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We prove the time-asymptotic stability of composite waves
consisting of the superposition of a viscous shock and a
rarefaction for the one-dimensional compressible barotropic
Navier-Stokes equations. Our result solves a long-standing
problem first mentioned in 1986 by Matsumura and Nishihara
in [28]. The same authors introduced it officially as an open
problem in 1992 in [29] and it was again described as very
challenging open problem in 2018 in the survey paper [26]. The
main difficulty is due to the incompatibility of the standard
anti-derivative method, used to study the stability of viscous
shocks, and the energy method used for the stability of
rarefactions. Instead of the anti-derivative method, our proof
uses the a-contraction with shifts theory recently developed
by two of the authors. This method is energy based, and
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can seamlessly handle the superposition of waves of different

kinds.
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1. Introduction

Consider the one-dimensional compressible barotropic Navier-Stokes equations. In the
Lagrangian mass coordinates, the system is described as

vy — Uy =0, reR, t>0,

Uz

w4 p(v)s = (1), (L)

where the unknown functions v = v(t,z) > 0, and wu(t,z) represent respectively the
specific volume, and the velocity of the gas. The pressure function p is given by the
well-known ~-law

p(v) =bv™7,
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where b > 0,7 > 1 are both constants depending on the fluid, and the constant p > 0
corresponds to the viscosity coefficient. Without loss of generality, we normalize two of
the constants as u = 1 and b = 1. The system is then endowed with initial values:

(v,u)(t = 0,2z) = (vo(x),uo(z)), x €R.
We consider initial values with fixed end states (v4,u+) € RT x R, that is such that
(vo(x),up(x)) = (vi,uy), as x — foo. (1.2)

On top of its physical relevance, system (1.1) can be seen as the typical example of
viscous conservation laws involving a physical viscosity.

The large-time behavior of solutions to (1.1), with initial values verifying (1.2), is
closely related to the Riemann problem of the associated Euler equations:

vy — Uy = 0,
1.3
{ Ut —|—p(v)$ =0, ( )

with the Riemann initial data

(v,u)(t =0,z) = { (v-yu-), @ <0, (1.4)

(U+,U+), x>0,

corresponding to the end states (1.2). In the scalar case (where the system (1.1) is
replaced by a single viscous equation), the time-asymptotic stability of the viscous waves,
and their link to the inviscid problem was first proved in 1960 by Ilin-Oleinik [10] (see
also Sattinger [34]). The case for systems as (1.1) is far more difficult (see [26]).

One of the motivation for the study of large-time behavior of solutions to compressible
Navier-Stokes equation for Riemann initial data was to obtain insights about inviscid
limit to the Euler equation. In 2005 [1], Bianchini-Bressan showed, for small BV initial
values, the convergence at the inviscid limit of solution to parabolic system with “arti-
ficial viscosity” to the unique solution of the associated hyperbolic system. However, to
this day, the result is still unknown for the physical Navier-Stokes system, even in the
barotropic case (1.1).

Riemann problem for the inviscid model: Let us first describe the well-known solution
of the Riemann problem for the inviscid model (1.3)-(1.4), first proposed and solved
by Riemann [33] in 1860s. This system of conservation laws is strictly hyperbolic. This
means that the derivative of the flux function (—u,p(v)) with respect to the conserved
variables, about a fixed state (v,u) € R x R:

0 -1
p'(v) 0
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is diagonalizable with real distinct eigenvalues. Note that this matrix defined the waves
generated by the linearization of the system (1.3) about this fixed state (v,u) € RT x R.
Its eigenvalues Ay = —y/—p'(v) < 0 and Ay = /—p/(v) > 0 generate both character-
istic fields which are genuinely nonlinear. Therefore, the self-similar solution, so called
Riemann solution, of the Riemann problem is determined by a combination of at most
two elementary solutions from the following four families: 1-rarefaction; 2-rarefaction; 1-
shock and 2-shock (see for instance [5,22]). These families are completely defined through
their associated curves in the states plane R* x R. For any (vg,ur) € RT x R, the 1-

rarefaction curve R (vg,ug) corresponds to the integral curve of the first eigenvalue A,
and is defined by

v

v < VR, u:uR—/)\l(s)ds}. (1.5)

VR

Ri(vr,ur) = {(%u)

The 2-rarefaction curve Rs can be defined in the same way from the second eigen-
value \g. For any initial values of the Riemann problem (1.4) with (v_,u_) = (vp,ur),
(v4,uq) = (vR,uR), such that (vp,ur) € Ri(vg,ug), the solution (v",u") of (1.3) is the
1-rarefaction wave defined as

A1 (vr), x < A1(vp)t,
M) =9%  M(up)t <@ < M(vr)t, (1.6)
)\1(?]3), T > )\1(’1}R>t,

together with

21(v" (¢, ), u" (¢, z)) = 21 (vp,ur) = 21(VR, uR), (1.7)

where 21(v,u) = u+ [" A1(s)ds is called the 1-Riemann invariant to the Euler equation
(1.3). The case of 2-rarefaction wave is treated similarly from the second eigenvalue As.

We can now define the shock curves using the Rankine-Hugoniot condition, as the
one-parameter family of all the (v, u) such that there exists o with:

—o(vg —v) — (ug —u) =0,

(1.8)
—0o(ur —u) + (p(vgr) — p(v)) = 0.

The general theory shows that this condition defines actually 2 curves that meet

at the point (vg,ugr), one for the value o = —\/—W (the 1-shock curve

S1(vR,ur) which corresponds to admissible shocks for v > vg), and one for the value

o= —w (the 2-shock curve Sa(vg, ur) with admissible shocks for v < vg).
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Whenever (vg,ur) € S1(vg,ur)US2(vr, ur), the solution (v®,u®) to (1.3)-(1.4) with
(v—,u—) = (vp,ur), (vy,uy) = (vr,ur), is given by the discontinuous traveling wave
defined as

(v, ur), x < ot,

(v, u®)(t, @) = { (1.9)

(vR,UR), x> ot.

For the general case of any states (v_,u_), (vy,uy) € RT xR, it can be shown that there
exists a (unique) intermediate state (vy,, uy,) € RT X R such that (v, u,,) is on a curve
of the second families from (vy,u4) (either Ro(vy,ut) or Sa(vs,uy)), and (v_,u_) is
on a curve of the first families from (v, uy) (either Ri(vm, tm) or S1(Vm,um)). The
solution (v,u) of (1.3)-(1.4) is then obtained by the juxtaposition of the two associated
waves

(v,u)(t,z) = (vi,u1)(t, z) + (va, u2)(t, ) — (Vm, Um)-

The wave (v1,u1) is 1-rarefaction fan solution to (1.6)-(1.7) if (v—,u_) € Ry (Vm,Um ), Or
1-shock solution to (1.9) if (v_,u_) € S1(Vm,um), with (vp,ur) = (v_,u_), (vr,ur) =
(Um, Um). The wave (vg,ug) is 2-shock solution to (1.9) if (v, um) € So(vy,uy),
or, 2-rarefaction fan solution if (v, u;,) € Rao(vy,uy), both with the end states
(vp,ur) = (Um,Um), (Vr,ur) = (vy,us). Note that the cases of single wave are in-
cluded as degenerate cases when (v_,u_) = (U, Um), O (Vp,us) = (U, Um)-

Previous time-asymptotic results for the viscous model: The time-asymptotic behavior
of the viscous solution to (1.1) depends on whether the associated Riemann solution to
the associated inviscid model (1.3)-(1.4) involves shock waves or rarefaction waves. In
the case where (1.4) is a shock, the viscous counterpart for (1.1), called viscous shock,
is the traveling wave (v°(z — ot),u”(z — ot)) defined by the following ODE:

o0 - @) =0,
AN
o) + %)) = (L), (L.10)

('657&5)(700) = (ULauL)7 (5Saﬂs)(+oo) = (URvuR)'

Matsumura-Nishihara [27] proved the stability of the viscous shock waves (1.10) for
the compressible Navier-Stokes equations (1.1). Independently, Goodman showed in [7]
the same result of a general system with artificial diffusion. This corresponds to the
case where diffusion is added to all the equations of the system. In both papers, the
proof were done under the zero mass condition which is crucial for using the so called
anti-derivative method. Then Liu [21] and Szepessy-Xin [38] removed the crucial zero
mass condition in [27,7] by introducing the constant shift on the viscous shock and the
diffusion waves and the coupled diffusion waves in the transverse characteristic fields. For
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a more recent analysis in this spirit, applying also to degenerate viscosity systems, see
Liu-Zeng [24]. Using a somewhat different set of techniques, Mascia-Zumbrun [25] proved
the spectral stability of viscous shock to 1D compressible Navier-Stokes system under
a spectral condition, which is slightly weaker than the zero mass condition. The case
of the superposition of two shocks for the Navier-Stokes-Fourier system was treated by
Huang-Matsumura in [9]. Finally, the asymptotic stability of viscous shocks for Navier-
stokes systems with degenerate viscosities was studied in Matsumura-Wang [30], and
generalized to a larger class of viscosity in [41] using the BD entropy introduced by
Bresch-Desjardins in [2].

The treatment of stability of rarefactions is performed with very different techniques
based on direct energy methods. Matsumura-Nishihara [28,29] first proved the time-
asymptotic stability of the rarefaction waves for the compressible and isentropic Navier-
Stokes equations (1.1). It was later generalized to the Navier-Stokes-Fourier system by
Liu-Xin [23] and Nishihara-Yang-Zhao [32].

The case of the juxtaposition of a shock and a rarefaction: However, the time-asymptotic
stability of the superposition of a viscous shock wave and a rarefaction wave has been an
open problem up to now. The main difficulty is that the classical anti-derivative method
used for the stability of shocks does not match well with the energy method classically
used for the stability of rarefactions. The problem of the stability of such a superposition
of a rarefaction and a viscous shock was first mentioned in 1986 by Matsumura and
Nishihara in [28]. The same authors introduced it officially as an open problem in 1992
in [29] and Matsumura described it again as very challenging open problem in 2018 in
the survey paper [26]. Our main theorem is proving this conjecture.

Theorem 1.1. For a given constant state (vy,uy) € Ry xR, there exist constants dg, €9 >
0 such that the following holds true.
For any (v, um) € S2(vy,ut) and (v—,u_) € Ry (Vm,Um) such that

|U+ _Um| + |Um —U,‘ < 607

denote (v",u")(3) the I-rarefaction solution to (1.3) with end states (v_,u_) and

(Vmy um), and (9%,7%)(x — ot) the 2-viscous shock solution of (1.10) with end states

(Vs Um) and (vy,uy). Let (vo,uo) be any initial data such that

> (H(Uo — Vg, Uug — Ui)HL?(Ri)) + (| (Vo> o) | L2 ) < €0, (1.11)
+
where R_ := =R = (—00,0).

Then, the compressible Navier-Stokes system (1.1) admits a unique global-in-time solu-
tion (v,u). Moreover, there exists an absolutely continuous shift X(t) such that
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v(t,x) — (vr(
u(t,x) — (ur(

Uge (t, ) — U5 (x — ot — X(t)) € L*(0, +00; L*(R)).

T

)+ — ot — X(t)) — vm) € 0(0, +o00; H (R)),

|8 <+ 8

)+ @ (z — ot — X(t)) — un) € 00, 400 H'(R)),  (1.12)

In addition, as t — 400,

sup | (v, u) (¢, ) — (vr(f) + 55 — ot — X(1)) — v,
z€R (1.13)
u(3) + (@ — ot = X (1) - um)‘ =0,
and
Jim IX ()| = 0. (1.14)

Remark 1.1. Theorem 1.1 states that if the two far-field states (vi,uy) in (1.2) are
connected by the superposition of shock and rarefaction waves, then the solution to the
compressible Navier-Stokes equations (1.1) tends to the composite wave of the self-similar
rarefaction wave and the viscous shock wave with the shift X(¢), which solves the open
problem proposed by Matsumura-Nishihara [29] since 1992.

Remark 1.2. The shift function X(¢) (defined in (3.8)) is proved to satisfy the time-
asymptotic behavior (1.14), which implies that

lim ——= =0,
t—+oo
that is, the shift function X(¢) grows at most sub-linearly w.r.t. the time ¢ and the shifted
viscous shock wave still keeps the original traveling wave profile time-asymptotically.

Remark 1.3. Note that our result in Theorem 1.1 also holds true in the case of a single
viscous shock, that is, dg = 0. In this case, Theorem 1.1 provides an alternative proof
for stability of a single viscous shock. Our proof is simpler than the ones of Mascia-
Zumbrun [25], or Liu-Zeng [24]. This simplification is what allows us to consider the
combination of waves of different kinds. Therefore, our approach follows exactly the
suggestion of Matsumura in [26, Section 4.2, page 2540] to find a simpler proof, for the
stability of viscous shock, than the ones in [25] or [24], in order to attack many other
open problems. Note however, that our simplification comes at the cost of less precise
information, especially on the shift X (t). We leave the detailed time-asymptotic behavior
on the shock shift X(¢), the sharp time-decay rate of the convergence and perhaps even
detailed pointwise bounds for the composite waves, as done in recent years for single
viscous shock wave in [24,25], for the future study.
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Remark 1.4. The extension of Theorem 1.1 to general smooth viscosity function p =
w(v) > 0 and general pressure function p(v) > 0 satisfying p’(v) < 0,p”(v) > 0 follows
without meaningful added difficulties, since we consider small H!-perturbations. For the
sake of clarity, and to simplify slightly the arguments, we made the choice to write the
paper in the physical relevant context of constant viscosities and power pressure laws.
On the other hand, the extension of Theorem 1.1 to the large-amplitude composite wave
patterns, which is already done for single viscous shock wave in [30,41,8], is another
interesting target.

The main new ingredient of our proof is the use of the method of a-contraction with
shifts [15] to track the stability of the viscous shock. The method is based on the relative
entropy introduced by Dafermos [4] and DiPerna [6]. It is energy based, and so meshes
seamlessly with the treatment of the rarefaction.

The method of a-contraction with shifts: The method of a-contraction with shifts was
developed in [13] (see also [20]) to study the stability of extremal shocks for inviscid
system of conservation laws, as for example, the Euler system (1.3). Consider the entropy
of the system (which is actually the physical energy) defined for any state U = (v, u) as:

u? 1
nU) = -t Q(v), Qv) = T
We then consider the relative entropy defined in [4] for any two states U = (v,u),
U = (v,u):
7T ‘u _ ﬂ|2 = = = /(= =
NUIU) = —5—+Qfv),  Qv) =Qv) - Qv) - Q'(¥)(v - 0).

Note that @ is convex, and so n(U|U) is nonnegative and equal to zero if and only if
U = U. Therefore n(U|U) can be used as a pseudo-distance between U and U. It can be
shown that rarefactions U (that is solutions to (1.6)-(1.7)) have a contraction property
for this pseudo-metric (see for instance [39]). Indeed, for any weak entropic solution U
to (1.3), it can be shown that

d —
— <0.
g n(U|U)dz <0

R

The contraction property is not true if U is a shock (that is traveling waves (1.9) veri-
fying the Rankine-Hugoniot conditions (1.8)). However, the contraction property can be
recovered up to a shift, after weighting the relative entropy (see [13]). Indeed, there exists
weights a_,ay > 0 (depending only on the shock U) such that for any weak entropic
solution U of (1.3) (verifying a mild condition called strong trace property) there exists
a Lipschitz shift function ¢ — X (t) such that
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X(¢) 0
d _ _
A / n(U|U) dz + ax / n(U|U)dz ; <O0.
—00 X(t)
This was first proved in the scalar case by Leger [19] for a_ = a4. It has been shown in
[35] that the contraction with a_ = a4 is usually false for most systems. Therefore the

weighting via the coeflicients a_, a4 is essential. Note that in the case of the full Euler
system, the a-contraction property up to shifts is true for all the single wave patterns,
including the 1-shocks, 3-shocks (see [40]), and the 2-contact discontinuities (see [36]).
Although the a-contraction property with shifts holds for general extremal shocks, it is
not always true for intermediate shocks (see [11] for instance).

The first extension of the method to viscous models was done in the 1D scalar case [14]
(see also [12]) and then in the multi-D case [18]. The case of the barotropic Navier-Stokes
equation (1.1) was treated in [15]. The a-contraction property takes place in variables
associated to the BD entropy (see [2]): U = (v, h), where h is the effective velocity defined
as h =u — (In v),. In these variables, system (1.1) with g = 1 is transformed as

v — hy = (hl 'U)a:xa
s o

The only nonlinear term of the hyperbolic system (1.3) is the pressure which is a function
of v. The system (1.15) is then better than (1.1) since the diffusion is in the variable
v corresponding to the nonlinear term p(v). It was shown in [15] that there exists a
monotonic function z — a(z) (with limits a4 at +o00), depending only on the viscous
shock U = (v, h) solution to (1.10) (in the (v,u) variables), such that for any solution U
to (1.15), there exists a shift function t — X (¢) with

pn alx — X(&))n(U(t,2)|U(x — X(t))) dx < 0.

R

The strategy of this paper is to apply the a-contraction method to the composite wave
made of a shock wave and a rarefaction wave. The weight function a and the shift
X(t) is applied only on the shock wave. The combination of the viscous shock and the
rarefaction is not an exact solution to (1.1). This introduces some errors that can be
controlled thanks to the separation of the waves. Because of the shift, the separation of
the waves is not automatic. We show, however, that it is still true, and that the shock
cannot artificially stick to the rarefaction. This provides an “almost” a-contraction in
the effective variables (v, h). We then recover the classical control on the H! norm of the
perturbation in the classical variables (v,u).

The a-contraction with shift theory for a small viscous shock: Note that the a-contraction
result of [15] provides a uniform stability for viscous shocks with respect to the strength of
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the viscosity. This is used in [16] to obtain the stability of inviscid shocks of (1.3) among
any inviscid limits of (1.1). Since the conjecture of Matsumura [26] does not mention
the uniform stability with respect to the viscosity, we choose in this paper to restrict
ourselves to the classical framework and show the stability with g = 1 fixed. This allows
us to simplify some of the arguments of [15] in this context. The method is even more
powerful in this restricted framework and should be developed in the foreseeable future
to a large family of problems. Let us describe the fundamental ideas in this context.

A Poincaré type inequality and the scalar case: At its core, the method of a-contraction
with shift in the viscous cases relies on the following Poincaré type inequality (see [15,
Lemma 2.9]).

Lemma 1.1. For any f : [0,1] — R satisfying fol y(1 —y)|f'|2dy < o,

1

/]f /fdy]d 5 [v= vl P (1.16)

0

The eigenfunctions of the associated Euler-Lagrange equation to this minimization
problem are the Legendre polynomials, and their eigenvalues are given explicitly. As a
consequence, the inequality is sharp. The weighted H' norm of this inequality comes
naturally when considering the following Burgers equation (see [14]):

Oru+ 0z (u(1 — u)) = 0u, (1.17)
and its viscous shock profile @ defined as

. (a(1 — 1)) = 02, lim @(zx) =0, lim a(z) = 1.

x T—r—00 xr— 400

This shock does not depend on time (it is a stationary wave). Integrating in x, and
denoting @' = 9,4 gives

i (z) = a(x)(1 — a(x)). (1.18)

Consider now the relative entropy associated to the entropy n(u) = u?/2 between a
generic solution u of (1.17) and the shifted shock @~X(¢,z) = @(x—X(t)) for an arbitrary
shift X(t):

(i) (1, ) = o
The shifted shock verifies the equation

ofa X+ X(@) X + 9, (a X1 —a X)) = 2} [aX].
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Multiplying the difference of (1.17) and the shifted shock equation by (u —@~%), we can
show that

% n(u|ﬂ_x)(t,m) dx
R (1.19)
—X(1) /ﬂ/(ux ) de + /a'|uX _ap / 10, (X — @2 da.
R R R

Note that, at the final step, we made the change of variable x — = + X(¢) flipping the
shift from the shock 7 to the function uX(t, ) = u(t,» + X(t)). We now fix the speed of
the shift as

which defines the shift ¢ — X(t) thanks to the Cauchy-Lipschitz theorem. We claim
that, for this shift, [ n(u|@=*)(t,z) dz is non-increasing in time. This statement will be
proved, if we can show that for any function g € H'(R):

7+ [H@lga)Pds - [1g(@)Pds <o, (1.20)
R

R

where § = [p @ (x)g(x) dz. Indeed, for any fixed time ¢ > 0, denote g(z) = (u™ —a)(t, z).
The inequality (1.20) for this specific function g applied to (1.19) shows that at all these
times:

4
dt
R

n(ula=*)(t, z) dz < 0.

Therefore, the contraction up to a shift is reduced to the Poincaré type inequality (1.20).
Because [, @' dx = 1, it is equivalent to

/ @ (2)|g(z) — g de — / 19/ ()2 d < 0.
R

R

Let us rewrite this inequality in the natural variable associated to the shock:

y=1da(x), dy=7d'(x)dr,  f(y)=g(z).

This change of variable is possible since @ is an increasing function from 0 to 1. We have
also
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1
J@) = @@ ), g= / f () dy,
0

and so (1.20) is equivalent to

1 1 1
2 ~/ !
!’f—/fdy’ dy < 0/U(ﬂﬁ)lf *dy.

But thanks to (1.18), @/(x) = a(z)(1 — 4(x)) = y(1 — y). Hence (1.16) implies (1.20)
since 1/2 < 1.

The case of the Navier-Stokes system: If we perform the same idea on the Navier-Stokes
system (1.15) in the BD effective variables U = (v, h), but without weight function a,
we are obtaining (after Taylor expansion, using the smallness of the shock and of the
perturbation) the inequality

a - x
pn n(UU") dx

R
~XOYWO) + [y @)X - o de — [ 100X ~ o) da,

=
=

with

Thanks to the BD effective variables, the first equality is very similar to the scalar case.
Especially, the dissipation is in the v variable only, as the “bad” quadratic term. However,
the Y term involves now a linear combination of v™ — & and hX — h. Therefore, whatever
the choice of X, we cannot control any weighted mean value of vX — ¢ from this term as
in the scalar case.

The point of the method is that the flux of the relative entropy (which disappears
when integrating in x) is better behaved. On top of a “bad” quadratic term in [v¥X —
)2, it involves a “good” (meaning with a good sign) quadratic term involving a linear
combination of vX — ¢ and k¥ — h. The weight function a is used to activate those flux
terms. Note that the linear combination involved in the flux terms is independent of the
linear combination involved in the Y (¢) term. Therefore the use of both the weight and
the shift allows to control the weighted mean value of vX — ¥ needed to use the Poincaré
Lemma 1.1. The weight function a is chosen such that dya is proportional to 0, [p'(?)]
which is the analogue of @' for the scalar case, and is a natural weight associated to the
shock layer. Its strength, however, is enhanced by a factor bigger than the size of the
shock A > 4, in order to make the relative entropy flux term dominant.
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The rest of the paper is organized as follows. We begin with preliminaries in Section 2.
It includes known properties on the rarefaction and on the viscous shock, together with
simple properties on the behavior of the pressure functional and the relative entropy.
The general set-up is laid out in Section 3. We introduce an a priori estimates result in
Proposition 3.2. Then we show by a continuity argument how this proposition implies
Theorem 1.1. The last two sections are dedicated to the proof of Proposition 3.2. The
a-contraction argument is set up in Section 4 where global a priori estimates are proved
in the variables (v, h). From these global estimates, we deduce global a priori estimates
in the variables (v, u) in Section 5, concluding the proof of Proposition 3.2.

2. Preliminaries

We gather in this section some well-known results which will be useful in the rest of
the paper.

2.1. Relative quantities

As explained in the introduction, the a-contraction with shifts theory is based on the
relative entropy, and the specific volume variable v € R* is of particular importance.
For any function F defined on R, we define the associated relative quantity defined for
v,w € R as

F|lw) = F(v) — F(w) — F'(w)(v — w).

We gather, in the following lemma, useful explicit inequalities on the relative quantities
associated to the pressure p(v) = v=7, and the potential energy Q(v) = v!=7/(y — 1).
The proofs are simply based on Taylor expansions, and can be found in [15, Lemmas
2.4, 2.5 and 2.6].

Lemma 2.1. For given constants v > 1, and v_ > 0, there exist constants C, 0, > 0, such
that the following holds true.
1) For any v,w such that 0 < w < 2v_,0 < v < 3v_,

lv —w|* < CQvw), (2.1)
lv — w|* < Cp(v|w). (2.2)

2) For any v,w > v_/2,
lp(v) = p(w)| < Clv — w|. (2.3)

8) For any 0 < & < 6., and for any (v,w) € R satisfying |p(v) — p(w)| < &, and
Ip(w) — p(v=)| < 6, the following holds true:
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plolu) < (T s + 8 o) st (2.4

. —
Q(vlw)zp(wm Ip(v) — >\2—13:Jp<w>*%*2<p<v>—p<w>>3, (2.5)
Qulu) < ()" + 08 ) o) - )P (2.6)

2.2. Rarefaction wave

We now recall important properties of the 1-rarefaction wave. Consider a (Vp,, tm)
in (1.2), and (v—,u—) € Ry (Vm,tUm). Set w_ = A1(v_), wm = A1(vy,), and consider the
Riemann problem for the inviscid Burgers equation:

wy + ww, =0,

w(0,z) = wi(z) = {w_, z<0, 27

Wy, x> 0.

If w_ < wyy,, then (2.7) has a rarefaction wave fan solution w" (¢, z) = w”(x/t) given by

w_, T < w-t,
x
wr(t,x) = w?"(?) = %7 w_t S x S wmta (28)
W s T > Wt

It is easy to check that the l-rarefaction wave (v",u")(t,x) = (v",u")(z/t) to the Rie-
mann problem (1.3)-(1.4), defined in (1.6)-(1.7), is given explicitly by

(2.9)

The self-similar 1-rarefaction wave (v",u")(x/t) is Lipschitz continuous and satisfies the
Euler system a.e. for ¢t > 0,

vy —ul =0,

(2.10)
ul + p(v"), = 0.

Let dp := |vm, — v—| denote the strength of the rarefaction wave. Notice that dp ~

|, — u—| by (2.9),.

2.3. Viscous shock wave

We turn to the 2-viscous shock wave connecting (v, un,) and (vy,u4) such that
(Vs Um) € S2(vy, us). Recall the Rankine-Hugoniot condition (1.8) and the Lax entropy
condition
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)\2(U+) <o < )\Q(Um). (211)
The Riemann problem (1.3)-(1.4) admits a unique 2-shock solution

Ums Um ), T < ot,
(v*,u®)(t,x) = { ( ) = (2.12)

(vy,ug), x> ot.

By (1.8), it holds that

o ww (2.13)

VU — Um

By introducing a new variable ¢ = 2 —ot, the 2-viscous shock wave (07, u%)(€) satisfies
the ODE

—o(@®) ~ @) =0, '~
S/
N ~svyv _ (@)’ (2.14)
o (@) + () = (%) -
(@°,3%)(=00) = (Vm,um),  (0°,0%)(+00) = (v4,uy).
The properties of the 2-viscous shock wave (7°,%%)(¢) can be listed as follows. The

proof of this lemma can be found in [27] or [7] (see also [15]).

Lemma 2.2. For any state (vy,uy ), there exists a constant C > 0 such that the following
is true. For any end state such that (U, um) € Ra(vy, uq ), there exists a unique solution
(0%, %) (€) to (2.14). Let 55 denote the strength of the shock as 65 := |p(vy) — p(vm)| ~
|[vy — U] ~ Jug — wp|. It holds that

g <0, g >0,

and

[7%(€) — vm| < Cog e~ Ol ¢ <0,
‘55(5) - ’U+| S 055 6_065‘5‘7 5 > 0,
(02 ,u2)| < Co% e %Kl Ve eR,

|(Vge, Uge )| < Cos|(Tg,ug)], VEER.

2.4. Composite waves of viscous shock and rarefaction

Given the end states (v4,us) € RT xR in (1.2), we consider the case that there exists
a unique intermediate state (vp,, um,) such that
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(v_,u_) € R1(Vpm, Um), (Vs Um,) € So(vy, ut). (2.15)
We will consider a composite wave:
(v"(%) +3%(z — ot) — vm,u"(%) + @8z — ot) — um) : (2.16)

where (v",u")(%) is the 1-rarefaction wave defined in (2.9) and (0, 7%)(£) is the 2-viscous
shock wave defined in Lemma 2.2.

3. Set-up of the problem, and proof of Theorem 1.1
3.1. Construction of approximate rarefaction wave

As in [28], we will consider a smooth approximate solution of the 1-rarefaction wave,
by using the smooth solution to the Burgers equation:

wy + ww, =0, (3.1)
w(0,2) = wo(z) = 2 ; U b, '

Then, by the characteristic methods, the solution w(t,x) of the problem (3.1) has the
following properties and their proofs can be found in [28].

Lemma 3.1. Suppose w,, > w_ and set W = wy, — w—. Then the problem (3.1) has a
unique smooth global solution w(t,x) such that

(1) w_ < w(t,x) < W, wey >0 forzeR andt > 0.

(2) The following estimates hold for allt >0 and p € [1,4+00]:

[we (L, )| ey < C min(|i], [@|"/P¢= /7)),
[wa (L, )| o) < Cmin(f@], t7).
(3) If w, <0, then it holds that Yz > 0,Vt > 0,
lw(t, ) — wy| < we2(2Hlwmlt),

|(Way Wag ) (8, )| < Crie™ 27 Hlwm ),

(4) It holds that Vx < w_t, Vt > 0,

lw(t,z) —w_| < we™2lz—w-1l

(W, W) ()| < Clive 2wt

T
5) li t,x) —w'(5)] = 0.
(5) Jim_sup fw(t,z) — v’ (3)]
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We now construct the smooth approximate 1-rarefaction wave (07, uf?)(¢, ) of the

I-rarefaction wave fan (v",u")(%) by

)\1(’07) =w-, Al(vm) = Wm,
M (@)t x) = w(l +t,2), (3.2)

2 (0, a) (t z) = 21 (v, u) = 21 (Vg Um),

where w(t,z) is the smooth solution to the Burgers equation in (3.1). One can easily
check that the above approximate rarefaction wave (0%, u?) satisfies the Euler system:

al + p@@"), = 0.

The following lemma comes from Lemma 3.1 (cf. [28]).

Lemma 3.2. The smooth approzvimate 1-rarefaction wave (0%, uf)(t,z) defined in (3.2)
satisfies the following properties. Let dg denote the rarefaction wave strength as 0 :=

[0 — V| ~ |ty — u_|.

yt+l

(1) W = 2smw, > 0 and OF = “IZ R >0,vz R and t > 0.

(2) The following estimates hold for all t > 0 and p € [1,+c0]:

H(Ua:’ w)HLP(R) < Cmin{dgr, o 1/P(1_|_t) 1+1/p}

(02 Ut | ey < Cmin{dg, (1+6)713,

[ulk | < cluf|, vzeR.

(8) For x > 0,t > 0, it holds that

(4) For x < M\ (v_)t and t > 0, it holds that

@7, @) (t,2) — (v—,u_)| < Cog e el

(@, a)(t, )] < Cop e 2o,

(5) lim_sup |57, @)(t.2) - (0" u") (T)] = 0.
10 zeR
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3.2. Local in time estimates on the solution

For simplification of our analysis, we rewrite the compressible Navier-Stokes system
(1.1) into the following system, based on the change of variable associated to the speed
of propagation of the shock (¢,x) — (t,£ = x — ot):

vy — ovg — ug = 0,
3.4
{ut —oug +p(v)e = (“v—é)g (3.4)

We will consider stability of the solution to (3.4) around the superposition wave of the
approximate rarefaction wave and the viscous shock wave shifted by X(¢) (to be defined
in (3.8)):

(Fx, Tx)(t, €) i= ('ﬁR(t, €+ ot) + 75 — X(1)) — v,

3.5
GR(t, €+ ot) + U5 (€ — X (1)) —um). 35)

For any initial H! perturbation of the superposition wave in (3.5), there exists a
global strong solution to (3.4) (see for instance [31]). We will use a standard method of
continuity argument to show the global in time control of this perturbation. For that,
we first recall local in time estimates for strong solutions to (1.1) (and so also for (3.4)).
They can be found in [37] (see also [31, Proposition 2.2]).

Proposition 3.1. Let v and u be smooth monotone functions such that
v()=vy and u(z)=wuy for £z>1. (3.6)

For any constants My, M1, kg, Ro, k1, k1 with My > My > 0 and Ry > R > kg > Kk > 0,
there exists a constant Ty > 0 such that if

lvo — vl vy + |lwo — ull g1 vy < Mo,

0 < Ky < vo(w) < Fo, Vz € R,
then (3.4) has a unique solution (v,u) on [0,Ty] such that

v—v e C(0,To); H' (R)),
u—wu e C([0, Tl H'(R)) N L*(0, To; H2(R)).

and
v — vl Lo (0, 70511 R)) + |t — | oo (0,70: 1 (R)) < M1
Moreover:

£y <o(t,z) <Ry, Y(t,z) € [0,To] x R. (3.7)
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3.8. Construction of shift

For the continuity argument, the main tool is the a priori estimates of Proposition 3.2.
These estimates depend on the shift function, and for this reason, we are giving its
definition right now. The definition depends on the weight function a : R — R defined
in (4.11). For now, we will only use the fact that [la|/c1®) < 2. We then define the shift
X as a solution to the ODE:

%) = 52 | [ 2R adiste - X)p(0) - o))
R

- [ ate = X)06p(E (€ - X)) - T_x)de]. (38)

3
where M is the specific constant chosen as M := % with o, :== \/—p'(vy,,), which

will be used in the proof of Lemma 4.5 (see (4.49)).

The following lemma ensures that (3.8) has a unique absolutely continuous solution
defined on any interval in time [0, 7] for which (3.7) is verified.

Lemma 3.3. For any c1,co > 0, there exists a constant C > 0 such that the following is
true. For any T > 0, and any function v € L= ((0,T) x R) verifying

c1 <ot z) < co, V(t,z) € [0,T] x R, (3.9)
the ODE (3.8) has a unique absolutely continuous solution X on [0,T]. Moreover,
X)) <Ct, Vt<T. (3.10)

Proof. We will use the following lemma as a simple adaptation of the well-known Cauchy-
Lipschitz theorem.

Lemma 3.4. [3, Lemma A.1] Let p > 1 and T > 0. Suppose that a function F :[0,T] x
R — R satisfies
F(t7.'13) _F(tay) <

sup |[F(t,z)| < f(t) and sup |———| <g(t) forte[0,T]
zeR z,yeR  x#y r—=y

for some functions f € L*(0,T) and g € LP(0,T). Then for any xo € R, there exists a
unique absolutely continuous function X : [0,T] — R satisfying

(3.11)

X(t) = F(t,X(t)) for a.e. t €[0,T],
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To apply the above lemma, let F(¢,X) denote the right-hand side of the ODE (3.8).
Then the sufficient conditions of the above lemma are verified thanks to the facts that
lallcrr) < 2, 07| c2m) < max{1,v;}, and H@f”p < Cdg. Indeed, using (3.9), we find
that for some constant C > 0,

C - ~ ~
sup [F(t, X)| < g\l(Ip(v)L [p(0-x)I, [v], Iv—x|)||Lw<R)/|v§|d€

xR J (3.12)

<C,

and

C - ~ -
sup [0x F'(t, X)| < —llalle[(Ip()], [p(v-x)1; [v]; [o-x DIl =) / [0 ]d¢
XeR S 2

<C.
Especially, since |X(£)| < C by (3.12), we have (3.10). O
3.4. A priori estimates

First, it follows from (3.3) that (v,u)(t,&) := (0VF(t, & + ot), uft(t, £ + ot)) verifies

— _ - 0’
{’Ut 0V¢ Ug (3.13)

ur — oug +p(v)e = 0.

Therefore, using (2.14) and (3.13) we find that the approximated combination of waves
(v_x,u_x) defined in (3.5) solves the system:

(0-x)t — o(0-x)¢ + X(t)(7%);* = (@-x)e = 0,
(3.14)

(@x) — 0@ x)e + X(O@)7X + (p(F_x))e = (“Z’jf)5 R4

where (09) % := 97 (¢ — X(1)), (u¥) % :=ug (¢ — X(t)) and

v_x

— (a?)ix _ (ﬂ_x)g _ 7 _ 5R _ 1~}S -X
F = ((55))()5 ( = >£, Fy = [p(0-x) —p(@") —p((@°)"%)],.  (3.15)

Note that the shift X(¢) is performed only in the shock layer. The terms F; and Fj
are the wave interactions due to nonlinearity of the viscosity and the pressure and error
terms due to the inviscid rarefaction.

We now state the key step for the proof of Theorem 1.1.
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Proposition 3.2. For a given point (vy,uy) € RT x R, there exist positive constants
Cy, 00, €1 such that the following holds.

Suppose that (v,u) is the solution to (3.4) on [0,T] for some T > 0, and (Vv_x,U_x)
is defined in (3.5) with X being the absolutely continuous solution to (3.8) with weight
function a defined in (4.11). Assume that both the rarefaction and shock waves strength
satisfy Or,ds < o and that

v—1v_x € C([0,T]; H(R)),
u—1u_x € C([0,T); H'(R)) N L*(0, T; H*(R)),

and

[lv— ;I\J/_X|‘Loc(07T;H1(R)) + |lu— ﬂ_XHLoo(O’T;Hl(R)) <ej. (3.16)

Then

sup v — -1 m) + l[u = Tl o ) +

te[0,T]
T (3.17)
+ / U)+GR(U) + D(U) + D1(U) + D2(U))ds
0
< Co (|lvo — (0, )z (wy + lluo — @0, )l 2 w)) + Codyf
where Cy is independent of T and
g5() = [ 1036 = X(O)llo - T-x e
R
6" ) = [ 1o - T_xlde.
R
D) = [ 106(pl0) - plT-x)) . (3.18)
R

) Z/!(u—ﬂ—X)s\Qdf,
R

) Z/!(u—ﬂ—Xdedﬁ-
R

In addition, by (3.8),

X(t)] < Coll(v = o-x)(t, Mpow),  VE<T. (3.19)
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We postpone the proof of this key proposition to Sections 4 and 5. We are proving in
the rest of this section how Proposition 3.2 implies Theorem 1.1.

3.5. Global in time estimates on the perturbations

We first prove (1.12) from Theorem 1.1 by using Proposition 3.1 and Proposition 3.2
and a continuity argument.
Let us consider the positive constants dg,e1,Co of Proposition 3.2. The constant dg
control the maximum size of the shock and the rarefaction, and can be chosen even
smaller if needed. First, by (3.6) in Proposition 3.1, the smooth and monotone functions
v(z),u(x) especially satisfy for some C, > 0,

> (e = vellzagy) + lle = vt 2@y ) + 1902l 2y + 9ol 2y
+ (3.20)

< O(Jog — v | + Juy —u_|) < Cu(6r + 05)(< 2C.5).

This together with Lemmas 2.2 and 3.2 then implies that for some C; > 0,

<

u(-) =200, M mrwy + lwl-) — (0, )| (w)
(o = vallpas) + llu = wsllrs) ) + 1770) = vmllzaca,)
+

15 = vl 2wy + [570) = o=l 2eoy + 0% = vl 2

+ 1020]l L2®) + 10:07(0) | L2y + 158 | 22 () (3.21)
IO = vl + 7 = urlzmy) + [70) ~ vl
+ 12° — umll 2wy + 102ull r2®) + 11007 (0) | L2 ®) + 1T | 22(R)

< C1(0r + V/s).

By smallness of dp, we observe that for any dg,dr € (0, dp),

2 ooy

— C1(0r +\/35) — Cu(6r + 65) > 0. (3.22)
Co+1

Let ¢¢ be the above positive constant:

2 ooy

Cotl C1(0r + V/5s),

gg:=¢ex — Cy(0p +dg), and e, :=
where note that £y can be chosen independently on dg, dg, for example, as g = m.
The specific constants g, €, will be used to apply Propositions 3.1 and 3.2 as below.

Consider any initial data (vg, ug) verifying the hypothesis (1.11) of Theorem 1.1, that is,

Z [(vo — v, uo — ut)|| L2y + [[(vows woz) | L2(r) < €0, (3.23)
+
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which together with (3.20) yields

lvo — vl g1 () + luo — wl g1 (r)

<> (w0 = v, o = w2 sy + 2 = v2 2 = w2 )
T (3.24)

+ | (vos woz) | L2 ) + | (Vs )l L2 (R)
<eé&+ C*<6R + 65’) = Ex.

Especially, this together with Sobolev embedding implies that
lvo — vllLem) < Cex, (3.25)
which together with smallness of ¢, implies that

% <w(é) <2v;, VEER.

Since ¢, satisfies 0 < e, < 5 by (3.22), Proposition 3.1 with (3.24) and (3.25) implies
that there exists Ty > 0 such that (3.4) has a unique solution (v,u) on [0, Tp] satisfying

lv = vl Lo 0,105 (RY) + 1t — | Los (0,70 51 (R)) < 2 (3.26)
and
?7 < ’U(t,f) < 3U+, V(tvf) € [OaTO] x R.

Then, using the same argument as in (3.21), and then using Lemmas 3.2 and 3.3, we
find that for all ¢ € [0, Tp],

1S3

lo = v-x(t 2wy + lw — ex(t,) |2 w)

v
< Z (v — v, u—ug)lL2ry) + [((@%) % —vp, (@) > - u)llL2®,)
I

(@ (t, -+ ot) — v, W+ 0t) — um)| 2R )
+ @R, -+ ot) — v, @t 4+ ot) —u) || e )
+ (@) = g, @) —um) |2

+ 1002, Opw) | L2R) + 1020, 020"™) || L2(w) + | (0
< Cop\/1+ (0 — M)t + CV/bs(1+ /X (1))
< CVoo(1 + V).

e @) 2w

Indeed, some estimates above are computed as follows:
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(o}

/\ D= vslde= [0 - e

X (t)

) X @)l

0
0 ot
/ [of(t, & + ot) —v_|2d¢ = / [0 (t, 2) — v_|*dx

ot A (vo)t
= / [of(t, x) — v_|*dx + / [of (t, x) — v_|*dx
A1 (vo)t —00
A (vt
< 6%(0 = M (vo))t+ C8% / e~ Hlr=M =)t gy

< Co% (14 (0 — M (vo)t),
/\ (t, €+ ot) — vy |2dE < C6% /6—4‘$ldxg05§.
ot

< / C%eCosklge 4 / [55(¢) — v [2de < Cs(1+ [X(D)]),
0

Using smallness of 6y, and choosing 77 € (0, Tp) small enough such that Cv/dg(1+/1}) <

%, we have

o = v-x [l 0,17 ) + Il = Ux | Lo 0,735 7 () < 2 :
Therefore, (3.26) and (3.27) imply that
v = V_x||Le= 0,7 m () + ([0 — U—x[| Lo (0,13 11 (R)) < €1
Especially, since X is absolutely continuous, and
v—v,u—u€ C([0,T1); H'(R)),
we have

v—T_x,u—1u_x € C([0,T1]; H'(R)).

We now consider the maximal existence time:

Ty :=supt>0
T€[0,]

(3.27)

sup ([|(v = 0_x)(7, )l mrw) + 1w = T-x) (7, )l 51 (m)) < 61} .
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If Thy < oo, then the continuity argument implies that

sup  ([[(v = T-x) (7, My + [[(w = @-x) (7, ) s wy) = 1. (3.28)
T€[0,Tar]

But, since it follows from (3.21) and (3.24) that

G 51 /6

lvo —0(0, )l a2 )y + lluo — u(0, )| 1 (r) < 07—1—1’

it holds from Proposition 3.2 that

sup v—0_x)(7, )M wry + || (v —w_x) (7, )| 2 <Copt—m—7"
TG[O’TM](H( x)(7 Mm@y + II( x) (7 )l w)) < Co Corl

which contradicts the above equality (3.28).
Therefore, Th; = 0o, which together with Proposition 3.2 implies

o (10 =T )+ = ) ) + 6s/ﬁm%s

+ / (G5(U) + GR(U) + D(U) 4+ D1(U) + D5(U))ds
0

< Co (Jlvo = 50, )l 1 vy + 1o — @0, )| 1 (ry) + Cody® < o0
and

X (0] < Coll(v = o-x)(t, Mz=®), t>0. (3.30)

In addition, since the rarefaction wave (v",u") is Lipschitz continuous in « for all ¢ > 0
and from Lemma 3.2, we have

o(t,2) = (v(3) + 7@ — 0t = X(1) — v ) € C([0, +00); H'(R)),
u(t,a:)—( (%)—i—u (x—at—X(t))—um> € C([0,+o00); HY(R)).

Since (u — u_x)ee € L*(0,+00; L%(R)) by (3.29), and (u®)¢e € L*(0,+o0; L*(R)) by
Lemma 3.2, we have

Uge (t, ) — U5 (x — ot — X(t)) € L*(0,4+00; L*(R)),
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which implies the desired result (1.12).
Especially, since the right-hand side of (3.29) is small enough, we find that (by Sobolev
embedding as before)

%* <t €) < 3uy, V() €[0,00) x R. (3.31)

These and the above estimates (3.29)-(3.30) are useful to prove the long-time behaviors
(1.13)-(1.14) as follows.

3.6. Time-asymptotic behavior, and end of the proof of Theorem 1.1

We now want to prove (1.13) and (1.14). Consider a function g defined on (0, c0) by

9(t) = (v = o-x)e(t, )72y + (= 2-x)e(t, )| F2(m)-

The aim is to show the classical estimate:

)|+ 1g'(t)|]dt < oo. (3.32)

Since

(p(v) — P_x))e = ¥ W)(v — T_x)e + (F-x)e (' (v) — p'(Fx))
= P () (v~ Tox)e + (F +TE(E - X(1) (0 (v) — P (T-x)),

the uniform bound (3.31) yields
(0= Tx)e| < Clp(v) — p(F-x))e| + C(TE| + [T (€ - XE) o T x| (3.33)

Thus, it follows from (3.29), (3.33) and |ﬂ§| ~ |vR| that
[1sie < ¢ [ (5W)+6" W) + D) + Dy(©))de < .

which proves the first part of (3.32).
To show the second part of (3.32), we combine the systems (3.4) and (3.14) as follows:

(v = 0-x)e = o(v—T-x)¢ = X(B)(@) ™ — (u—TU-x)e =0,
(u—tx)e = o(u—T-x)e = X()(@)* + (p(v) — p(I-x))e

= ue _ (U-x)e —F-F
v i)',x ¢ '

(3.34)
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Using (3.34) and the integration by parts, we have

7|g’(t)|dt

2 / [(v —U-x)e(v—U-x)er + (v —U-x)e(u— ﬂ—X)st} dg
R

dt

IN

0\8 0\8

dt

_|_

2 [ (0= Tox)e KOG + (0~ Tosdee] de

ooR

2 [ - i0&ko@)ae 2 -

0 R R

[— (p(v) — p(v-x))e + (% - @:—X)g> —F - FQ] d§’dt
13

v V_X

<2 [ [ (1= 706l [XOUTHE + 10 - T-x)ee]
0 R

(= T X(O](@) g | + |(u — d-x)eel

(3.35)

1)~ el | (55 = G2 |11+ 1

< 0/ (X +G5U) + G7(U) + D) + Dy (U) + Da(U))dt

+CZR/ U(%_(@;jx) ’ + R |2+|F22]d§dt

For the last three terms above, we get further estimates as follows.
Using (3.31) with Lemmas 2.2 and 3.2, one has

[ 10 e
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+ 1w = G-x)el?| (v = T_x)¢ * + (1@)el* + @) )] (u — x), [

+ (@)l + @)X (0 = 5ox) [2] deat.

Then, using (3.18), we have

//Hf— ) e

< c/ (65(W) + G (W) + D) + Dy (U) + Do(0) )t

o0

e / (0= T [Py / (0 — x)e [2dedt.
R

0

Using the interpolation inequality and (3.29), the last term above is estimated as

C [ =) [Eeim [ 10~ 5x)cldede
0 R

< C/ 1w —=T-x)¢ Izl (v = 8-x)ee 2®) 1 (v = T-x)el|72 my dt
OOO
~ 2 ~ 2 ~ 4
< [ (1= Tox)ee ey + 1 = o) eyl (0 = T ey
0
< [ [l T o + 1l — Tox)e [Bagm |t
OOO
S R
< c/ (g (U) + GR(U) + DU) + Dg(U))dt < .
0

Similarly, using Lemmas 2.2 and 3.2 with recalling v_x = v + (%)X

7/|F1|2d§dt:7 ~ )_i = (%) ’ dedt

0 R
<C//< W)eel + (@)l @F)el + 1@l (@) ™| + 1@F)ell(@) ™|

— U, We have

2
@)X + 1@ XN @ XD - m) dedt
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o0
<c| (||<aR>sei2<R> @b
0

+ @) 10 = v + |(5R)£||(as)gX|||%2(]R)>dt7

and
7/ |[Po[*dedt = 7/ |[p(5-x) — (™) —p((ﬁs)_x)}grdfdt
0 R 0 R

<c / NFENES) X = v + 1) XNITE = vl [2s -
0

Notice that the right-hand sides above are finite by Lemma 3.2 and Lemma 4.2. Thus,
the above estimates with (3.29) imply the proof of the second part of (3.32).
Therefore, we have (3.32), which implies

lim (|[(v— 5—X)§||2L2(R) +[[(u— ﬂ—X)f||%2(11«)) =0.

t——+oo

This together with the interpolation inequality and (3.29) implies

lim (||v — 6_X||LN(R) + ||U — 'EZ_X”LDO(R)) =0, (336)

t——+oo

which together with Lemma 3.2 (5) implies (1.13). In addition, by (3.30) and (3.36), it
holds that

IX(t)] < Coll(v —v_x)(t, zeewy =0 as t— o0, (3.37)
which proves (1.14). Thus we complete the proof of Theorem 1.1.
Hence, the remaining part of this paper is dedicated to the proof of Proposition 3.2.

e Notations: In what follows, we use the following notations for notational simplicity.
1. C denotes a positive O(1)-constant which may change from line to line, but which is
independent of the small constants dg, €1, ds,dr, A (to appear in (4.11)) and the time T
2. For any function f: RT x R — R and any time-dependent shift X(t),

FEE) = fEEX(1)).

3. We omit the dependence on X for (3.5) as follows:

(B 0)(t,€) 1= (T(E + 0t) + T (€ = X () = v, W (4 € + 1) + T (€ = X(1)) = )
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For simplicity, we also omit the arguments of the waves without confusion: for example,

ot =08t 6 +ot), @)X =08(t, € + ot + X (1)),
X =01 (€ + ot + X (1) + 5 (E) — v

4. Energy estimates for the system of (v, h)-variables
We introduce a new effective velocity
h:=u—(Inv). (4.1)

Then, the system (3.4) is transformed into

vy — ove — he = (Inw)ge, (4.2)
hy — ohe +p(v)e = 0.

We set hS := 7% — (In ©%)¢. Then, it follows from (2.14) that

—o(@) — (k%) = (In%°)",

—a(h%) + (p(@%)) =0, (4.3)
(@, h°)(~00) = (Vm,um), (0%, 1%)(+00) = (v, us).
Set,
R(t, €)== a(t, &) + (B%) X&) — up, for t € [0, 7). (4.4)

Then, it holds from (3.13) and (4.3) that

Ty — oV + X(H)([@%) X — he = (InV)ee + F,

~ - L (4.5)
hy — ohe + X(t)(h®)® + (p(0))e = Fa,
where F5 is defined in (3.15) and
F3 = (ln(ﬂs)_x — lnﬁ)&. (4.6)

This section is dedicated to the proof of the following lemma.

Lemma 4.1. Under the hypotheses of Proposition 3.2, there exists C > 0 (independent of
do,€1 and T') such that for all t € (0,T],
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/ (h s +Q(v|5)> (1 9)de +bs [ 1X(s)Pas
0

R

/ U)+G%(U) + D(U)) ds (4.7)

0
<c (h(“) —HOOF | Q(%WQE))) it + oY,
R
where h(0,£) == uo(€) — (Inwg)e(€), and

G1(U) == %/K@‘S)g’ﬂ ’h_ﬁ_ M

/ @)X Ip(v) — p(3) P, (48)

/ 0 (p(0) = (@) P,

4.1. Wave interaction estimates

2

dg,

We here present useful estimates for the error terms Fy, Fy, F3 introduced in (3.15) and
(4.6). First, we notice that the a priori assumption (3.16) with the Sobolev embedding
and (2.3) implies

Ip(v) = p(@) Lo ((0,1)xR) < Cllv =L~ (0,1)xR) < Ce1. (4.9)
This smallness together with (3.8), (3.16) and (2.3) yields that
: ¢ ~5y-X
X0 < 5 lllp@) = p@)] + v =Vl @) [ (7)™ dE < Cllo =Dl (410)
R

This especially proves (3.19), and will be used to get the wave interaction estimates in
Lemma 4.2.

Lemma 4.2. Let X be the shift defined by (3.8). Under the same hypotheses as in Propo-
sition 3.2, the following holds: ¥t < T,
°) (0T — v, L1(R) v ¢ v7); LIR) = ROg€E )
1(@%)g * @" )l @) @)Xl < Copdse s
1)@ —vm)lzm) + @)@ ¥ 2@ < OOrdy %",

(@) (7)) = vin) | 2w) < Cordse 5.
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Proof. First, by (4.10) with (4.9), it holds that
X(t) < Cey,  0<t<T,
which together with X (0) = 0 yields
1X(t)] < Cet, 0<t<T.
Let us take €1 so small such that the above bound is less than %t, that is,

ot

Cet < 1

Then, since

t t t
v§<_%, g—X(t)<—%+Cslt<—Jz<0 and
ot ot
€ =Xl =[] = [X(®)] > 5 = Cert > —,

it holds from Lemma 2.2 that V€ < f%t,

|’5S(£ —X(t) — v < C5Se—C5s\€—X(t)|

Csl€ — X(t)|> ox (_ 0550t>
2 PUTs )

< Cdgexp (—
Likewise, by Lemma 2.2, V€ < —%t,

10675 (6 = X(1))] < Cogemsle=X ()

Ol — X(t)|) . (_ casms)
2 P s )

<C (5?9 exp <
On the other hand, since

ot
>
VE > 5

t
L a=Etot= >0,
it holds from Lemma 3.2 that V§ > —%F,
0B (t, & + at) — v + |00 (8, € 4 ot)| < Cdge2(SHotIHA )],

where note that |A;(vy,)| > 0 is O(1)-constant, since 5 < vy, < vy.
Therefore, using the above estimates together with the bounds: (by Lemmas 2.2 and 3.2)



M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963

VE,  |0R(t, €+ at) — v | 4+ 007 (¢, € + ot)| < Cdg,
0%(6 = X (1) — | < Cés, 005 (€ — X(1))| < COZ,
[0e0%(t, - + ot)|| L1 r) < COR, W,

we have
CopoZeCoslE X0l =Cost iy o Tt
@) | (157 = vl + [@)el) < ot 2
Copdge CIEtotlemCt it € > —=,
and

C|(@)|sse=COsleXWle=Costjpe o T

(TN T = vm| < <

CdRéseic‘EJrgtle*Ct, if &€ > 5

Hence, this with the smallness of dg implies that
JIEE1" = ol +1@eD]de
R

< 053(536_065t/5s (6—C6s|€—x(t)| + e—C\§+Ut|> d¢ < C5R556_065t,
R

2
JIEX105" = vl + 16l e
R
< 0612%5%67C55t/55 (67055|57X(t)| + 670\5+at|) de < 0512%(%670552
R

and

J 1G> v

R

< 0536%6—06515 / |(5R>€|d£ + Cé%é%e_Ct / e—ClE—i—at\df
R R
< C6%0%e %t o

4.2. Construction of weight function

We define the weight function a by

33

(4.11)
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where the constant A is chosen to be so small but far bigger than §g such that

0sg K A< Cv/bs. (4.12)
Notice that
l<a(é) <1+ (4.13)
and
1 A 1S\ ~S
a'(§) = ——p'(07)vg >0, (4.14)
ds >
and so,
A g
la’| ~ pCaE (4.15)

4.3. Relative entropy method

We rewrite (4.2) into the system of viscous conservation laws:

1
OU + 8 A(U) = (( n(ﬂ)})§£> : (4.16)
where
v —ov—nh
= A = .
v () 2= (0 m)
Consider the entropy n(U) := %2 + Q(v) of (4.16), where Q(v) = “;31, ie, Q(v) =
—p(v).
To write the above viscous term in terms of the derivative of the entropy:
_ (—pv)
vnw) = (), (4.17)

we observe that

especially, by —p'(v)v = vp(v),



M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963

Thus, using the non-negative matrix

1 _ 9
M(U) := ( »® ,
0 0
the above system (4.16) can be rewritten as
O,U + 8 A(U) = 0 (M(U)&gvn(U)).

Let

_ N (TE) + (7)) — v
vl ) = (Mt,s)) - <aR<t,5> T (RS)X(e) - um>'

Note that (4.5) can be written as

010 + 0 A(D) = 9 (M(D)0: V(D) ) = X0 (T%)7%) + (?3) ,

35

(4.18)

(4.19)

(4.20)

where Fy, F3 are defined in (3.15), (4.6) respectively. Consider the relative entropy func-

tional defined by
n(UV) =nU) =n(V) = Vo(V)({U = V),
and the relative flux defined by
AUIV)=AU) - A(V) = VAV U -V).
Let G(+;-) be the flux of the relative entropy defined by
GU;V)=GU) - G(V) = Vn(V)(AU) = A(V)),

where G is the entropy flux of 7, i.e., 9;G(U) = Eizl n(U)0; Ar(U),
By a straightforward computation, for the system (4.16), we have

|h— h?
2

AWID) = (p<«?|ﬂ>>’
G(U:0) = (p(v) — p@)(h — F) — on(U1D),

n(U|U) = +Q(vlD),

where the relative pressure is defined as

p(vw) = p(v) — p(w) = p'(w)(v — w).

(4.21)

(4.22)

(4.24)

(4.25)
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Below, we will estimate the relative entropy (weighted by a(€) defined in (4.11)) of
the solution U of (4.18) w.r.t. the shifted wave (4.19) as follows:

a XU EIU(EE)).

Lemma 4.3. Let a be the weight function defined by (4.11). Let U be a solution to (4.18),
and U the shifted wave satisfying (4.19). Then,

d

7 [ ¢ OnULOIU1€)de = XY (U) + T"U) = T*UU), (4,96

R

where

YW) = - [aXn(uI0)dg + [ @ X92@)T) (U - D
R R

7m0) = [0 (o) @) (b~ D) + 0 [ @ X @)X p(el)de
R

R

ag ¥ 2 =P0) o (0 - p(3)) e

_ (4.27)

®—pv), -

p(o)p() CP)d

a X (p(v) — p(T)) Fydé / X (h — T Fade,
R

go0) = /agx [ o / agXQ(v[o)de
R R
-X

+ [ alptoinde + [ L0k - o) P
R R

Remark 4.1. Since a’(§) > 0 and u? > 0 by Lemma 3.2, —79°°¢ consists of good terms,
while JP%¢ consists of bad terms.

Proof. By the definition of the relative entropy with (4.18) and (4.21), we first have

G [ O o0.9)a =X [ a¥n(wi0)as
R

R
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+ / aX {(vn(U) - Vn(ﬁ)>8tU — V20U — U’)atU] de
= %00 [ agXn0iDas + [ | (T0(0) - Vo)) (~oeA@)
R R

+ 0 (MW)TD))) = V(@)U - 0)( - 26A(D)

+ O (M(ﬁ)agvn(ﬁ)) ~ X0 (%)) + (?g) )} de.

37

Using the definitions (4.22) and (4.23) with the same computation as in [39, Lemma 4])

(see also [15, Lemma 2.3]), we have

6
& [ @mu e, OI0(©)de = XY W) + Y L
R =1
L i=— [ aX0:.G(U; U)de,
/

I = —/a*X[)gVn(l?)A(UH})df,
R

b= [ @ (Tn(w) = V(@) ae (M(U)3e (Vn(w) - V(D)) ) de.
R

I = / a X (Vn(U) = V(D)) 2 ((M(U) = M(D)) 9 V(D) ) de,
R

s = [ @ X(Tn)(UI0)0 (M (D)0:70(D) ),
R

Is = — | a= XV ) (§3> de.
R/ :

Using (4.24) and (4.17), we have

b =[G Oy = [0 (o) - @) (h~ B) -~ an(U]0)) de

R

ag X (p(v) — p(®)) (h — h)d¢

-2 [aX h-[ ag -0 [ ag¥aumas
R

R

%\%

(4.28)
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I, =— a‘xﬁgp(vﬁ)dg.
!

By integration by parts, we have

i [ () - p0)0

% (p0) —p() ) de

I= [ (o) - p@) 0 (P02 g5 ag

Using (4.17) and

_n O
V2(U) = ( pv) 1), (4.29)
we have
= [ Xp0)(nDeeds,
R
and

a X (h — h)Fydt.

&
\
B
Q\
>
’.6\
=
<
\
3
3
QU
78 %
\
B

Especially, since

Ig=— / 0 X p(o]7) Fadé + / 0 X(p(v) — p(T)) Fadé / 0 X (h — h) Fd,
R

R R

::I7

we use (4.4) and (4.3) to have
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Lt Is+ I = — / o X (G + ()X + (0°) ) pof)de
R

_ / o X (T8~ o@%);%) p(ol)de.

R

Therefore, we have

- a/agXQ(vw)dg - /a_x (ag - a(ﬁs)gx) p(o]7)de
R

=

+
B
=)

X (p(v) — p(@)) Fade — / 0 X(h — T Fyde
R

a X Y12 _xP(v) —p(v) ~
_R/,Yl)(v)wﬁ(p(v) —p(v))| df_R/ag T(U)aﬁ(p(”) _p(”))df
X ~\\ 2 19) v
+/ a (p(v) = p(7) w(i];)(p()@)dg
R
- / a—xag(p(m—p(5>)%a§p(a)dg. -
R

4.4. Maximization in terms of h — h

On the right-hand side of (4.26), we will use Lemma 1.1 for the diffusion term in
order to control the bad terms only related to the perturbation p(v) — p(v) (or v — ).
Therefore, we will rewrite J bad into the maximized representation in terms of h — h in
the following lemma.

Lemma 4.4. Let a : R — RT be as in (4.11), and U be the shifted wave as in (4.19).
Then, for any U € RT x R,

TN U) = ge(U) = B(U) - G(U), (4.30)

where
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BW) = 5 [ a®|plo) s de + 0 [« X @) a0l

20
R R
_Xp( )*p(v)
- R/ 0¥ 0 plo) ~ p(®)de
Oep(v
+ [ ag o) - pe)* g
R
I o 2@ =)
a ag(p(v) p(v)) ~p(v)p(®) 8§p(v)df (4.31)
R
+ [ pt) - pE) s - [0 (- Ry Fade,
R R

Q(U);/agx‘hﬁ () p(®)

d£+a/ Q(v|i7)d§

R

R
a= %X M) |2
+/a‘xﬂ?p(vlﬁ)d’f+/7p—(v)|3s(1?(“) —p()[de.
R R

Remark 4.2. Since ocag > 0 and a > 0, —G consists of four good terms.

Proof. Let J; and Jy be the first terms of J%¢(U) and —J9°°¢(U) respectively:

Iy = / a7 (p(v) — p(®)) (h — R)d,

R

Jo = —%/agx’h—ﬁrdg

R

Applying the quadratic identity az? + Bz = a(z + %)2 — % with z := h — h to the
integrands of J; + J2, we have

—%(h—h + (p(v) — p(@)) (h — h)
~\ 12
== Zln-a - 2O L) — @

Therefore, we have the desired representation (4.30)-(4.31). O
4.5. Proof of Lemma /.1

First of all, using Lemma 4.3 and Lemma 4.4 together with a change of variable
&= &+ X(t), we have
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& [ an(UX(0%)de = X)) Y (0%) + BO) - 60%),
R

where noting from (4.19) that

_ X @)X + 75 — vm>

For the bad terms and good terms, we use the following notations:

B(U) = Bi(U) +S:1(U) + S2(U),

i=1
G(U) :=G.(U) + Gy (U) + GHU) +D(U),

where
Bu(U) = 5 [ aclo(o) — ) P,
4
Ba(U) = [ a(@)ep(uli¥)de,
By(U) = [ afp(”)vg(zgax)ag(p(v) — () dg
R
Bu(U) = R/ celo) ~ () 22O e
By(U) = R/ o0 (p(0) — ) X5 LB 5y
S, (U) = /a(p(v) — p(@®))(In7° - Ino™), d
R
S2(U) = = [ alh = BX) (p(T¥) = p(0")) - p(5%))
R
and

Go(U) =0 / ac Q[T e,

R

41

(4.32)

(4.33)



42 M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963

GR(U) = / o (@)X p(u|T%)dé
R

D(U) = R/ 10 olo) = () P

For notational simplicity in this section, we omit the dependence of the solution on the
shift, i.e., (v, h) = (vX, hX).
First, note from (3.16) with the change of variable £ — & + X(¢) that

Ip(v) = p(T)|| L T)xR < Cllv— 7 1 T)xR
((0,T)xR) ((0,T)xR) (4.34)

< Cllv = 0% o 0,01 () < Cer-

Since the diffusion term D is related to the small perturbation of pressure, we will perform
the Taylor expansion near p(vX) for the leading order terms and then use Lemma 1.1
on the sharp Poincaré inequality in the following lemma.

For Y, we have from (4.24) and (4.29) that

Y(U) = —/aw(mﬁx)dg + /av%(ﬁx)(ﬁs)g(zf —UX)de

R R
_TX2
_ _/a5 (L u | +Q(v|aX)> de
R
+ [ ahf(h— hX)de — [ ap'(@)0¢ (v — TF)de.
/ /

We decompose the functional Y as follows:

where
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.:—%/%(h X - M) <h—%X+M>d§,

R
/ (v[5®)dE — / p(v%))2de.

Notice from (3.8) that

X(t) = _%(Yl +Y>), (4.35)
and so,
6
X (1Y = _% X2 +X(0) 3 Y. (4.36)
1=3

4.5.1. Leading order estimates

Lemma 4.5. There exists C > 0 such that
08 <12 3
- =2 |IX B, +B,—-Gy—-D
M| |“+ B1 + Bs 277

<-c / ()¢ lp(v) — () 2dé + C / laelp(v) — (@) Pde
R R
e / ae|G™)X = vl |p(v) — (%) e
R

Proof. We first rewrite the main terms in terms of the new variables y and w:

w = p(v) — p(@%), (4.37)
and
s
Note that
Z_g — 5P > 0, (4.39)

and the change of variable £ € R — y € (0,1) will be used below.
Note also that a(§) =1+ Ay and so a'(§) = A(dy/d§).
To perform the sharp estimates, we will consider the O(1)-constants:
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1
Om =/ =P (Um), Qm - .

B QVUmp(Um) ’

which are indeed independent of the small constants dg, dg, since %“ < vy < vy
Note that

lo —om| < Cés, (4.40)
with together with 2, = —p/(vy,) = fyp(vm)%“ implies
~gy—2L—1
o — @)l < cos, | -2 < ey,
m 2 y
Um
(%)~ (4.41)

< Céo.

2
Om

o Estimate on — 22 |X|%: First, to estimate the term — 2% |X|[?, we will estimate Y1, Yo
due to (4.35).
By the change of variable, we have

1
4
Y, = ——‘Z /awdy.
o
0
Using (4.40) and |a — 1] < A, we have
5 1 1
Y, + U—;" /wdy < 055()\+50)/|w|dy. (4.42)

0

For

1
Y, = —/ap(ﬂs)g(v - 'ﬁx)df = 65/@(1} — ﬂx)dy,
0

R
we observe that since (by considering v = p(v)_%)
p@) !
v =%+ ) - p(T))| < Clp(v) = p(@*)P?,

it follows from (4.41) and (4.34) that

V=T (o) —p('ﬁX»] < 60 + £1)lp(v) — pT)].

m
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This implies

1

ds
Y, + — oy /wdy SC’éS()\+5o+51)/|w\dy.
Om 4 0

Therefore, by (4.35), (4.42) and (4.43), we have

1 5 1
. oM M 5
X—E/wdy :ZE YH—a/wdy
0 =1 0
<COv+a+a) [ fuldy
which yields

1 1

2M .

U—2/wdy - |X] SC()\—|—50+81)2/|w\2dy.
" 0

This and the algebraic inequality % —q*> < (p—q)? for all p,q > 0 imply

2

2M? .
o /wdy — |X]2 < C(A+ 60 +¢e1)? / lw|?dy.

m

0

Thus,
5 Mos [ ] ’ /
—7%MFg-¢ﬂS /w@ -H%AA+%+QF/WE@.

0 0

e Change of variable for B, Bo: By the change of variable, we have

)\ 1
. 2
—;/ dy,
0

which together with (4.40) yields

1 1
%/ 2dy+0)\55/w2dy.
0 0

For Bo, using (0°)¢ = p(v°)¢/p'(v°) and the change of variable, we have

45

(4.43)

(4.44)

(4.45)
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1

By = ods [ (14 M) e p(0lT¥)dy.
0

1
P’ (0%)]

Using (2.4) with (4.34), we have

1
1 v+1 (7K 2
B, < ods(1 4 3) / (e (5or + €21 ) bo) —p@)F ) . (440

which together with (4.40)-(4.41) yields
1
B2§6Sam( +050+)\+€1 /w
0

e Change of variable for Gy: For Go, we first use (2.5) with (4.34) to split it into two
parts:

X
~ o [0 ) -
J y (4.47)
=:G2
~ o [acg T pT) 32 000) - o))

g [ o (b7 =657 Iote) —p@d.

We only do the change of variable for the good term Gy as follows: by (4.40)-(4.41) and
the change of variable,

G2 > 5 (1= Cs) [ aclp(v) ~ p()Pds = 52—(1 = Cbs) [ iy

m
R

This and (4.45) yield
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1
B, — G2 < C)és / wdy. (4.48)
0

e Change of variable for D: First, using a > 1 and the change of variable, we have

1 e [ L (W
D> R/ 5 e (pte) = () P / oyl — (5w

Integrating (4.3) over (—o0,&] yields

(Ino®)e = =0 (% — vy,) — M
Since
1 cdyy _ —p(@) _ o s
) (df) @) e
we have
1 dy ~ p(T%) — p(vm)
50 T) (E> =00 ~vm) - o
= —% (0’2(’05 - Um) + <p(,US) —p(Um))) )

which together with o2 = p(om)=p(vs) yields

V4 —Um

1 dy
65%9(55) <d_§)
N ‘m ((p(vm) = p(01)) (@ = vm) + (V4 = Vi) (P(F) = p(vm)))

= () = )@ = ) + @ =)o) — )
o(ve — vm)

L — o) () — plom)) + (vs — 7)) — p(vm»)

B ‘m ((p@%) = p )@ = o) + (04 = T%)(PE) = p(om))) -

Since Y = P(Um)6—sp(5s) and 1 — y = P(ﬂs)*:ﬂ(v#r)

ds 4

1 1 (@): dg ( Uy — 0° B vy — 0 )
y(1 —y) ywp(@5)\d¢/)  o(vy —vm) \p(vm) —p(@%)  ploy) —p([E%) )"
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Since the right-hand side above is the same as the one in the proofs of [17, Appendix B]
and [15, Lemma 3.1]), we have

1 1 dy 65p" (Um) 2
—_ =) - | < (0d%.
’y(l - y) ,Yp(US) <d§> 2‘p/(vm)|20m o

In addition, since (4.34) yields C~! < p(v) < C and

P@S) ~5 ~5  ~ ~
-1 <CP” —v| <C(Jv° = 0|+ [v —v]) < C(6g +€1),
p(v)
we have
/ 1 d
2p Yy
D> [lolh s (5w
0
dsp” (vm ;
_ sp’ _ 2
(1—=Cdg— Cey) (2|p (Um)|20m C’53>/y y)|0yw|* dy.
0
Since
Plom) ol
2[p' (Um)Pom  2Y0mp(vm)
we have

1
D > Ssam(l — C(do + 1)) /y ) |0yw[dy.
0

e Conclusion: First, by (4.46), (4.48) and the above estimates, we have
3
Bi+B2y—Gs - —D

1
Sésam (1"‘0504‘)\4‘51 /w

0
1
3
2=t e) [t - piouba),
0

which together with the smallness of A, dg, 1 yields

1 1
3 9 5
B, +By; -Gy — ZD < dsum 3 /wzdy -3 /Z/(l — y)|0yw|*dy
0 0
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Using Lemma 1.1 and the fact that for w := fol wdy,

1 1
/|w—w|2dy: /dey—wQ,
0 0

we have

1 1
S50t ds0m,
B, +By— Gy — oD < - 289m [ g, 4 2059 wdy
4 8 4
0

0

Since the specific O(1)-constant M satisfies

M= g . (4.49)
it holds from (4.44) and (4.47) that
b} 3
- ﬁ\xFJrBl +B2— Gy~ {D
1
Qi L -
< _1_/w25sdy+‘7/a§ 7 p() 77 (p(v) — p(07)) d¢
0 R
g ~ _1_ _1_ ~
~ g [ae (P73 = @) o) - )P
R

which implies the desired estimate. O

4.5.2. Proof of Lemma 4.1
First of all, we use (4.32), (4.33), (4.36) to have

d ~x IS <12 3
— d¢=—-——|X|*"+B;+By— Gy —-D
di an(UIU ) 3 2M| |+ B1 + B, 27y
R
5s o > 1
7 |2 Y R
_2_|X| +Xi§:3Yi+;:3Bi+Sl+S2_G1_G _ZD'

Using Lemma 4.5 and the Young’s inequality, we find that there exist C7,C > 0 such
that

d -
- | an(UIU™)dg
R
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e / )¢ lp(v) — p(T)2de + C / laclp(v) — p(@)Pde
R R

2K1

+C [ lagl @ = vnllp(e) ~ p@)de
R

:2K2
1
X2+ — Y,|? B;,+S;+S, -G, —-GEF--D.
||+§||+l§3+1+2 1 1

In what follows, to control the above bad terms, we will use the above good terms
G1,GE D and

S = / ()l lp(v) — p(F%) de. (4.50)
R

Note that from (4.8) and (4.50), it is obvious that G = G*° with the change of variables
£ &+ X(1).

e Estimate on the cubic term K: For simplicity, we use the notation w = p(v) — p(vX)
as in (4.37). We first use (4.15) and the interpolation inequality to have

A -
Ki<on / 012 s )| (7% e 0]
R

A - -
< O3 [l my / (@5 )¢ wde / |5 e
R R

< C—||w£||L2(R lwllzew)

I

Using (4.12), (3.16) with (2.3), we have

/ (@5 ) [ude
R

- 1
< Ceruelam + Co1 [ 09)dutd < 5D+ 1G2),
R

Ky < Cerllwe| r2(w)

e Estimate on the term K5: Likewise, using (4.15) and the interpolation inequality,

A S\ 114
Ky <Oy ||w||L4 @@ = vmlllz2 )
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1/2 3 2 ~ ~
<COs ngnLé(R w37, @)l @) = vl 2wy

Using (3.16), Lemma 4.2, (4.12) and Young’s inequality, it holds that

A

K, < csl||w§||1L/2§R@ —Cost

0%/ 2005t < Cey|we g, Is0ne
1
< Cerllwe|Faqm) + Cerdg 53 e < D + Cerdg "5y e,

e Estimates on the terms Y ;: Since
Vel £ €% [l - - 2020 e < 022 v,
R
we have
%|Y3\2 < C%SGl < iGl'
Using (2.1) and (2.6), we have

Yal <€ [ 1% = 510 — 7%

[ e,
R

< C5R/|5§9|Wdf < CorVis
R

and so
Ch
Y, 2 < 06%GY < —~G7.
| a7 <C <20

For Y5, we first estimate h — hX in terms of u — X and v — vX

of hin (4.1) and & in (4.4)) as follows. Observe that

(using the definition

|h = BX| < |u—@%| + |(Inv)e — (In7%)¢|
< Ju—T% + C(|(v = T)e| + [T |[v — %] + [(BE)F))
< u— X[+ C(|(0 = T%)e] + [0 [[0 — 7%
T N@X = vl + @),

(4.51)

which together with the wave interaction estimates in Lemma 4.2 and Lemma 3.2 implies

Hh —ﬁXHL%R) <C ||u — aXHL2(R) + ||U — fﬁX”Hl(R) + (53]
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Then, by using (3.16),
1h = 1% L 0.7:22®)) < Cle1 + 0r). (4.52)
This together with (3.16) and |lag||z~ < CAdg yields
Y5 < O|G1|%||a5|\%m(R) [||h - }NLXHLOO(O,T;L?(R)) + [Jv — 57x||L°°(0,T;L2(R))]
< Cler +0r)(Ms) 1 G,
and so

C 1
— Y5> < CAe1 +0r)*G1 < -Gy.
S 4

Using (2.6) with (4.34), we have

C.o 5 C ) CA2 S
- < < 27
S IYaP < - | [lachtde <% [ 1@)elutae

R R

Thus, by (3.16) with (2.3), we have
C C\? ~ ~ Ch
—|Y6* < =—wl?2g) / |(0%)e|w?de < 05%/\(7}S)£\w2d§ < G
ds ds 40

o Estimates on the terms B;: Using the Young’s inequality, we have

1
[By(U) s—D+G/m&M&

1
40

I A

—D+V/M*AM& (D +C1GS),

For By, Bs, we use the facts that

|0ep(@)| < C([5 |+ |(@g)X) by Lemma 3.2,
and

[p(v) = p(@)]* < Cp(v[o*) by (2.2) and (2.3).

Then,

(C1G® + GF).

ool —

muvngcmg/ogww<>|xmw—p@ﬁfgg

R
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In addition, using Young’s inequality and ||(ﬂ?)x||Lm < Cdr by Lemma 3.2, we have

2

1 ~
Bs(U)] <D+ C50/(| [+ @R (p(w) — p()) e
R
2 S R
< 40D+ (ClG + G )
e Estimates on the terms S;: We first compute that (using v°, 9%, (vF)* € (v, /2,2v,),
X = (0%)X + 79 — vy, and Lemmas (3.2)-(2.2))

|(ln53—lnﬁx)££|
s (1 1 1 1 ey
= Uésé (53 @’X)'Fﬁ(”&&_vé) (S) ((vf) _(”?))
_ ;[)'X 2 1 _ 1
() (@S)Q @X)?)’ (4.53)
< C(IEN @™ = vl + |@TF|+ |EEIFE] + | EE
+ TP — vl

< C>I@EMEI+I@EP + (98] + 07 P)I@HX = vm| + 1@HENE]),
and
(@) = p((@)X) = p(@*)),|
(4.54)
< C(|@HENY = vml| + [T 1@ = vm]).-

Then,

< 0/|w|(|<'ﬁR>§i.~| HIEXP)dE +C [ (fwl + h— X))
(P21 @)X = vpn] + |@EHEN = vpn| + |@F)E|0E]) dE
= J1 + Jz.
Using the interpolation inequality and (3.16) with Young’s inequality,
J1 < Cllwl| oo @) |0 1wy + Cllwll L2 @) (@) E N4 r)
1/2 1 2 ~
< Cllwlltmy lwe | g | @) E 21y + Cllwll 2 @y | ) F 14 ry
< C\/E_VBH(U )§§”L1(]R) + Ceq || (@7 )g ||L4(]R)

2/3 1/~ 4/3 ~
< 5D + O ITRE g, + Cal TE sy

(4.55)
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For Jo, using (2.3), (4.52) and (3.16),
lw]z2®) + |2 *%XHB(R) < C(e1 +0R).
Thus,
J2 < Clex + 0r)[[1T211(@)® — va| + |@HENT — vin| + | @O ENTE| 12 gy -

e Conclusion: From the above estimates, we have

: 1 C 'y
an(U|UX)de < _—Spq2 — -Gy — 1GS =
dt 2
R
4/3 4/3 —Cs 2/3 1/~ 4/3
+Ce1dy "0 "e” 05t + Ce (0 EN i my
+C€1H(§R)E ||L4(]R)+C(51+5R H|'U ’UR)X—’Um|
+[@OENT = v+ [@TET \HLZ(R).

Integrating the above inequality over [0, ¢] for any ¢t < T', we have

t

/n(U|ﬁX)(t,§)d§+és/|X\2ds+/(G1 + G® + D)ds

R 0 0

< C/ (Uo|U(0,6))de + Cer64° +Cez/3/|| @EN Ry ds
R

+C’51/|| @)X )e 12 4 ®)ds + C(e1+dR) /||| [|@*)* — v,
FI@ENT = vl + |TENTE ] o -
Notice that by Lemma 3.2,

N § if1+¢<65!
R < R - R
1@ )eellLrmy < { L ifl4t> 06,

1+t
and
or if1+t<dp'
H@R)&HL‘*R < 1/4 . o
e e A R =

Thus,
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oo oo
~ 4/3 1/3 ~
JIE N eds < 05’ [ 1™ E e ayds < Co (4.56)
0 0

In addition, since it follows from Lemma 4.2 that

| @YX = o] + 1 EVENT = o] + (TVEITE gy < Corbse =", (457)

and so,

(oo}
JIRE NG = ol + [EOEIT vl + GEIGE oy < o (458)
0

we have

t

t
/n(U|(~]X)(t,§)df+5s/|X|2ds+/(G1 + G*® + D)ds
R 0 0

< c/n(UOW(o,g))dg + ooy,
R

This implies the desired estimate (4.7) together with the new notations (4.8), where note
that

G1(U) ~G1(U), G®°(U)=G*(U), D(U)~D(U).
5. Proof of Proposition 3.2

In this section, we use the original system (3.4) to estimate |[u —@|| (0,7, 1 (R)), and
then we complete the proof of Proposition 3.2.

5.1. Estimates for |[u — @ L2 ()
We first present the zeroth-order energy estimates for the system (3.4).

Lemma 5.1. Under the hypotheses of Proposition 3.2, there exists C > 0 (independent of
do0,€1 and T') such that for all t € (0,T],
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t
(v = D)t MF @y + 1w = D)2 w) + 05 / X |*ds

¢
(5.1)
+/ (G*(U) + G*(U) + D(U) + D1(U)) ds
0
< € (llvo = 0, )3 gy + lluo = (0, e ey ) + CO3°,
where G°, D are as in (4.8), and
/ ug p(v[v)de,
® (5.2)
/} u—u §| dg.
R
Proof. First of all, as in Section 4.3, we first rewrite (3.4) into the form:
O.U + 0 A(U) = ¢ (M(U)agvn(U)), (5.3)
where
v —oU — U 0 0
= A = M =
0= (o) a0=(L00) = (g )
and note that by the entropy n(U) := “72 + Q(v) of (3.4),
_ (—p)
wie) = (1)
By the above representation, the system (3.14) can be written as
~ ~ ~ ~ . o 0
00 + e A(D) = 0k (M(U)agvn(U)) — X0 (U)X + ( Ft FQ) : (5.4)

where Fy, Fy are as in (3.15).

Then, applying the equality (4.28) with a =1 to the system (5.3), we have

6

n(U(t6)|U(t,€)de = XY(U) + Y Ti(U),

i=1

dt
R
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R
T(U) = —R/aga(U 0)de
L) =~ [ 9:9n(0)AWID)dg,
R
L, = [ (Valv) - 99(0)) 3¢ (MW)0e (Tn(W) - V(D)) )de.
R
7)== [ (Valv) - 90(0)) 2 (M) - 3(0))2n(D)) de.
R
1,(0) = [ (V) (UI0)2 (M (O)0:Vn(D)) .
R

- —/v2n(z7)(U ~0) (Fl 2F2> 3
R

It follows from the above system that

y:f/ﬂmwé*wfm@+/@®*wfm@:yﬁo@

R
/a5 ) (u — @) — on(U|T))dé = 0,
/ [0)d¢ = —/ﬂ?p(vh) d¢ /
R R
=:GR =:T2

In addition, since (Vn)(U|U) = (7”(0”“7)), we have Ty = 0.
Since (2.2) and (2.4) yields
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V1] < \I/I(ﬁf)‘xldﬁd/l(ﬁf)‘x|v—5|2d§§ VsV,
R R

we have
X[ < S KP + 06",
To control Vs, we will use the follows estimate: as done in (4.51),
Ju— | < |h =Bl + C(|(v = D)e| + [Tello = 3] + (@) [0 = vm| + [BE)).
In addition, using the fact that
(p(v) = p(0))e = p'(v)(v = V)¢ + e (p'(v) — P'(V)),
and so,
(v =0)e| < Cl(p(v) = p(v))e| + Cluve]|v -,

we have

|y2|<c/| 77X (=7 - 22O ) — o)

+1(p(v) = p(@))e] + [Tel[v — B + () X[[T" — vl + [0 I)

Then, using Lemma 4.2 to have
\y2|<c/| X (|n =5~ 2O ) - (i)
+1(p(v) = p@))el + el lv = 3] + |(5) ™[5 — v| + [5F1) e
< c(%ﬁ@u VsV GS + 55V D + d58re”C%st).
Thus,
X2, < |X|2 + ol G1 +CG® + C5D + Co50%e~C0st,

For T, note first that GF > 0 by 17? > 0. Using Lemma 2.1,

|Zo1] < CGS.
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We will use the good terms G® and D to control Zy, Zg.
Using |ﬂ?| < Clpg, |(ﬂ?)*x| < dg and Young’s inequality, we have

~ JUNS ~ 1
|Z4| < / (u—W)e| [v— 0] ([af| + |(ug) X])d¢ < 7D+ CorGR + CosG7.
R
For Zg, using (4.54) and (as done in (4.53))
(5,0
=), \7).

< C(I(ﬂR)ge @)l @)el + (1@ + 1@ * @) *NITT ~ vl

(5.5)
@l X + |<5R>g||<a5>g’<|)

< C(I@)eel + 1@ + (1) + 1@ X" — v
+IENE) X)),

we have

2 < C [ Ju =@ )ee] +1@e)ag + € [ Ju- 7
R R

(G = vl + [Tl T = v+ 1T )el| (55 )
=: Q1 + Q2.

Using the same estimates as in (4.55) with (3.16), we have
~11/2 ~ 1/2 ~ ~ ~
Q1 < Cllu — | g | (w = el gy | @ )eel 2y + Cllu — Wl 2wy | (@)e 13 1y
< CVer /D[ (@)eel L w) + Cer[|(@)el| 7w,

1 2/3 1/~ 4/3 ~
< D1+ CE @) el ity + Corl@)el 7 ry-
Using (3.16), we have
Q2 < Cet[||@)g* (177 — vil + [@H)e| @)™ = vm| + (@)l @) ™| 12 -

Therefore, from the above estimates, we find that for some constant ¢; > 0,

4
dt
R

WU OIT(€)dé + 567+ 1D,
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0s < ) - ~
< 7S|X|2 + cfcl +¢1GS + CosD + O ||(0™)ee| igy + Carll @™)ell oy
+ O[T * [0 = vmn| + 1@l |[(T%) 7 = vml + 1@l @) | 12 g
+ Cog0%e~C0st,
Integrating the above inequality over [0,¢] for any ¢ < T, and using (4.56)-(4.58), we
have

t

J (5T +aom) o+ 3 [ @)+ puw) as

R 0

/ (w " Q(vow(o,g))) ¢ (5.6)

R

IN

t
Sg ]
+/(;|x2+cjal+clc:5+casz>> ds + Oy,
0

1
2max{l,c1}’

(4.7), together with the smallness of dg/A, ds,e1, we have

Therefore, multiplying (5.6) by the constant and then adding the result to

10 = D)t ) F2 gy + 1A = B)(E T2y + lI(w = @), )[F2r)
t t

+6S/|X|2ds+/(GR+GS+D+D1)ds (5.7)
0 0

~ = ~ 1/3

< O(llvo =30, )2y + [I(h = 2)(0,) |7 2Ry + luo — @(0,)[|72(r)) + Coil’,

where we have used that (by Lemma 2.1 and (4.34))
C o — 5‘2 < Q) <Clv— 5‘2.

Finally, to complete the proof, we will show that

10 = D)el2amy < C[I1h = Pleqmy + v — @) + lo = Ty + 03], (5:8)
and

(b= R)(0, )2y < C|llvo = B0, )y + o = (0, ) Faey + 03] (5.9)
Using the definition of A in (4.1) and & in (4.4), we observe that

(v—@%)7%), . (@) X (@%) 7% —v)
v v(v9)—X ’

(u—u) — (h—ﬁ) = (lnv —ln(ﬁs)fx)E =
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which yields

(v =) = (v~ @)X, ~ (- @),

@)X (v =)+ @ —vm))
@9) X Ve

=ov(u—7)—v(h—h)+

This with Lemma 3.2 and Lemma 4.2 implies (5.8).
As in (4.51), we have

I(h — R)(0, Miew)
< Cllvo =50, ) gy + luo = W0, ) Faqry + ORITE Iaqmy + ITEO) 32y

which together with Lemmas 2.2 and 3.2 implies (5.9).
Hence, the combination of (5.7), (5.8) and (5.9) implies the desired estimate. O

5.2. Estimates for ||0¢(u — )| 12 (r)

We here complete the proof of Proposition 3.2, by using the following lemma together
with the following two estimates (by using Lemma 2.1):

05(U) = [ 1@)¢¥|le - 3 < 0G5 ()
R

GR(U) = /|a§||u ~3fde < caMw).
R

Lemma 5.2. Under the hypotheses of Proposition 3.2, there exist C1,C > 0 (independent
of 80,1, T) such that for all t € (0,T),

t

(0 =) (t, M Fn @y + | (w = @)t )| Fr gy + O / X [*ds
0

+ [ (G5(U) + GR(U) + D(U) + D1(U) + D5(U)) ds

S— .

~ ~ 1/3
< C (Jlvo = 50, sy + llto — (0, sy ) + €,

where G°, D are as in (4.8), and G, Dy are as in (5.2), and

Da(v) = [ [(u- e[

R
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Proof. For notational simplicity, we set ¢ := u — uw. Then, it follows from the second
equations of (3.4) and (3.14) that

v~ XN+ ) —pe = () AR

Multiplying the above equation by —¢¢ and integrating the result w.r.t. £, we have

d [ |iel? |1e]?
E/—2 d§+a/(—2 )£d§
R R

| S —
=0

=X [@)Xveeds + [ 0l0) — pevcds

R R

R R

= Ji+ o+ J3+ Jy
First, we get a good term

1
Do 3=/;\¢§5|2d£

R

from J3 as follows:

Jy = —/%Il/}&dei— / (%) Veeeds — /ﬂﬁf (% - %) Vecdt
R R ¢ R
(11
- [e(5 ), et
R

=: —DQ + J31 + J32 + J33.

We use the good terms Dy, D, Dy, G° and G to control the remaining terms as follows.
Using Young’s inequality,

: g\ 0s < 0s < 1
1 < IX] / @)X leelde < TIXP* + CHD2 < TIX[ + o Do,
R

1
o] < £D2+CD.

Using (%)5 < Clug| < C(|(v —V)e| + |vg|), and the interpolation inequality and (3.16),
we have
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|J31] < [[(v = D)ellL2w) [1¥ell Lo ) 1Pecl L2 ) + el Lo (r) [¥0e | 2 ) |1 Vee | 2 w)
1 2 1/2
< Cer|vell ; ||7/1££||L/2(R)||1/J££||L2(R) + C(0s + 0r) Vel L2 ®) 1Yee L2 (v)

1
< Cler + s + 0r) (1¥ell7o ) + Yeell72my) < gDz +C(er +9s +0r)D

Using |(ﬂg)| < C|(ﬂ§')| (by Lemma 3.2),

~ ~ ~ 1
| J2 < C/(\(Uf)\ + (@)Dl = Vllveelde < oD + CosG* + CoGH,
R

s < c/<|<a§>| @) (Jo = 3] + (0 — D)e]) eelde

1
< =Dy + C(ds + 0r)(G° + GE + D).

oo

Using (5.5),

[Jal < Cllveelle @l[1@)eel + @)el* + (1) | + 1@ ™ PP = vm
+H1ED @) ™M 2wy

Dy + C[|(@)eell72 vy + Cll @M ell74w)

Ol@*)g ([T — vm| + ClET)e @) * 72 )-

Therefore, we find that for some ¢y > 0,

d 2 1 g -
%/'wfj' d = Do+ BXP 4 oD+ Cler + 85+ 08)(GS + G 4 Dy)

+ Oll@™)eellF2 ) + Cl@H el Loy + CIE@HEE T = vim| + 1@F)el| @) ™11 m)

Integrating the above estimate over [0,¢] for any ¢ < T, and using (4.57) and the fact
that (by Lemma 3.2)

/ | @®)eel|2s gy ds < Con, / @)L gy ds < C63,
0 0

we have

t
2 2
0
+Qp+qq+%+&meﬁuﬁ+DMm+C@.
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1
2max{1l,co}’
to (5.1), together with the smallness of €1, dg,dr, we have

Multiplying the above inequality by the constant and then adding the result

t

nw—mmw%mﬁww—mwomw@+@/mf@
0

+ [ (GR+G®° + D+ Dy +Dy)ds

o—_

< O (llvo = 50, 1371y + llto = (0, ) 1372 y) + O
This implies the desired result in Lemma 5.2. O
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