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Abstract

Consider the steady solution to the incompressible Euler equation 4 =
Ae; in the periodic tunnel Q = T4~ x (0,1) in dimension d = 2, 3.
Consider now the family of solutions u” to the associated Navier-Stokes
equation with the no-slip condition on the flat boundaries, for small vis-
cosities v = A/Re, and initial values in L2. We are interested in the
weak inviscid limits up to subsequences u¥ — u° when both the vis-
cosity v converges to 0, and the initial value ug converges to Ae; in L2
Under a conditional assumption on the energy dissipation close to the
boundary, Kato showed in 1984 that u” converges to Ae; strongly in
L? uniformly in time under this double limit. It is still unknown whether
this inviscid limit is unconditionally true. The convex integration method
produces solutions ug to the Euler equation with the same initial values
Ae; which verify at time 0 < T < Tp: ||ug(T) — Ael||%2(9) ~ A3T.
This predicts the possibility of a layer separation with an energy of order
A3T. We show in this paper that the energy of layer separation asso-
ciated with any asymptotic 4 obtained via double limits cannot be
more than |[u>(T) — Ael||%2(n) < A3T. This result holds uncondi-
tionally for any weak limit of Leray-Hopf solutions of the Navier-Stokes
equation. Especially, it shows that, even if the limit is not unique, the
shear flow pattern is observable up to time 1/A. This provides a notion
of stability despite the possible non-uniqueness of the limit predicted
by the convex integration theory. The result relies on a new boundary
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vorticity estimate for the Navier-Stokes equation. This new estimate,
inspired by previous work on higher regularity estimates for Navier-
Stokes, provides a nonlinear control scalable through the inviscid limit.
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1 Introduction

For dimension d = 2, 3, we consider the periodic channel with physical bound-
ary at 24 = 0 and x4 = 1: @ = T9! x (0,1), where T = [0, 1]pe; denotes
the unit periodic domain. For any kinematic viscosity v > 0, we denote
u” 1 (0,T) x Q — R? the velocity field of an incompressible fluid confined in
), subject to no-slip boundary conditions, and P” : (0,7T) x Q — R the asso-
ciated pressure field. The dynamic of the flow is described by the following
Navier-Stokes Equation:

o’ +u” - Vu¥ + VPY =vAu”  in (0,T) x Q
divu” =0 in (0,7) x Q (NSE,)
u’ =0 for zg =0, and z4 = 1.

For any A > 0, we investigate the inviscid asymptotic behavior of u” when
v converges to 0, under the condition that the initial values converge to a
shear flow of strength A:

,}ig%) [[u”(0) — AelHLZ(Q) =0. (1)

Note that the steady shear flow u(t,z) = Ae; is solution to the Euler equation
with impermeability boundary condition:

o +u-Vi+VP=0 in(0,T)xQ
divi =0 in (0,7) x (EE)

uw-n=>0 for zg =0, and x4 = 1,

where n is the outer normal as shown in Figure 1. However, it is an out-
standing open question (even in dimension 2) whether, in the double limit
(1) and v — 0, the solution u” of (NSE,) converges to this shear flow Ae;.
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The difficulty of this problem stems from the discrepancy between the no-
slip boundary condition for the Navier-Stokes equation and the impermeable
boundary condition of the Euler equation. Kato [1] showed in 1984 a condi-
tional result ensuring this convergence under the a priori assumption that the
energy dissipation rate in a very thin boundary layer I', of width proportional

to v vanishes: -
lim/ / v |Vu)? dedt = 0.
v—0 0 r,

This condition has been sharpened in a variety of ways (see, for instance
[2-5] and Kelliher [6], for a general review), and similar other conditional
results have been derived (see for instance [7-10]). Non-conditional results of
strong inviscid limits have been obtained only for real analytic initial data
[11], vanishing vorticity near the boundary [12, 13], or symmetries [14, 15].
Since [16], it is expected that in favorable cases, the Prandtl boundary layer
describes the behavior of the solution u” up to a distance proportional to 1/v.
However, even in the simple shear flow case, it is possible to engineer families
of initial values «”(0) converging to the shear flow, but associated to Prandtl
boundary layers which are either strongly unstable [17], blow up in finite time
[18], or even ill-posed in the Sobolev framework [19, 20].

It is actually believed that the inviscid asymptotic limit may fail due to
turbulence (See Bardos and Titi [21]). This scenario is consistent with the non-
uniqueness pathology of the shear flow solution for the Euler system (EE).
Indeed, an adaptation to the boundary value problem (EE) of the construction
based on convex integration of Szekelyhidi in [22] provides infinitely many
solutions to (EE) with initial value Ae; (see also Bardos, Titi, Wiedemann [7]
for a different boundary geometry). More precisely, the following estimate can
be proved on this construction (see appendix A).

Proposition 1 For any 0 < C' < 2, there exists a solution v to (EE) with initial
value Aey such that for any time T < 1/(2A):

[o(T) = Aex|F2(q) = CAT.

The convex integration is a powerful tool introduced by De Lellis and
Szekelyhidi [23] to construct spurious solutions to the Euler equation. It proved
itself to be a powerful tool to model turbulence. For instance, the technique
was successfully applied by Isett [24] to prove the Onsager theorem (see also
[25] for the construction of admissible solutions, and [26] for the proof of the
other direction). It shows that turbulent flows can have regularity C* for any
a up to 1/3, a property conjectured by Onsager [27]. Proposition 1 predicts
the possible deviation from the initial shear flow Ae; due to turbulence, a
phenomenon called layer separation. Moreover, it provides an explicit value
for the L? norm of this layer separation.

This article aims to provide an upper bound on the L? norm of possible
layer separations through the double limit inviscid asymptotic. In our channel
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framework, the Reynolds number is given by Re = A/v. Our main theorem is
the following.

Theorem 2 Let Q be a unit periodic channel in R? of dimension d = 2,3. There
ezists C > 0 depending on d only, such that the following is true. Let u = Ae;y be a
constant shear flow for some A > 0, and let u¥ be a Leray-Hopf solution to (NSE,)
with kinematic viscosity v > 0. For any T > 0, we have

H“V(T) - ﬂ||i2(Q) + % HVUVHQL?((O,T)XQ)

< 4w’ (0 + CAPT + CA®Re™ ' log(2 + Re).

_112
)_“HLZ(Q)

This theorem is the special case of a more general result given in Theorem 5
at the end of this section. By Leray-Hopf solution, we mean any weak solutions
to (NSE, ) which in addition verifies the energy inequality:

1d 12 U2
Sq [u 1720y < =V [IVU”||72(q) -

We have the following corollary on any weak inviscid limit, which corresponds
to the layer separation predicted by Proposition 1.

Corollary 3 There exists a universal constant C > 0 such that the following is
true. Consider any family v” of a Leray-Hopf solutions to (NSE,) such that ug
converges strongly in L? (Q) to Aey. Then, for any weak limit u™ of weakly convergent
subsequences of u”, we have for almost every T > 0 that

[ u*(T) — Ae1|\iz(m < OAPT.

Note that the solutions u” are uniformly bounded in L*(R*,L?(Q)).
Therefore they converge weakly up to a subsequence in Lf)m.

This result bets on the fact that the double limit to Ae; in the inviscid
asymptotic may fail, which is related to the physical relevance of the solutions
constructed by convex integration. An interesting question is whether such
solutions can be themselves obtained via double limit in the inviscid asymp-
totic. A first result in this direction was provided by Buckmaster and Vicol [28]
where they constructed via convex integration, in the case without boundary,
spurious solutions at the level of Navier-Stokes. They show that the inviscid
limit of this family of Navier-Stokes solutions can converge to spurious solu-
tions of Euler. However, these spurious solutions constructed at the level of
Navier-Stokes do not have enough regularity to be Leray-Hopf solutions, and
therefore do not fit in the framework of Corollary 3.

Non-uniqueness and pattern predictability

The non-uniqueness of solutions to the Euler equation, as proved by convex
integration, puts under question the ability of the model itself to predict the
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future. Theorem 2 provides a first example of how non-uniqueness and pattern
predictability can be reconciled. The energy of the shear flow is A2, while the
maximum energy of the layer separation is bounded above by C A3T. This pre-
dicts pattern visibility on a lapse of time 1/A. On this lapse of time, the layer
separation stays negligible compared to the shear flow pattern. Especially, the
smaller the pattern is (small A), the longer the prediction stays accurate.

Inviscid limit and boundary vorticity

It is well known that the possible growth of the layer separation is closely
related to the creation of boundary vorticity (see Kelliher [4] for instance). To
see this, we formally compute the evolution of the L? distance between u* and

u:

1d v — v — v
2dt [[u” — U||2L2 = (u” — u, Ou”)
=—(u” —u,u” - Vu") — (v —u,VP") + v(u’ — u, Au")

=v(u’, Au”) — v(a, Au")
— vV~ [l ) o
o0

where J[i] = nt -4 when d = 2 and J[u] = n x 4 when d = 3, and w” is
the vorticity of «”. Since u is a constant on the boundaries, it is crucial to
estimate the mean boundary vorticity. If the convergence z/w”’ a0 — 0 holds
in the average sense, then the inviscid limit would be valid. For a general
static smooth solution to Euler’s equation « in a general domain 2, we only
need vw” ’ a0 — 0 In distribution. This convergence may fail and we could lose
uniqueness, but we can still control the size of the impact from this boundary
vorticity using Theorem 4 below.

Fig. 1 2D Periodic Channel
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Before showing the theorem, we first illustrate which estimates we may
expect and how they prove Theorem 2. Denote the energy dissipation by

V(2
D:=v Hvu ||L2((07T)XQ) .
If we take the curl of (NSE, ), we have the vorticity equation,
Ow +u-Vw =rvAw+w - Vu.

The main difficulties are due to the transport term « - Vw, and the boundary.
Let us put aside those two difficulties for now, and focus on the other terms.
Then the regularity we could expect for w is at best

2 ||o2
v v wHLl((O,T)xQ) Savw- Vullpioryxa) < D-

Here A <; B means A < C(d)B for some constant C(d) depending in dimen-
sion d only. This is not rigorous because the parabolic regularization is false in
L', but let us also ignore this issue for the moment. By interpolation, we have

3 1
2

2
siomman 5 (17l oryne)” (v Iliaqoryan) a D

3 2
v2 (|V3w

Finally the trace theorem suggests that (again, this is the borderline case for
the trace theorem, so in no way a rigorous proof)

2 <aD.
1915 o 2 0m 2 (3)

Using this L% estimate, if we integrate (2) from 0 to T, we have

1., _2
B} [ =l L2y (T) + D

1 v ~ = v
<3 [[u” — UH%wm (0) + 1[u] - v’ |l 1 0,7y x 09)
v 2 _
<3 l[u” = al|72(q) (0) + lvw”]l, 5 (0.T)x59) ||UHL3((O,T)><BQ)
1, 1

for some constant C' depending on d only. By absorbing %D to the left we finish
the proof of Theorem 2. Note however, that this direct proof collapses due to
the transport term. In dimension three, u can be controlled at best in Llo/ 3

while the best control of Vw is in the Lorentz spaces Lt v 59 for any q > 4/3
(see [29]). But this is far from enough to bound the transport term uVw in
L;z. In dimension 2, the transport term can almost be controlled in L!. But
the bound is in negative power of v and so is useless for the asymptotic limit.
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However, we can use blow-up techniques inspired by [30] (see also [29, 31])
which naturally deplete the strength of the transport term.

Boundary vorticity control for the unscaled Navier-Stokes equation

In the review paper [32], Maekawa and Mazzucato summarized the
difficulties of considering inviscid limit with boundary:

Mathematically, the main difficulty in the case of the no-slip boundary condition
is the lack of a priori estimates on strong enough norms to pass to the limit, which
in turn is due to the lack of a useful boundary condition for vorticity or pressure.

Following this remark, our proof relies on a new boundary vorticity con-
trol. This is a regularization result for the unscaled Navier-Stokes equation.
However, it is remarkable that this estimate is rescalable through the invis-
cid limit ¥ — 0. The strategy of looking for uniform estimates with respect
to the inviscid scaling was first introduced for 1D conservation laws in [33].
It was successfully applied to obtain the unconditional double limit inviscid
asymptotic in the case of a single shock [34]. Note that if (u”, P¥) is a solu-
tion to (NSE,), then u(t,z) = u”(vt,vx), P(t,x) = PY(vt,vz) solves the
Navier-Stokes equation with unit viscosity coefficient in (0,7/v) x (2/v):

Ou+u-Vu+ VP = Au, divu = 0. (NSE)

The regularization result on the vorticity at the boundary is as follows.

Theorem 4 (Boundary Regularity) There exists a universal constant C > 0 such
that the following holds. Let Q be a periodic channel of period W and height H of
dimension d = 2 or 3. For any Leray-Hopf solution u to (NSE1) in (0,T) x Q, there
exists a parabolic dyadic decomposition

closure {(O, T) x 89} = closure { U (s',t") x By, (xl)},

2

wher60§5i<ti§T,0<7"i<%,xieaQ, and

Br(y) = {(«,2q) €992 ||2" —o/| oo <7 2a =va}

is a box of dimension d —1 in 082, such that the following is true. Define a piecewise
constant function @ : (0,T) x 0Q — R by taking averages

i
w(t,z) = ,1 / ;/ wdt
}Bri B i(z) |V — 8" Jgi

Then

2

da’, fort € (s',t"), & € B,i(zh).

Ol < C||Vul? .
{o>max{t 5z 52 } ) L3> ((0,T)x0%) IVelizo)xay

LA dyadic decomposition into cubes of parabolic scaling. See Definition 2.
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This theorem provides a “scaling invariant” nonlinear estimate, that is,
both sides of the estimate have the same scaling under the canonical scaling
of the Navier-Stokes equation (¢, x) + cu(e?t, ex). The bounds in the theorem
do not depend on the size of 2 or the terminal time 7', and we do not require
any smallness for the initial energy.

The conclusion of this theorem is slightly different from what we hope in
(3), due to some difficulties that we overlooked in the formal argument. To
begin with, the higher regularity V2w € L! is not known. As mentioned before,
one reason is the transport term u - Vw is indeed hard to control. Using blow-
up techniques along the trajectories of the flow first introduced in [30], it was
proved in [29] that without boundary in Q = R3, V2w € L1 locally for ¢ > 1
but miss the endpoint L'. The bounded domain is even more complicated
because of the lack of convenient global control on the pressure. In turn, it
means that no control on the pressure can be brought locally through the
blow-up process. This poses problems when applying the boundary regularity
theory for the linear evolutionary Stokes equation. Indeed, a counterexample
constructed in [35] shows that we cannot control that way oscillations in time.
The idea which remedies this problem consists in smoothing locally in time to
gain some integrability. We can then apply the boundary Stokes estimate for
J udt instead of u. This justifies the construction of & via local smoothing in
Theorem 4. Lastly, because the maxnnal function is not a bounded operator
in L', we only obtained weak L3 norm instead of L3 norm.

Note that because J[u] is constant on the boundary 0€2, and because @ is
constructed via local smoothing on disjoint domains, we have

J[u] - w” dx’ dt| < J[u] - & da’ dt|.

o0 20
We can then apply Theorem 4, and proceed as in the formal computation. One
last difficulty is that Theorem 4 is a regularization result, and so the estimate
weakens when ¢ goes to 0. Indeed, it controls only @ > max {1, vtz, 77z |- If
we integrate the remainder, there will be a logarithmic singularity at ¢ = 0. To
avoid this, we apply the vorticity bound only in the time interval ¢t € (T,,,T)
for some small time T, ~ v3, and for t € (0,T,) we use a very short time
stability of a stable Prandtl layer to bridge the gap.

General case

We actually do the proof in a slightly more general setting. We will consider
a periodic channel with width W and height H, where the physical boundary
are localized at x4 = 0 and x4 = H (see Figure 1):

Q:{(x',xd):OSdeH,x’e [0, W]t

per
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The following theorem estimates the layer separation for a more general shear
flow u of the following form:

ﬂ(m) o U(Z‘g)el d=2
N Ul (l‘3)€1 + Ug(l‘3)62 d=3

In this configuration, we define the Reynolds number as

_ A

14

Re

where A = |4/ 1« 5q) is the boundary shear.

Theorem 5 (General Shear Flow) There ezists a universal constant C' > 0 such that
the following holds. Let 2 be a bounded periodic channel with period W and height H
in R? with d = 2 or 3. Let @ be a static shear flow in Q with bounded vorticity, and
let u¥ be a Leray-Hopf solution to (NSE,). For a given u defined as above, denote
the mazimum shear, boundary velocity, and kinetic energy of u by

_ _ _2
G =Vl gy » A= [all Lo (50 » = lullz2q) -
For any T > 0, we have

v 12 14 V|2
O;?ET{HU _U‘HL2(Q) (t)+§||Vu ||L2((O,t)><Q)}

< eXp(QGT){4 (| (0) — aHiz(Q) +20G*T Q] + CA? |Q| Re ™ log (2 + Re)

+2Re ' E 4+ CA®T |09 max {H/W, 1}2}.

Note that Theorem 2 is a direct consequence of Theorem 5 with H = W =
1,U=Aford=2,and Uy = A,Us =0 for d = 3.

This paper is organized as follows. We first introduce necessary tools in
Section 2. The boundary vorticity estimate and the proof of Theorem 4 is
shown in Section 3. In Section 4 we finish the proof of the main result, which
are Theorem 2 and Theorem 5. Finally, we prove Proposition 1 in the appendix.

2 Notations and Preliminary

We begin with some notations. We will be working with boxes more often than
balls. For this reason, let us denote the spatial box and the space-time cube
of radius r by

B, :={z € R': Jall~ <7}, Qr = (~r2,0) x B,.
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We denote the same box and cube centered at = and (¢,z) by B,(x) and
Q. (t, z) respectively. Near the boundary {z4; = 0}, we denote the half-box and
its boundary part by

B = {(2/,2q) : |2/ |le= <70 <zqg <71}, B,:={(,0): |2~ <71},
and denote their space-time version by

QFf = (—r*0) x B}, Q. = (—r%0) x B,.

r =

Finally, for a bounded set Q and f € L?(f2), we denote the average of f in Q as

]ifdxzmln/ﬂfdx.

In this section, we provide some useful preliminary results and some corol-
laries, which will be used later in the paper. Most are widely known, and
we do not claim any originality in the proof, but we include them here for
completeness.

2.1 Evolutionary Stokes Equation
Let (u, P) be the solution to the following Stokes equation.

{@u—&—VPzAu—l—f in (0,7) x Q (SE)

divu =0 in (0,7) x Q"

Recall the following estimates on Stokes equations, which can be found in the
book of Seregin [35].

Theorem 6 (Cauchy Problem, Section 4.4 Theorem 4.5) Let 2 be a bounded domain
with smooth boundary. Let 1 < p,q < oo, and f € LP(0,T; LI(Q)). There exists a
unique solution (u, P) to (SE) such that

(1) w satisfies the zero initial-boundary condition:
u=0att=0,
u=0 on (0,T) x 9.

(2) P satisfies the zero mean condition:
/ P(t,z)dz =0 at any t € (0,7T).
Q

Moreover, we have the coercive estimate

2
H|8tu\ + |VZul| + |VP\HLP(07T; L)) S CELp, ) 1l Le(o,1; Loy -
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Theorem 7 (Local Boundary Regularity, Section 7.10 Proposition 7.10) Let 1 <
p<oo,1<qg<q <oo. Assume u,Vu,P € L?L%(Q;r), ferLbLl (Q;r) and (u, P)
satisfy (SE) in Q = Q;‘ Moreover, assume

u=0 on {zqg = 0}. (4)
Then we have the local boundary estimate

[10ul-+ 195l + 1V Pl

/
< C.0.¢) (Ilul +19ul+ 1Pl gy + 1l 1y o) -
Combining these two estimates, we derive the following mixed case.

Corollary 8 Let 1 < py <p1 <o0o,1<q1,q2 < o0, f € LflL%I(Q;), u, Vu, P €
LP2LEQf). If (u,/P) satisfies (SE) in QF and u satisfies (4), then = Ul + ug
satisfying for any q¢' < oo, there exists a constant C = C(p1,p2,q91,92,q ) such that

vl + 195wl s oy + 190wzl + 1wl oy o

<C (Ilfl\Lfngl @p) llul+[Vul + [Pl zra a2 <Q;>) :

Proof Let Q' be a smooth domain such that B;r cqQ c B;. Define uj to be the

2
solution to the Cauchy problem in €' with force f. By Theorem 6, we obtain
2
[[19ea | + V7 ua| + |VP1|HLP1(74,O; Loy =S¢ 1z 2 @ -
Since uy has trace zero, P; has mean zero, we have
[lui] + [Vui] + |P1|||Lm(_4,o; La1())) <C Hf”Lfl LiNQ -
Now we define ug = u — uy, P = P — Py. Since p; > p2, we have

[lua| + [Vua| + |P2|||L52L;ﬂn{q1,q2}(Q;/2)

<C (HfHLflel (Q;) + |Hu| + |VU‘ + |P|HL52LZZ (Q;—)) ’

Note that ua solves (SE) with zero force term in Q;r, so the desired result follows by
2

applying Theorem 7. |

2.2 Inhomogeneous Sobolev Embedding

We show that given partial derivatives bounded in inhomogeneous Lebesgue
spaces, a binary function is bounded in L.

Lemma 9 (Inhomogeneous Supercritical Sobolev Embedding) Let a € (0,1), and
Q= {(t,2): te[-1,0],z € [0,1]}. Let u € LY(Q) with weak partial derivatives
bounded in inhomogeneous spaces

dru e L LT (Q) + LILL(), dzu € LPL°(Q) + LEPLL(),
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with p > é, q> ﬁ,r > 1, then u € C(R) is continuous with oscillation bounded by

Supu - infu = Jluflose() < € (||3tu|\LgL§c+LfL; + HazUHLngerg%;)

where C = C(p,q,r) depends on p,q,r.

z = 2|t|* z,

z = 1[t|*

Fig. 2 Inhomogeneous Sobolev Embedding

Proof Up to cutoff and mollification, we may assume u € C°((—00,0] x [0,00))
with compact support in 2 = (—2,0] x [0,2). Up to translation, we show u(0,0) is
bounded. By the fundamental theorem of calculus, for any A > 0, we have

© 5 o
0=u(0,0) + /0 gu(fs, AsY)ds.
Taking average for A € (%, 2) yields
2 roo
[u(0,0)] < / /O |0¢u) + Aas® 1 [0,u| dsdA.

1
3
The Jacobian of (¢, z) = (s, As%) is

D(t,z) _ -1 0l o i«
D(s,\) det [)\aso‘l so‘] ==~z

thus we can bound u(0, 0) via a change of variable by

(0, 0)| g/ (10vu] + oz )71 [Bzu]) [t~ dz dt
€

= / t] =% 10su| + aX|t| 7" |02u| dz dt.
€

where ¢ is the region illustrated in Figure 2.
Now we compute inhomogeneous norms of [¢| ! and [t|™* in %:

2t 5
Jy e 10702 =5 € 120,

2

H|t|_a||L§°(%\t|“,2|t\a) = [t e L{ (-2,0),
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2‘t|°‘ 1 3 a—1 p/
Jype 107 = G € 2 (220,
2

—1(3 w a g 1
178 g g 2y = 107 (5 10%) 7 S 1077 € Ld(—2,0).

Here p’ < é,q/ < ﬁ,r’ < oo are the Holder conjugate of p, g, r respectively. In

conclusion, [¢|! and |t|™® are bounded in spaces
t|”* € LLIN LY L, lt|"' e LY LINL{LL,
which completes the proof of this lemma by Hoélder inequality. |

2.3 Parabolic Maximal Function

Let us introduce the following notion of maximal function adapted to the
parabolic scaling.

Definition 1 (Parabolic Maximal Function) For f € L (R x R%), we define the
parabolic maximal function by taking the greatest mean values

t+r
Mf :—sup][ f f(s,y)| dyds.
r>0Jt

For f € L*((0,T) x ) where ©  R? is a bounded set, we can define M f by applying
the previous definition on the zero extension of f in R x RY.

Recall the classical weak type (1,1) bound on the maximal function M:

[IMFllproe < CallFllps -

2.4 Lipschitz Decay of 1D Heat Equation
We end this section by reminding the readers that solutions to the 1D heat

equation have a decay rate of t=1 in the Lipschitz norm. It will be useful to
control the Prandtl layer in a small initial time of order O(v3). This result is

very elementary. We give the proof for the sake of completeness.

Lemma 10 For z > 0 we have

© 2

2 — _3
E ne <2,
n=1

Proof We can approximate this infinite series by

nQe_”zz = %Z(fn) e_(ﬁn)2\/2
n=1

n=1
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(/OOO 22 dz + O(ﬁ))

= YEtrol,

=z

[

when z — 0 is small, and

— 2 —n?z < = 2 —nz __ d2 > —nz _ d2 1 o (€Z+1)€Z — —Z
21“ le"e —az | e —@Qul)—(ez_l)s’v@
n= n=

n=1

when z — oo is large. This proves that the left hand side is bounded by C2 % for
some constant C, which can be easily determined by carefully examine the estimates.
O

Using this lemma, we can compute the decay rate.

Lemma 11 Let v > 0, H > 0, and suppose v(t,xq) solves the following 1D heat
equation in [0, H):

Ov = vuge  in (0,00) x (0, H)

v=0 on (0,00) x {0,H}
v =g att=0
with vo € L?(0, H). Then
1 _3
Vo)l < 5wt) "% [lvoll gz -

Proof We can write the solutions explicitly in terms of Fourier series. We expand vg
by sine series as

oo
vo(z) = Z by sin (”Hﬂ) ,
n=1
with
- 2
2 2
> b= 7 lvolZ2 < oo
n=1
The solution can be explicitly written as
= nmwT n?x?
’U(t, ZIJ) = z:l bn sin (7) 671/ H? N
n=

so the derivative is bounded by

> nmwx nw\ _pniz?;
> bncos () () ¢

n=1

|Ozv(t, z)| <

1

o 2 e ni 2 2 2
<) (X ()
n=1 n=1

[SIE
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_3
2 9o \3 /7 wm?t) *
(i) () (e

1 _3
Q(Vt)  lvoll 2

IN

IN

using the previous lemma. (|

3 Boundary Regularity for the Navier-Stokes
Equation
The goal of this section is to prove the boundary regularity for the Navier-

Stokes equation with unit viscosity constant: Theorem 4. This relies on the
following local estimate.

Proposition 12 Suppose (u, P) is a weak solution to the Navier-Stokes equation
(NSE) with forcing term f € L*(—4,0; LQ(B;')), such that uw € L™ (—4,0; LQ(B;')),
Vu e L? (Q;), and in distribution they satisfy

ou+u-Vu+ VP =Au+f mQ;

divu =0 in QF .

u=20 on Qs
If we denote

0
. 2
coi= [ IVuO sy, + 161 2

then we can bound the average-in-time vorticity on the boundary by

0
/ / w(t,2’,0)dt
By

-1
Proof For t € (—3,0), we define

1
dz’ < C(eo +c)-

t
Ut,z) = /t u(s, z)ds.

-1
As explained in the introduction, this is needed to tame the time oscillation of the
local pressure, which comes from J;u. This allows us to apply the local Stokes esti-
mate at the boundary. Denote p(t) = 1jg,1j(¢), then U = u *¢ p, where x; stands for
convolution in ¢ variable only. If we denote @ = P #; p, and F = (f — u - Vu) *¢ p,
then U satisfies the following system:

HU+VQ=AU+F in(-3,0) x Bf
U=0 on {rg=0}

The proof of this theorem can be divided into three steps: the first two estimate terms
in this system, and the last step uses the Stokes estimate and the Sobolev embedding.
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Step 1. Estimates on u, U, 0,U, AU.
We have via Sobolev embedding and using that u = 0 on Q2 that

1
HUHL%Lg(Q;) < Ccj (5)

for both dimension 2 and 3. Since AU (t,z) = u(t,x) — u(t — 1, x), we have

1
19U L2 g ((-5.0x5) = €0
On the other hand, the Laplacian of U is bounded by

1
IAU o =1 ((_30) x5y < C 18Ul 2 o1ty < C IVl 2 g1 ) < OB

Step 2. Estimates on F' and Q.
Applying Hoélder’s inequality, by (5) we have

w-Val 3 < Ccp.
LILZ (QF)

Also by (5) we have by embedding that
[|div(u ® u)HL}W;”(Q;) < Coyp.
for both dimension 2 and 3. By convolution, we bound F' by

IE1l < Cey.

reedCsopepy 1w s oxs))

Next we estimate Q. Using VQ = AU + F — 9;U we have
1 1
HVQ||L§H;1 < Ccg+Ceco + Cci < Cleg+ ¢4 ).

Without loss of generality we assume that the average of @) is zero at every t. Then
by Necas theorem (see [35], Section 1.4),

1
QI < Cleo+e5).

Step 3. Stokes estimates and Trace theorem.

By Corollary 8, we can split U = U; + Us, where for any p < oo, we have

[18:U1| + [V2UL | + [|l0eU2] + |V2Ue|| < Cleo +65).

LPL %(Q+ L2L2(QT)

Denote Q(t, zq) fB |VU t, 2’ xd){ dz’, then 95,9 is bounded in

0 € LELE, + LYLE,((~1,0) x (0,1).
for any p < co. Note that

8,0 = /|Vu|dx' € L2, ((~1,0) x (0,1)).

Since by interpolation, L%Lg‘; N Lg® L}Ed c L? wg> Dy duality 0:Q is bounded in
L?’xd C L%Lg‘; + LtOOLglEd. Similarly, 0z, is bounded in

3
O2,Q € LELE, + LPL2,((~1,0) x (0,1)) C LY L3S + Li° LY, ((—1,0) x (0,1))
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for any p > 3 and r > 1 sufficiently small. Now we can use Lemma 9 to show 2 is
continuous up to the boundary with oscillation bounded by

1
[0 osc((=1,0)x (0,1)) < Clco +¢5)-

Since the average of € is also bounded as

1
/deddt:/ [Vu|dzdt < Ccg,
Qf

we have 2 is bounded in L°°, in particular

A

This concludes the proof of this proposition. O

0 1
/ Vu(t,z’,0)dt|dz’ = ©(0,0) < Co(co + )
-1

The proof of Theorem 4 relies on a domain decomposition inspired by
the Calderon-Zygmund decomposition introduced for the study of singular
integrals (see [36]). We first define the parabolic dyadic decomposition.

Definition 2 (Parabolic Dyadic Decomposition) Let L > 0, and let 2 be a periodic
channel of period W and height H. We define the parabolic dyadic decomposition of
(0, L) x Q2 as below. Denote
W H
Then we can find positive integer k,, kv, kg, such that
L=4Fr,, Ww=2-2"w,  H=2 2§,

where Lq, Wy, Hy satisfy

Ry < /Lo, Wy, Hyp < 2Ryp.

First, we evenly divide (0, L) x € into gbr kw1 oku+1 ubhes of length Lo, width
Wy and height Hg, and denote Qg to be this set of cubes. For each @ € Qgp, we can
divide @ into 4 x 2¢ subcubes with length Lo/4, width Wy /2, and height Hg/2. This
set is denoted by Q;. For each cube in Q;, we can continue to dissect it into 4 x od
smaller cubes with a quarter the length, half the width, and half the height. We
denote the resulted family by Q. We proceed indefinitely and define Q = UgenQk
to be the parabolic dyadic decomposition of (0, L) x €.

Proof of Theorem 4. The partition of (0,7) x  is constructed as follows. Among
the parabolic dyadic decomposition of (0,7") x 2, we first select a family of disjoint
cubes, denoted by Q°, according to the following rule:

a) For any integer k > 1, in {47kL0 <t< 47’“+1L0}7 we pick every parabolic cube
in Qj, which are cubes of size 4_kL0 X 2_kWO X Q_kHo.

b) In {t > Lo}, we pick every parabolic cube in Q.
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The selection of these cubes ensures enough gap from the initial time ¢ = 0, which
allows the local parabolic regularization to apply around these cubes. As shown in
Figure 3 and Figure 4, they form a partition of (0,7) x Q. Figure 3 corresponds to
when Ry = min {%, % < +/Lo, and figure 4 corresponds to when Ry = /Ly =
VT, in which case b) does not happen.

We are interested in cubes that touch the boundary, i.e., having zero distance
from 0f2. We call these cubes the “boundary cubes”. Given a boundary cube Q € Qp
that meets the boundary {z4 = 0}, we denote its length as | = 4_kL0, width as
w = 27 FWy, and height as h = 2% Hy. Thus for some (¢,z’,0) € (0,T) x 98, Q can
be expressed as

Q = (t - l7t) X Bw/Q(I/) X (07h)7 Bw/Q(‘T/) = {y/ : ||xl - y/||eoo < IU/Q}
Let us denote ~
2Q = (t — 21,t) x By(z') x (0, 2h).
Similar definition applies to boundary cubes that touch {4 = H}. A boundary cube
Q € 9, is said to be suitable if it satisfies

][ |Vu|? dz dt < co(2 " Ro)™* (S)
2Q

for some cp to be determined.

Starting from Q°, we decompose the boundary cubes based on the following rules.
For each boundary cube in the initial partition Q° that is not suitable, we dyadically
dissect it into 4 x 2% smaller parabolic cubes. For each smaller boundary cube, we
continue to dissect it until the suitability condition (S) is satisfied. This process will
finish in finitely many steps almost everywhere because Vu is bounded in L? for any
Leray-Hopf solutions, so all sufficiently small cubes are suitable.

The final partition will contain a subcollection of dyadic boundary cubes
{Qi }ieA C Q that are suitable, mutually disjoint, and verify closure {(0, T) x GQ} =
closure { Ul Ql} For each boundary cube Qi € Qy, centered at (t(i),m(i)), we denote
its length as [; = 4_kL0, width as w; = 2_kWO, and height as h; = Q_kHo. Thus

Q" can be expressed as

Q= (t(i) - li,t(i)) x BY x (0, hi), Bi— Bwi/z(z(i))

2Wy

Wo

2} s

\ 0 VTo 2vTo
Vit

Fig. 3 Initial Partition Q° of a Long Channel (0, L) x Q2
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Wo

Wo

N[
i

Tl

\ 0 WL VLo Nin
Vit

Fig. 4 Initial Partition Q° of a Wide Channel (0, L) x Q

It is easy to see from our construction that QQi C (0,T) x Q. Denote r; = 2_kRo,
then from Definition 2 we have

ry < A/l wi, by < 2.

Suitability (S) of Q" implies
][ \Vu\dedt<co7f4.
2Q¢ ’

Using the canonical scaling of the Navier-Stokes equation ur(t,z) := ru(r’t,rz),
Proposition 12 implies that

‘We can use this Proposition because Qi is comparable to a parabolic cube.
Now we separate three cases:
1. If Q" € Q° N Qy, with k > 1, then by condition a), any (¢,z) € Q' satisfies
t<4l; < 167“127 thus in Q* we have

$(0)

][ w(t,2',0)dz’
t

(1,

3\ -2 -2
dt < Clco +c¢g)r; “ = cary .

o< Yo
=7

We can select ¢y small enough such that 16¢; = 1.
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2. If Q' € Q°NQy, then by condition b), any (t,z) € Q' satisfies Lo =1; < t < T,
r; = Rg, thus in Q* we have

Note that this case only happen when 7" > Lg > R%, so in fact we know
Ro = min {W, H} /2, thus @ < min {W, H} 2,

3. It _Qi ¢ Q° is not one of the initial cubes in the grid, then its antecedent cube
Q" is also a boundary cube and is not suitable, so

][~ \Vu|2 dzdt > co(Zri)74,
20
By the definition of the maximal function M (recall Definition 1), this implies

Héin/\/l(|Vu\2) > cory .

for some co comparable to cg.

Combining these three cases, for any rx = 2lR0 with | € Z, we have

{(t,z’) € (0,7) x 90 : @ > max {c1ry >t 7, W‘Q,H_Z}}

Vi < ~ 5 vy =27\
CLiJ{Q.Tl<T}CLiJkL=J1{Q ri =2 r}

Therefore the measure of the upper level set is controlled by the total measure of
these suitable boundary cubes, that is

o0
H:IJ>max{clr*_Q,t_l,W_Q,H_Z}HSZ Z ‘Qz

k=1pr;=2"Fpr,

OOQk .
S;E > e

r;=2"kr,

Note that
U{@ in =27} e {MOvu?) 2 e ),
i

which implies that
’{Gj > max {clr*_z,t_l,W_27H_2}H

SZ;
k=1

X Hk
2 2 k. \4
N ; — [ MVl )HLIIC;:"((O,T)XQ) (277r)
2 3
S Hqu\ HLl((o,T)xsz) T
By the definition of Lorentz space, this shows

3

2

{MITU?) 2 o277

SIVullZ2 (0.0 -

ol
w {Q>Inax{%vﬁvﬁ}} L%v“’((&T)XBQ)

This completes the proof of the theorem. (|
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4 Proof of the Main Result

This section is dedicated to the proof of Theorem 5. Theorem 4 provides a
control on the large part of @, but it leaves a remainder in the region @ < %,
whose integral has a logarithmic singularity at ¢ = 0. To avoid this singularity,
we should apply Theorem 4 only away from ¢ = 0, and near t = 0 we should
adopt a different strategy.

Let u, be a shear solution to (NSE,) with initial value u¥ |,_ = u (the
pressure term is 0). Then u}, can be written as

u” (t ) _ Ugr(t,xz)el d=2
Pt Ut (t,z3)er + Ub,,(t,a3)es d=3"

where Uy, solves the Prandtl layer equation,

O Ug, = v0y,,,U”  in (0,T) x (0, H)
Ug, =0 on (0,7) x {0,H} . (Pr,)
Ug, =U at t =0

We choose a small positive number 7,, < T to be determined later, and
separate the evolution into two parts: in a short period (0,7),), we compare
u” and @ with the Prandtl layer u},, while in the remaining time (7,,T'), we
compare u” and u using the boundary vorticity.

Before we proceed, let us remark on a few useful computations and
estimates that will be used repeatedly in this section. If v,w are two
divergence-free vector fields in (0,7 x € satisfying the no-slip boundary con-
dition v = 0 and the no-flux boundary condition w-n = 0 on 9S2 respectively,
then we have the following three estimates:

(v—w,v-Vv—w-Vw)=w—-—w,v -Vv—w))+ (v—w,(v—w) Vw) (7)

2
< [Vl [lv = wllz2

(v—w,VP):/(SQP(v—w)-ndSZO, (8)

(uw,m)|vv|§2m)+(vw,vv)/mw.anuds )

1 1
< Vol + = |Vl s — / Jlw] - curl v dS.
2 2 o0

Here J[w] is a rotation of w and curlwv is the vorticity of v defined by

ntow d=2 Viv d=2
J[w] = ) curlv := ,
nxw d=3 Vxv d=3
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where nt is the rotation of the normal vector counterclockwise by a right
angle, and V+ = (—0,,,0,, ). Moreover, note that w - Vw = 0 in (7) when w
is a shear flow.

4.1 Prandtl Timespan

To compute the evolution of u” — up,, first we subtract their equations and
obtain

Or(u” —up,) +u” - Vu’' + VPY = vA(u” — up,).
The evolution of u” — u}, can be computed using (7)—(9) as

1 d 2 2
5 g7 I = ubllze + v IV = up)ll7e < —(u — upyu” - Vut)
2
S Vup, oo lu” = up, 7> -

By Lemma 11, the Lipschitz norm of the Prandtl layer at time ¢ is

N

v v 1 -3 E
IV6klm ) = 1908 < 50074 ()

Integrating in time, we have

v i -3 E %
2(|[Vup.ll 0,7, () S/0 (vt)™3 <|39> dt < log2 (10)

if we choose T, small enough such that
log2\*
T,<T, := (i) E209%°. (11)
By Gronwall’s inequality, we have for any 0 < ¢t < T},

1 v v |12 v v 2 v —2
3 [u” = upy |12y () + v V(" = up)l[120,4)x0) < [[t7 = @ll72(q) (0).
(12)

The evolution of u}, — & can be computed using (9) as

1d

~— by — l|Ta ) = (Wb, — T, Opul,) = (uh, — @, vAUY,)
s I @

IN

14 14 _ _
5 IV + IVl v [ a0, a0
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where ||Va|2, < G2|Q| and

— !/
/ U - Opup, dz
o0

Integration in time gives for any 0 < ¢t < T,,, we have

< IVup, | oo o) 8]l o a02) 1092

1 v _ 2 v v o2
3 lupy — ull72(q) (1) + 3 IVupellz2(0,.4)x0)

IN

v v
§G2|Q|t + Av|0Q)| ||Vupr||L1(o,T,,; Lo (92))

IN

14 2 1 2 1

where the last inequality used (10).
Combined with (12), we have for any 0 <t < T,,

1 v _n2 1% V2
3 [u” = tll72q) (t) + 5 VU (1220, x )

(13)
< 2|[u” — |32 (0) + vG?|Qft + A% Q| Re ™"

4.2 Main Timespan

The evolution of u¥ — @ can be computed using (7)—(9) as

1d v —112 v — v
L~ = ()
< —(u” —u,u” - Vu¥) — (v — 4, VPY) + v(u’ — a, Au”)
_ v 2 1 )2 1 2
< IVl g lu” = alle = SvIVe¥llze + S [ ValL.

- /m J(a] - () da’.

Since 4 is a constant on each connecting component of 9€2, by integrating from
T, to T, we have

1o, 2 v v2
3 [u” = Ul 72y (T) + 5 VU221, 750

1., _ T - v
< Gl =l (B +G [ e (0t + 563T - Tl

T T
+ A / / vw” da’ dt / / vw dz’ dt| | .
v {afd:c'} v {wd:H}

+
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Adding (13) at t = T,,, we have for any T > T,, that

1 v _n2 14 vi2
3 [u” = 4|72y (T) + 5 VU lIZ2(0,m)%0)

T
<2 — ey (0)+ G / Ju” = 2 g (8) At + vG2TIQ + 4|0 Re™
T
+A / / vw” da’ dt| + / / vw” do’ dt| | .
v {wd:()} a:d:H}

4.3 Proof of Theorem 5

We first note that Theorem 5 is only interesting when the initial kinetic energy
lu”(0)|| ;2 and ||u|/ ;. are comparable.

(14)

Lemma 13 Let @ € L*(2), and let u” be a Leray-Hopf solution to (NSE,), so the
energy inequality holds:

1 2
) ||UU(T)

HLQ(Q) +VHVUVHL2

3l

(0,7)xQ) = )HLQ(Q)'

For any C' > 1, there exists C > 0 such that if ||u” (0 M2y > Cllullpzq) or
lall L2 () > Cllu” (0)l| g2(q), then

H“V(T) - a”i%ﬂ) +2v HV“VH; (0,1)x) = ¢ H“ - a”iz(g)

Proof If [[u”(0)[ 2 > C'||tll 2(q), by energy inequality we can bound
112 1 2 12
D) = alla@y < (14 &) (I Do) + € olzze)

(H' )”“ )H;(Q) (1+ )’/HV“ HL2 ((0,T)xQ)
+(C+ Dl

1\2 v 12 2
< (1 n 5) (Hu ORT +0|\u||L2(Q))
2 —n2
-~ ||VUVHL2((O,T)><Q) +(C+ D alL2q) -
Since ||[u” (0)||7,2 > C'||@| ;2 implies ||| 2 < % |lu”(0) — 4|l 12, we conclude

) = all gy + 2 9925 < '[|lv"(©)

_112
((0,T)xQ) - uHL2(Q)

for some C" — 17 as C' — oo. If |[u”(0)|| 2 < % ||@]| 2, then by the energy inequality
we can estimate

1/ 2 _
(1) =l g < (14 ) (Cllw D320y + N0l

<(14+0) ||u (0) ||L2(Q) -2(1 +C’)l/HVu"H2Lz((o,T)xQ)
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+ (14 5) Nl

1 12 2
< (148) (IO =gy + € [ O
V|2 v 2
— 2 HVu HL?((O,T)xQ) +(1+0) Hu (O)HL2(Q) :
Since ||@]| 2 > C||u”(0)]| 12 implies [|u” (0)]| 2 < &4 [u”(0) — @/ 2, we again have

+2v ||quHi2((O,T)><Q) <c H“V(O) - ﬂ”iz(g)

H“U(T) _ﬂHiz(Q)

and the result also follows. O

Because of this lemma, from here we assume

E 2

& < w0 < CE

for some universal constant C. Under this assumption, we see there is a trivial
upper bound on layer separation as

1 1% et v
3 [u”(T) — UHiQ(Q) +v|[Vu Hi2((0,T)><Q) <CE (15)

again using the energy inequality.

Next we study the rescaled boundary vorticity. Since u” solve (NSE,) in
(0,T) x £, its rescale u(t,z) = u”(vt,vz) solves (NSE) in (0,7/v) x (Q/v).
Moreover,

Vu(t,z) = vVu” (vt,ve), w(t,z) = vw”(vt,ve).

Now we apply Theorem 4 on u, and we have a rescaled estimate on u” as

2
v2
< Cv|Vullzzqo,mxa) - (16)

U(:}yl{
L3 2 ((0,T)x99)

uw”>max{ ’f’W2’H2 }}

Proof of Theorem 5. We choose T, = 47 5T for some integer K such that
iT* <T, <Tx

where Ty is defined in (11). The average of w” in (1},T) is thus bounded by the
average of @”. To estimate the boundary vorticity in (14), we split it as

T T
/ / vw” dz’ dt §/ / vo” dz’ dt
T, J{xzq4=0} {zq=0}
dz’ dt (17
/ /Id —o0} Vw“>max{Z,VL;,22’H2}} * (17)

2 2
/ /{xd 0} {t W27H2}dl’dt
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For the first term in (17), we apply (16) and obtain

A da’ dt
Lo A 2y

m:;”l{

IN

1Al o1 0. yxa0y (18

2 2
v P v v ve
vw >de{t, 5 2}}

IV e oy ) + CAPT 109

L3 ((0,T)x09)

IN

For the second term in (17), it is bounded by

T 2 2
A/ / max { 2, Z , }dx dt
7, J{za=0} {t W2’ H?
T T 2 2
caf [ tarwaf [ max{g,g}dxfdt
T, J{zq=0} 1 {za=0} W< H

< Avlog (T ) |69 + Av? min {W, H} 2 T|0Q|
< A2|Q|Re " log (T ) + APT |00 Re~2 max {H/W,1}2 .
Since T% = CE? |89|72 v 3=C (AQL‘Ql) Reg%7 we separate the log as

— )\ < R it

Thus the second term in (17) is bounded by

2 2
v v v ,
A vV gy ae
//{xd oy {t’W2’H2} v

< A2|Q|Re log (Re + C) + 2Re ' E (19)
+ AT 199 (Re*1 + Re 2 max {H/W, 1}2) .

Plugging (18)-(19) into (17) and applying to (14) (naturally for {4 = H} the
same estimate), we conclude for every T > T, that

(T)+ 2

v 2
H“ 5 HVu HLZ((TV,T)XQ)

_112
_“HL2(Q)
v 2 Ty 2
§4Hu —u||L2(Q) (0) +2G i ||u —uHL2(Q) (t)dt
+20G*T|| + A% |QRe ! log (Re 4+ C) + 2Re ' E
+ AT |00 (1 + Re™2 max {H/W, 1}2) .

Combined with (13) we see indeed that the above inequality is true for any T > 0,
so applying Gronwall’s inequality yields

L2 v o2
O;&ET{HU 7”HL2(Q) (t)+§HVu HL?((O,t)xQ)}

< exp(QGT){4 [|u” (0) — a”ig(m + CAPT 109 (1 + Re ™2 max {H/W, 1}2) + Ru},
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where the remainder terms R, is defined as
Ry = 20G T Q] + A% |Q| Re ! log (Re + C) + 2Re ' E.
Finally, if Re is sufficiently small, then the estimate holds true automatically by

Re 'E term according the trivial bound (15). Otherwise, by Re™? < C and
Re~!log(Re + C) < C'log(2 + Re) we complete the proof. O

Proof of Theorem 2. In this particular setting, G = 0, E = AQ\Q|, W/H = 1.
Therefore we can bound

R, < CA%|Q|Re tlog(2 + Re) + 2Re ' E < CA? |Q| Re™ ! log(2 + Re)
which finishes the proof of the theorem. |
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Appendix A Construction of Weak Solutions
to the Euler Equation with Layer
Separation

This appendix is dedicated to the proof of Proposition 1. In [22], Székelyhidi
constructed weak solutions to (EE) with strictly decreasing energy profile with
vortex sheet initial data in a unit torus @ = T¢, by means of convex integration
introduced in [37].

We will first construct a weak (distributional) solution (v, P) to (EE) in a
two-dimensional set Tx (0, 1), such that v = e; at ¢ = 0 and 3 ||v||2Lg (t)=31-rt
at a constant rate r > 0 for small ¢. To achieve this, we follow the ideas of [22].
However, we first construct a subsolution o on a bigger domain Q = Tx [~1, 2],
that we will convex integrate only on T x (0,1). The result function v is a
solution to (EE) only inside T x (0, 1), but it keeps the global incompressibility
dive = 0in Tx[—1, 2], together with v = 0 on Tx (—1,0)U(1, 2). This provides
the impermeability condition needed at the boundary. More precisely, consider
(0,1,q) : (0,T) x Q — R? x 82*? x R with respect to some € : (0,T) x Q —
[0,00), satisfying v € LE, u € L., ¢ € D', and in the distribution sense

(A1)

Qv+ divi+Vg=0
divo =0

and almost everywhere
1V —u<eld

Here S3*? is the space of trace-free two-by-two matrices.
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To achieve this, we set

_ _ B v ) _
= ,O N = N =
v = (a,0) U (’y _3 q=1p
for some «(t, xs2), B(t, x2),7(t, z2) to be fixed. With this choice, we need
e—a’+B v
= >
Ot + 0,y = 0, ( N i-p)= 0.

The second constraint can be simplified to
2¢ —a? >0, (e—a?+B)(e—B)>~2

B — La?, then

Denote f =é— a2, § -3

f>0 - 1 1
{f— :>f2\/72+52:>62§a2+\/72—|—52250z2+|’y|,

(f+0)(f—68)>~2

which will be the only constraint by setting § = %aZ thus 6 = 0. It suffices
to find (e, ) that solves d;a + 0., = 0, i.e. we require the conservation of
momentum and need

d vz 1
& /adx2 = O7 v = - 6t04d$2, e > 50[2 =+ |’)/|

Let us mimic the strategy in [22] and work with a different vortex-sheet initial
data:

(0, 22) 1 0<z9<1
a(0,z9) = ;
2 0 otherwise

and let a(t, z2) be the piecewise linear function interpolating (—1,0), (0,0),
(At, 1), (1 — At 1), (1,0), (2,0) for some fixed A > 0 to be determined as in
Figure A.

Under this setup, it is simple to see that

Oz,¥ = —Orae = |0y, ¥l
from which we can recover

(1 - 042(t,x2)) 1<y < %

1—a?(t,zz))  otherwise
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(07

---- a(0,z2)
i — a(t,z2)

— 3(t,72)

Fig. A1 The graph of a(t, z2), %v(t, z2) forafixed 0 <t < T = i

and as a consequence, we need

(1-XM(1—a?). (A2)

Then € > 10+ |7| in the space-time region U := (0,7) x T x (0, 1) N{e < 1}.
We are now ready to apply Theorem 1.3 of [22] when convex integrating in
(0,7) x T x (0,1) only. This provides infinitely many (7,a) € L;3.((0,T") x 2)

with o € C(0,T; L2, (Q) such that (%,4,0) satisfies (A1), (#,%) = 0 a.e. in

weak

U= (0,T)xTx((—-1,00U(1,2))U{a =1}, and v := 0+ 0, u := U+ G satisfy
v@uv—u=ecld a.e. in (0,7) x T x (0,1).

From the second equation of (A1), dp,v = —0y,v1, and vy € Co, (W 1°).
But since we didn’t convex integrate on (0,7) x T x ((—1,0) U (0, 1)), we still
have vy = 0 at o = 0 and x2 = 1. This provides the impermeability boundary
conditions at these points.

Then (v, P) satisfies (EE) with the impermeability conditions in (0,7") x
T x (0,1) in the distributional sense for P = ¢ — ¢, and |v|* = & matches
the energy density profile given in (A2) (note that the constructed solution
is not solution to (EE) in the domain (0,7) x T x (—1,2)). Now, we have on
(0,7) x T x (0,1):

2
2
%/%deE(l—)\)/a@ad;@ = —5)\(1—)\)/a2|6w2a\dm2 = —gg)\(l—)\)7

ie. 2 Hv||2L2 decreases linearly at rate r := ZeA(1 — \).
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We consider the deviation from initial value. Since ¢ = 0 a.e. at t = 0, we
know v(0) = v(0) = +e;, and

)2d d o) d
2dt/|v —v(0)]*d &/ 5 dx - % v(t) - v(0) dx

:—r—/atv(t) v(0) dx

=—r+ /divu(t) -v(0) dz.

The quantity € and g depend only on ¢, x5, so the equation on v; from (Al)
has no pressure and verify:

Oz, U12 = —0v1 — O, U11-

Especially, uis € Cy, (Wtjmll’oo). Therefore,

/div u(t) -v(0)de = / —u12(t, 1,0) + wi2(t, 1, 1) day
T

= / —12(t, w1, 0) + u12(t, v1,1) day
T
=(t,0) + (¢, 1) = A

This gives

_ 2 — _ — — _
2dt/|v o(0)2dz = A— 1 = A 35)\(1 A).

This rate converges to 1 by setting A — 1 and € — 0, thus

1 2 :
2 [v(t) = exllp2(rx 0,1y = C1s vie ( 2/\)

Moreover, v = 0 on {z3 =0, 1}.
Now for some A > 0, define (v*,P*) : (0,55) X @ — R? x R by time
rescaling v*(t,z) = Av(At,x), P*(t,r) = A2P(At,x), where Q = T x [0,1] is
( =

the unit channel. Then v*(0) = Ae; in Q, v*(t) = 0 on 99 and

& =

1 2 3 1
) lo(t) — AelHLZ('[rx[o,1]) = (CA’t, vVt € (0, 2/\A>

for some C, A satisfying 0 < C' < A < 1.
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