the GNOME is able
to achieve good spatial resolution, acting as an exotic physics
“telescope” with a baseline comparable to the diameter of the
Earth. The details of this experiment are described in Refs. [37,48].

The common idea of these experiments is to distribute multi-
ple sensors (optical magnetometers in the case of GNOME) across
geographically separated locations on the Earth, and connect
them as an array. The passage of the Earth through a local-
ized dark matter object may cause an interaction at each sensor
with a distinctive amplitude at a certain time depending on the
spatiotemporal distribution of the dark matter.

However, the behavior of the signal amplitude and timing
from a dark matter crossing event is a priori unpredictable since
the local density of the dark matter cannot be determined from
existing theories. Therefore, the analysis of such measurements
needs to have a feasible model to determine whether the signal
pattern actually corresponds to a possible dark matter crossing
event. For example, if the distance between domains L is much
larger than the Earth scale (L > Rg), the boundaries of such
DW would be approximated as a flat object with non-zero thick-
ness [22]. Then the DW crossing events captured by the detector
network can be described by a simple parametric template with
the relative velocity and orientation of a flat DW. Nevertheless,
the measurements may contain a large multidimensional array
of information which could cause complications when access-
ing from a conventional data analysis scheme. In addition, the
fact that the domain-wall crossing event would be unpredictable
makes it almost impossible to define a ‘signal-to-noise ratio’ in
these kinds of searches. For example, a geometrical situation
(i.e., an orientation of DW) affects the signal strength as well as
the physical property of ALPs.

Recent developments in machine learning (ML) techniques
have shown the ability to extract a particular feature from multi-
dimensional datasets in various fields, including physics [50,51].
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One of these ML methods, stochastic optimization (or stochastic
gradient descent) with adaptive momentum, enables one to fit
a parametric template of crossing events in a time window of
network data without massive calculations of every possible com-
bination of templates [52-56]. This ML assisted fitting method
can be used for discerning whether the network data can be well
fit to any of the possible DW crossing events. This optimization
can also be extended to search not only for DWs, but also for a
variety of other locally dense dark matter objects [47,57-60].

In this paper, a data analysis method to discern DW crossing
events from the GNOME data is presented. This analysis scheme
utilizes a parametric template of DW crossing events, instead of
scanning a possible parameter lattice (as was done in Refs. [49,
61]). The feasible parameter range of the template and event
detection threshold are optimized via a simulated dataset.

The expected signal amplitudes and timings of the DW cross-
ing event are derived in Section 2. The procedure of the data
analysis is presented in Section 3. The reliability and validity of
the data analysis are studied based on binary classification as
described in Section 4. The conclusion and prospects for future
data analysis are described in Section 5.

2. Parametric template of the domain-wall crossing event

The ALP fields inside the DW between two neighboring vacua
along the normal direction parametrized by z can be described
as [22,61]

a(z) = \-/f—_c arctan (exp (m;(fz z)) , (2)

where fsg is the symmetry-breaking scale of the ALP. The pseu-
doscalar linear coupling of the ALP field a to the Standard Model
axial-vector current has the interaction Hamiltonian from Eq. (1)
as

(hc}'}.ﬂ
int
where fip; is the effective interaction scale between the gradient
of the ALP field Va and unit fermionic spins S. The effective inter-
action scale can be different for electrons, neutrons, and protons
depending on the particular theoretical model, but here we con-
sider only ALP-proton coupling. The GNOME magnetometers are
placed inside multi-layer magnetic shield, which cancel the ef-
fects of electron spin couplings due to an induced magnetization
of the shield [62]. Al GNOME magnetometers use atoms whose
nuclei have valence protons, and thus are primarily sensitive to
ALP-proton interactions [63].
The ALP-DW interactions with atomic spins can be interpreted
as a pseudo-magnetic field B acting on the atoms. It can be
written in analogy with the Zeeman Hamiltonian form as

H=—yS-B, (4)

where y is the gyromagnetic ratio of atomic species employed
in each magnetometer. While a conventional magnetic field is
screened by the multi-layer magnetic shields, the ALP-proton
coupling cannot be screened as they are treated as pseudo-
magnetic fields, thereby being detected by the atomic magne-
tometer.

The expected strength of the pseudo-magnetic field B at the
magnetometer labeled by s is derived as

4 fsa 2 Os

B usﬁmmﬂc o cos Vs, (5)
where pp is the Bohr magneton, o;/gr s is the estimated ratio
between the effective proton spin polarization and the Landé
g-factor for the magnetometer s, and v is the angle between

Hine = §-Va, (3)
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the ALP-field gradient and the sensitive direction of the mag-
netometer [61]. Here, fsg can be expressed by the cosmological
parameters through the domain-wall energy density ppw and
surface tension opw ~ Lppw. Using Eq. (2), one has a relationship
as

2
_ 8fgmac’
 he?
If the domain walls take a portion of dark matter in our universe,
then

(6)

da
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Lppw < Lppm ,
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fse =hc (7)
where ppy is the energy density of dark matter.

The expected strength of the pseudo-magnetic field can be
written with cosmological parameters L and ppw as

B 8Fs fint
4k [ 2

= % oow Y cos v (8)
\/gﬂBgF‘s int

We assume that L ~ 7.5 x 107> ly (wall crosses the Earth
approximately once a month with a relative velocity |vg] =
10~3c) and ppw = 0.4 GeV/cm? (local dark matter density [1]).
Independently measured L and ppw can change the effective
interaction scale.

The expected amplitude of the effective magnetic field B, de-
pends not only on the ALP parameters (mass and effective inter-
action scale) but also on the properties of the magnetometer and
geometric factors. In particular, the factor cos s that describes
a relative crossing direction could suppress the magnetometer
signal, even to zero in some cases.

If a DW crossing event takes place, the timings to s of the ex-
pected signal at each detector s are also unpredictable in a priori
because they are determined by the relative positions between
the magnetometers and DW. For simplicity, we assume that the
DW is relatively flat with respect to Earth scale, and it travels at
velocity vg, initially at X4 as the closest point in the wall to Earth.
Then the encounter time can be estimated as

Xg— X)X

(Fa—%) . ©)
[0l

where X; is the position of the magnetometer s. The signal du-

ration t is characterized by the DW thickness d = 2+/2hc/mqc?

and the relative speed |1g]

_ 24/2hc

T= =
maczlvdl,

tl]‘s =

(10)

independent of the sensor.

Fig. 1 shows the conceptual diagram of the magnetometer s
on the Earth’s surface at X = RgXs with the sensitive direction
@ and the DW at its position X4. Rg denotes the Earth radius.
Each of the position vectors can be represented using spherical
coordinates centered at the Earth’s center, aligned to the North
pole (polar angle) and prime meridian (azimuthal angle). Then the
DW crossing event parameters for generating the signal pattern
(amplitude Bs, timing tq s, and duration t) are determined by the
six parameters listed in Table 1.

3. Method

The likelihood of a geographically correlated signal pattern in
the data being produced by a DW is evaluated by comparing it
to the predicted pattern from Egs. (8), (9), and (10). If such an
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North Pole

Fig. 1. Conceptual diagrams of the Earth (left circle) and DW (right rectangle)
are represented to describe the geometrical parameters. For each magnetometer
s, its position vector X; = Rg&; is described by the spherical coordinates
(Rg, 65, @) centered at the Earth center. The sensitive direction vector of the
magnetometer s is denoted by &,. A position of a DW, X, is described in the same
manner as (|%4(t)|, 84, ¢). d is the DW thickness and v is the angle between
@ and Xg.

event occurs and generates signals distinguishable from noise,
the relevant physical parameters of the correlated pattern can
also be estimated. This process can be divided into several steps.
(1) Prepare a test-time window to be analyzed containing data
from the stations operating during that specific interval of time.
Data pre-processing is applied to each point in the test-time win-
dow. (2) Generate the parameter space for variables used to opti-
mize the parametric model for the data. (3) Perform the stochastic
optimization for fitting the pattern to the data and evaluate the
goodness of the fitting. Here, the parameter-estimation error will
be used. (4) Characterize the test-time window based on the
evaluated estimation error.

A test-time window of data is defined by a set of discrete data
points from each sensor in the network. For a given time interval
and sampling rate, the test-time window is constructed from all
data points from all available sensors during the time interval.
The linear baseline of each sensor is removed by subtracting a
linear fit to the data in advance. There are no additional filters or
time binning in the pre-processing step.

Then the stochastic optimization iteratively updates the tem-
plate parameters to fit a signal pattern to the test-time window.
In order to build the stochastic optimization process to search
for DW crossing events, the proper template parameters of the
event should be determined. The parameters are updated based
on the gradient with respect to them in the parameter space,
towards the minimum value of the estimation error. Each param-
eter should be normalized to prevent a directional bias during
every updating iteration, This normalization requires a definite
boundary for each parameter.

Fig. 2 visualizes a test-time window and fitted pattern of net-
work data. Arbitrary peaks are injected to mimic a fake DW signal
pattern. The sign, amplitude, and timing of peaks are determined
by the relative position and orientation between the network of
magnetometers and DW. These signal properties are peculiar to
each station. Different positions and sensitive axis of each station
also make different signal patterns. Three time-series data (semi-
transparent lines) in a synchronized time window are prepared
as the test-time window. Correlated patterns in the given time
windows are estimated from stochastic optimization (solid lines).
The characteristics of the network would vary depending on the
position, sensitive axis, and operation duty cycle of each station.
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Table 1
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Six parameters describing DW crossing event and their estimation range. The parameter boundaries are normalized to the unit
interval, and the azimuthal angle indicating the DW has a periodic boundary condition.

Parameters Symbols Estimation ranges Normalization maps f(x) : x — f(x)
Mass mgc? 107" eV, 1071 eV] (logyg(x/eV) + 15)/4

Interaction scale finr 10* GeV, 10° GeV] (logqg(x/GeV) — 4)/4

Polar angle B [0, 7] x/m

Azimuthal angle a [0, 27) x/2m

Relative speed |Tal [100 km/s, 550 km/s] (x — 100 km/s)/450 km/s

Relative position |Ba| [6.4 x 10° km, 12 x 10% km)] (x — 6.4 x 10° km)/5.6 x 10° km

3.1. Boundary, distribution, and normalization of the DW crossing
event parameters

For ALP DW, the mass m,c? and the effective interaction scale
fint are free parameters. So they are treated as unknown param-
eters with logarithmic-uniform distribution. The values of m,c?
and fi,, will be estimated as a point in the distribution during the
analysis. Their boundaries are set by referring to the prior GNOME
analysis range as shown in Table 1 [61].

The direction parameters, polar and azimuthal angles of the
DW, have a feasible range with a linear-uniform distributions,
where the polar angle 6; satisfies 65 € [0, ] and the azimuthal
angle ¢, satisfies ¢4 € [0, 2r) with a periodic boundary condi-
tion.

The speed should be considered a random variable from the
Maxwell-Boltzmann distribution if DWs are virialized in our
galaxy. In addition, the escape velocity at a solar system galactic
radius from the Milky Way's gravity is given by ve = 550.9 km/s,
so we assume that faster DWs cannot exist in the galaxy [64]. A
slow DW could leave a signal pattern on the data, but long-term
linear drifts in the magnetometers make such a DW to be difficult
to characterize [48].

In the GNOME experiment, each GNOME data file contains one
minute long information. As the GNOME data is a collection of
the synchronized time series data from multiple stations, each
synchronized data consists of 60 s long data from each station
with HDF5 format which are uploaded to the GNOME server every
minute.

Since GNOME data files are stored for every minute (regardless
of the data acquisition rate), the minimum speed of the DW that
allows the DW to pass the Earth within at most n-concatenated
dara files is

Z_Ri ~ 213 km/s. (11)
n minutes n

In order to minimize the effect of drifts in the magnetometer
data, n is chosen to be 2. Then the boundary of the relative speed
of the DW is |74] € [100 km/s, 550 km/s]. A 7 km/s margin is
given for the lower bound for the convenience of calculation. The
speed follows the Maxwell-Boltzmann distribution with the scale
parameter of 220/+/2 km/s and edges on both sides are cut to
exclude slow and fast DWs [65].

The initial relative distance is also restricted by the same data
length, n = 2. To contain all signal peaks (from the closest
and farthest surfaces of the Earth) in a test-time window, the
boundary is needed to be

Umin =

|X4| € [Rg, min (J3g]) - n minutes] (12)

The initial relative distance is uniformly distributed in the range.

In the worst case (the slowest and farthest DW from the
Earth), [v4] = 107 km/s and |%4| = 12 x 10° km, the DW could
not pass through the Earth completely within a given test-time
window of n = 2. Instead, it will be contained in the one-minute
overlapping neighboring test-time window with a new set of
parameters || = 107 km/s and [%s| = 6.4 x 10% km. This
DW or other combinations of slow and far DWs can be searched

= 10
£ —— Detector 1
g 0 _ N
5
B
1]
8 10 . . . . .
- 10 20 40 60 80 100 120
£ Detector 2
3
8
1]
B8 10 . . . . .
- 10 20 40 60 80 100 120
£ — Detector 3
3
5 o ~
8
-]
8 10 . . . . .
0 20 40 60 80 100 120

Test-time window [s]

Fig. 2. An example of the test-time window for three sensors. Arbitrary peaks
are injected into the data from the station as shaded fluctuations. Solid lines
represent the fitted pattern from stochastic optimization. The signal properties,
which are sign, amplitude, and timing, are determined by the relative position
and orientation between the network of magnetometers and DW.

with n/2-minutes overlapping adjacent test-time windows by
shifting |5c'd|. For a single test-time window search, the range of
the DW crossing event for the relative speed and distance |74] €
[100 km/s, 550 km/s] and [¥4| € [6.4 x 10> km, 12 x 10° km]
is sufficient.

The range and distribution of parameters describing the DW
crossing events are represented in Table 1. In actual analysis,
they are calculated in the normalized unit space through nor-
malization maps. The normalization enables the parameters with
different scales and units to have a uniform gradient scale during
the stochastic optimization.

3.2. Stochastic optimization

Stochastic optimization is a stochastic version of the gradient
descent optimization, which finds the minimal value of a given
function based on Newton's method. A function to be optimized,
the cost function, is traced by updating based on the gradient
with respect to optimization parameters. In our case, the normal-
ized optimization parameters are DW crossing event parameters
listed in Table 1. However, since there are inevitably noise fluctu-
ations in the data, and infinitely many forms of the signal pattern
for a given DW crossing event, the shape of the cost function
should reflect such fluctuations and non-linearity.

An ansatz of the cost function £ = & 3" & to estimate the
DW crossing event for each magnetometer s is defined as

& = T%'E : ( fu [ (Ss(t’) _ §s(r’)) dt’)z dt, (13)

where N is the number of magnetometers, 7 is the time interval
of the test-time window, o is the standard deviation of the time-
series data at the magnetometer for a given time window, Sy(t’) is
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Fig. 3. A conceptual diagram of the grid estimation with various initial points
in the normalized parameter space. In two normalized parameters estimation,
there is one global minimum (G) that is the ground truth, but local minima (L)
obstruct the estimation. The grid estimation uses multiple initial points (S) in
the parameter space to find the most probable estimation solution.

the baseline-removed time-series data of the magnetometer s at
time-series point ¢, and S(t") is the expected signal pattern of the
magnetometer s at time-series point t’. The time variables t and
t’ in [0, 7] represent the common time interval for the sensors,
digitized during the data acquisition.

The cumulative integration over the time-series point t' can
reduce the local fluctuation of the Gaussian noise. 7 in the de-
nominator normalizes the length of the interval, while the vari-
ance of the magnetometer o2 normalizes the Gaussian noise.
Practically, the magnetometer data does not precisely follow a
Gaussian distribution, but this pseudo-normalization factor 1/02
weights the contribution of each magnetometer to the cost func-
tions by their intrinsic noise. Therefore, it makes the cost function
have less dependence on the sensor characteristics, or even the
number of sensors in general. The details of the cost function
ansatz is described in Appendix B.

The remaining dependence on detector characteristics can
be avoided by clustering distinct optimization processes from
the multiple initial points, which generate S; on the estimating
parameter space grid. Multiple initial points are defined as inter-
sections of D grid lines on the parameter space. The optimization
is conducted for each D™ initial points for m parameters. Fig. 3
shows a conceptual diagram of the grid estimation in the normal-
ized parameter space with D = 3. Without loss of generality, the
parameter space is represented as a two-dimensional space with
two normalized parameters as an example for demonstration.
Then it has 3% = 9 initial grid points.

The optimization process is conducted for each initial point
(S), and each of them move towards the local minima (L) or the
global minimum (G) depending on the situation, They may not
converge in a finite number of iterations to any of minima. In-
stead, the estimated parameter points (including minima) at the
last iteration step cluster in the parameter space with a distance
d.. Then each of them forms a hypersphere with the radius d.
representing the cluster. The cost function and parameter values
at clusters are averaged and compared to evaluate the minimal
cost cluster. Clusters are placed far from each other, at least d,
and each of clusters represents different estimated parameters.

Physics of the Dark Universe 37 (2022) 101118

Then they have different cost function values. The minimal cost
cluster is a representative estimated parameter point of the grid
estimation. Two parameters determine the overall optimization
performance of the grid estimation. The number of grid lines
D balances computing time against precision. Also, a clustering
distance d. among optimized results is related to accuracy.

The ADAM (ADAptive Momentum) optimization is employed
for the stochastic optimization process, which can cover a larger
range of the evaluated gradients by using machine learning [56].
The learning rate is one of the representative hyper-parameters
in the machine learning. If the learning rate is too large, the
training is not stable, but if this value is too small, the training
becomes too slow. Therefore, the learning rate is the parameter
that needs be tuned before anything else. Gradient descent is an
algorithm to optimize the learning rate. The idea of the gradient
descent is to follow the negative gradient of an objective function
in order to locate the minimum of the function. A problem with
gradient descent is that it can bounce around the search space
on optimization problems that have large amounts of curvature
or noisy gradients, thereby getting stuck in flat spots in the search
space that have no gradient.

To avoid this issue, one can optimize the weight parameters
more easily by adding various techniques to this existing gradient
descent method. One such technique is to use what is known
as “momentum” in the gradient descent optimization algorithm,
where momentum accounts for the history of past steps in cal-
culating the next step in parameter space, Momentum provides
a number of benefits. One can not only easily escape the local
minima through momentum, but also accelerate the learning rate.
ADAM optimizer is one of optimizers the most widely used in
the modern deep machine learning. ADAM can be seen as an
algorithm that adds momentum to the existing adaptive learning
rate method. In addition, by supplementing existing algorithms,
it has become the most effective algorithm so far, Therefore, the
training scheme can have the effect of being robust to the learning
rate when using ADAM optimization.

The expected signal amplitudes can vary from zero to more
than a picoTesla amplitude depending on the parameters and
geometric properties of the DW crossing event. The ADAM op-
timization can update the estimating parameters during the op-
timization, to fit the pattern to wide ranges of signal amplitudes
with a universal process.

3.3. Performance evaluation

The stochastic optimization evaluates an estimation error
given by the cost function value £. If the estimation error is
small enough for a given test-time window, a physical model
(the DW crossing event in this case), and an appropriate opti-
mization process, then this test-time window has a possibility to
contain the physical event. However, noisy test-time widows can
sometimes produce a small estimation error, On the other hand,
a high value of £ means it does not contain the physical event
or the optimization process cannot find an appropriate solution.
The decision about the presence of an event is characterized by a
binary classification. We can define four different cases in terms
of whether our data contains an event and whether the algorithm
identifies it as true positive (TP), false negative (FN), false positive
(FP), and true negative (TN).

The binary classification of the DW crossing event has been
tested based on simulations with GNOME data. The active mag-
netometers of the GNOME from January 30th to April 30th, 2020
are listed in Table 2. Since each of the magnetometers in the
GNOME do not always provide proper data due to local glitches,
the data may not be continuous in time, Therefore, the available
dataset from magnetometers for a given time interval may have



D. Kim, D.FJ. Kimball, H. Masia-Roig et al.

Table 2
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Geographic and geometric information of the GNOME station magnetometers. The magnetometer position is based on the global
positioning system (GPS), where the West and South directions have a negative sign. The sensitive direction is based on the horizontal

coordinate system.

GNOME stations Magnetometer position Sensitive direction o /g
Longitude [deg] Latitude [deg] Altitude [deg] Azimuth [deg]
Berkeley 1 —122.3 379 0 28 —0.39
Berkeley 2 —122.3 379 90 0 —0.39
Daejeon 127.4 36.4 90 0 —0.39
Hayward —122.1 37.7 90 0 0.70
Krakow 199 50.0 0 45 0.50
Lewisburg -76.9 41.0 90 0 0.70
Los Angeles —1184 34.1 0 270 0.50
Mainz 8.2 50.0 -90 0 0.50
Moxa 116 50.6 0 270 —0.39
Oberlin —81.8 413 0 300 —0.49

different combinations of magnetometers. For each simulation, a
random combination of magnetometers is chosen to cover the
most general case. However, the number of magnetometers must
be larger than 3 in order to at least estimate the direction of the
DW. To prevent any real dark matter event appearing during the
simulation, a two-minute time window was generated using the
mixed date and time of each magnetometer station.

In total 400 simulations were conducted for the binary classi-
fication. Among them, 200 simulations have a randomly injected
DW crossing event from the boundary and distribution of the
estimating parameters, while the remaining 200 simulations have
artificially injected random noise Lorentzian peaks (0 to 4 peaks
at random timings, uniformly distributed between —50 and 50 pT
amplitude, uniformly distributed between 0.12 and 12 seconds
long full-width at half~-maximum) to test the robustness of the
algorithm against other patterns corresponding no DW crossing
event. Both signal and noise peak shapes are assumed to be
Lorentzian. The number of grid lines D = 2 and the clustering
distance d. = 0.02 were set during analysis. For each optimiza-
tion at a single grid point, the DW parameters are estimated by
500 iterations steps of the ADAM optimization.

In order to characterize the binary classification, each sim-
ulation is identified as positive or negative depending on the
decision criterion, which in this analysis is the estimation error £.
Therefore, the true positive rate (TPR) and false positive rate (FPR)
are derived with respect to the estimation error. The decision
criterion threshold &, is determined at 95% level of the TPR. The
confidence interval of each rate p (TPR or FPR) in n observations is
described by the continuity-corrected Wilson score interval with
a critical value z [66-69]

_ 2np427°
S 2(n+22)

1 1
- " _f _ 7% 2
=D 1+z‘/4np(1 p)F2(1—2p) otz )

(14)

For the 95% of confidence level, z = 1.96. The continuity-
corrected Wilson score interval at the 95% confidence level would
be applied to estimate the confidence intervals of TPR and FPR.

3.4. Parameter space optimization

The set of virtual observations, 400 simulations, is classified
within the parameter space bounded by the estimation range
listed in Table 1. In the presence of an event for a given test-
time window, the optimization estimates the corresponding DW
parameters simultaneously. The estimated parameters need to
be accurately converged, but sometimes they do not converge

to stable values within a reasonable iteration time, due to com-
puting limitations. This can be handled by applying a finer grid
estimation and larger iterations of the fitting.

More efficiently, the ALP field parameter space generated from
the mass and effective interaction scale can be optimized without
any increase in computing cost by using a two-step process. The
first step is to calculate a distance representing the estimation
error. In the virtual observations with DW crossing events, which
are characterized by a certain set of DW parameters, the distance
between the estimated parameters and the desired parameters
in the ALP field parameter space can be different for distinct
regions in the space. Since the optimization is conducted in the
normalized space, the distance can be defined as a norm. The
norm indicates the distance function. Since the space is well
normalized, the metric can be well defined. Hence, the norm that
determines the distance value can also be well defined. Then the
distance indicates the error level of the estimated parameters
from the desired parameters.

The second step is to get an optimal parameter space corre-
sponding to the projected sensitivity limit of this analysis. The
distances calculated in the first step are used in this optimization
process. Let a well-estimated candidate be when the optimization
gives a distance of less than 0.02 (in the normalized space). This
distance and corresponding candidate are meaningful only if the
analysis method detects an event, i.e., TP event cases. The accu-
racy is defined as a population ratio between the well-estimated
candidates and the total TP events. The ALP field parameter space
can be optimized to maximize the sum of the accuracy and the
area (mass range x interaction scale range) of optimized space.
The subspace of the ALP field parameter space is swept by the
mass and effective interaction scale, Then the parameter space
sensitive to this analysis method will be derived.

This analysis method would not be able to guarantee the iden-
tification of the domain-wall crossing events correctly beyond the
optimized parameter space. Since, the detector sensitivity is as
critical as the analysis method in the sensitive parameter space,
any dark matter signal insensitive to detectors cannot be ana-
lyzed. For example, weak signals with a huge fi;; would effectively
show no signals in datasets. The parameter space optimization
represents a sensitive region of ALP field parameters for a current
network detector architecture.

4. Result

Fig. 4 represents the TPR (blue) and FPR (orange) of the DW
crossing event classification from the simulations before (left) and
after (right) the parameter space optimization. The corresponding
areas under the receiver operating characteristic (AUROC) curves
were measured to be 0.963 and 0.974 [70]. The performance of
the classification was enhanced after the parameter space opti-
mization. Before the parameter space optimization, the decision
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Fig. 4. Binary classifications of the analysis method with simulated DW crossing events before (left) and after (right) the parameter space optimization. TPR (blue
strip on top of the region) and FPR (orange strip on bottom of the region) are represented with respect to the estimation error as confidence intervals of 95%. Before
the parameter space optimization, the TPR and FPR are 95% and 10% at the decision criterion threshold E; = 5.87. The TPR and FPR are changed to 91% and 0.0%

at E, = 1.00 after the parameter space optimization.

criterion threshold is derived to the value E;, = 5.87, which
corresponds to the 95% of TPR from simulations. The FPR at the
threshold was observed to be 10%. The corresponding confidence
intervals with this classification algorithm were a TPR between
90% to 97% and an FPR in between 6% to 15%.

Based on the classification result, the parameter space sear-
ched as seen in Table 1 was optimized, as shown in Fig. 5. The
400 virtual observations were simulated within the optimized
parameter subspace. The result shows a TPR as 91%. The TPR is
in [85%, 94%] and the FPR is in [0.0%, 1.8%)] at the 95% confidence
level, when the threshold is set to 1.00 as shown in the right of
Fig. 4. The optimized parameter space is a projected limit of the
described algorithm for the GNOME setup listed in the Table 2
to search for DW crossing events, corresponding to mgc? from
1.00 x 107 eV w0 1.34 x 1072 eV and f;,, from 10* GeV to
4.65 x 10° GeV with a 2% acceptance error (a distance of 0.02
in the normalized unit space). For fi,y < 10* GeV, the signal
pattern would show the same pattern, but enlarged amplitude.
They could be covered by extending the boundary of the effective
interaction scale.

This result improves the parameter space analyzed with
GNOME data as described in Ref. [61], but it is worth noting that
the network status in Ref. [61] is dedicated to the Science Run 2,
while present data analysis method is based on the Science Run 4
status, Also, this method is independent of fsg/fin:, instead, it has
to scan the continuous data for estimating the domain size L.

This study demonstrates a feasibility of new data analysis with
machine learning scheme not only for the GNOME experiment
but also for other dark matter searches. The projected parameter
space can be further improved as more virtual observations are
simulated with intensive computations with high-performance
computing resources.

5. Conclusions

A new data analysis method based on machine-learning-assi-
sted stochastic optimization has been presented to search for
direct detection of localized dark matter using GNOME darta.
The identification and characterization of the ultra-light ALP DW
events were evaluated using in simulated virtual observations.
The identification showed TPR of at least 85% and FPR at most
2% at 95% confidence level, and characterization showed an ac-
curacy of 88%. This accuracy can be improved by rescanning and
complementary analyses.

This new method allows us to investigate signal patterns
for localized dark matter using a geographically distributed net-
work of sensors. The methodological application is not limited
to DW signals, but can be extended to more general signals.
Furthermore, it is also possible to employ a network of hetero-
geneous detectors if the pattern is theoretically predictable for
each detector [60].
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- 10° 1o €Ny fa 102

=
(=]
El

fine [GeV]
=
22

fary
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102 10712 101
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Fig. 5. The projected limit of the optimized parameter space identified and
characterized by this method (blue). Previously analyzed regions with GNOME
data and analysis method are presented for comparison (gray-scale) [61]. The
acceptance error is 2% for the estimated parameter within mgc? from 1.00 x
107 eV 10 1.34 x 107" eV and fin; from 10* GeV to 4.65 x 10° GeV.
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Appendix A. Pseudocode of the data analysis algorithm

The pseudocode for the algorithm described in the main text
is written in Algorithm 1.

Algorithm 1: Event parameters estimation

Data: Multiple time series Sy(t) fors € S
Result: Estimated error £ = 1/[S] > &

for each grid point g do .
Optimize the domain-wall parameters d*;
Evaluate estimation error £%;

end

for each grid point g do

for each grid point g’ do

- S |2
if ‘/‘ds ~ @ <d then
| Clustering g’ into cluster g;
end
end
if No clustering for any g’ then
| Discard the grid point g;
else
Evaluate representative estimation error £% and
corresponding as;

end
end

Find ming (£%) and corresponding ds;

Appendix B. The cost function

The most straightforward ansatz function would be with the
following form:

é= 707 f (Ss[t Ss(t}) dt.

This equation is actually valid in most cases. In certain cases,
however, especially when the scale of 7 is larger than that of
7, the integral value is barely affected by tg if Ss(t) is fixed. This
makes it difficult to see when the actual event occurred if the
signal duration in a given time window is short.

If the rise time of an inferred event signal is longer than the
duration, it is difficult to evaluate how similar the arising time
of the inferred event signal with the data mainly because the
integral value does not change even if the rise time is changed.

However, if the integration with respect to time is performed
once more as shown in Eq. (13), the integral value would also
increase in proportion to the deviation of the arising time of
an inferred event signal from the real event time. This makes it
possible to evaluate how the arising time of the inferred event
signal is actually close to the real event time.

In the case of the GNOME, the model parameter vector X in
6-dimensional space represents an axion DW crossing event. For

(B.1)

Physics of the Dark Universe 37 (2022) 101118

the given set of GNOME stations S, the measurement data Ss from
each atomic magnetometer s is defined as

{Ss(t) | s € S}. (B.2)

Then the cost function should be minimized when the signal data
S(t; X) is equal to the actual measurement data S(t) for any
station s € S. Therefore, that the cost function of any station s
can be expressed with a form of the mean squared error (mse) as
follows

&X)=3" f (Ss(t) _ §s(t;5<'))2 dt.

With the given number of GNOME stations in S, an ansatz of
the cost function to test the ALP DW signal is defined as

. > e
- % zs: k, fo 7 ( fo [ (Ss(t’] 5 ?(}) dt’)z dt,

where N is the number of stations in s, 7 is the size of the test
time window, and k; is a normalization coefficient depending on
the measurement data at station s for a given test time window
as follows,

_ 1
T (055

(B.3)

£(X) =

(B.4)

(B.5)

References

[1] J.I Read, J. Phys. G Nucl. Part. Phys. 41 (2014) 063101.
[2] KA. Hegyi, DJ. Olive, Phys. Lett. B. 126 (1983) 28.
[3] J. Preskill, M.B. Wise, F. Wilczek, Phys. Lett. B. 120 (1983) 127.
[4] P. Abbott, L. Sikivie, Phys. Lett. B. 120 (1983) 133.
[5] W. Dine, M. Fischler, Phys. Lett. B. 120 (1983) 137.
[6] E. Witten, Phys. Rev. D. 30 (1984) 272.
[7]1 LM. Dodelson, 5. Widrow, Phys. Rev. Lett. 72 (1994) 17.
[8] G.Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267 (1996) 195.
[9] W. Hu, R. Barkana, A. Gruzinov, Phys. Rev. Lett. 85 (2000) 1158.
[10] G. Kim, ].E. Carosi, Rev. Modern Phys. 82 (2010) 557.
[11] H.R. Peccei, R.D. Quinn, Phys. Rev. Lett. 38 (1977a) 1440.
[12] H.R. Peccei, R.D. Quinn, Phys. Rev. D 16 (1977b) 1791.
[13] S. Weinberg, Phys. Rev. Lett. 40 (1978) 223.
[14] F. Wilczek, Phys. Rev. Lett. 40 (1978) 279.
[15] J.E. Kim, Phys. Rev. Lett. 43 (1979) 103.
[16] M. Shifman, A. Vainshtein, V. Zakharov, Nucl. Phys. B. 166 (1980) 493.
[17] M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B. 104 (1981) 199.
[18] A. Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 260.
[19] E. Svrcek, P. Witten, ]. High Energy Phys. 2006 (2006) 051.
[20] A. Arvanitaki, 5. Dimopoulos, S. Dubovsky, N. Kaloper, ]. March-Russell,
Phys. Rev. D. 81 (2010) 123530.
[21] A. Ringwald, Axions and axion-like particles, 2014.
[22] M. Pospelov, 5. Pustelny, M.P. Ledbetter, D.F]. Kimball, W. Gawlik, D.
Budker, Phys. Rev. Lett. 110 (2013) 021803, 1205.6260.
[23] DJ.E. Marsh, Phys. Rep. 643 (2016) 1.
[24] K. Choi, S.H. Im, CS. Shin, Ann. Rev. Nucl. Part. Sci. 71 (2021).
[25] ]JL. Wechsler, R.H. Tinker, Ann. Rev. Astron. Astrophys. 56 (2018) 435,
http://dx.doi.org/ 10.1146/annurev-astro-081817-051756.
[26] P. Sikivie, Phys. Rev. Lett. 48 (1982) 1156.
[27] A. Vilenkin, Phys. Rep. 121 (1985) 263.
[28] T.W.B. Kibble, ]J. Phys. A Math. Gen. 9 (1976) 1387, http://dx.doi.org/10.
1088/0305-4470/9/8/029.
[29] Y.B. Zel'Dovich, LY. Kobzarev, L.B. Okun’, Sov. ]. Exp. Theor. Phys. 40 (1975)
1.
[30] ] Preskill, 5.P. Trivedi, F. Wilczek, M.B. Wise, Nucl. Phys. B. 363 (1991) 207.
[31] S.E. Larsson, S. Sarkar, P.L. White, Phys. Rev. D. 55 (1997) 5129.
[32] A. Friedland, H. Murayama, M. Perelstein, Phys. Rev. D. 67 (2003) 043519,
https://link.aps.org/doif 10.1103/PhysRevD.67.043519.
[33] T. Hiramatsu, M. Kawasaki, K. Saikawa, T. Sekiguchi, ]. Cosmol. Astropart.
Phys. 2013 (2013) 001.
[34] P.P. Avelino, Phys. Rev. D. 101 (2020) 023514
[35] M. Ibe, S. Kobayashi, M. Suzuki, T.T. Yanagida, Phys. Rev. D. 101 (2020)
035029, htips:/|link.aps.org/doi/ 10.1103/PhysRevD.101.035029.


http://refhub.elsevier.com/S2212-6864(22)00091-7/sb1
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb2
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb3
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb4
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb5
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb6
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb7
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb8
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb9
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb10
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb11
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb12
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb13
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb14
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb15
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb16
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb17
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb18
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb19
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb20
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb20
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb20
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb21
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb22
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb22
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb22
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb23
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb24
http://dx.doi.org/10.1146/annurev-astro-081817-051756
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb26
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb27
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb29
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb29
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb29
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb30
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb31
https://link.aps.org/doi/10.1103/PhysRevD.67.043519
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb33
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb33
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb33
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb34
https://link.aps.org/doi/10.1103/PhysRevD.101.035029

D. Kim, D.FJ. Kimball, H. Masia-Roig et al.

[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]
[47]

[48]

[49]

[50]
[51]

G.B. Gelmini, A. Simpson, E. Vitagliano, Phys. Rev. D. 104 (2021) L061301,
https://link.aps.org/doi/10.1103/PhysRevD.104.L061301.

S. Pustelny, D.F. Jackson Kimball, C. Pankow, M.P. Ledbetter, P. Wlodarczyk,
P. Wcislo, M. Pospelov, ].R. Smith, ]. Read, W. Gawlik, et al., Ann. Phys. 525
(2013) 659.

D. Budker, PW. Graham, M. Ledbetter, 5. Rajendran, A.O. Sushkov, Phys.
Rev. X. 4 (2014) 021030.

V.. Stadnik, YV. Flambaum, Phys. Rev. Lett. 114 (2015) 161301, hrttps:
//link.aps.org/doi/10.1103/PhysRevLett.114.161301.

V.V. Stadnik, YV. Flambaum, Phys. Rev. A. 93 (2016) 063630, https://link.
aps.org/doi/10.1103/PhysRevA.93.063630.

B.M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings,
J- Sherman, W. Williams, A. Derevianko, Nat. Commun. 8 (2017) 1195,
http://dx.doi.org/10.1038/541467-017-01440-4.

A. Pierce, K. Riles, Y. Zhao, Phys. Rev. Lett. 121 (2018) 061102.

A. Garcon, JW. Blanchard, G.P. Centers, N.L. Figueroa, PW. Graham, D.F.
Jackson Kimball, S. Rajendran, A.O. Sushkov, YV. Stadnik, A. Wickenbrock,
et al,, Sci. Adv. 5 (2019).

Y.V. Grote, H. Stadnik, Phys. Rev. Res. 1 (2019) 033187, htips://linkaps.
org/doif10.1103/PhysRevResearch.1.033187.

T. McNally, R.L. Zelevinsky, Eur. Phys. ]. D 74 (2020) 61.

N.L Figueroa, D. Budker, EM. Rasel, Quantum Sci. Technol. 6 (2021)
034004.

D.F. Jackson Kimball, D. Budker, ]. Eby, M. Pospelov, S. Pustelny, T. Scholtes,
Y.V. Stadnik, A. Weis, A. Wickenbrock, Phys. Rev. D. 97 (2018) 043002,
https:/(link.aps.org/doi/ 10.1103/PhysRevD.97.043002.

S. Afach, D. Budker, G. DeCamp, V. Dumont, Z. Gruji¢, H. Guo, DJ.
Kimball, T. Kornack, V. Lebedev, W. Li, et al, Phys. Dark Univ. (ISSN:
2212-6864) 22 (2018) 162, htip://www.sciencedirect.com/science/article/
piif/S2212686418301031.

H. Masia-Roig, J.A. Smiga, D. Budker, V. Dumont, Z. Grujic, D. Kim,
D.FJ. Kimball, V. Lebedev, M. Monroy, 5. Pustelny, et al, Phys. Dark
Univ. (ISSN: 2212-6864) 28 (2020) 100494, http: //www.sciencedirect.com/
science/article/pii/52212686419303760.

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

G. Carleo, 1. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-
Maranto, L. Zdeborova, Rev. Modern Phys. 91 (2019) 045002, hrips://link.
aps.org/doi/10.1103/RevModPhys.91.045002.

[52]
[53]
[54]

[55]
[56]
[57

[58
[59

[60]

[61]

[62]

[63
[64

[65]
[66]
[67]
[68]
[69]

[70]

Physics of the Dark Universe 37 (2022) 101118

N. Qian, Neural Netw. 12 (1999) 145.

J. Duchi, E. Hazan, Y. Singer, . Mach. Learn. Res. 12 (2011) 2121.

T. Tieleman, G. Hinton, et al, COURSERA MNeural Netw. Mach. Learn. 4
(2012) 26.

M.D. Zeiler, Adadelta: an adaptive learning rate method, 2012.

Kingma ]., D.P. Ba, arXiv e-prints. (2014), 1412.6980.

LL Kolb, EW. Tkachev, Phys. Rev. Lett. 71 (1993) 3051, https://link.aps.org/
doi/10.1103/PhysRevLett.71.3051.

E. Braaten, A. Mohapatra, H. Zhang, Phys. Rev. Lett. 117 (2016) 121801.
A. Arvanitaki, 5. Dimopoulos, M. Galanis, L. Lehner, ].0. Thompson, K. Van
Tilburg, Phys. Rev. D. 101 (2020) 083014.

C. Dailey, C. Bradley, D.F. Jackson Kimball, LA. Sulai, 5. Pustelny, A.
Wickenbrock, A. Derevianko, Nat. Astron. 5 (2021) 150.

S. Afach, B.C. Buchler, D. Budker, C. Dailey, A. Derevianko, V. Dumont, N.L.
Figueroa, I. Gerhardt, Z.D. Gruji¢, H. Guo, et al., Search for topological defect
dark matter using the global network of optical magnetometers for exotic
physics searches (gnome), 2021, 2102.13379.

D.F. Jackson Kimball, ]. Dudley, Y. Li, S. Thulasi, S. Pustelny, D. Budker, M.
Zolotorev, Phys. Rev. D. 94 (2016) 082005, https://link.aps.org/doi/ 10.1103/
PhysRevD.94.082005.

D.FJ. Kimball, New ]. Phys. 17 (2015) 073008.

P.R. Kafle, 5. Sharma, G.F. Lewis, ]. Bland-Hawthorn, Astrophys. ]. 794
(2014) 59, http://dx.doi.org/ 10.1088/0004-637x/794/1/59.

M.S. Turner, Phys. Rev. D. 42 (1990) 3572, htips://link.aps.org/doif 10.1103/
PhysRevD.42.3572.

G.N. Wilson, EB. Lewis, Proc. Am. Acad. Arts Sci. (ISSN: 01999818) 48
(1912) 389, http://www.jstor.org/stable/20022840.

F. Yates, Suppl. ]. R Stat. Soc. 1 (1934) 217, https://rss.onlinelibrary wiley.
com/doi/abs/10.2307/2983604.

R.G. Newcombe, Stat. Med. 17 (1998) 857, http:|/dx.doi.org/10.1002/(SICT)
1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E.

S. Wallis, J. Quant. Linguist. 20 (2013) 178, http://dx.doi.org/10.1080/
09296174.2013.799918.

E. Beck, ]. Shultz, Arch. Pathol. Lab. Med. 110 (1986) 13.


https://link.aps.org/doi/10.1103/PhysRevD.104.L061301
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb37
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb37
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb37
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb37
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb37
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb38
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb38
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb38
https://link.aps.org/doi/10.1103/PhysRevLett.114.161301
https://link.aps.org/doi/10.1103/PhysRevLett.114.161301
https://link.aps.org/doi/10.1103/PhysRevLett.114.161301
https://link.aps.org/doi/10.1103/PhysRevA.93.063630
https://link.aps.org/doi/10.1103/PhysRevA.93.063630
https://link.aps.org/doi/10.1103/PhysRevA.93.063630
http://dx.doi.org/10.1038/s41467-017-01440-4
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb42
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb43
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb43
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb43
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb43
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb43
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033187
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033187
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033187
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb45
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb46
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb46
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb46
https://link.aps.org/doi/10.1103/PhysRevD.97.043002
http://www.sciencedirect.com/science/article/pii/S2212686418301031
http://www.sciencedirect.com/science/article/pii/S2212686418301031
http://www.sciencedirect.com/science/article/pii/S2212686418301031
http://www.sciencedirect.com/science/article/pii/S2212686419303760
http://www.sciencedirect.com/science/article/pii/S2212686419303760
http://www.sciencedirect.com/science/article/pii/S2212686419303760
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb50
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb52
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb53
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb54
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb54
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb54
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb55
https://link.aps.org/doi/10.1103/PhysRevLett.71.3051
https://link.aps.org/doi/10.1103/PhysRevLett.71.3051
https://link.aps.org/doi/10.1103/PhysRevLett.71.3051
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb58
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb59
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb59
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb59
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb60
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb60
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb60
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb61
https://link.aps.org/doi/10.1103/PhysRevD.94.082005
https://link.aps.org/doi/10.1103/PhysRevD.94.082005
https://link.aps.org/doi/10.1103/PhysRevD.94.082005
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb63
http://dx.doi.org/10.1088/0004-637x/794/1/59
https://link.aps.org/doi/10.1103/PhysRevD.42.3572
https://link.aps.org/doi/10.1103/PhysRevD.42.3572
https://link.aps.org/doi/10.1103/PhysRevD.42.3572
http://www.jstor.org/stable/20022840
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2983604
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2983604
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2983604
http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
http://dx.doi.org/10.1080/09296174.2013.799918
http://dx.doi.org/10.1080/09296174.2013.799918
http://dx.doi.org/10.1080/09296174.2013.799918
http://refhub.elsevier.com/S2212-6864(22)00091-7/sb70

	A machine learning algorithm for direct detection of axion-like particle domain walls
	Introduction
	Parametric template of the domain-wall crossing event
	Method
	Boundary, distribution, and normalization of the DW crossing event parameters
	Stochastic optimization
	Performance evaluation
	Parameter space optimization

	Result
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Pseudocode of the data analysis algorithm
	Appendix B. The cost function
	References


