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ABSTRACT. We note that the recent polynomial proofs of the spherical and complex
plank covering problems by Zhao and Ortega-Moreno give some general information on
zeros of real and complex polynomials restricted to the unit sphere. As a corollary of
these results, we establish several generalizations of the celebrated Bang plank covering
theorem.

We prove a tight polynomial analog of the Bang theorem for the Euclidean ball and
an even stronger polynomial version for the complex projective space. Specifically, for
the ball we show that for every real nonzero d-variate polynomial P of degree n, there
exists a point in the unit d-dimensional ball at distance at least 1/n from the zero set of
the polynomial P.

Using the polynomial approach, we also prove the strengthening of the Fejes Toth
zone conjecture on covering a sphere by spherical segments, closed parts of the sphere
between two parallel hyperplanes. In particular, we show that the sum of angular widths
of spherical segments covering the whole sphere is at least 7.

1. INTRODUCTION

Bang’s plank covering theorem [2] in its particular case' asserts that if a FEuclidean
ball of arbitrary dimension is covered by planks then the sum of the widths of the planks
18 greater or equal to the diameter of the ball. Here a plank of width 20 is a Euclidean
metric §-neighborhood of an affine hyperplane in RY. When the planks have equal widths,
the Bang theorem may be restated as follows: For any collection of n hyperplanes in the
Fuclidean space, there is a point in the unit ball at distance at least 1/n from the union
of the hyperplanes.

There are spherical [5] and complex [1] versions of the plank covering theorem, with
similar statements in the case of equal planks. The equal plank cases of those versions
were recently proved in [11, 8] by maximizing the absolute value of the polynomial, whose
zero set is the union of hyperplanes (the paper [8] also addresses the case of unequal
complex planks that we extend in Theorem 1.10 below).

We start with two statements whose proofs essentially follow from [11, §].

Theorem 1.1. If a polynomial P € R[xy,. .., x4] of degree n has a nonzero restriction to
the unit sphere S?~1 C R? and attains its mazimal absolute value on S* at a point p then
p is at angular distance at least 5~ from the intersection of the zero set of P with Sd-1,

Theorem 1.2. If a homogeneous polynomial P € Clzy, ..., z4] of degree n is not identi-
cally zero and attains its mazimal absolute value on the unit sphere S*=1 C C? at a point
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p then p is at angular distance at least arcsin \/Lﬁ from the intersection of the zero set of P
with S*~1.

We also need the following description of the equality case from Theorem 1.1.

Theorem 1.3. If a polynomial P € Rlxy,...,x4] of degree n has nonzero restriction to
the unit sphere S%1 C R? and attains its mazimal absolute value on S™' at a point p
and p s precisely at angular distance - from the intersection of the zero set of P with
S4=1 then there exists a circle ¥ C St through p centered at the origin such that the 2n
zeros and the 2n mazxima of the absolute value of the restriction Ply interlace and split
the circle ¥ in 4n segments of length - each.

As for the original version of the problem about the unit Euclidean ball, its maximiza-
tion variant is harder to formulate. The natural question is: Let P € Rlzy,...,x4] be
a polynomial of degree n. How to find a point p € B¢ C R? in the unit ball that is at
distance at least % from the intersection of the zero set of the polynomial P with the ball
B4?

Note that the maximum point of |P| may not serve as p. For example, the Chebyshev
polynomial T, (z) = cos(n arccos z) attains its maximal absolute value at the ends of the
interval [—1,1], but the distance from this maximum to the closest zero is 1 — cos 5-,
which is of order 1/n?. This is a counterexample to the naive approach for d = 1. For
higher dimensions, one can apply 7T}, to one of the Euclidean coordinates on B<.

Hence, the choice of a point avoiding zeros must be trickier. A relatively simple argu-
ment allows us to give a partial answer to the question with the right order of magnitude.

Theorem 1.4. There exists an absolute constant C' > 0 with the following property. For
every nonzero P € Rlxy, ..., x4] of degree n, let the pair of points

(p,q) € S* ! c RY x R?

mazximize the absolute value of the product P(x)P(y) over (z,y) € S*1. Then at least
one of p € B and q € B? is at distance at least % from the zero set of the polynomial P.

A more careful reduction to Theorems 1.1 and 1.3 in the proof of the following theorem
allows us to find an answer to the question with the tight constant 1/n.

Theorem 1.5. There exists a sequence of even univariate analytic functions G, : R =+ R
with the following property. For every nonzero polynomial P € Rxy, ..., x4] of degree n,
some of the points of B4 C R?, where the absolute value of the expression P(x)Gy(|z|)
attains its maximum on the ball BY, is at distance at least % from the zero set of the
polynomial P.

Remark 1.6. The precise definition of the multiplier G,, is given in (4.2), (4.4) of the
proofs section. Below we explicitly state the result that directly follows from this theorem
without mentioning the multiplier.

Corollary 1.7. For every nonzero polynomial P € Rlxy, ..., x4] of degree n, there ezists
a point of B4 C R? at distance at least % from the zero set of the polynomial P.

Thinking about a statement generalizing both Bang’s theorem and the results on zeros
of polynomials, we formulate the following conjecture.

Conjecture 1.8. Assume that Py,..., Py € Rlzy,..., x4 are nonzero polynomials and
01,...,0n > 0 are such that

N
k=1
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Then there exists a point p € B* C R? such that, for every k =1,..., N, the point p is at
distance at least oy from the zero set of Py.

Remark 1.9. Equality cases in Theorem 1.5 and Conjecture 1.8 are not just those de-
fined by hyperplane configurations from the Bang theorem. Apart from sets of parallel
hyperplanes, the bounds are sharp for unions of cylinders over concentric spheres of any
dimension or even combinations of cylinders over spheres of different dimensions. In par-

ticular, for n = 2m, the bound of Theorem 1.5 is sharp for P = H (23 4.. .+, —(3)Y),

2m
=1

where {k;} is an arbitrary increasing sequence of positive integers no greater than d. We
do not know whether all equality cases can be obtained in a similar manner.

In order to justify Conjecture 1.8 we note that [8] essentially provides an approach to
the complex projective version of this conjecture that we state and prove explicitly.

Theorem 1.10. Assume that Py,..., Py € Clz,...,24] are nonzero homogeneous poly-
nomials and é1,...,0n > 0 are such that

N

k=1

2 2
Then the point of maximum of the absolute value of Pfl e P;E,N on the unit sphere S*4=1 C
C? is, for every k, at angular distance at least arcsindy, from the intersection of the zero

set of Py, with S*~1.

Remark 1.11. Since polynomials in the above theorem are homogeneous, one may change
the conclusion to more classical [1|: For every k, p is at Euclidean distance at least 0y,
from the zero set of P.

Remark 1.12. In Theorem 1.2 the requirement that the complex polynomial is homoge-
neous is essential. Otherwise the polynomial P(zy,...,24) = 2" + 1 attains the maximal
absolute value on the unit sphere at points with z; = e (and all other z; = 0),
k = 0,1,...,n. On the other hand, P has zeros whenever z; = ei%“, at angular
distance 7/n from their neighboring points of maximum. Since for sufficiently large
n, m™/n < arcsin \/%? the statement is not true in the nonhomogeneous case. Analo-
gously, Theorem 1.10 would fail for the set of n nonhomogeneous linear polynomials

2k
Pi(z1,. .., 24) :zl—e’2n+1”, E=0,1,...,n—1, 6 = \/Lﬁ
Remark 1.13 (Communicated by Fedor Petrov). One can also formulate the real spherical
version of the conjecture as an extension of Theorem 1.1. The approach of Zhao (see
Lemma 2.1 below) would have a potential to work directly if we could claim that any
point of maximum of the absolute value of a trigonometric polynomial of degree n is

at distance at least % from a zero of multiplicity k. Unfortunately, this is false as the
trigonometric polynomial of degree n = 2

T(x) = (1 —cosx)(0.9 4 cosz)

has a zero of multiplicity £ = 2 at the origin. Its derivative vanishes when cosz = 0.05
or sinx = 0, and it is easy to see that the distance from the double zero to the point of

maximum is arccos 0.05 < % = g—z

Definition 1.14. A spherical segment of width 25 on the unit sphere S?1 is a closed
d-neighborhood (in the intrinsic metric of the sphere) of an intersection of S¢~! c R?
with an affine hyperplane H C RY.
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In case a hyperplane H contains the origin, a spherical segment is called a zone. In
1973, Fejes Téth conjectured [10] that if n equal zones cover the sphere then their width
is at least m/n. He also formulated the generalized conjecture that the total width of any
set of zones covering the sphere is at least m. The generalized conjecture was proved by
Jiang and Polyanskii in [5] based on the approaches of Bang [2] and Goodman-Goodman
[4] (see also [9] for a stronger version of the zone conjecture). In [7], Ortega-Moreno found
another proof of the Fejes Toth conjecture for equal zones that was recently streamlined
by Zhao [11]. As a corollary of our results, we show how to use this approach to prove
the generalized zone conjecture. Moreover, we prove that the generalized conjecture also
holds for spherical segments, thus resolving Conjectures 1 and 2 of Jiang and Polyanskii

[5]-

Corollary 1.15. If the unit sphere S41, d > 2, is covered by a set of spherical segments,
then the sum of their widths is at least .

Remark 1.16. Similar to the proof of this corollary, Theorem 1.5 (in the form of Corol-
lary 1.7) implies Bang’s theorem on covering of a ball by planks. We leave this implication
as an exercise to the reader.

We recall one more conjecture that is still open.

Conjecture 1.17. If d > 4 and the unit sphere S*1 C R is covered by a finite number
of planks then the sum of their widths is at least 2.

Remark 1.18. The case d = 2 of this conjecture obviously fails. The case d = 3 is known
from [6] by calculating areas of spherical segments. When d > 4 and the number of
planks is at most 3, the conjecture reduces to the result of [6], similarly to the proofs of
[3, Theorem 5.3 and Corollary 5.4] with integration over spheres instead of balls. The
general case d > 4 of the conjecture is unlikely to follow from the polynomial approach
because the sphere itself is defined by the polynomial of degree 2. Moreover, the proofs
below are based on reducing the more general statement to d = 2 but this conjecture fails
for d = 2.

Acknowledgments. The authors thank Arseniy Akopyan, Fedor Petrov, Alexey Bal-
itskiy, Vladimir Dol’nikov, Zilin Jiang, Danil Skuridin, and the anonymous referee for
discussions and useful remarks.

2. PROOF OF THE REAL SPHERICAL CASE

The proof is based on the general version of the lemma that was essentially proved in
[11]. We present here the full argument for a reader’s convenience. Unlike in [11], here we
do not assume that a polynomial is homogeneous, which eventually allows us to deduce
Corollary 1.15, as well as Theorems 1.4 and 1.5.

Lemma 2.1 (Zhao, [11]). If a polynomial P € R[zy, z5] of degree n has nonzero restriction
to the unit circle S* C R? and attains its maximal absolute value on S at a point p then
p 1s at angular distance at least - from the intersection of the zero set of P with St If
the distance from p to a zero of P is precisely 5~ then 2n zeros and 2n mazxima of the
absolute value of P interlace and split the circle S into 4n intervals of length 5, each.

Proof. We switch to the polar coordinate on the circle and consider P as a trigonometric
polynomial of degree n. From here on P(t) is a trigonometric polynomial in ¢ € R with
period 27 and degree n.
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Any such polynomial has at most 2n zeros (counted with multiplicities) over its period
2w, or is identically zero. This is true since the zeros are the intersections of the zero set
of P with the circle S* (curve of degree 2).

After a suitable shift, we assume that P has maximal absolute value M at the origin.
Consider the trigonometric polynomial of degree at most n

Q(t) = P(t) £ M cosnt.

Choosing the sign 4+ appropriately we assume that ) has zeros of multiplicity 2 at the
points 27k, k € Z. Apart from this, for m = 1,...,2n — 1, either the expression
Q (@) =P (@) + M cosmm = P (@) + M(—-1)™
n n n
has sign +(—1)™, or @ has a multiplicity 2 zero at mm/n.
Applying the intermediate value theorem carefully, one observes that there are at least

2n—1)w

2n — 2 zeros of () (counted with multiplicity) on [%, ( — } Namely, when the values

m (m+1)7r
n ’ n

on the endpoints of [ }, m=1,...,2n — 2, are nonzero, we find a zero of () in

the interior. If @) has a zero at a point mm/n then at this point both P and M cosnt are
locally extremal and therefore this zero is of multiplicity at least 2. In this case we assign
those (at least two) zeros to the two neighboring intervals.

Since we also have a multiplicity 2 zero at the origin, we have already identified 2n
zeros of () per period. Moreover, if () has a zero in =* or = then the zero is of multiplicity
2 and @ has to be identically zero.

Therefore @ is either identically zero (then P(t) = FM cosnt and the claim holds,
including the characterization of the equality case), or () has no zero on the set

[%ﬁo) U (0%] .

In particular, if M > 0 then on [‘T“, %] the inequality
P(t) > M cosnt

holds. If M < 0 then the opposite inequality holds. In both cases, there are no zeros of
P in (5—;, %) apart from 0 itself.

In the above argument the only possibility to have the distance from a maximum point
of P to a zero of P precisely 7- was () = 0, P(t) = M cosnt. In this case the 2n zeros
and the 2n maxima of the absolute value of P interleave and split the circle S* in 4n

segments of length - each. U

Proof of Theorems 1.1 and 1.5. We consider points py from the zero set of P and p,,
maximizing the absolute value of P such that the angular distance between them is
minimal possible. For the linear span of py and p,,, (po,pm), we apply Lemma 2.1 and
prove that the angular distance between py and p,, is at least 7-. By the second part of
Lemma 2.1, if the angular distance is precisely 5 then ¥ = SN (py, prm) is the needed
circle. 0

Proof of Corollary 1.15. Call the core of a spherical segment the intersection H N S9!,
where H is a hyperplane from the definition of a spherical segment. First, assume that
spherical segments have equal widths 20 and there are n spherical segments in total. If

20m <,

which is equivalent to
)< 1
2n’
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then consider the polynomial of degree n
P=1Ly Ly,

where L; = 0 is the linear equation of the i*" core.

Applying Theorem 1.1 to P, we obtain a point x € S9! at spherical distance at least
5= > 0 from all the cores. This point does not belong to any of the spherical segments,
and this case is done. Note that the equal width case works for spherical segments in
general, not just zones.

The next case is when all widths of spherical segments are rational with a common
denominator N. Then we split every spherical segment into several spherical segments of
width 1/N. This reduces the rational case to the case of equal spherical segment widths.

The general case is done by assuming the contrary, that is, the sum of widths of spherical
segments is less than w. We slightly increase the width of each spherical segment so that
it becomes rational but the sum of widths is still less than 7. Then applying the rational
case, we reach a contradiction. [l

3. PROOFS OF THE COMPLEX SPHERICAL CASES

The proof is based on the lemma that was essentially proved in [8], but we present here
the full argument for a reader’s convenience.

Lemma 3.1 (Ortega-Moreno, [8]). If a homogeneous polynomial P € C[zy, z9] of degree
n s nonzero and attains its mazimal absolute value on the unit sphere S3 C C? at a point
p then p is at angular distance at least arcsin \/iﬁ from the intersection of the zero set of

P with S3.

Proof. In case n = 1, P is linear and it is easy to see that the maximum of P is at distance
arcsin 1 = 7/2 from its zero hyperplane. This allows us to assume n > 1 and divide by
n—1>0.

Note that |P| is a well-defined function on the complex projective line CP! = S3/S1,
where S* C C are the complex numbers of unit norm. From here on we consider |P| as a
function of the affine coordinate w € C.

Choose an affine coordinate w = x 4 iy on the projective line so that |P(0)] = 0. In
such coordinates a point w € C corresponds to

w 1 653
VIt w2 1+ w?

and the absolute value we study expresses as
—n/2
1P| = [wQ(w)| (1+ [w]*) ™",

where () is a univariate polynomial. After a suitable rotation, we can assume that the
maximum of |P| is attained at a € RT. Write down the differential of In |P|

d 'd d d

din|p| = g L v _ vdr T ydy
w Q 1+ |w|?

and observe that it is 0 at a, that is,

, / 1
B +%ng — g% =0, and thus, d1n]Q| = %ng B ( i ) "

1+a2 a

If .

na
——<0
1+a?2 a ’
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which is equivalent to

1
n—1’
then In |Q| grows when «a is replaced by a — € for a sufficiently small ¢ > 0. From the
maximum principle, |Q| has a value that is strictly greater than |Q(a)| and is attained
at some point of the circle {|w| = a}. But in this case |P| at this point will be strictly
greater than |P(a)|, contradicting the initial choice of a.

Hence a® > ﬁ In terms of the angular distances on S®, we need to bound from below
the distance from py = (0,1) to

a? <

B ( a 1 )
b Vita® Vi+a?)’
which equals
n—1 o1
> arccos {/ —— = arcsin —.

1
V1i+a?z ~ n Vn

arccos |pg - pa| = arccos

0

Proof of Theorem 1.2. Assuming the contrary, we find a point py such that P(py) = 0 and
another point p,,, where the maximum of |P| is attained, so that the angular distance
between them is strictly smaller than arcsin \/Lﬁ Going to the linear span of py and p,,,
we apply Lemma 3.1 and reach a contradiction. 0

Proof of Theorem 1.10. The proof is similar to the one above and just extends the argu-
ment from [8]. Consider the product

P(z) =P PR
and let
N
D = Z(Szdeng < 1.
k=1

Note that P is not well-defined on the unit sphere S??~1 (as the powers of complex numbers
are multi-valued), but its absolute value | P| is well-defined and descends to a function on
CP4 L. Let p be a maximum point of |P| on the sphere. Consider a zero py of P, and
show that its angular distance from p to pg is at least arcsin k.

After restricting to the two-dimensional subspace through p and py, we may switch
from S3 C C? to its quotient CP! and an affine coordinate w = x + iy there. Assuming
po = 0, we get

1P| = [ Q)| (1+ [w?) ™",
where Q(w) is a product of expressions of the form Ry(w)% with polynomial R,. Note
that |@| is thus subharmonic. Express the differential

dw Q' dw xdzr + ydy
dln|P| = #R— + R - D .
n| Pl =20 w * Q 1+ |w|?
Assume that p corresponds to a positive real a in our CP! affine coordinate and write
dx Q' dw adx Q'dw Da 62
67— -D = d thus, d1 = = — ) da.
ka—HR 0 T2 0, and thus, dIn|Q| =R 0 (1—|—a2 ) de
If we have the inequality
Da 52
— = <0,

1+a?2 a
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which is equivalent to )

2 O

@ < 5= 5

then In |@| grows when a is replaced by a—e for a sufficiently small ¢ > 0. This contradicts
the choice of a, since |@| is subharmonic and the maximum of |@Q| is attained on the
boundary of the disc {|w| < a}. Hence there must be a point on the boundary {|w| = a}
such that the value of |@| at this point is strictly greater than |Q(a)|. Subsequently, the
value of |P| at this point is strictly greater than |P(a)| contradicting the initial choice of
P.

Now we lift the points back to the sphere S® C C?. Once we have a? > DETzag’ the
distance from py = (0, 1) to
B a 1
Pa = <\/1+a27 \/1—{—61,2) ’
is then bounded from below as follows:
arccos |pg - pa| = arccos 1 > arccos b-5 = arcsin Ok > arcsin 6y,
‘ Vita? ™ D vD ~
]

4. PROOFS OF THE RESULTS ABOUT THE BALL
We start this section with the proof of the easier partial result.

Proof of Theorem 1.4. Due to Theorem 1.1, we know that z = (p, ¢) is at angular distance
at least 7~ from the intersection of the zero set of P(z)P(y) with S?*~!. The Euclidean

distance corresponding to 7= is 2sin &~ > -, due to concavity of sinz on [0, 7/2].
Without loss of generality, assume
Ip| < |q|, and thus, [p| < 1/v/2.

Let us show that p is a suitable point in the unit ball B¢ ¢ R? for C' = %. Assume
the contrary, that is, there is a point py € R? at distance less than # from p such that
P(po) = 0. Lift py to a point in S$??~! given by

(p07tQ)’ |pO|2_|_tQ|Q|2 =1,
which is equivalent to

po* =1+ gI* _ |pol® = Ipl?

11—t = =
|q|? |q)?

Hence
— . 1 1 2—1
11—t = [Ipol — [P l‘mﬂpH < — and thus, [I — ¢ <1—4/1——< V2 :
’CI‘ 2n 2n 2\/§n

with the last inequality following from the convexity of 1 —+/1 — x on the interval [0, 1/2].
The point (pg,tq) is a zero point of P(z)P(y) and its Euclidean distance from (p,q) is
estimated as

1 /1 1 1
_ 2 tg — )2 < 1—-1)2< —_— < —

which contradicts the lower bound of % from the initial assumption. U

Now we move to the proof of Theorem 1.5. For a reader’s convenience, we first outline
the structure of the proof:
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e Approximate the ball by a spherical cap of a sphere of large radius.

e Lift the polynomial to the sphere and multiply it by another polynomial. Choose
the multiplier so that it is (almost) impossible to have maxima of the absolute
value of the product on the sphere outside the original lifted cap.

e Apply Theorems 1.1 and 1.3 and find a maximum point of the absolute value of
the product that is sufficiently far from the zero set of the product and, therefore,
from the zero set of the original polynomial.

e In order to make our estimate tight, carefully take the limit as the radius of the
sphere tends to infinity.

We need some preparations to describe the multiplier G,, in the statement of the the-
orem. Consider Chebyshev polynomials of the first kind 7T, € R[t] satisfying T,,(t) =
cos(narccost) for |[t| < 1. We first show the classical fact asserting that the sequence of
the properly stretched Chebyshev polynomials of odd or even degree converges uniformly
on compact sets to the sine or cosine functions, respectively.

Claim 4.1. The sequence of polynomials (—1)™Thy (5% ) converges uniformly to cost on
compact sets. Analogously, the sequence of polynomials (—1)™ T, 41 (
formly to sint on compact sets.

t .
Smri) CONVETges uni-

Proof. For any t with [t| < 2m, we have

t t t
(=)™ T, (%> = (—1)"cos (Qm arccos %> = cos <2m arcsin %) :

Since the sequence 2m arcsin( #) converges uniformly to ¢t on compact sets and the func-
tion cost is 1-Lipschitz, we obtain the desired uniform convergence to cost.
Analogously, one can prove the second uniform convergence. 0

Recall that the cosine and sine functions can be represented as infinite products as

follows
cost—ﬁ 1-— L 2 and sint—tﬁ 1-— i 2

J=1

The Chebyshev polynomial has a similar product representation

Ton(t) = (_mﬁ <1 - (tl)) and T (t) = (=1)"(2m-+1)t ; <1 - (tj;mH)Q) ,

where 1, < --- <{t|/2) % are positive zeros of T}, that is,

—4i n ‘27—7T if & = 2m;
(4.1) tix =siny;x, where p;;, = 777: m
J if k= 2m 1,
2m+1

Given positive integers n and k of the same parity, n < k, we consider the function
gn : R — R and the polynomial g, ; € R[t] defined as follows

( o) 2
2
| | (1 — (ﬁ) > if n is even;
et (2j = Dm

i=3
00 ¢ 2
H (1 — (—) > if n is odd;
gqm
:7L+1

\j 2

(4.2) gn(t) =
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(4.3) () = LﬁJ (1—<kéﬁk)2>.

j=[n/2)+1

By (4.1), we have 2mt; o, and (2m+1)t; 9,41 converge to j and (25 —1)/2, respectively,
as m — o0o. Therefore, since the product representations of ¢, and g, differ from
corresponding trigonometric functions and polynomials (—1)*T}(t/k), respectively, by the
similar multiplicative factor, Claim 4.1 implies the following.

Claim 4.2. The sequence of polynomials g, x(t) converges to g,(t) uniformly on compact
sets as k — oo.

The function G,, from the statement of Theorem 1.5 is the scaled version of g, that is,

nmi
(4.4) Golt) = g1 (7) |
Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. For a polynomial P € Rxy,...,z4] of degree n, define the contin-
uous function @ : R? — R and the polynomial Q € R[zy, ..., x4 of degree k > n, where
k has the same parity as n, as follows

Q) = Plolg, ("5 ) and @ule) = Pt (5.

By Claim 4.2, the sequence of the polynomials Q(x) converges to Q(x) uniformly on the
ball B¢ as k — oo.

Let the polynomial Qy(z) attain its maximal absolute value in B¢ at a point p;. From
the uniform convergence, a subsequence of (pg) converges to a point where Q(z) attains
its maximal absolute value in B?. Hence it is sufficient to show that the distance between
pr and the zero set of P is bounded from below by a number converging to 1/n as k — cc.

Put B in R%*! with additional last coordinate z in the horizontal hyperplane

H:={(z,2) e R | 2 =0}

and consider the d-dimensional sphere S, of radius rj, = 2

2k centered at the origin of R*!.
All spheres of this sequence are of dimension d, so we do not indicate their dimension
further on. Denote by C, the spherical cap on Sy of spherical radius r (that is, radius in
the intrinsic metric of Sy) centered at the north pole (0, 7).

For the sake of brevity, denote by Z(Qy) the intersection of the zero set of the polynomial
Qr(x) (independent of z) of degree k with the sphere Si. Slightly abusing notation, denote

n|z|
2

with the sphere Si. Clearly, Z(gn,x) C Z(Qk). Let M(Qy) be the set of points where
Qr(x) attains its maximal absolute value on Sk.

Now we can show that the set Z(g, ) partitions the sphere S into two spherical caps
+C, L1 with centers at the north and south poles and spherical radius 1+ %, and k—n—1
spherical segments of width %; see Figure 1. Indeed, due to (4.3) and (4.1), the set Z(g,.x)
consists of horizontal (d — 1)-dimensional spheres defined by the intersection of the sphere
Sj, with the union of the parallel £ — n horizontal hyperplanes

{(:c, z) € R ! z = &y cos ij,k} )

where j € {|n/2] +1,...,|k/2]}. Using the formula for ¢, in (4.1), we obtain that any
two consecutive (d—1)-dimensional spheres on S, (whose radius is 7) are at the spherical

by Z(gnx) the intersection of the zero set of the polynomial g, ( of degree k —n
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FIGURE 1. The zero set of g, is illustrated in dashed lines; the intersection
of Sy with horizontal hyperplanes (colored solid lines) is Z(gy ).

us

distance 71y = % apart. Since these k — n hyperplanes form k& —n — 1 spherical segments
on Sy, the radius of two remaining caps is 3(mr, — (k —n —1)2) =1+ 1,

Let us show that there is a point of the set M(Qy) lying in the cap C,, 1. Indeed, by
Theorems 1.1 and 1.3, we have two possible options. "

1. There exists a point g, € M(Q}) at spherical distance strictly larger than Tk = %
from Z(Qx).
2. There is a great circle ¥ on Sy, containing exactly 2k points of Z(Q) and exactly 2k
points of M (Qy) so that the zeros and the maxima of the absolute value interlace
™ 1

and are equally spaced with spherical distance 5t = -.

In the first case, from the strict inequality on the distance the point ¢ cannot lie in
any of the spherical segments of width % bounded by spheres from Z(g, ). Therefore the
point g must lie in one of the caps =C| 1. Since the polynomial Q(z) is independent
of z, we may apply the transformation z s —z and assume q € C) .

In the second case, since ¥ ¢ Z(Qg), the circle ¥ must intersect every sphere of
Z(gni) C Z(Qy) at two points. Otherwise, the restriction of @) (the product of P(x)
of degree k and g, x(nm|z|/2) of degree n — k) to the circle ¥ would have less that 2k
roots, which is not the case. Therefore, the intersection ¥ N C, 41 is not empty and must

contain at least one point of the set M(Qy). Denote one of them by g, € M(Q)) NCy, 1.

As in the first case, by Theorem 1.1, the point g lies at spherical distance at least 1/n
from Z(Qy).

In both cases, the point g, € €', 1 must be at spherical distance at least % from the
boundary of €', 1, because the bounndary itself is a part of the set Z(gnx) C Z(Qk);
see Figure 1. The;efore, qx lies in the cap €} C U, 1 of spherical radius 1 centered at the
north pole of 5. !

To summarize, we have found a point g, € C; N M(Qy) at spherical distance at least
L from the intersection of Sy, and the zero set of the polynomial P(z) (not depending on
z) as this intersection is a subset of Z(Qy). The projection onto the hyperplane H maps
¢ to a point p; in the ball BY. The image of the spherical cap C; under this projection
is contained in the ball B? and tends to the ball B? as k — oo. The ratio between the
spherical distance in C and the Euclidean distance in its projection to B? tends to 1 as
k — oco. Hence the Euclidean distance between p, € B? and the zero set of P(z) tends
to 0 > 1/n. Therefore, we obtain the desired sequence of points (p;) maximizing the
absolute value of Q).
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