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We prove the time-asymptotic stability of composite waves 
consisting of the superposition of a viscous shock and a 
rarefaction for the one-dimensional compressible barotropic 
Navier-Stokes equations. Our result solves a long-standing 
problem first mentioned in 1986 by Matsumura and Nishihara 
in [28]. The same authors introduced it officially as an open 
problem in 1992 in [29] and it was again described as very 
challenging open problem in 2018 in the survey paper [26]. The 
main difficulty is due to the incompatibility of the standard 
anti-derivative method, used to study the stability of viscous 
shocks, and the energy method used for the stability of 
rarefactions. Instead of the anti-derivative method, our proof 
uses the a-contraction with shifts theory recently developed 
by two of the authors. This method is energy based, and 

✩ Acknowledgment. M.-J. Kang was partially supported by the NRF-2019R1C1C1009355. A. Vasseur was 
partially supported by the NSF grant: DMS 1614918. Y. Wang was supported by National Key R&D 
Program of China, NSFC (Grant No.s 12171459, 12288201, 12090014) and CAS Project for Young Scientists 
in Basic Research, Grant No. YSBR-031.
* Corresponding author.

E-mail addresses: moonjinkang@kaist.ac.kr (M.-J. Kang), vasseur@math.utexas.edu (A.F. Vasseur), 
wangyi@amss.ac.cn (Y. Wang).
https://doi.org/10.1016/j.aim.2023.108963
0001-8708/© 2023 Elsevier Inc. All rights reserved.



2 M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963
can seamlessly handle the superposition of waves of different 
kinds.
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5.2. Estimates for ‖∂ξ(u − ũ)‖L2(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1. Introduction

Consider the one-dimensional compressible barotropic Navier-Stokes equations. In the 
Lagrangian mass coordinates, the system is described as

{
vt − ux = 0, x ∈ R, t ≥ 0,
ut + p(v)x = (μux

v )x,
(1.1)

where the unknown functions v = v(t, x) > 0, and u(t, x) represent respectively the 
specific volume, and the velocity of the gas. The pressure function p is given by the 
well-known γ-law

p(v) = bv−γ ,
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where b > 0, γ > 1 are both constants depending on the fluid, and the constant μ > 0
corresponds to the viscosity coefficient. Without loss of generality, we normalize two of 
the constants as μ = 1 and b = 1. The system is then endowed with initial values:

(v, u)(t = 0, x) = (v0(x), u0(x)), x ∈ R.

We consider initial values with fixed end states (v±, u±) ∈ R+ ×R, that is such that

(v0(x), u0(x)) → (v±, u±), as x → ±∞. (1.2)

On top of its physical relevance, system (1.1) can be seen as the typical example of 
viscous conservation laws involving a physical viscosity.

The large-time behavior of solutions to (1.1), with initial values verifying (1.2), is 
closely related to the Riemann problem of the associated Euler equations:{

vt − ux = 0,
ut + p(v)x = 0,

(1.3)

with the Riemann initial data

(v, u)(t = 0, x) =
{

(v−, u−), x < 0,
(v+, u+), x > 0,

(1.4)

corresponding to the end states (1.2). In the scalar case (where the system (1.1) is 
replaced by a single viscous equation), the time-asymptotic stability of the viscous waves, 
and their link to the inviscid problem was first proved in 1960 by Ilin-Oleinik [10] (see 
also Sattinger [34]). The case for systems as (1.1) is far more difficult (see [26]).

One of the motivation for the study of large-time behavior of solutions to compressible 
Navier-Stokes equation for Riemann initial data was to obtain insights about inviscid 
limit to the Euler equation. In 2005 [1], Bianchini-Bressan showed, for small BV initial 
values, the convergence at the inviscid limit of solution to parabolic system with “arti-
ficial viscosity” to the unique solution of the associated hyperbolic system. However, to 
this day, the result is still unknown for the physical Navier-Stokes system, even in the 
barotropic case (1.1).

Riemann problem for the inviscid model: Let us first describe the well-known solution 
of the Riemann problem for the inviscid model (1.3)-(1.4), first proposed and solved 
by Riemann [33] in 1860s. This system of conservation laws is strictly hyperbolic. This 
means that the derivative of the flux function (−u, p(v)) with respect to the conserved 
variables, about a fixed state (v, u) ∈ R+ ×R:(

0 −1
p′(v) 0

)
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is diagonalizable with real distinct eigenvalues. Note that this matrix defined the waves 
generated by the linearization of the system (1.3) about this fixed state (v, u) ∈ R+ ×R. 
Its eigenvalues λ1 = −

√
−p′(v) < 0 and λ2 =

√
−p′(v) > 0 generate both character-

istic fields which are genuinely nonlinear. Therefore, the self-similar solution, so called 
Riemann solution, of the Riemann problem is determined by a combination of at most 
two elementary solutions from the following four families: 1-rarefaction; 2-rarefaction; 1-
shock and 2-shock (see for instance [5,22]). These families are completely defined through 
their associated curves in the states plane R+ × R. For any (vR, uR) ∈ R+ × R, the 1-
rarefaction curve R1(vR, uR) corresponds to the integral curve of the first eigenvalue λ1, 
and is defined by

R1(vR, uR) :=
{

(v, u)

∣∣∣∣∣v < vR, u = uR −
v∫

vR

λ1(s)ds
}
. (1.5)

The 2-rarefaction curve R2 can be defined in the same way from the second eigen-
value λ2. For any initial values of the Riemann problem (1.4) with (v−, u−) = (vL, uL), 
(v+, u+) = (vR, uR), such that (vL, uL) ∈ R1(vR, uR), the solution (vr, ur) of (1.3) is the 
1-rarefaction wave defined as

λ1(vr(t, x)) =

⎧⎪⎪⎨⎪⎪⎩
λ1(vL), x < λ1(vL)t,
x
t , λ1(vL)t ≤ x ≤ λ1(vR)t,
λ1(vR), x > λ1(vR)t,

(1.6)

together with

z1(vr(t, x), ur(t, x)) = z1(vL, uL) = z1(vR, uR), (1.7)

where z1(v, u) = u +
∫ v

λ1(s)ds is called the 1-Riemann invariant to the Euler equation 
(1.3). The case of 2-rarefaction wave is treated similarly from the second eigenvalue λ2.

We can now define the shock curves using the Rankine-Hugoniot condition, as the 
one-parameter family of all the (v, u) such that there exists σ with:

−σ(vR − v) − (uR − u) = 0,

−σ(uR − u) + (p(vR) − p(v)) = 0.
(1.8)

The general theory shows that this condition defines actually 2 curves that meet 
at the point (vR, uR), one for the value σ = −

√
−p(vR)−p(v)

vR−v (the 1-shock curve 
S1(vR, uR) which corresponds to admissible shocks for v > vR), and one for the value 

σ =
√
−p(vR)−p(v) (the 2-shock curve S2(vR, uR) with admissible shocks for v < vR).
vR−v
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Whenever (vL, uL) ∈ S1(vR, uR) ∪S2(vR, uR), the solution (vs, us) to (1.3)-(1.4) with 
(v−, u−) = (vL, uL), (v+, u+) = (vR, uR), is given by the discontinuous traveling wave 
defined as

(vs, us)(t, x) =
{

(vL, uL), x < σt,

(vR, uR), x > σt.
(1.9)

For the general case of any states (v−, u−), (v+, u+) ∈ R+×R, it can be shown that there 
exists a (unique) intermediate state (vm, um) ∈ R+ ×R such that (vm, um) is on a curve 
of the second families from (v+, u+) (either R2(v+, u+) or S2(v+, u+)), and (v−, u−) is 
on a curve of the first families from (vm, um) (either R1(vm, um) or S1(vm, um)). The 
solution (v, u) of (1.3)-(1.4) is then obtained by the juxtaposition of the two associated 
waves

(v, u)(t, x) = (v1, u1)(t, x) + (v2, u2)(t, x) − (vm, um).

The wave (v1, u1) is 1-rarefaction fan solution to (1.6)-(1.7) if (v−, u−) ∈ R1(vm, um), or 
1-shock solution to (1.9) if (v−, u−) ∈ S1(vm, um), with (vL, uL) = (v−, u−), (vR, uR) =
(vm, um). The wave (v2, u2) is 2-shock solution to (1.9) if (vm, um) ∈ S2(v+, u+), 
or, 2-rarefaction fan solution if (vm, um) ∈ R2(v+, u+), both with the end states 
(vL, uL) = (vm, um), (vR, uR) = (v+, u+). Note that the cases of single wave are in-
cluded as degenerate cases when (v−, u−) = (vm, um), or (v+, u+) = (vm, um).

Previous time-asymptotic results for the viscous model: The time-asymptotic behavior 
of the viscous solution to (1.1) depends on whether the associated Riemann solution to 
the associated inviscid model (1.3)-(1.4) involves shock waves or rarefaction waves. In 
the case where (1.4) is a shock, the viscous counterpart for (1.1), called viscous shock, 
is the traveling wave (ṽS(x − σt), ̃uS(x − σt)) defined by the following ODE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−σ(ṽS)′ − (ũS)′ = 0,

−σ(ũS)′ + (p(ṽS))′ =
( (ũS)′

ṽS

)′
,

(ṽS , ũS)(−∞) = (vL, uL), (ṽS , ũS)(+∞) = (vR, uR).

(1.10)

Matsumura-Nishihara [27] proved the stability of the viscous shock waves (1.10) for 
the compressible Navier-Stokes equations (1.1). Independently, Goodman showed in [7]
the same result of a general system with artificial diffusion. This corresponds to the 
case where diffusion is added to all the equations of the system. In both papers, the 
proof were done under the zero mass condition which is crucial for using the so called 
anti-derivative method. Then Liu [21] and Szepessy-Xin [38] removed the crucial zero 
mass condition in [27,7] by introducing the constant shift on the viscous shock and the 
diffusion waves and the coupled diffusion waves in the transverse characteristic fields. For 
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a more recent analysis in this spirit, applying also to degenerate viscosity systems, see 
Liu-Zeng [24]. Using a somewhat different set of techniques, Mascia-Zumbrun [25] proved 
the spectral stability of viscous shock to 1D compressible Navier-Stokes system under 
a spectral condition, which is slightly weaker than the zero mass condition. The case 
of the superposition of two shocks for the Navier-Stokes-Fourier system was treated by 
Huang-Matsumura in [9]. Finally, the asymptotic stability of viscous shocks for Navier-
stokes systems with degenerate viscosities was studied in Matsumura-Wang [30], and 
generalized to a larger class of viscosity in [41] using the BD entropy introduced by 
Bresch-Desjardins in [2].

The treatment of stability of rarefactions is performed with very different techniques 
based on direct energy methods. Matsumura-Nishihara [28,29] first proved the time-
asymptotic stability of the rarefaction waves for the compressible and isentropic Navier-
Stokes equations (1.1). It was later generalized to the Navier-Stokes-Fourier system by 
Liu-Xin [23] and Nishihara-Yang-Zhao [32].

The case of the juxtaposition of a shock and a rarefaction: However, the time-asymptotic 
stability of the superposition of a viscous shock wave and a rarefaction wave has been an 
open problem up to now. The main difficulty is that the classical anti-derivative method 
used for the stability of shocks does not match well with the energy method classically 
used for the stability of rarefactions. The problem of the stability of such a superposition 
of a rarefaction and a viscous shock was first mentioned in 1986 by Matsumura and 
Nishihara in [28]. The same authors introduced it officially as an open problem in 1992 
in [29] and Matsumura described it again as very challenging open problem in 2018 in 
the survey paper [26]. Our main theorem is proving this conjecture.

Theorem 1.1. For a given constant state (v+, u+) ∈ R+×R, there exist constants δ0, ε0 >

0 such that the following holds true.
For any (vm, um) ∈ S2(v+, u+) and (v−, u−) ∈ R1(vm, um) such that

|v+ − vm| + |vm − v−| ≤ δ0,

denote (vr, ur)(xt ) the 1-rarefaction solution to (1.3) with end states (v−, u−) and 
(vm, um), and (ṽS , ̃uS)(x − σt) the 2-viscous shock solution of (1.10) with end states 
(vm, um) and (v+, u+). Let (v0, u0) be any initial data such that

∑
±

(
‖(v0 − v±, u0 − u±)‖L2(R±)

)
+ ‖(v0x, u0x)‖L2(R) < ε0, (1.11)

where R− := −R+ = (−∞, 0).
Then, the compressible Navier-Stokes system (1.1) admits a unique global-in-time solu-
tion (v, u). Moreover, there exists an absolutely continuous shift X(t) such that
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v(t, x) −
(
vr(x

t
) + ṽS(x− σt− X(t)) − vm

)
∈ C(0,+∞;H1(R)),

u(t, x) −
(
ur(x

t
) + ũS(x− σt− X(t)) − um

)
∈ C(0,+∞;H1(R)),

uxx(t, x) − ũS
xx(x− σt− X(t)) ∈ L2(0,+∞;L2(R)).

(1.12)

In addition, as t → +∞,

sup
x∈R

∣∣∣(v, u)(t, x) −
(
vr(x

t
) + ṽS(x− σt− X(t)) − vm,

ur(x
t
) + ũS(x− σt− X(t)) − um

)∣∣∣→ 0,
(1.13)

and

lim
t→+∞

|Ẋ(t)| = 0. (1.14)

Remark 1.1. Theorem 1.1 states that if the two far-field states (v±, u±) in (1.2) are 
connected by the superposition of shock and rarefaction waves, then the solution to the 
compressible Navier-Stokes equations (1.1) tends to the composite wave of the self-similar 
rarefaction wave and the viscous shock wave with the shift X(t), which solves the open 
problem proposed by Matsumura-Nishihara [29] since 1992.

Remark 1.2. The shift function X(t) (defined in (3.8)) is proved to satisfy the time-
asymptotic behavior (1.14), which implies that

lim
t→+∞

X(t)
t

= 0,

that is, the shift function X(t) grows at most sub-linearly w.r.t. the time t and the shifted 
viscous shock wave still keeps the original traveling wave profile time-asymptotically.

Remark 1.3. Note that our result in Theorem 1.1 also holds true in the case of a single 
viscous shock, that is, δR ≡ 0. In this case, Theorem 1.1 provides an alternative proof 
for stability of a single viscous shock. Our proof is simpler than the ones of Mascia-
Zumbrun [25], or Liu-Zeng [24]. This simplification is what allows us to consider the 
combination of waves of different kinds. Therefore, our approach follows exactly the 
suggestion of Matsumura in [26, Section 4.2, page 2540] to find a simpler proof, for the 
stability of viscous shock, than the ones in [25] or [24], in order to attack many other 
open problems. Note however, that our simplification comes at the cost of less precise 
information, especially on the shift X(t). We leave the detailed time-asymptotic behavior 
on the shock shift X(t), the sharp time-decay rate of the convergence and perhaps even 
detailed pointwise bounds for the composite waves, as done in recent years for single 
viscous shock wave in [24,25], for the future study.
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Remark 1.4. The extension of Theorem 1.1 to general smooth viscosity function μ =
μ(v) > 0 and general pressure function p(v) > 0 satisfying p′(v) < 0, p′′(v) > 0 follows 
without meaningful added difficulties, since we consider small H1-perturbations. For the 
sake of clarity, and to simplify slightly the arguments, we made the choice to write the 
paper in the physical relevant context of constant viscosities and power pressure laws. 
On the other hand, the extension of Theorem 1.1 to the large-amplitude composite wave 
patterns, which is already done for single viscous shock wave in [30,41,8], is another 
interesting target.

The main new ingredient of our proof is the use of the method of a-contraction with 
shifts [15] to track the stability of the viscous shock. The method is based on the relative 
entropy introduced by Dafermos [4] and DiPerna [6]. It is energy based, and so meshes 
seamlessly with the treatment of the rarefaction.

The method of a-contraction with shifts: The method of a-contraction with shifts was 
developed in [13] (see also [20]) to study the stability of extremal shocks for inviscid 
system of conservation laws, as for example, the Euler system (1.3). Consider the entropy 
of the system (which is actually the physical energy) defined for any state U = (v, u) as:

η(U) = u2

2 + Q(v), Q(v) = 1
(γ − 1)vγ−1 .

We then consider the relative entropy defined in [4] for any two states U = (v, u), 
U = (v̄, ̄u):

η(U |U) = |u− u|2
2 + Q(v|v̄), Q(v|v̄) = Q(v) −Q(v̄) −Q′(v̄)(v − v̄).

Note that Q is convex, and so η(U |U) is nonnegative and equal to zero if and only if 
U = U . Therefore η(U |U) can be used as a pseudo-distance between U and U . It can be 
shown that rarefactions U (that is solutions to (1.6)-(1.7)) have a contraction property 
for this pseudo-metric (see for instance [39]). Indeed, for any weak entropic solution U
to (1.3), it can be shown that

d

dt

∫
R

η(U |U) dx ≤ 0.

The contraction property is not true if U is a shock (that is traveling waves (1.9) veri-
fying the Rankine-Hugoniot conditions (1.8)). However, the contraction property can be 
recovered up to a shift, after weighting the relative entropy (see [13]). Indeed, there exists 
weights a−, a+ > 0 (depending only on the shock U) such that for any weak entropic 
solution U of (1.3) (verifying a mild condition called strong trace property) there exists 
a Lipschitz shift function t → X(t) such that
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d

dt

⎧⎪⎨⎪⎩a−

X(t)∫
−∞

η(U |Ū) dx + a+

∞∫
X(t)

η(U |Ū) dx

⎫⎪⎬⎪⎭ ≤ 0.

This was first proved in the scalar case by Leger [19] for a− = a+. It has been shown in 
[35] that the contraction with a− = a+ is usually false for most systems. Therefore the 
weighting via the coefficients a−, a+ is essential. Note that in the case of the full Euler 
system, the a-contraction property up to shifts is true for all the single wave patterns, 
including the 1-shocks, 3-shocks (see [40]), and the 2-contact discontinuities (see [36]). 
Although the a-contraction property with shifts holds for general extremal shocks, it is 
not always true for intermediate shocks (see [11] for instance).

The first extension of the method to viscous models was done in the 1D scalar case [14]
(see also [12]) and then in the multi-D case [18]. The case of the barotropic Navier-Stokes 
equation (1.1) was treated in [15]. The a-contraction property takes place in variables 
associated to the BD entropy (see [2]): U = (v, h), where h is the effective velocity defined 
as h = u − (ln v)x. In these variables, system (1.1) with μ = 1 is transformed as{

vt − hx = (ln v)xx,
ht + p(v)x = 0.

(1.15)

The only nonlinear term of the hyperbolic system (1.3) is the pressure which is a function 
of v. The system (1.15) is then better than (1.1) since the diffusion is in the variable 
v corresponding to the nonlinear term p(v). It was shown in [15] that there exists a 
monotonic function x → a(x) (with limits a± at ±∞), depending only on the viscous 
shock Ū = (v̄, ̄h) solution to (1.10) (in the (v, u) variables), such that for any solution U
to (1.15), there exists a shift function t → X(t) with

d

dt

∫
R

a(x− X(t))η(U(t, x)|Ū(x− X(t))) dx ≤ 0.

The strategy of this paper is to apply the a-contraction method to the composite wave 
made of a shock wave and a rarefaction wave. The weight function a and the shift 
X(t) is applied only on the shock wave. The combination of the viscous shock and the 
rarefaction is not an exact solution to (1.1). This introduces some errors that can be 
controlled thanks to the separation of the waves. Because of the shift, the separation of 
the waves is not automatic. We show, however, that it is still true, and that the shock 
cannot artificially stick to the rarefaction. This provides an “almost” a-contraction in 
the effective variables (v, h). We then recover the classical control on the H1 norm of the 
perturbation in the classical variables (v, u).

The a-contraction with shift theory for a small viscous shock: Note that the a-contraction 
result of [15] provides a uniform stability for viscous shocks with respect to the strength of 
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the viscosity. This is used in [16] to obtain the stability of inviscid shocks of (1.3) among 
any inviscid limits of (1.1). Since the conjecture of Matsumura [26] does not mention 
the uniform stability with respect to the viscosity, we choose in this paper to restrict 
ourselves to the classical framework and show the stability with μ = 1 fixed. This allows 
us to simplify some of the arguments of [15] in this context. The method is even more 
powerful in this restricted framework and should be developed in the foreseeable future 
to a large family of problems. Let us describe the fundamental ideas in this context.

A Poincaré type inequality and the scalar case: At its core, the method of a-contraction 
with shift in the viscous cases relies on the following Poincaré type inequality (see [15, 
Lemma 2.9]).

Lemma 1.1. For any f : [0, 1] → R satisfying 
∫ 1
0 y(1 − y)|f ′|2dy < ∞,

1∫
0

∣∣∣f −
1∫

0

fdy
∣∣∣2dy ≤ 1

2

1∫
0

y(1 − y)|f ′|2dy. (1.16)

The eigenfunctions of the associated Euler-Lagrange equation to this minimization 
problem are the Legendre polynomials, and their eigenvalues are given explicitly. As a 
consequence, the inequality is sharp. The weighted H1 norm of this inequality comes 
naturally when considering the following Burgers equation (see [14]):

∂tu + ∂x(u(1 − u)) = ∂2
xu, (1.17)

and its viscous shock profile ũ defined as

∂x(ũ(1 − ũ)) = ∂2
xũ, lim

x→−∞
ũ(x) = 0, lim

x→+∞
ũ(x) = 1.

This shock does not depend on time (it is a stationary wave). Integrating in x, and 
denoting ũ′ = ∂xũ gives

ũ′(x) = ũ(x)(1 − ũ(x)). (1.18)

Consider now the relative entropy associated to the entropy η(u) = u2/2 between a 
generic solution u of (1.17) and the shifted shock ũ−X(t, x) = ũ(x −X(t)) for an arbitrary 
shift X(t):

η(u|ũ−X)(t, x) = |u(t, x) − ũ(x− X(t))|2
2 .

The shifted shock verifies the equation

∂t[ũ−X] + Ẋ(ũ′)−X + ∂x(ũ−X(1 − ũ−X)) = ∂2
x[ũ−X].



M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963 11
Multiplying the difference of (1.17) and the shifted shock equation by (u − ũ−X), we can 
show that

d

dt

∫
R

η(u|ũ−X)(t, x) dx

= Ẋ(t)
∫
R

ũ′(uX − ũ) dx +
∫
R

ũ′|uX − ũ|2 −
∫
R

|∂x(uX − ũ)|2 dx.
(1.19)

Note that, at the final step, we made the change of variable x → x + X(t) flipping the 
shift from the shock ũ to the function uX(t, x) = u(t, x +X(t)). We now fix the speed of 
the shift as

Ẋ(t) = −
∫
R

ũ′(uX − ũ) dx,

which defines the shift t 
→ X(t) thanks to the Cauchy-Lipschitz theorem. We claim 
that, for this shift, 

∫
R η(u|ũ−X)(t, x) dx is non-increasing in time. This statement will be 

proved, if we can show that for any function g ∈ H1(R):

−ḡ2 +
∫
R

ũ′(x)|g(x)|2 dx−
∫
R

|g′(x)|2 dx ≤ 0, (1.20)

where ḡ =
∫
R ũ′(x)g(x) dx. Indeed, for any fixed time t > 0, denote g(x) = (uX− ũ)(t, x). 

The inequality (1.20) for this specific function g applied to (1.19) shows that at all these 
times:

d

dt

∫
R

η(u|ũ−X)(t, x) dx ≤ 0.

Therefore, the contraction up to a shift is reduced to the Poincaré type inequality (1.20). 
Because 

∫
R ũ′ dx = 1, it is equivalent to

∫
R

ũ′(x)|g(x) − ḡ|2 dx−
∫
R

|g′(x)|2 dx ≤ 0.

Let us rewrite this inequality in the natural variable associated to the shock:

y = ũ(x), dy = ũ′(x) dx, f(y) = g(x).

This change of variable is possible since ũ is an increasing function from 0 to 1. We have 
also
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g′(x) = ũ′(x)f ′(y), ḡ =
1∫

0

f(y) dy,

and so (1.20) is equivalent to

1∫
0

∣∣∣f −
1∫

0

fdy
∣∣∣2dy ≤

1∫
0

ũ′(x)|f ′|2dy.

But thanks to (1.18), ũ′(x) = ũ(x)(1 − ũ(x)) = y(1 − y). Hence (1.16) implies (1.20)
since 1/2 < 1.

The case of the Navier-Stokes system: If we perform the same idea on the Navier-Stokes 
system (1.15) in the BD effective variables U = (v, h), but without weight function a, 
we are obtaining (after Taylor expansion, using the smallness of the shock and of the 
perturbation) the inequality

d

dt

∫
R

η(U |Ũ−X) dx

≈ Ẋ(t)Y(U) +
∫
R

∂x[p′(ṽ)]|vX − ṽ|2 dx−
∫
R

1
v
|∂x(vX − ṽ)|2 dx,

with

Y(t) ≈
∫
R

∂x(∇η(Ũ)) · (UX − Ũ) dx.

Thanks to the BD effective variables, the first equality is very similar to the scalar case. 
Especially, the dissipation is in the v variable only, as the “bad” quadratic term. However, 
the Y term involves now a linear combination of vX− ṽ and hX− h̃. Therefore, whatever 
the choice of Ẋ, we cannot control any weighted mean value of vX − ṽ from this term as 
in the scalar case.

The point of the method is that the flux of the relative entropy (which disappears 
when integrating in x) is better behaved. On top of a “bad” quadratic term in |vX −
ṽ|2, it involves a “good” (meaning with a good sign) quadratic term involving a linear 
combination of vX − ṽ and hX − h̃. The weight function a is used to activate those flux 
terms. Note that the linear combination involved in the flux terms is independent of the 
linear combination involved in the Y(t) term. Therefore the use of both the weight and 
the shift allows to control the weighted mean value of vX− ṽ needed to use the Poincaré 
Lemma 1.1. The weight function a is chosen such that ∂xa is proportional to ∂x[p′(ṽ)]
which is the analogue of ũ′ for the scalar case, and is a natural weight associated to the 
shock layer. Its strength, however, is enhanced by a factor bigger than the size of the 
shock λ 
 δ, in order to make the relative entropy flux term dominant.
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The rest of the paper is organized as follows. We begin with preliminaries in Section 2. 
It includes known properties on the rarefaction and on the viscous shock, together with 
simple properties on the behavior of the pressure functional and the relative entropy. 
The general set-up is laid out in Section 3. We introduce an a priori estimates result in 
Proposition 3.2. Then we show by a continuity argument how this proposition implies 
Theorem 1.1. The last two sections are dedicated to the proof of Proposition 3.2. The 
a-contraction argument is set up in Section 4 where global a priori estimates are proved 
in the variables (v, h). From these global estimates, we deduce global a priori estimates 
in the variables (v, u) in Section 5, concluding the proof of Proposition 3.2.

2. Preliminaries

We gather in this section some well-known results which will be useful in the rest of 
the paper.

2.1. Relative quantities

As explained in the introduction, the a-contraction with shifts theory is based on the 
relative entropy, and the specific volume variable v ∈ R+ is of particular importance. 
For any function F defined on R+, we define the associated relative quantity defined for 
v, w ∈ R+ as

F (v|w) = F (v) − F (w) − F ′(w)(v − w).

We gather, in the following lemma, useful explicit inequalities on the relative quantities 
associated to the pressure p(v) = v−γ , and the potential energy Q(v) = v1−γ/(γ − 1). 
The proofs are simply based on Taylor expansions, and can be found in [15, Lemmas 
2.4, 2.5 and 2.6].

Lemma 2.1. For given constants γ > 1, and v− > 0, there exist constants C, δ∗ > 0, such 
that the following holds true.
1) For any v, w such that 0 < w < 2v−, 0 < v ≤ 3v−,

|v − w|2 ≤ CQ(v|w), (2.1)

|v − w|2 ≤ Cp(v|w). (2.2)

2) For any v, w > v−/2,

|p(v) − p(w)| ≤ C|v − w|. (2.3)

3) For any 0 < δ < δ∗, and for any (v, w) ∈ R2
+ satisfying |p(v) − p(w)| < δ, and 

|p(w) − p(v−)| < δ, the following holds true:
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p(v|w) ≤
(
γ + 1
2γ

1
p(w) + Cδ

)
|p(v) − p(w)|2, (2.4)

Q(v|w) ≥ p(w)−
1
γ −1

2γ |p(v) − p(w)|2 − 1 + γ

3γ2 p(w)−
1
γ −2(p(v) − p(w))3, (2.5)

Q(v|w) ≤
(
p(w)−

1
γ −1

2γ + Cδ

)
|p(v) − p(w)|2. (2.6)

2.2. Rarefaction wave

We now recall important properties of the 1-rarefaction wave. Consider a (vm, um)
in (1.2), and (v−, u−) ∈ R1(vm, um). Set w− = λ1(v−), wm = λ1(vm), and consider the 
Riemann problem for the inviscid Burgers equation:⎧⎪⎪⎨⎪⎪⎩

wt + wwx = 0,

w(0, x) = wr
0(x) =

{
w−, x < 0,
wm, x > 0.

(2.7)

If w− < wm, then (2.7) has a rarefaction wave fan solution wr(t, x) = wr(x/t) given by

wr(t, x) = wr(x
t
) =

⎧⎪⎪⎨⎪⎪⎩
w−, x < w−t,
x
t , w−t ≤ x ≤ wmt,

wm, x > wmt.

(2.8)

It is easy to check that the 1-rarefaction wave (vr, ur)(t, x) = (vr, ur)(x/t) to the Rie-
mann problem (1.3)-(1.4), defined in (1.6)-(1.7), is given explicitly by

λ1(vr(xt )) = wr(xt ),
z1(vr(xt ), u

r(xt )) = z1(v−, u−) = z1(vm, um).
(2.9)

The self-similar 1-rarefaction wave (vr, ur)(x/t) is Lipschitz continuous and satisfies the 
Euler system a.e. for t > 0, {

vrt − ur
x = 0,

ur
t + p(vr)x = 0.

(2.10)

Let δR := |vm − v−| denote the strength of the rarefaction wave. Notice that δR ∼
|um − u−| by (2.9)2.

2.3. Viscous shock wave

We turn to the 2-viscous shock wave connecting (vm, um) and (v+, u+) such that 
(vm, um) ∈ S2(v+, u+). Recall the Rankine-Hugoniot condition (1.8) and the Lax entropy 
condition
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λ2(v+) < σ < λ2(vm). (2.11)

The Riemann problem (1.3)-(1.4) admits a unique 2-shock solution

(vs, us)(t, x) =
{

(vm, um), x < σt,

(v+, u+), x > σt.
(2.12)

By (1.8), it holds that

σ =

√
−p(v+) − p(vm)

v+ − vm
. (2.13)

By introducing a new variable ξ = x −σt, the 2-viscous shock wave (ṽS , ̃uS)(ξ) satisfies 
the ODE ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−σ(ṽS)′ − (ũS)′ = 0, ′ = d

dξ
,

−σ(ũS)′ + (p(ṽS))′ =
( (ũS)′

ṽS

)′
,

(ṽS , ũS)(−∞) = (vm, um), (ṽS , ũS)(+∞) = (v+, u+).

(2.14)

The properties of the 2-viscous shock wave (ṽS, ̃uS)(ξ) can be listed as follows. The 
proof of this lemma can be found in [27] or [7] (see also [15]).

Lemma 2.2. For any state (v+, u+), there exists a constant C > 0 such that the following 
is true. For any end state such that (vm, um) ∈ R2(v+, u+), there exists a unique solution 
(ṽS , ̃uS)(ξ) to (2.14). Let δS denote the strength of the shock as δS := |p(v+) − p(vm)| ∼
|v+ − vm| ∼ |u+ − um|. It holds that

ũS
ξ < 0, ṽSξ > 0,

and

|ṽS(ξ) − vm| ≤ CδS e−CδS |ξ|, ξ < 0,

|ṽS(ξ) − v+| ≤ CδS e−CδS |ξ|, ξ > 0,

|(ṽSξ , ũS
ξ )| ≤ Cδ2

S e−CδS |ξ|, ∀ξ ∈ R,

|(ṽSξξ, ũS
ξξ)| ≤ CδS |(ṽSξ , ũS

ξ )|, ∀ξ ∈ R.

2.4. Composite waves of viscous shock and rarefaction

Given the end states (v±, u±) ∈ R+×R in (1.2), we consider the case that there exists 
a unique intermediate state (vm, um) such that
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(v−, u−) ∈ R1(vm, um), (vm, um) ∈ S2(v+, u+). (2.15)

We will consider a composite wave:(
vr(x

t
) + ṽS(x− σt) − vm, ur(x

t
) + ũS(x− σt) − um

)
, (2.16)

where (vr, ur)(xt ) is the 1-rarefaction wave defined in (2.9) and (ṽS , ̃uS)(ξ) is the 2-viscous 
shock wave defined in Lemma 2.2.

3. Set-up of the problem, and proof of Theorem 1.1

3.1. Construction of approximate rarefaction wave

As in [28], we will consider a smooth approximate solution of the 1-rarefaction wave, 
by using the smooth solution to the Burgers equation:⎧⎨⎩wt + wwx = 0,

w(0, x) = w0(x) = wm + w−
2 + wm − w−

2 tanhx.
(3.1)

Then, by the characteristic methods, the solution w(t, x) of the problem (3.1) has the 
following properties and their proofs can be found in [28].

Lemma 3.1. Suppose wm > w− and set w̃ = wm − w−. Then the problem (3.1) has a 
unique smooth global solution w(t, x) such that

(1) w− < w(t, x) < wm, wx > 0 for x ∈ R and t ≥ 0.
(2) The following estimates hold for all t > 0 and p ∈ [1, +∞]:

‖wx(t, ·)‖Lp(R) ≤ C min(|w̃|, |w̃|1/pt−1+1/p),

‖wxx(t, ·)‖Lp(R) ≤ C min(|w̃|, t−1).

(3) If wm < 0, then it holds that ∀x ≥ 0, ∀t ≥ 0,

|w(t, x) − wm| ≤ w̃e−2(|x|+|wm|t),

|(wx, wxx)(t, x)| ≤ Cw̃e−2(|x|+|wm|t).

(4) It holds that ∀x ≤ w−t, ∀t ≥ 0,

|w(t, x) − w−| ≤ w̃e−2|x−w−t|,

|(wx, wxx)(t, x)| ≤ Cw̃e−2|x−w−t|.

(5) lim
t→+∞

sup |w(t, x) − wr(x )| = 0.

x∈R t
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We now construct the smooth approximate 1-rarefaction wave (ṽR, ̃uR)(t, x) of the 
1-rarefaction wave fan (vr, ur)(xt ) by

λ1(v−) = w−, λ1(vm) = wm,

λ1(ṽR)(t, x) = w(1 + t, x),

z1(ṽR, ũR)(t, x) = z1(v−, u−) = z1(vm, um),

(3.2)

where w(t, x) is the smooth solution to the Burgers equation in (3.1). One can easily 
check that the above approximate rarefaction wave (ṽR, ̃uR) satisfies the Euler system:

{
ṽRt − ũR

x = 0,
ũR
t + p(ṽR)x = 0.

(3.3)

The following lemma comes from Lemma 3.1 (cf. [28]).

Lemma 3.2. The smooth approximate 1-rarefaction wave (ṽR, ̃uR)(t, x) defined in (3.2)
satisfies the following properties. Let δR denote the rarefaction wave strength as δR :=
|vm − v−| ∼ |um − u−|.

(1) ũR
x = 2

(γ+1)ṽRwx > 0 and ṽRx = (ṽR)
γ+1
2√

γ ũR
x > 0, ∀x ∈ R and t ≥ 0.

(2) The following estimates hold for all t ≥ 0 and p ∈ [1, +∞]:

‖(ṽRx , ũR
x )‖Lp(R) ≤ C min{δR, δ1/p

R (1 + t)−1+1/p},

‖(ṽRxx, ũR
xx)‖Lp(R) ≤ C min{δR, (1 + t)−1},

|ũR
xx| ≤ C|ũR

x |, ∀x ∈ R.

(3) For x ≥ 0, t ≥ 0, it holds that

|(ṽR, ũR)(t, x) − (vm, um)| ≤ CδR e−2(|x|+|λ1(vm)|t),

|(ṽRx , ũR
x )(t, x)| ≤ CδR e−2(|x|+|λ1(vm)|t).

(4) For x ≤ λ1(v−)t and t ≥ 0, it holds that

|(ṽR, ũR)(t, x) − (v−, u−)| ≤ CδR e−2|x−λ1(v−)t|,

|(ṽRx , ũR
x )(t, x)| ≤ CδR e−2|x−λ1(v−)t|.

(5) lim
t→+∞

sup |(ṽR, ̃uR)(t, x) − (vr, ur)(x )| = 0.

x∈R t
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3.2. Local in time estimates on the solution

For simplification of our analysis, we rewrite the compressible Navier-Stokes system 
(1.1) into the following system, based on the change of variable associated to the speed 
of propagation of the shock (t, x) 
→ (t, ξ = x − σt):{

vt − σvξ − uξ = 0,
ut − σuξ + p(v)ξ = (uξ

v )ξ.
(3.4)

We will consider stability of the solution to (3.4) around the superposition wave of the 
approximate rarefaction wave and the viscous shock wave shifted by X(t) (to be defined 
in (3.8)):

(ṽ−X, ũ−X)(t, ξ) :=
(
ṽR(t, ξ + σt) + ṽS(ξ − X(t)) − vm,

ũR(t, ξ + σt) + ũS(ξ − X(t)) − um

)
.

(3.5)

For any initial H1 perturbation of the superposition wave in (3.5), there exists a 
global strong solution to (3.4) (see for instance [31]). We will use a standard method of 
continuity argument to show the global in time control of this perturbation. For that, 
we first recall local in time estimates for strong solutions to (1.1) (and so also for (3.4)). 
They can be found in [37] (see also [31, Proposition 2.2]).

Proposition 3.1. Let v and u be smooth monotone functions such that

v(x) = v± and u(x) = u± for ± x ≥ 1. (3.6)

For any constants M0, M1, κ0, κ0, κ1, κ1 with M1 > M0 > 0 and κ1 > κ0 > κ0 > κ1 > 0, 
there exists a constant T0 > 0 such that if

‖v0 − v‖H1(R) + ‖u0 − u‖H1(R) ≤ M0,

0 < κ0 ≤ v0(x) ≤ κ0, ∀x ∈ R,

then (3.4) has a unique solution (v, u) on [0, T0] such that

v − v ∈ C([0, T0];H1(R)),

u− u ∈ C([0, T0];H1(R)) ∩ L2(0, T0;H2(R)).

and

‖v − v‖L∞(0,T0;H1(R)) + ‖u− u‖L∞(0,T0;H1(R)) ≤ M1.

Moreover:

κ1 ≤ v(t, x) ≤ κ1, ∀(t, x) ∈ [0, T0] ×R. (3.7)
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3.3. Construction of shift

For the continuity argument, the main tool is the a priori estimates of Proposition 3.2. 
These estimates depend on the shift function, and for this reason, we are giving its 
definition right now. The definition depends on the weight function a : R → R defined 
in (4.11). For now, we will only use the fact that ‖a‖C1(R) ≤ 2. We then define the shift 
X as a solution to the ODE:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = −M

δS

[ ∫
R

a(ξ − X)
σ

∂ξh̃
S(ξ − X)(p(v) − p(ṽ−X))dξ

−
∫
R

a(ξ − X)∂ξp(ṽS(ξ − X))(v − ṽ−X)dξ
]
,

X(0) = 0,

(3.8)

where M is the specific constant chosen as M := 5(γ+1)σ3
m

8γp(vm) with σm :=
√

−p′(vm), which 
will be used in the proof of Lemma 4.5 (see (4.49)).

The following lemma ensures that (3.8) has a unique absolutely continuous solution 
defined on any interval in time [0, T ] for which (3.7) is verified.

Lemma 3.3. For any c1, c2 > 0, there exists a constant C > 0 such that the following is 
true. For any T > 0, and any function v ∈ L∞((0, T ) ×R) verifying

c1 ≤ v(t, x) ≤ c2, ∀(t, x) ∈ [0, T ] ×R, (3.9)

the ODE (3.8) has a unique absolutely continuous solution X on [0, T ]. Moreover,

|X(t)| ≤ Ct, ∀t ≤ T. (3.10)

Proof. We will use the following lemma as a simple adaptation of the well-known Cauchy-
Lipschitz theorem.

Lemma 3.4. [3, Lemma A.1] Let p > 1 and T > 0. Suppose that a function F : [0, T ] ×
R → R satisfies

sup
x∈R

|F (t, x)| ≤ f(t) and sup
x,y∈R,x �=y

∣∣∣F (t, x) − F (t, y)
x− y

∣∣∣ ≤ g(t) for t ∈ [0, T ]

for some functions f ∈ L1(0, T ) and g ∈ Lp(0, T ). Then for any x0 ∈ R, there exists a 
unique absolutely continuous function X : [0, T ] → R satisfying{

Ẋ(t) = F (t,X(t)) for a.e. t ∈ [0, T ],
X(0) = x0.

(3.11)
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To apply the above lemma, let F (t, X) denote the right-hand side of the ODE (3.8).
Then the sufficient conditions of the above lemma are verified thanks to the facts that 
‖a‖C1(R) ≤ 2, ‖ṽS‖C2(R) ≤ max{1, v+}, and ‖ṽSξ ‖L1 ≤ CδS . Indeed, using (3.9), we find 
that for some constant C > 0,

sup
X∈R

|F (t,X)| ≤ C

δS
‖(|p(v)|, |p(ṽ−X)|, |v|, |ṽ−X|)‖L∞(R)

∫
R

|ṽSξ |dξ

≤ C,

(3.12)

and

sup
X∈R

|∂XF (t,X)| ≤ C

δS
‖a‖C1‖(|p(v)|, |p(ṽ−X)|, |v|, |ṽ−X|)‖L∞(R)

∫
R

|ṽSξ |dξ

≤ C.

Especially, since |Ẋ(t)| ≤ C by (3.12), we have (3.10). �
3.4. A priori estimates

First, it follows from (3.3) that (v, u)(t, ξ) := (ṽR(t, ξ + σt), ̃uR(t, ξ + σt)) verifies{
vt − σvξ − uξ = 0,
ut − σuξ + p(v)ξ = 0.

(3.13)

Therefore, using (2.14) and (3.13) we find that the approximated combination of waves 
(ṽ−X, ̃u−X) defined in (3.5) solves the system:⎧⎪⎨⎪⎩

(ṽ−X)t − σ(ṽ−X)ξ + Ẋ(t)(ṽS)−X
ξ − (ũ−X)ξ = 0,

(ũ−X)t − σ(ũ−X)ξ + Ẋ(t)(ũS)−X
ξ + (p(ṽ−X))ξ =

(
(ũ−X)ξ
ṽ−X

)
ξ

+ F1 + F2,
(3.14)

where (ṽS)−X
ξ := ṽSξ (ξ − X(t)), (ũS)−X

ξ := ũS
ξ (ξ − X(t)) and

F1 =
(

(ũS
ξ )−X

(ṽS)−X

)
ξ

−
(

(ũ−X)ξ
ṽ−X

)
ξ

, F2 =
[
p(ṽ−X) − p(ṽR) − p

(
(ṽS)−X)]

ξ
. (3.15)

Note that the shift X(t) is performed only in the shock layer. The terms F1 and F2
are the wave interactions due to nonlinearity of the viscosity and the pressure and error 
terms due to the inviscid rarefaction.

We now state the key step for the proof of Theorem 1.1.
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Proposition 3.2. For a given point (v+, u+) ∈ R+ × R, there exist positive constants 
C0, δ0, ε1 such that the following holds.
Suppose that (v, u) is the solution to (3.4) on [0, T ] for some T > 0, and (ṽ−X, ̃u−X)
is defined in (3.5) with X being the absolutely continuous solution to (3.8) with weight 
function a defined in (4.11). Assume that both the rarefaction and shock waves strength 
satisfy δR, δS < δ0 and that

v − ṽ−X ∈ C([0, T ];H1(R)),

u− ũ−X ∈ C([0, T ];H1(R)) ∩ L2(0, T ;H2(R)),

and

‖v − ṽ−X‖L∞(0,T ;H1(R)) + ‖u− ũ−X‖L∞(0,T ;H1(R)) ≤ ε1. (3.16)

Then

sup
t∈[0,T ]

[
‖v − ṽ−X‖H1(R) + ‖u− ũ−X‖H1(R)

]
+

√√√√√δS

T∫
0

|Ẋ(s)|2ds

+

√√√√√ T∫
0

(
GS(U) + GR(U) + D(U) + D1(U) + D2(U)

)
ds

≤ C0
(
‖v0 − ṽ(0, ·)‖H1(R) + ‖u0 − ũ(0, ·)‖H1(R)

)
+ C0δ

1/6
R ,

(3.17)

where C0 is independent of T and

GS(U) :=
∫
R

|vSξ (ξ − X(t))||v − ṽ−X|2dξ,

GR(U) :=
∫
R

|ũR
ξ ||v − ṽ−X|2dξ,

D(U) :=
∫
R

|∂ξ
(
p(v) − p(ṽ−X)

)
|2dξ,

D1(U) :=
∫
R

∣∣(u− ũ−X)ξ
∣∣2dξ,

D2(U) :=
∫
R

∣∣(u− ũ−X)ξξ
∣∣2dξ.

(3.18)

In addition, by (3.8),

|Ẋ(t)| ≤ C0‖(v − ṽ−X)(t, ·)‖L∞(R), ∀t ≤ T. (3.19)
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We postpone the proof of this key proposition to Sections 4 and 5. We are proving in 
the rest of this section how Proposition 3.2 implies Theorem 1.1.

3.5. Global in time estimates on the perturbations

We first prove (1.12) from Theorem 1.1 by using Proposition 3.1 and Proposition 3.2
and a continuity argument.
Let us consider the positive constants δ0, ε1, C0 of Proposition 3.2. The constant δ0
control the maximum size of the shock and the rarefaction, and can be chosen even 
smaller if needed. First, by (3.6) in Proposition 3.1, the smooth and monotone functions 
v(x), u(x) especially satisfy for some C∗ > 0,∑

±

(
‖v − v±‖L2(R±) + ‖u− u±‖L2(R±)

)
+ ‖∂xv‖L2(R) + ‖∂xu‖L2(R)

≤ C(|v+ − v−| + |u+ − u−|) ≤ C∗(δR + δS)(≤ 2C∗δ0).
(3.20)

This together with Lemmas 2.2 and 3.2 then implies that for some C1 > 0,

‖v(·) − ṽ(0, ·)‖H1(R) + ‖u(·) − ũ(0, ·)‖H1(R)

≤
∑
±

(
‖v − v±‖L2(R±) + ‖u− u±‖L2(R±)

)
+ ‖ṽR(0) − vm‖L2(R+)

+ ‖ṽS − v+‖L2(R+) + ‖ṽR(0) − v−‖L2(R−) + ‖ṽS − vm‖L2(R−)

+ ‖∂xv‖L2(R) + ‖∂xṽR(0)‖L2(R) + ‖ṽSξ ‖L2(R)

+ ‖ũR(0) − um‖L2(R+) + ‖ũS − u+‖L2(R+) + ‖ũR(0) − u−‖L2(R−)

+ ‖ũS − um‖L2(R−) + ‖∂xu‖L2(R) + ‖∂xũR(0)‖L2(R) + ‖ũS
ξ ‖L2(R)

≤ C1(δR +
√

δS).

(3.21)

By smallness of δ0, we observe that for any δS, δR ∈ (0, δ0),

ε1
2 − C0δ

1/6
R

C0 + 1 − C1(δR +
√

δS) − C∗(δR + δS) > 0. (3.22)

Let ε0 be the above positive constant:

ε0 := ε∗ − C∗(δR + δS), and ε∗ :=
ε1
2 − C0δ

1/6
R

C0 + 1 − C1(δR +
√

δS),

where note that ε0 can be chosen independently on δS, δR, for example, as ε0 = ε1
4(C0+1) .

The specific constants ε0, ε∗ will be used to apply Propositions 3.1 and 3.2 as below.
Consider any initial data (v0, u0) verifying the hypothesis (1.11) of Theorem 1.1, that is,∑

‖(v0 − v±, u0 − u±)‖L2(R±) + ‖(v0x, u0x)‖L2(R) < ε0, (3.23)

±
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which together with (3.20) yields

‖v0 − v‖H1(R) + ‖u0 − u‖H1(R)

≤
∑
±

(
‖(v0 − v±, u0 − u±)‖L2(R±) + ‖(v − v±, u− u±)‖L2(R±)

)
+ ‖(v0x, u0x)‖L2(R) + ‖(vx, ux)‖L2(R)

≤ ε0 + C∗(δR + δS) = ε∗.

(3.24)

Especially, this together with Sobolev embedding implies that

‖v0 − v‖L∞(R) ≤ Cε∗, (3.25)

which together with smallness of ε∗ implies that

v−
2 < v0(ξ) < 2v+, ∀ξ ∈ R.

Since ε∗ satisfies 0 < ε∗ < ε1
2 by (3.22), Proposition 3.1 with (3.24) and (3.25) implies 

that there exists T0 > 0 such that (3.4) has a unique solution (v, u) on [0, T0] satisfying

‖v − v‖L∞(0,T0;H1(R)) + ‖u− u‖L∞(0,T0;H1(R)) ≤
ε1

2 , (3.26)

and

v−
3 < v(t, ξ) < 3v+, ∀(t, ξ) ∈ [0, T0] ×R.

Then, using the same argument as in (3.21), and then using Lemmas 3.2 and 3.3, we 
find that for all t ∈ [0, T0],

‖v − ṽ−X(t, ·)‖L2(R) + ‖u− ũ−X(t, ·)‖L2(R)

≤
∑
±

‖(v − v±, u− u±)‖L2(R±) + ‖((ṽS)−X − v+, (ũS)−X − u+)‖L2(R+)

+ ‖(ṽR(t, · + σt) − vm, ũR(t, · + σt) − um)‖L2(R+)

+ ‖(ṽR(t, · + σt) − v−, ũ
R(t, · + σt) − u−)‖L2(R−)

+ ‖((ṽS)−X − vm, (ũS)−X − um)‖L2(R−)

+ ‖(∂xv, ∂xu)‖L2(R) + ‖(∂xṽR, ∂xũR)‖L2(R) + ‖((ṽS)−X
ξ , (ũS)−X

ξ )‖L2(R)

≤ CδR
√

1 + (σ − λ1(v−))t + C
√
δS(1 +

√
|X(t)|)

≤ C
√

δ0(1 +
√
t).

Indeed, some estimates above are computed as follows:
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∞∫
0

|ṽS(ξ − X(t)) − v+|2dξ =
∞∫

−X(t)

|ṽS(ξ) − v+|2dξ

≤
∞∫
0

Cδ2
Se

−CδS |ξ|dξ +
|X(t)|∫
0

|ṽS(ξ) − v+|2dξ ≤ CδS(1 + |X(t)|),

0∫
−∞

|ṽR(t, ξ + σt) − v−|2dξ =
σt∫

−∞

|ṽR(t, x) − v−|2dx

=
σt∫

λ1(v−)t

|ṽR(t, x) − v−|2dx +
λ1(v−)t∫
−∞

|ṽR(t, x) − v−|2dx

≤ δ2
R(σ − λ1(v−))t + Cδ2

R

λ1(v−)t∫
−∞

e−4|x−λ1(v−)t|dx

≤ Cδ2
R

(
1 + (σ − λ1(v−))t

)
,

∞∫
0

|ṽR(t, ξ + σt) − vm|2dξ ≤ Cδ2
R

∞∫
σt

e−4|x|dx ≤ Cδ2
R.

Using smallness of δ0, and choosing T1 ∈ (0, T0) small enough such that C
√
δ0(1 +

√
T1) ≤

ε1
2 , we have

‖v − ṽ−X‖L∞(0,T1;H1(R)) + ‖u− ũ−X‖L∞(0,T1;H1(R)) ≤
ε1

2 . (3.27)

Therefore, (3.26) and (3.27) imply that

‖v − ṽ−X‖L∞(0,T1;H1(R)) + ‖u− ũ−X‖L∞(0,T1;H1(R)) ≤ ε1.

Especially, since X is absolutely continuous, and

v − v, u− u ∈ C([0, T1];H1(R)),

we have

v − ṽ−X, u− ũ−X ∈ C([0, T1];H1(R)).

We now consider the maximal existence time:

TM := sup
{
t > 0

∣∣∣ sup
τ∈[0,t]

(
‖(v − ṽ−X)(τ, ·)‖H1(R) + ‖(u− ũ−X)(τ, ·)‖H1(R)

)
≤ ε1

}
.
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If TM < ∞, then the continuity argument implies that

sup
τ∈[0,TM ]

(
‖(v − ṽ−X)(τ, ·)‖H1(R) + ‖(u− ũ−X)(τ, ·)‖H1(R)

)
= ε1. (3.28)

But, since it follows from (3.21) and (3.24) that

‖v0 − ṽ(0, ·)‖H1(R) + ‖u0 − ũ(0, ·)‖H1(R) <
ε1
2 − C0δ

1/6
R

C0 + 1 ,

it holds from Proposition 3.2 that

sup
τ∈[0,TM ]

(
‖(v − ṽ−X)(τ, ·)‖H1(R) + ‖(u− ũ−X)(τ, ·)‖H1(R)

)
≤ C0

ε1
2 − C0δ

1/6
R

C0 + 1 + C0δ
1/6
R

≤ ε1

2 ,

which contradicts the above equality (3.28).
Therefore, TM = ∞, which together with Proposition 3.2 implies

sup
τ∈[0,+∞)

(
‖(v − ṽ−X)(τ, ·)‖H1(R) + ‖(u− ũ−X)(τ, ·)‖H1(R)

)
+

√√√√√δS

+∞∫
0

|Ẋ|2ds

+

√√√√√ +∞∫
0

(
GS(U) + GR(U) + D(U) + D1(U) + D2(U)

)
ds

≤ C0
(
‖v0 − ṽ(0, ·)‖H1(R) + ‖u0 − ũ(0, ·)‖H1(R)

)
+ C0δ

1/6
R < ∞,

(3.29)

and

|Ẋ(t)| ≤ C0‖(v − ṽ−X)(t, ·)‖L∞(R), t > 0. (3.30)

In addition, since the rarefaction wave (vr, ur) is Lipschitz continuous in x for all t > 0
and from Lemma 3.2, we have

v(t, x) −
(
vr(x

t
) + ṽS(x− σt− X(t)) − vm

)
∈ C([0,+∞);H1(R)),

u(t, x) −
(
ur(x

t
) + ũS(x− σt− X(t)) − um

)
∈ C([0,+∞);H1(R)).

Since (u − ũ−X)ξξ ∈ L2(0, +∞; L2(R)) by (3.29), and (ũR)ξξ ∈ L2(0, +∞; L2(R)) by 
Lemma 3.2, we have

uxx(t, x) − ũS
xx(x− σt− X(t)) ∈ L2(0,+∞;L2(R)),
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which implies the desired result (1.12).
Especially, since the right-hand side of (3.29) is small enough, we find that (by Sobolev 
embedding as before)

v−
3 < v(t, ξ) < 3v+, ∀(t, ξ) ∈ [0,∞) ×R. (3.31)

These and the above estimates (3.29)-(3.30) are useful to prove the long-time behaviors 
(1.13)-(1.14) as follows.

3.6. Time-asymptotic behavior, and end of the proof of Theorem 1.1

We now want to prove (1.13) and (1.14). Consider a function g defined on (0, ∞) by

g(t) := ‖(v − ṽ−X)ξ(t, ·)‖2
L2(R) + ‖(u− ũ−X)ξ(t, ·)‖2

L2(R).

The aim is to show the classical estimate:

∞∫
0

[
|g(t)| + |g′(t)|

]
dt < ∞. (3.32)

Since

(p(v) − p(ṽ−X))ξ = p′(v)(v − ṽ−X)ξ + (ṽ−X)ξ(p′(v) − p′(ṽ−X))

= p′(v)(v − ṽ−X)ξ +
(
ṽRξ + ṽSξ (ξ − X(t))

)
(p′(v) − p′(ṽ−X)),

the uniform bound (3.31) yields

|(v − ṽ−X)ξ| ≤ C|(p(v) − p(ṽ−X))ξ| + C
(
|ṽRξ | + |ṽSξ (ξ − X(t))|

)
|v − ṽ−X|. (3.33)

Thus, it follows from (3.29), (3.33) and |ũR
ξ | ∼ |ṽRξ | that

∞∫
0

|g(t)|dt ≤ C

∞∫
0

(
GS(U) + GR(U) + D(U) + D1(U)

)
dt < ∞,

which proves the first part of (3.32).
To show the second part of (3.32), we combine the systems (3.4) and (3.14) as follows:

(v − ṽ−X)t − σ(v − ṽ−X)ξ − Ẋ(t)(ṽS)−X
ξ − (u− ũ−X)ξ = 0,

(u− ũ−X)t − σ(u− ũ−X)ξ − Ẋ(t)(ũS)−X
ξ + (p(v) − p(ṽ−X))ξ

=
(
uξ

v
− (ũ−X)ξ

ṽ−X

)
ξ

− F1 − F2.

(3.34)
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Using (3.34) and the integration by parts, we have

∞∫
0

|g′(t)|dt

=
∞∫
0

2

∣∣∣∣∣∣
∫
R

[
(v − ṽ−X)ξ(v − ṽ−X)ξt + (u− ũ−X)ξ(u− ũ−X)ξt

]
dξ

∣∣∣∣∣∣ dt
≤

∞∫
0

∣∣∣∣∣∣2
∫
R

(v − ṽ−X)ξ
[
Ẋ(t)(ṽS)−X

ξξ + (u− ũ−X)ξξ
]
dξ

∣∣∣∣∣∣ dt
+

∞∫
0

∣∣∣∣2 ∫
R

(u− ũ−X)ξẊ(t)(ũS)−X
ξξ dξ + 2

∫
R

(u− ũ−X)ξξ·[
− (p(v) − p(ṽ−X))ξ +

(
uξ

v
− (ũ−X)ξ

ṽ−X

)
ξ

− F1 − F2

]
dξ

∣∣∣∣dt
≤ 2

∞∫
0

∫
R

(
|(v − ṽ−X)ξ|

[
|Ẋ(t)||(ṽS)−X

ξξ | + |(u− ũ−X)ξξ|
]

+|(u− ũ−X)ξ||Ẋ(t)||(ũS)−X
ξξ | + |(u− ũ−X)ξξ|·[

|(p(v) − p(ṽ−X))ξ| +
∣∣∣ (uξ

v
− (ũ−X)ξ

ṽ−X

)
ξ

∣∣∣+ |F1| + |F2|
])

dξdt

≤ C

∞∫
0

(
|Ẋ(t)|2 + GS(U) + GR(U) + D(U) + D1(U) + D2(U)

)
dt

+C

∞∫
0

∫
R

[∣∣∣(uξ

v
− (ũ−X)ξ

ṽ−X

)
ξ

∣∣∣2 + |F1|2 + |F2|2
]
dξdt.

(3.35)

For the last three terms above, we get further estimates as follows.
Using (3.31) with Lemmas 2.2 and 3.2, one has

∞∫
0

∫
R

∣∣∣(uξ

v
− (ũ−X)ξ

ṽ−X

)
ξ

∣∣∣2dξdt
=

∞∫
0

∫
R

∣∣∣∣1v (u− ũ−X)ξξ + (ũ−X)ξξ
(

1
v
− 1

ṽ−X

)
− uξ

v2 (v − ṽ−X)ξ

− (ṽ−X)ξ
v2 (u− ũ−X)ξ + (ṽ−X)ξ(ũ−X)ξ

(
1
v2 − 1

(ṽ−X)2

) ∣∣∣∣2dξdt
≤ C

∞∫ ∫ [
| (u− ũ−X)ξξ |2 + (|(ũR)ξ|2 + |(ũS)−X

ξ |2)|v − ṽ−X|2
0 R
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+ |(u− ũ−X)ξ|2| (v − ṽ−X)ξ |2 + (|(ṽR)ξ|2 + |(ṽS)−X
ξ |2)| (u− ũ−X)ξ |2

+ (|(ũR)ξ|2 + |(ũS)−X
ξ |2)| (v − ṽ−X)ξ |2

]
dξdt.

Then, using (3.18), we have

∞∫
0

∫
R

∣∣∣(uξ

v
− (ũ−X)ξ

ṽ−X

)
ξ

∣∣∣2dξdt
≤ C

∞∫
0

(
GS(U) + GR(U) + D(U) + D1(U) + D2(U)

)
dt

+ C

∞∫
0

‖ (u− ũ−X)ξ ‖2
L∞(R)

∫
R

|(v − ṽ−X)ξ|2dξdt.

Using the interpolation inequality and (3.29), the last term above is estimated as

C

∞∫
0

‖ (u− ũ−X)ξ ‖2
L∞(R)

∫
R

|(v − ṽ−X)ξ|2dξdt

≤ C

∞∫
0

‖ (u− ũ−X)ξ ‖L2(R)‖ (u− ũ−X)ξξ ‖L2(R)‖(v − ṽ−X)ξ‖2
L2(R)dt

≤ C

∞∫
0

[
‖ (u− ũ−X)ξξ ‖2

L2(R) + ‖ (u− ũ−X)ξ ‖2
L2(R)‖ (v − ṽ−X)ξ ‖4

L2(R)

]
dt

≤ C

∞∫
0

[
‖ (u− ũ−X)ξξ ‖2

L2(R) + ‖ (u− ũ−X)ξ ‖2
L2(R)

]
dt

≤ C

∞∫
0

(
GS(U) + GR(U) + D(U) + D2(U)

)
dt < ∞.

Similarly, using Lemmas 2.2 and 3.2 with recalling ṽ−X = ṽR + (ṽS)−X − vm, we have

∞∫
0

∫
R

|F1|2dξdt =
∞∫
0

∫
R

∣∣∣( (ũS
ξ )−X

(ṽS)−X

)
ξ
−
(

(ũ−X)ξ
ṽ−X

)
ξ

∣∣∣2dξdt
≤ C

∞∫
0

∫
R

(
|(ũR)ξξ| + |(ũR)ξ||(ṽR)ξ| + |(ũR)ξ||(ṽS)−X

ξ | + |(ṽR)ξ||(ũS)−X
ξ |

+ (|(ũS)−X
ξξ | + |(ũS)−X

ξ ||(ṽS)−X
ξ |)|ṽR − vm|

)2

dξdt
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≤ C

∞∫
0

(
‖(ũR)ξξ‖2

L2(R) + ‖(ũR)ξ‖4
L4(R)

+ ‖|(ṽS)−X
ξ ||ṽR − vm| + |(ṽR)ξ||(ũS)−X

ξ |‖2
L2(R)

)
dt,

and

∞∫
0

∫
R

|F2|2dξdt =
∞∫
0

∫
R

∣∣∣[p(ṽ−X) − p(ṽR) − p
(
(ṽS)−X)]

ξ

∣∣∣2 dξdt
≤ C

∞∫
0

‖|ṽRξ ||(ṽS)−X − vm| + |(ṽS)−X
ξ ||ṽR − vm|‖2

L2(R)dt.

Notice that the right-hand sides above are finite by Lemma 3.2 and Lemma 4.2. Thus, 
the above estimates with (3.29) imply the proof of the second part of (3.32).
Therefore, we have (3.32), which implies

lim
t→+∞

(
‖(v − ṽ−X)ξ‖2

L2(R) + ‖(u− ũ−X)ξ‖2
L2(R)

)
= 0.

This together with the interpolation inequality and (3.29) implies

lim
t→+∞

(
‖v − ṽ−X‖L∞(R) + ‖u− ũ−X‖L∞(R)

)
= 0, (3.36)

which together with Lemma 3.2 (5) implies (1.13). In addition, by (3.30) and (3.36), it 
holds that

|Ẋ(t)| ≤ C0‖(v − ṽ−X)(t, ·)‖L∞(R) → 0 as t → +∞, (3.37)

which proves (1.14). Thus we complete the proof of Theorem 1.1.

Hence, the remaining part of this paper is dedicated to the proof of Proposition 3.2.

• Notations: In what follows, we use the following notations for notational simplicity.
1. C denotes a positive O(1)-constant which may change from line to line, but which is 
independent of the small constants δ0, ε1, δS , δR, λ (to appear in (4.11)) and the time T .
2. For any function f : R+ ×R → R and any time-dependent shift X(t),

f±X(t, ξ) := f(t, ξ ± X(t)).

3. We omit the dependence on X for (3.5) as follows:

(ṽ, ũ)(t, ξ) :=
(
ṽR(t, ξ + σt) + ṽS(ξ − X(t)) − vm, ũR(t, ξ + σt) + ũS(ξ − X(t)) − um

)
.
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For simplicity, we also omit the arguments of the waves without confusion: for example,

ṽR := ṽR(t, ξ + σt), (ṽR)X := ṽR(t, ξ + σt + X(t)),

ṽX := ṽR(t, ξ + σt + X(t)) + ṽS(ξ) − vm.

4. Energy estimates for the system of (v, h)-variables

We introduce a new effective velocity

h := u− (ln v)ξ. (4.1)

Then, the system (3.4) is transformed into

{
vt − σvξ − hξ = (ln v)ξξ,
ht − σhξ + p(v)ξ = 0.

(4.2)

We set h̃S := ũS − (ln ṽS)ξ. Then, it follows from (2.14) that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−σ(ṽS)′ − (h̃S)′ = (ln ṽS)′′,

−σ(h̃S)′ + (p(ṽS))′ = 0,

(ṽS , h̃S)(−∞) = (vm, um), (ṽS , h̃S)(+∞) = (v+, u+).

(4.3)

Set

h̃(t, ξ) := ũR(t, ξ) + (h̃S)−X(ξ) − um, for t ∈ [0, T ]. (4.4)

Then, it holds from (3.13) and (4.3) that

⎧⎨⎩ ṽt − σṽξ + Ẋ(t)(ṽS)−X
ξ − h̃ξ = (ln ṽ)ξξ + F3,

h̃t − σh̃ξ + Ẋ(t)(h̃S)−X
ξ + (p(ṽ))ξ = F2,

(4.5)

where F2 is defined in (3.15) and

F3 =
(
ln(ṽS)−X − ln ṽ

)
ξξ
. (4.6)

This section is dedicated to the proof of the following lemma.

Lemma 4.1. Under the hypotheses of Proposition 3.2, there exists C > 0 (independent of 
δ0, ε1 and T ) such that for all t ∈ (0, T ],
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∫
R

(
|h− h̃|2

2 + Q(v|ṽ)
)

(t, ξ)dξ + δS

t∫
0

|Ẋ(s)|2ds

+
t∫

0

(
G1(U) + GS(U) + D(U)

)
ds

≤ C

∫
R

(
|h(0, ξ) − h̃(0, ξ)|2

2 + Q(v0|ṽ(0, ξ))
)
dξ + Cδ

1/3
R ,

(4.7)

where h(0, ξ) := u0(ξ) − (ln v0)ξ(ξ), and

G1(U) := λ

δS

∫
R

|(ṽS)−X
ξ |
∣∣∣∣h− h̃− p(v) − p(ṽ)

σ

∣∣∣∣2 dξ,
GS(U) :=

∫
R

|(ṽS)−X
ξ ||p(v) − p(ṽ)|2dξ,

D(U) :=
∫
R

|∂ξ
(
p(v) − p(ṽ)

)
|2dξ.

(4.8)

4.1. Wave interaction estimates

We here present useful estimates for the error terms F1, F2, F3 introduced in (3.15) and 
(4.6). First, we notice that the a priori assumption (3.16) with the Sobolev embedding 
and (2.3) implies

‖p(v) − p(ṽ)‖L∞((0,T )×R) ≤ C‖v − ṽ‖L∞((0,T )×R) ≤ Cε1. (4.9)

This smallness together with (3.8), (3.16) and (2.3) yields that

|Ẋ(t)| ≤ C

δS
‖|p(v) − p(ṽ)| + |v − ṽ|‖L∞(R)

∫
R

(ṽS)−X
ξ dξ ≤ C‖v − ṽ‖L∞(R). (4.10)

This especially proves (3.19), and will be used to get the wave interaction estimates in 
Lemma 4.2.

Lemma 4.2. Let X be the shift defined by (3.8). Under the same hypotheses as in Propo-
sition 3.2, the following holds: ∀t ≤ T ,

‖(ṽS)−X
ξ (ṽR − vm)‖L1(R) + ‖(ṽR)ξ(ṽS)−X

ξ ‖L1(R) ≤ CδRδSe
−CδSt,

‖(ṽS)−X
ξ (ṽR − vm)‖L2(R) + ‖(ṽR)ξ(ṽS)−X

ξ ‖L2(R) ≤ CδRδ
3/2
S e−CδSt,

‖(ṽR)ξ((ṽS)−X − vm)‖L2(R) ≤ CδRδSe
−CδSt.
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Proof. First, by (4.10) with (4.9), it holds that

|Ẋ(t)| ≤ Cε1, 0 ≤ t ≤ T,

which together with X(0) = 0 yields

|X(t)| ≤ Cε1t, 0 ≤ t ≤ T.

Let us take ε1 so small such that the above bound is less than σt4 , that is,

Cε1t <
σt

4 .

Then, since

∀ξ < −σt

2 , ξ − X(t) < −σt

2 + Cε1t < −σt

4 < 0 and

|ξ − X(t)| ≥ |ξ| − |X(t)| > σt

2 − Cε1t >
σt

4 ,

it holds from Lemma 2.2 that ∀ξ < −σt
2 ,

|ṽS(ξ − X(t)) − vm| ≤ CδSe
−CδS |ξ−X(t)|

≤ CδS exp
(
−CδS |ξ − X(t)|

2

)
exp
(
−CδSσt

8

)
.

Likewise, by Lemma 2.2, ∀ξ < −σt
2 ,

|∂ξ ṽS(ξ − X(t))| ≤ Cδ2
Se

−CδS |ξ−X(t)|

≤ Cδ2
S exp

(
−CδS |ξ − X(t)|

2

)
exp
(
−CδSσt

8

)
.

On the other hand, since

∀ξ ≥ −σt

2 , x = ξ + σt ≥ σt

2 ≥ 0,

it holds from Lemma 3.2 that ∀ξ ≥ −σt
2 ,

|ṽR(t, ξ + σt) − vm| + |∂ξ ṽR(t, ξ + σt)| ≤ CδRe
−2(|ξ+σt|+|λ1(vm)|t),

where note that |λ1(vm)| > 0 is O(1)-constant, since v+
2 ≤ vm ≤ v+.

Therefore, using the above estimates together with the bounds: (by Lemmas 2.2 and 3.2)
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∀ξ, |ṽR(t, ξ + σt) − vm| + |∂ξ ṽR(t, ξ + σt)| ≤ CδR,

|ṽS(ξ − X(t)) − vm| ≤ CδS , |∂ξ ṽS(ξ − X(t))| ≤ Cδ2
S ,

‖∂ξ ṽR(t, · + σt)‖L1(R) ≤ CδR, ∀t,

we have

∣∣(ṽS)−X
ξ

∣∣(|ṽR − vm| + |(ṽR)ξ|
)
≤

⎧⎨⎩CδRδ
2
Se

−CδS |ξ−X(t)|e−CδSt, if ξ < −σt

2 ,

CδRδ
2
Se

−C|ξ+σt|e−Ct, if ξ ≥ −σt

2 ,

and

|(ṽR)ξ||(ṽS)−X − vm| ≤

⎧⎨⎩C|(ṽR)ξ|δSe−CδS |ξ−X(t)|e−CδSt, if ξ < −σt

2 ,

CδRδSe
−C|ξ+σt|e−Ct, if ξ ≥ −σt

2 .

Hence, this with the smallness of δS implies that∫
R

∣∣∣∣∣(ṽS)−X
ξ

∣∣(|ṽR − vm| + |(ṽR)ξ|
)∣∣∣dξ

≤ CδRδSe
−CδSt

∫
R

δS

(
e−CδS |ξ−X(t)| + e−C|ξ+σt|

)
dξ ≤ CδRδSe

−CδSt,

∫
R

∣∣∣∣∣(ṽS)−X
ξ

∣∣(|ṽR − vm| + |(ṽR)ξ|
)∣∣∣2dξ

≤ Cδ2
Rδ

3
Se

−CδSt

∫
R

δS

(
e−CδS |ξ−X(t)| + e−C|ξ+σt|

)
dξ ≤ Cδ2

Rδ
3
Se

−CδSt,

and ∫
R

|(ṽR)ξ|2|(ṽS)−X − vm|2dξ

≤ CδRδ
2
Se

−CδSt

∫
R

|(ṽR)ξ|dξ + Cδ2
Rδ

2
Se

−Ct

∫
R

e−C|ξ+σt|dξ

≤ Cδ2
Rδ

2
Se

−CδSt. �
4.2. Construction of weight function

We define the weight function a by

a(ξ) := 1 + λ (p(vm) − p(ṽS(ξ))), (4.11)

δS
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where the constant λ is chosen to be so small but far bigger than δS such that

δS � λ ≤ C
√

δS . (4.12)

Notice that

1 < a(ξ) < 1 + λ, (4.13)

and

a′(ξ) = − λ

δS
p′(ṽS)ṽSξ > 0, (4.14)

and so,

|a′| ∼ λ

δS
|ṽSξ |. (4.15)

4.3. Relative entropy method

We rewrite (4.2) into the system of viscous conservation laws:

∂tU + ∂ξA(U) =
((

ln v
)
ξξ

0

)
, (4.16)

where

U :=
(
v

h

)
, A(U) :=

(
−σv − h

−σh + p(v)

)
.

Consider the entropy η(U) := h2

2 + Q(v) of (4.16), where Q(v) = v−γ+1

γ−1 , i.e., Q′(v) =
−p(v).
To write the above viscous term in terms of the derivative of the entropy:

∇η(U) =
(
−p(v)

h

)
, (4.17)

we observe that

(
ln v
)
ξξ

=
(

(−p(v))ξ
−p′(v)v

)
ξ

,

especially, by −p′(v)v = γp(v),

(
ln v
)
ξξ

=
(

(−p(v))ξ
γp(v)

)
.

ξ
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Thus, using the non-negative matrix

M(U) :=
( 1

γp(v) 0
0 0

)
,

the above system (4.16) can be rewritten as

∂tU + ∂ξA(U) = ∂ξ

(
M(U)∂ξ∇η(U)

)
. (4.18)

Let

Ũ(t, ξ) :=
(
ṽ(t, ξ)
h̃(t, ξ)

)
=
(
ṽR(t, ξ) + (ṽS)−X(ξ) − vm

ũR(t, ξ) + (h̃S)−X(ξ) − um

)
. (4.19)

Note that (4.5) can be written as

∂tŨ + ∂ξA(Ũ) = ∂ξ

(
M(Ũ)∂ξ∇η(Ũ)

)
− Ẋ∂ξ

(
(ŨS)−X)+

(
F3
F2

)
, (4.20)

where F2, F3 are defined in (3.15), (4.6) respectively. Consider the relative entropy func-
tional defined by

η(U |V ) = η(U) − η(V ) −∇η(V )(U − V ), (4.21)

and the relative flux defined by

A(U |V ) = A(U) −A(V ) −∇A(V )(U − V ). (4.22)

Let G(·; ·) be the flux of the relative entropy defined by

G(U ;V ) = G(U) −G(V ) −∇η(V )(A(U) −A(V )), (4.23)

where G is the entropy flux of η, i.e., ∂iG(U) =
∑2

k=1 ∂kη(U)∂iAk(U), 1 ≤ i ≤ 2.
By a straightforward computation, for the system (4.16), we have

η(U |Ũ) = |h− h̃|2
2 + Q(v|ṽ),

A(U |Ũ) =
(

0
p(v|ṽ)

)
,

G(U ; Ũ) = (p(v) − p(ṽ))(h− h̃) − ση(U |Ũ),

(4.24)

where the relative pressure is defined as

p(v|w) = p(v) − p(w) − p′(w)(v − w). (4.25)



36 M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963
Below, we will estimate the relative entropy (weighted by a(ξ) defined in (4.11)) of 
the solution U of (4.18) w.r.t. the shifted wave (4.19) as follows:

a−X(ξ)η
(
U(t, ξ)|Ũ(t, ξ)

)
.

Lemma 4.3. Let a be the weight function defined by (4.11). Let U be a solution to (4.18), 
and Ũ the shifted wave satisfying (4.19). Then,

d

dt

∫
R

a−X(ξ)η
(
U(t, ξ)|Ũ(t, ξ)

)
dξ = Ẋ(t)Y(U) + J bad(U) − J good(U), (4.26)

where

Y(U) := −
∫
R

a−X
ξ η(U |Ũ)dξ +

∫
R

a−X∇2η(Ũ)(ŨS)−X
ξ (U − Ũ)dξ,

J bad(U) :=
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)(
h− h̃

)
dξ + σ

∫
R

a−X(ṽS)−X
ξ p(v|ṽ)dξ

−
∫
R

a−X
ξ

p(v) − p(ṽ)
γp(v) ∂ξ

(
p(v) − p(ṽ)

)
dξ

+
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)2 ∂ξp(ṽ)
γp(v)p(ṽ)dξ

−
∫
R

a−X∂ξ
(
p(v) − p(ṽ)

)p(ṽ) − p(v)
γp(v)p(ṽ) ∂ξp(ṽ)dξ

+
∫
R

a−X(p(v) − p(ṽ))F3dξ −
∫
R

a−X(h− h̃)F2dξ,

J good(U) := σ

2

∫
R

a−X
ξ

∣∣∣h− h̃
∣∣∣2 dξ + σ

∫
R

a−X
ξ Q(v|ṽ)dξ

+
∫
R

a−XũR
ξ p(v|ṽ)dξ +

∫
R

a−X

γp(v) |∂ξ
(
p(v) − p(ṽ)

)
|2dξ.

(4.27)

Remark 4.1. Since a′(ξ) > 0 and uR
ξ > 0 by Lemma 3.2, −J good consists of good terms, 

while J bad consists of bad terms.

Proof. By the definition of the relative entropy with (4.18) and (4.21), we first have

d

dt

∫
a−X(ξ)η

(
U(t, ξ)|Ũ(t, ξ)

)
dξ = −Ẋ(t)

∫
a−X
ξ η(U |Ũ)dξ
R R
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+
∫
R

a−X
[(

∇η(U) −∇η(Ũ)
)
∂tU −∇2η(Ũ)(U − Ũ)∂tŨ

]
dξ

= −Ẋ(t)
∫
R

a−X
ξ η(U |Ũ)dξ +

∫
R

a−X
[(

∇η(U) −∇η(Ũ)
)(

−∂ξA(U)

+ ∂ξ

(
M(U)∂ξ∇η(U)

))
−∇2η(Ũ)(U − Ũ)

(
− ∂ξA(Ũ)

+ ∂ξ

(
M(Ũ)∂ξ∇η(Ũ)

)
− Ẋ∂ξ

(
(ŨS)−X)+

(
F3
F2

))]
dξ.

Using the definitions (4.22) and (4.23) with the same computation as in [39, Lemma 4]) 
(see also [15, Lemma 2.3]), we have

d

dt

∫
R

a−X(ξ)η
(
U(t, ξ)|Ũ(t, ξ)

)
dξ = Ẋ(t)Y(U) +

6∑
i=1

Ii,

I1 := −
∫
R

a−X∂ξG(U ; Ũ)dξ,

I2 := −
∫
R

a−X∂ξ∇η(Ũ)A(U |Ũ)dξ,

I3 :=
∫
R

a−X
(
∇η(U) −∇η(Ũ)

)
∂ξ

(
M(U)∂ξ

(
∇η(U) −∇η(Ũ)

))
dξ,

I4 :=
∫
R

a−X
(
∇η(U) −∇η(Ũ)

)
∂ξ

((
M(U) −M(Ũ)

)
∂ξ∇η(Ũ)

)
dξ,

I5 :=
∫
R

a−X(∇η)(U |Ũ)∂ξ
(
M(Ũ)∂ξ∇η(Ũ)

)
dξ,

I6 := −
∫
R

a−X∇2η(Ũ)(U − Ũ)
(
F3
F2

)
dξ.

(4.28)

Using (4.24) and (4.17), we have

I1 =
∫
R

a−X
ξ G(U ; Ũ)dξ =

∫
R

a−X
ξ

((
p(v) − p(ṽ)

)(
h− h̃

)
− ση(U |Ũ)

)
dξ

=
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)(
h− h̃

)
dξ

− σ

2

∫
a−X
ξ

∣∣∣h− h̃
∣∣∣2 dξ − σ

∫
a−X
ξ Q(v|ṽ)dξ,
R R
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I2 = −
∫
R

a−Xh̃ξp(v|ṽ)dξ.

By integration by parts, we have

I3 =
∫
R

a−X(p(v) − p(ṽ)
)
∂ξ

( 1
γp(v)∂ξ

(
p(v) − p(ṽ)

))
dξ

= −
∫
R

a−X

γp(v) |∂ξ
(
p(v) − p(ṽ)

)
|2dξ

−
∫
R

a−X
ξ

p(v) − p(ṽ)
γp(v) ∂ξ

(
p(v) − p(ṽ)

)
dξ,

I4 =
∫
R

a−X(p(v) − p(ṽ)
)
∂ξ

(p(ṽ) − p(v)
γp(v)p(ṽ) ∂ξp(ṽ)

)
dξ

=
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)2 ∂ξp(ṽ)
γp(v)p(ṽ)dξ

−
∫
R

a−X∂ξ
(
p(v) − p(ṽ)

)p(ṽ) − p(v)
γp(v)p(ṽ) ∂ξp(ṽ)dξ.

Using (4.17) and

∇2η(U) =
(
−p′(v) 0

0 1

)
, (4.29)

we have

I5 = −
∫
R

a−Xp(v|ṽ)(ln ṽ)ξξdξ,

and

I6 =
∫
R

a−Xp′(ṽ)(v − ṽ)F3dξ −
∫
R

a−X(h− h̃)F2dξ.

Especially, since

I6 = −
∫
R

a−Xp(v|ṽ)F3dξ

︸ ︷︷ ︸
=:I7

+
∫
R

a−X(p(v) − p(ṽ))F3dξ −
∫
R

a−X(h− h̃)F2dξ,

we use (4.4) and (4.3) to have
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I2 + I5 + I7 = −
∫
R

a−X
(
ũR
ξ + (h̃S)−X

ξ + (ln ṽS)−X
ξξ

)
p(v|ṽ)dξ

= −
∫
R

a−X
(
ũR
ξ − σ(ṽS)−X

ξ

)
p(v|ṽ)dξ.

Therefore, we have

d

dt

∫
R

a−X(ξ)η
(
U(t, ξ)|Ũ(t, ξ)

)
dξ

= Ẋ(t)Y(U) +
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)(
h− h̃

)
dξ − σ

2

∫
R

a−X
ξ

∣∣∣h− h̃
∣∣∣2 dξ

− σ

∫
R

a−X
ξ Q(v|ṽ)dξ −

∫
R

a−X
(
ũR
ξ − σ(ṽS)−X

ξ

)
p(v|ṽ)dξ

+
∫
R

a−X(p(v) − p(ṽ))F3dξ −
∫
R

a−X(h− h̃)F2dξ

−
∫
R

a−X

γp(v) |∂ξ
(
p(v) − p(ṽ)

)
|2dξ −

∫
R

a−X
ξ

p(v) − p(ṽ)
γp(v) ∂ξ

(
p(v) − p(ṽ)

)
dξ

+
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)2 ∂ξp(ṽ)
γp(v)p(ṽ)dξ

−
∫
R

a−X∂ξ
(
p(v) − p(ṽ)

)p(ṽ) − p(v)
γp(v)p(ṽ) ∂ξp(ṽ)dξ. �

4.4. Maximization in terms of h − h̃

On the right-hand side of (4.26), we will use Lemma 1.1 for the diffusion term in 
order to control the bad terms only related to the perturbation p(v) − p(ṽ) (or v − ṽ). 
Therefore, we will rewrite J bad into the maximized representation in terms of h − h̃ in 
the following lemma.

Lemma 4.4. Let a : R → R+ be as in (4.11), and Ũ be the shifted wave as in (4.19). 
Then, for any U ∈ R+ ×R,

J bad(U) − J good(U) = B(U) − G(U), (4.30)

where
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B(U) := 1
2σ

∫
R

a−X
ξ

∣∣p(v) − p(ṽ)
∣∣2dξ + σ

∫
R

a−X(ṽS)−X
ξ p(v|ṽ)dξ

−
∫
R

a−X
ξ

p(v) − p(ṽ)
γp(v) ∂ξ

(
p(v) − p(ṽ)

)
dξ

+
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)2 ∂ξp(ṽ)
γp(v)p(ṽ)dξ

−
∫
R

a−X∂ξ
(
p(v) − p(ṽ)

)p(ṽ) − p(v)
γp(v)p(ṽ) ∂ξp(ṽ)dξ

+
∫
R

a−X(p(v) − p(ṽ))F3dξ −
∫
R

a−X(h− h̃)F2dξ,

G(U) := σ

2

∫
R

a−X
ξ

∣∣∣∣h− h̃− p(v) − p(ṽ)
σ

∣∣∣∣2 dξ + σ

∫
R

a−X
ξ Q(v|ṽ)dξ

+
∫
R

a−XũR
ξ p(v|ṽ)dξ +

∫
R

a−X

γp(v) |∂ξ
(
p(v) − p(ṽ)

)
|2dξ.

(4.31)

Remark 4.2. Since σaξ > 0 and a > 0, −G consists of four good terms.

Proof. Let J1 and J2 be the first terms of J bad(U) and −J good(U) respectively:

J1 :=
∫
R

a−X
ξ

(
p(v) − p(ṽ)

)(
h− h̃

)
dξ,

J2 := −σ

2

∫
R

a−X
ξ

∣∣∣h− h̃
∣∣∣2 dξ.

Applying the quadratic identity αz2 + βz = α(z + β
2α )2 − β2

4α with z := h − h̃ to the 
integrands of J1 + J2, we have

− σ

2

∣∣∣h− h̃
∣∣∣2 +
(
p(v) − p(ṽ)

)
(h− h̃)

= −σ

2

∣∣∣∣h− h̃− p(v) − p(ṽ)
σ

∣∣∣∣2 + 1
2σ |p(v) − p(ṽ)|2.

Therefore, we have the desired representation (4.30)-(4.31). �
4.5. Proof of Lemma 4.1

First of all, using Lemma 4.3 and Lemma 4.4 together with a change of variable 
ξ 
→ ξ + X(t), we have
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d

dt

∫
R

aη
(
UX|ŨX)dξ = Ẋ(t)Y(UX) + B(UX) − G(UX), (4.32)

where noting from (4.19) that

ŨX :=
(
ṽX

h̃X

)
=
((ṽR)X + ṽS − vm

(ũR)X + h̃S − um

)
.

For the bad terms and good terms, we use the following notations:

B(U) :=
5∑

i=1
Bi(U) + S1(U) + S2(U),

G(U) := G1(U) + G2(U) + GR(U) + D(U),

(4.33)

where

B1(U) := 1
2σ

∫
R

aξ
∣∣p(v) − p(ṽX)

∣∣2dξ,
B2(U) := σ

∫
R

a(ṽS)ξp(v|ṽX)dξ,

B3(U) := −
∫
R

aξ
p(v) − p(ṽX)

γp(v) ∂ξ
(
p(v) − p(ṽX)

)
dξ,

B4(U) :=
∫
R

aξ
(
p(v) − p(ṽX)

)2 ∂ξp(ṽX)
γp(v)p(ṽX)dξ,

B5(U) := −
∫
R

a∂ξ
(
p(v) − p(ṽX)

)p(ṽX) − p(v)
γp(v)p(ṽX) ∂ξp(ṽX)dξ,

S1(U) :=
∫
R

a(p(v) − p(ṽX))
(
ln ṽS − ln ṽX)

ξξ
dξ,

S2(U) := −
∫
R

a(h− h̃X)
(
p(ṽX) − p((ṽR)X) − p(ṽS)

)
ξ
dξ,

and

G1(U) := σ

2

∫
R

aξ

∣∣∣∣h− h̃X − p(v) − p(ṽX)
σ

∣∣∣∣2 dξ,
G2(U) := σ

∫
aξQ(v|ṽX)dξ,
R
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GR(U) :=
∫
R

a(ũR
ξ )Xp(v|ṽX)dξ,

D(U) :=
∫
R

a

γp(v) |∂ξ
(
p(v) − p(ṽX)

)
|2dξ.

For notational simplicity in this section, we omit the dependence of the solution on the 
shift, i.e., (v, h) = (vX, hX).
First, note from (3.16) with the change of variable ξ 
→ ξ + X(t) that

‖p(v) − p(ṽX)‖L∞((0,T )×R) ≤ C‖v − ṽX‖L∞((0,T )×R)

≤ C‖v − ṽX‖L∞(0,T ;H1(R)) ≤ Cε1.
(4.34)

Since the diffusion term D is related to the small perturbation of pressure, we will perform 
the Taylor expansion near p(ṽX) for the leading order terms and then use Lemma 1.1
on the sharp Poincaré inequality in the following lemma.
For Y, we have from (4.24) and (4.29) that

Y(U) = −
∫
R

aξη(U |ŨX)dξ +
∫
R

a∇2η(ŨX)(ŨS)ξ(U − ŨX)dξ

= −
∫
R

aξ

(
|h− h̃X|2

2 + Q(v|ṽX)
)
dξ

+
∫
R

ah̃S
ξ (h− h̃X)dξ −

∫
R

ap′(ṽX)ṽSξ (v − ṽX)dξ.

We decompose the functional Y as follows:

Y :=
6∑

i=1
Yi,

where

Y1(U) :=
∫
R

a

σ
h̃S
ξ (p(v) − p(ṽX))dξ,

Y2(U) := −
∫
R

ap′(ṽS)ṽSξ (v − ṽX)dξ,

Y3(U) :=
∫
R

ah̃S
ξ

(
h− h̃X − p(v) − p(ṽX)

σ

)
dξ,

Y4(U) := −
∫

a(p′(ṽX) − p′(ṽS))ṽSξ (v − ṽX)dξ,

R
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Y5(U) := −1
2

∫
R

aξ

(
h− h̃X − p(v) − p(ṽX)

σ

)(
h− h̃X + p(v) − p(ṽX)

σ

)
dξ,

Y6(U) := −
∫
R

aξQ(v|ṽX)dξ −
∫

aξ
2σ2 (p(v) − p(ṽX))2dξ.

Notice from (3.8) that

Ẋ(t) = −M

δS
(Y1 + Y2), (4.35)

and so,

Ẋ(t)Y = − δS
M

|Ẋ(t)|2 + Ẋ(t)
6∑

i=3
Yi. (4.36)

4.5.1. Leading order estimates

Lemma 4.5. There exists C > 0 such that

− δS
2M |Ẋ|2 + B1 + B2 − G2 −

3
4D

≤ −C

∫
R

|(ṽS)ξ||p(v) − p(ṽX)|2dξ + C

∫
R

|aξ||p(v) − p(ṽX)|3dξ

+ C

∫
R

|aξ||(ṽR)X − vm||p(v) − p(ṽX)|2dξ.

Proof. We first rewrite the main terms in terms of the new variables y and w:

w := p(v) − p(ṽX), (4.37)

and

y := p(vm) − p(ṽS(ξ))
δS

. (4.38)

Note that

dy

dξ
= − 1

δS
p(ṽS)ξ > 0, (4.39)

and the change of variable ξ ∈ R 
→ y ∈ (0, 1) will be used below.
Note also that a(ξ) = 1 + λy and so a′(ξ) = λ(dy/dξ).
To perform the sharp estimates, we will consider the O(1)-constants:
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σm :=
√

−p′(vm), αm := γ + 1
2γσmp(vm) ,

which are indeed independent of the small constants δS, δR, since v+
2 ≤ vm ≤ v+.

Note that

|σ − σm| ≤ CδS , (4.40)

with together with σ2
m = −p′(vm) = γp(vm)

1
γ +1 implies

|σ2
m − |p′(ṽS)|| ≤ CδS ,

∣∣∣∣∣ 1
σ2
m

− p(ṽS)−
1
γ −1

γ

∣∣∣∣∣ ≤ CδS ,∣∣∣∣∣ 1
σ2
m

− p(ṽX)−
1
γ −1

γ

∣∣∣∣∣ ≤ Cδ0.

(4.41)

• Estimate on − δS
2M |Ẋ|2: First, to estimate the term − δS

2M |Ẋ|2, we will estimate Y1, Y2
due to (4.35).
By the change of variable, we have

Y1 = − δS
σ2

1∫
0

awdy.

Using (4.40) and |a − 1| ≤ λ, we have∣∣∣∣∣∣Y1 + δS
σ2
m

1∫
0

wdy

∣∣∣∣∣∣ ≤ CδS(λ + δ0)
1∫

0

|w|dy. (4.42)

For

Y2 = −
∫
R

ap(ṽS)ξ(v − ṽX)dξ = δS

1∫
0

a(v − ṽX)dy,

we observe that since (by considering v = p(v)−
1
γ )∣∣∣∣∣v − ṽX + p(ṽX)−

1
γ −1

γ
(p(v) − p(ṽX))

∣∣∣∣∣ ≤ C|p(v) − p(ṽX)|2,

it follows from (4.41) and (4.34) that∣∣∣∣v − ṽX + 1
2 (p(v) − p(ṽX))

∣∣∣∣ ≤ C(δ0 + ε1)|p(v) − p(ṽX)|.

σm
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This implies ∣∣∣∣∣∣Y2 + δS
σ2
m

1∫
0

wdy

∣∣∣∣∣∣ ≤ CδS(λ + δ0 + ε1)
1∫

0

|w|dy. (4.43)

Therefore, by (4.35), (4.42) and (4.43), we have∣∣∣∣∣∣Ẋ − 2M
σ2
m

1∫
0

wdy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2∑

i=1

M

δS

⎛⎝Yi + δS
σ2
m

1∫
0

wdy

⎞⎠
∣∣∣∣∣∣

≤ C(λ + δ0 + ε1)
1∫

0

|w|dy,

which yields ⎛⎝∣∣∣∣∣∣2Mσ2
m

1∫
0

wdy

∣∣∣∣∣∣− |Ẋ|

⎞⎠2

≤ C(λ + δ0 + ε1)2
1∫

0

|w|2dy.

This and the algebraic inequality p
2

2 − q2 ≤ (p − q)2 for all p, q ≥ 0 imply

2M2

σ4
m

⎛⎝ 1∫
0

wdy

⎞⎠2

− |Ẋ|2 ≤ C(λ + δ0 + ε1)2
1∫

0

|w|2dy.

Thus,

− δS
2M |Ẋ|2 ≤ −MδS

σ4
m

⎛⎝ 1∫
0

wdy

⎞⎠2

+ CδS(λ + δ0 + ε1)2
1∫

0

|w|2dy. (4.44)

• Change of variable for B1, B2: By the change of variable, we have

B1 = λ

2σ

1∫
0

w2dy,

which together with (4.40) yields

B1 ≤ λ

2σm

1∫
0

w2dy + CλδS

1∫
0

w2dy. (4.45)

For B2, using (ṽS)ξ = p(ṽS)ξ/p′(ṽS) and the change of variable, we have
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B2 = σδS

1∫
0

(1 + λy) 1
|p′(ṽS)|p(v|ṽ

X)dy.

Using (2.4) with (4.34), we have

B2 ≤ σδS(1 + λ)
1∫

0

(
1

|p′(ṽS)|

(
γ + 1

2γp(ṽX) + Cε1

)
|p(v) − p(ṽX)|2

)
dy, (4.46)

which together with (4.40)-(4.41) yields

B2 ≤ δSαm(1 + C(δ0 + λ + ε1))
1∫

0

w2dy.

• Change of variable for G2: For G2, we first use (2.5) with (4.34) to split it into two 
parts:

G2 ≥ σ

∫
R

aξ
p(ṽX)−

1
γ −1

2γ |p(v) − p(ṽX)|2dξ

− σ

∫
R

aξ
1 + γ

3γ2 p(ṽX)−
1
γ −2(p(v) − p(ṽX))3dξ

= σ

∫
R

aξ
p(ṽS)−

1
γ −1

2γ |p(v) − p(ṽX)|2dξ

︸ ︷︷ ︸
=:G2

− σ

∫
R

aξ
1 + γ

3γ2 p(ṽX)−
1
γ −2(p(v) − p(ṽX))3dξ

+ σ

2γ

∫
R

aξ

(
p(ṽX)−

1
γ −1 − p(ṽS)−

1
γ −1
)
|p(v) − p(ṽX)|2dξ.

(4.47)

We only do the change of variable for the good term G2 as follows: by (4.40)-(4.41) and 
the change of variable,

G2 ≥ 1
2σm

(1 − CδS)
∫
R

aξ|p(v) − p(ṽX)|2dξ = λ

2σm
(1 − CδS)

1∫
0

w2dy.

This and (4.45) yield
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B1 − G2 ≤ CλδS

1∫
0

w2dy. (4.48)

• Change of variable for D: First, using a ≥ 1 and the change of variable, we have

D ≥
∫
R

1
γp(v) |∂ξ

(
p(v) − p(ṽX)

)
|2dξ =

1∫
0

|∂yw|2
1

γp(v)

(dy
dξ

)
dy.

Integrating (4.3) over (−∞, ξ] yields

(ln ṽS)ξ = −σ(ṽS − vm) − p(ṽS) − p(vm)
σ

.

Since

δS
1

γp(ṽS)

(dy
dξ

)
= −p(ṽS)ξ

γp(ṽS) = (ln ṽS)ξ,

we have

δS
1

γp(ṽS)

(dy
dξ

)
= −σ(ṽS − vm) − p(ṽS) − p(vm)

σ

= − 1
σ

(
σ2(ṽS − vm) + (p(ṽS) − p(vm))

)
,

which together with σ2 = p(vm)−p(v+)
v+−vm

yields

δS
1

γp(ṽS)

(dy
dξ

)
= − 1

σ(v+ − vm)
(
(p(vm) − p(v+))(ṽS − vm) + (v+ − vm)(p(ṽS) − p(vm))

)
= − 1

σ(v+ − vm)

(
(p(ṽS) − p(v+))(ṽS − vm) + (ṽS − vm)(p(vm) − p(ṽS))

+ (ṽS − vm)(p(ṽS) − p(vm)) + (v+ − ṽS)(p(ṽS) − p(vm))
)

= − 1
σ(v+ − vm)

(
(p(ṽS) − p(v+))(ṽS − vm) + (v+ − ṽS)(p(ṽS) − p(vm))

)
.

Since y = p(vm)−p(ṽS)
δS

and 1 − y = p(ṽS)−p(v+)
δS

,

1 1
S

(dy) = δS
(

vm − ṽS

S
− v+ − ṽS

S

)
.

y(1 − y) γp(ṽ ) dξ σ(v+ − vm) p(vm) − p(ṽ ) p(v+) − p(ṽ )
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Since the right-hand side above is the same as the one in the proofs of [17, Appendix B]
and [15, Lemma 3.1]), we have∣∣∣∣ 1

y(1 − y)
1

γp(ṽS)

(dy
dξ

)
− δSp

′′(vm)
2|p′(vm)|2σm

∣∣∣∣ ≤ Cδ2
S .

In addition, since (4.34) yields C−1 ≤ p(v) ≤ C and∣∣∣∣p(ṽS)
p(v) − 1

∣∣∣∣ ≤ C|ṽS − v| ≤ C(|ṽS − ṽ| + |ṽ − v|) ≤ C(δ0 + ε1),

we have

D ≥
1∫

0

|∂yw|2
p(ṽS)
p(v)

1
γp(ṽS)

(dy
dξ

)
dy

≥ (1 − Cδ0 − Cε1)
(

δSp
′′(vm)

2|p′(vm)|2σm
− Cδ2

S

) 1∫
0

y(1 − y)|∂yw|2 dy.

Since

p′′(vm)
2|p′(vm)|2σm

= γ + 1
2γσmp(vm) = αm,

we have

D ≥ δSαm(1 − C(δ0 + ε1))
1∫

0

y(1 − y)|∂yw|2dy.

• Conclusion: First, by (4.46), (4.48) and the above estimates, we have

B1 + B2 − G2 −
3
4D

≤ δSαm

[
(1 + C(δ0 + λ + ε1))

1∫
0

w2dy

−3
4(1 − C(δ0 + ε1))

1∫
0

y(1 − y)|∂yw|2dy
]
,

which together with the smallness of λ, δ0, ε1 yields

B1 + B2 − G2 −
3
4D ≤ δSαm

⎛⎝9
8

1∫
w2dy − 5

8

1∫
y(1 − y)|∂yw|2dy

⎞⎠ .
0 0
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Using Lemma 1.1 and the fact that for w̄ :=
∫ 1
0 wdy,

1∫
0

|w − w̄|2dy =
1∫

0

w2dy − w̄2,

we have

B1 + B2 − G2 −
3
4D ≤ −δSαm

8

1∫
0

w2dy + 5δSαm

4

⎛⎝ 1∫
0

wdy

⎞⎠2

.

Since the specific O(1)-constant M satisfies

M = 5
4σ

4
mαm, (4.49)

it holds from (4.44) and (4.47) that

− δS
2M |Ẋ|2 + B1 + B2 − G2 −

3
4D

≤ −αm

16

1∫
0

w2δSdy + σ

∫
R

aξ
1 + γ

3γ2 p(ṽX)−
1
γ −2(p(v) − p(ṽX))3dξ

− σ

2γ

∫
R

aξ

(
p(ṽX)−

1
γ −1 − p(ṽS)−

1
γ −1
)
|p(v) − p(ṽX)|2dξ,

which implies the desired estimate. �
4.5.2. Proof of Lemma 4.1

First of all, we use (4.32), (4.33), (4.36) to have

d

dt

∫
R

aη
(
U |ŨX)dξ = − δS

2M |Ẋ|2 + B1 + B2 − G2 −
3
4D

− δS
2M |Ẋ|2 + Ẋ

6∑
i=3

Yi +
5∑

i=3
Bi + S1 + S2 − G1 − GR − 1

4D.

Using Lemma 4.5 and the Young’s inequality, we find that there exist C1, C > 0 such 
that

d

dt

∫
aη
(
U |ŨX)dξ
R



50 M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963
≤ −C1

∫
R

|(ṽS)ξ||p(v) − p(ṽX)|2dξ + C

∫
R

|aξ||p(v) − p(ṽX)|3dξ

︸ ︷︷ ︸
=:K1

+ C

∫
R

|aξ||(ṽR)X − vm||p(v) − p(ṽX)|2dξ

︸ ︷︷ ︸
=:K2

− δS
4M |Ẋ|2 + C

δS

6∑
i=3

|Yi|2 +
5∑

i=3
Bi + S1 + S2 − G1 − GR − 1

4D.

In what follows, to control the above bad terms, we will use the above good terms 
G1, GR, D and

GS :=
∫
R

|(ṽS)ξ||p(v) − p(ṽX)|2dξ. (4.50)

Note that from (4.8) and (4.50), it is obvious that GS = GS with the change of variables 
ξ 
→ ξ + X(t).
• Estimate on the cubic term K1: For simplicity, we use the notation w = p(v) − p(ṽX)
as in (4.37). We first use (4.15) and the interpolation inequality to have

K1 ≤ C
λ

δS

∫
R

‖w‖2
L∞(R)|(ṽS)ξ||w|dξ

≤ C
λ

δS
‖w‖2

L∞(R)

√√√√∫
R

|(ṽS)ξ|w2dξ

√√√√∫
R

|(ṽS)ξ|dξ

≤ C
λ√
δS

‖wξ‖L2(R)‖w‖L2(R)

√√√√∫
R

|(ṽS)ξ|w2dξ.

Using (4.12), (3.16) with (2.3), we have

K1 ≤ Cε1‖wξ‖L2(R)

√√√√∫
R

|(ṽS)ξ|w2dξ

≤ Cε1‖wξ‖2
L2(R) + Cε1

∫
R

|(ṽS)ξ|w2dξ ≤ 1
40(D + C1GS).

• Estimate on the term K2: Likewise, using (4.15) and the interpolation inequality,

K2 ≤ C
λ ‖w‖2

L4(R)‖|(ṽS)ξ||(ṽR)X − vm|‖L2(R)

δS



M.-J. Kang et al. / Advances in Mathematics 419 (2023) 108963 51
≤ C
λ

δS
‖wξ‖1/2

L2(R)‖w‖
3/2
L2(R)‖|(ṽ

S)ξ||(ṽR)X − vm|‖L2(R).

Using (3.16), Lemma 4.2, (4.12) and Young’s inequality, it holds that

K2 ≤ Cε1‖wξ‖1/2
L2(R)

λ

δS
δ
3/2
S δRe

−CδSt ≤ Cε1‖wξ‖1/2
L2(R)δSδRe

−CδSt

≤ Cε1‖wξ‖2
L2(R) + Cε1δ

4/3
S δ

4/3
R e−CδSt ≤ 1

40D + Cε1δ
4/3
S δ

4/3
R e−CδSt.

• Estimates on the terms Yi: Since

|Y3| ≤ C
δS
λ

∫
R

|aξ|
∣∣∣∣h− h̃X − p(v) − p(ṽX)

σ

∣∣∣∣ dξ ≤ C
δS√
λ

√
G1,

we have

C

δS
|Y3|2 ≤ C

δS
λ

G1 ≤ 1
4G1.

Using (2.1) and (2.6), we have

|Y4| ≤ C

∫
R

|(ṽR)X − vm||ṽSξ ||v − ṽX|dξ

≤ CδR

∫
R

|ṽSξ |wdξ ≤ CδR
√

δS

√√√√∫
R

|ṽSξ |w2dξ,

and so

C

δS
|Y4|2 ≤ Cδ2

RGS ≤ C1

40 GS .

For Y5, we first estimate h − h̃X in terms of u − ũX and v − ṽX (using the definition 
of h in (4.1) and h̃ in (4.4)) as follows. Observe that

|h− h̃X| ≤ |u− ũX| + |(ln v)ξ − (ln ṽS)ξ|
≤ |u− ũX| + C(|(v − ṽX)ξ| + |ṽX

ξ ||v − ṽS | + |(ṽRξ )X|)
≤ |u− ũX| + C(|(v − ṽX)ξ| + |ṽX

ξ ||v − ṽX|
+ |ṽSξ ||(ṽR)X − vm| + |(ṽRξ )X|),

(4.51)

which together with the wave interaction estimates in Lemma 4.2 and Lemma 3.2 implies

‖h− h̃X‖L2(R) ≤ C
[
‖u− ũX‖L2(R) + ‖v − ṽX‖H1(R) + δR

]
.
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Then, by using (3.16),

‖h− h̃X‖L∞(0,T ;L2(R)) ≤ C(ε1 + δR). (4.52)

This together with (3.16) and ‖aξ‖L∞ ≤ CλδS yields

|Y5| ≤ C|G1|
1
2 ‖aξ‖

1
2
L∞(R)

[
‖h− h̃X‖L∞(0,T ;L2(R)) + ‖v − ṽX‖L∞(0,T ;L2(R))

]
≤ C(ε1 + δR)(λδS) 1

2 G
1
2
1 ,

and so

C

δS
|Y5|2 ≤ Cλ(ε1 + δR)2G1 ≤ 1

4G1.

Using (2.6) with (4.34), we have

C

δS
|Y6|2 ≤ C

δS

⎛⎝∫
R

|aξ|w2dξ

⎞⎠2

≤ Cλ2

δ3
S

⎛⎝∫
R

|(ṽS)ξ|w2dξ

⎞⎠2

.

Thus, by (3.16) with (2.3), we have

C

δS
|Y6|2 ≤ Cλ2

δS
‖w‖2

L2(R)

∫
R

|(ṽS)ξ|w2dξ ≤ Cε2
1

∫
R

|(ṽS)ξ|w2dξ ≤ C1

40 GS .

• Estimates on the terms Bi: Using the Young’s inequality, we have

|B3(U)| ≤ 1
32D + C

∫
R

|aξ|2w2dξ

≤ 1
32D + λ2

∫
R

|(ṽS)ξ|w2dξ ≤ 1
40(D + C1GS).

For B4, B5, we use the facts that

|∂ξp(ṽX)| ≤ C(|ṽSξ | + |(ũR
ξ )X|) by Lemma 3.2,

and

|p(v) − p(ṽX)|2 ≤ Cp(v|ṽX) by (2.2) and (2.3).

Then,

|B4(U)| ≤ CλδS

∫
(|ṽSξ | + |(ũR

ξ )X|)
(
p(v) − p(ṽX)

)2
dξ ≤ 1

8(C1GS + GR).

R
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In addition, using Young’s inequality and ‖(ũR
ξ )X‖L∞ ≤ CδR by Lemma 3.2, we have

|B5(U)| ≤ 1
40D + Cδ0

∫
R

(|ṽSξ | + |(ũR
ξ )X|)

(
p(v) − p(ṽX)

)2
dξ

≤ 1
40D + 1

8(C1GS + GR).

• Estimates on the terms Si: We first compute that (using ṽS, ̃vX, (ṽR)X ∈ (v+/2, 2v+), 
ṽX = (ṽR)X + ṽS − vm, and Lemmas (3.2)-(2.2))

|
(
ln ṽS − ln ṽX)

ξξ
|

=
∣∣∣∣ṽSξξ ( 1

ṽS
− 1

ṽX

)
+ 1

ṽX

(
ṽSξξ − ṽX

ξξ

)
− 1

(ṽS)2
(
(ṽSξ )2 − (ṽX

ξ )2
)

− (ṽX
ξ )2
(

1
(ṽS)2 − 1

(ṽX)2

) ∣∣∣∣
≤ C
(
|ṽSξξ||(ṽR)X − vm| + |(ṽR)Xξξ| + |(ṽR)Xξ ||ṽSξ | + |(ṽR)Xξ |2

+ |ṽSξ |2
∣∣|(ṽR)X − vm|

)
≤ C
(
|(ṽR)Xξξ| + |(ṽR)Xξ |2 + (|ṽSξξ| + |ṽSξ |2)|(ṽR)X − vm| + |(ṽR)Xξ ||ṽSξ |

)
,

(4.53)

and

|
(
p(ṽX) − p((ṽR)X) − p(ṽS)

)
ξ
|

≤ C
(
|(ṽR)Xξ ||ṽS − vm| + |ṽSξ ||(ṽR)X − vm|

)
.

(4.54)

Then,

|S1| + |S2|

≤ C

∫
R

|w|
(
|(ṽR)Xξξ| + |(ṽR)Xξ |2

)
dξ + C

∫
R

(|w| + |h− h̃X|)·

(
|ṽSξ ||(ṽR)X − vm| + |(ṽR)Xξ ||ṽS − vm| + |(ṽR)Xξ ||ṽSξ |

)
dξ

=: J1 + J2.

Using the interpolation inequality and (3.16) with Young’s inequality,

J1 ≤ C‖w‖L∞(R)‖(ṽR)Xξξ‖L1(R) + C‖w‖L2(R)‖(ṽR)Xξ ‖2
L4(R)

≤ C‖w‖1/2
L2(R)‖wξ‖1/2

L2(R)‖(ṽ
R)Xξξ‖L1(R) + C‖w‖L2(R)‖(ṽR)Xξ ‖2

L4(R)

≤ C
√
ε1

4
√

D‖(ṽR)Xξξ‖L1(R) + Cε1‖(ṽR)Xξ ‖2
L4(R)

≤ 1
40D + Cε

2/3
1 ‖(ṽR)Xξξ‖

4/3
L1(R) + Cε1‖(ṽR)Xξ ‖2

L4(R).

(4.55)
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For J2, using (2.3), (4.52) and (3.16),

‖w‖L2(R) + ‖h− h̃X‖L2(R) ≤ C(ε1 + δR).

Thus,

J2 ≤ C(ε1 + δR)
∥∥|ṽSξ ||(ṽR)X − vm| + |(ṽR)Xξ ||ṽS − vm| + |(ṽR)Xξ ||ṽSξ |

∥∥
L2(R).

• Conclusion: From the above estimates, we have

d

dt

∫
R

aη
(
U |ŨX)dξ ≤ − δS

4M |Ẋ|2 − 1
2G1 −

C1

2 GS − 1
8D

+ Cε1δ
4/3
S δ

4/3
R e−CδSt + Cε

2/3
1 ‖(ṽR)Xξξ‖

4/3
L1(R)

+ Cε1‖(ṽR)Xξ ‖2
L4(R) + C(ε1 + δR)

∥∥|ṽSξ ||(ṽR)X − vm|
+ |(ṽR)Xξ ||ṽS − vm| + |(ṽR)Xξ ||ṽSξ |

∥∥
L2(R).

Integrating the above inequality over [0, t] for any t ≤ T , we have

∫
R

η
(
U |ŨX)(t, ξ)dξ + δS

t∫
0

|Ẋ|2ds +
t∫

0

(G1 + GS + D)ds

≤ C

∫
R

η
(
U0|Ũ(0, ξ)

)
dξ + Cε1δ

4/3
R + Cε

2/3
1

t∫
0

‖(ṽR)Xξξ‖
4/3
L1(R)ds

+ Cε1

t∫
0

‖(ṽR)Xξ ‖2
L4(R)ds + C(ε1 + δR)

t∫
0

∥∥|ṽSξ ||(ṽR)X − vm|

+ |(ṽR)Xξ ||ṽS − vm| + |(ṽR)Xξ ||ṽSξ |
∥∥
L2(R)ds.

Notice that by Lemma 3.2,

‖(ṽR)ξξ‖L1(R) ≤
{

δR if 1 + t ≤ δ−1
R

1
1+t if 1 + t ≥ δ−1

R ,

and

‖(ṽR)ξ‖L4(R) ≤
{

δR if 1 + t ≤ δ−1
R

δ
1/4
R

1
(1+t)3/4 if 1 + t ≥ δ−1

R ,

Thus,
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∞∫
0

‖(ṽR)Xξξ‖
4/3
L1(R)ds ≤ Cδ

1/3
R ,

∞∫
0

‖(ṽR)Xξ ‖2
L4(R)ds ≤ CδR. (4.56)

In addition, since it follows from Lemma 4.2 that

∥∥|ṽSξ ||(ṽR)X − vm| + |(ṽR)Xξ ||ṽS − vm| + |(ṽR)Xξ ||ṽSξ |
∥∥
L2(R) ≤ CδRδSe

−CδSt, (4.57)

and so,

∞∫
0

∥∥|ṽSξ ||(ṽR)X − vm| + |(ṽR)Xξ ||ṽS − vm| + |(ṽR)Xξ ||ṽSξ |
∥∥
L2(R)ds ≤ CδR, (4.58)

we have

∫
R

η
(
U |ŨX)(t, ξ)dξ + δS

t∫
0

|Ẋ|2ds +
t∫

0

(G1 + GS + D)ds

≤ C

∫
R

η
(
U0|Ũ(0, ξ)

)
dξ + Cδ

1/3
R .

This implies the desired estimate (4.7) together with the new notations (4.8), where note 
that

G1(U) ∼ G1(U), GS(U) = GS(U), D(U) ∼ D(U).

5. Proof of Proposition 3.2

In this section, we use the original system (3.4) to estimate ‖u − ũ‖L∞(0,T ;H1(R)), and 
then we complete the proof of Proposition 3.2.

5.1. Estimates for ‖u − ũ‖L2(R)

We first present the zeroth-order energy estimates for the system (3.4).

Lemma 5.1. Under the hypotheses of Proposition 3.2, there exists C > 0 (independent of 
δ0, ε1 and T ) such that for all t ∈ (0, T ],
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‖(v − ṽ)(t, ·)‖2
H1(R) + ‖(u− ũ)(t, ·)‖2

L2(R) + δS

t∫
0

|Ẋ|2ds

+
t∫

0

(
GS(U) + GR(U) + D(U) + D1(U)

)
ds

≤ C
(
‖v0 − ṽ(0, ·)‖2

H1(R) + ‖u0 − ũ(0, ·)‖2
L2(R)

)
+ Cδ

1/3
R ,

(5.1)

where GS , D are as in (4.8), and

GR(U) :=
∫
R

ũR
ξ p(v|ṽ)dξ,

D1(U) :=
∫
R

∣∣(u− ũ)ξ
∣∣2dξ. (5.2)

Proof. First of all, as in Section 4.3, we first rewrite (3.4) into the form:

∂tU + ∂ξA(U) = ∂ξ

(
M(U)∂ξ∇η(U)

)
, (5.3)

where

U :=
(
v

u

)
, A(U) :=

(
−σv − u

−σu + p(v)

)
, M(U) :=

(
0 0
0 1

v

)
,

and note that by the entropy η(U) := u2

2 + Q(v) of (3.4),

∇η(U) =
(
−p(v)

u

)
.

By the above representation, the system (3.14) can be written as

∂tŨ + ∂ξA(Ũ) = ∂ξ

(
M(Ũ)∂ξ∇η(Ũ)

)
− Ẋ∂ξ

(
(ŨS)−X)+

(
0

F1 + F2

)
, (5.4)

where F1, F2 are as in (3.15).

Then, applying the equality (4.28) with a ≡ 1 to the system (5.3), we have

d

dt

∫
η
(
U(t, ξ)|Ũ(t, ξ)

)
dξ = ẊY(U) +

6∑
i=1

Ii(U),

R
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Y(U) :=
∫
R

∇2η(Ũ)(ŨS)−X
ξ (U − Ũ)dξ,

I1(U) := −
∫
R

∂ξG(U ; Ũ)dξ,

I2(U) := −
∫
R

∂ξ∇η(Ũ)A(U |Ũ)dξ,

I3(U) :=
∫
R

(
∇η(U) −∇η(Ũ)

)
∂ξ

(
M(U)∂ξ

(
∇η(U) −∇η(Ũ)

))
dξ,

I4(U) :=
∫
R

(
∇η(U) −∇η(Ũ)

)
∂ξ

((
M(U) −M(Ũ)

)
∂ξ∇η(Ũ)

)
dξ,

I5(U) :=
∫
R

(∇η)(U |Ũ)∂ξ
(
M(Ũ)∂ξ∇η(Ũ)

)
dξ,

I6(U) := −
∫
R

∇2η(Ũ)(U − Ũ)
(

0
F1 + F2

)
dξ.

It follows from the above system that

Y = −
∫
R

p′(ṽ)(ṽSξ )−X(v − ṽ)dξ +
∫
R

(ũS
ξ )−X(u− ũ)dξ =: Y1 + Y2,

I1 = −
∫
R

∂ξ
(
(p(v) − p(ṽ))(u− ũ) − ση(U |Ũ)

)
dξ = 0,

I2 = −
∫
R

ũξp(v|ṽ)dξ = −
∫
R

ũR
ξ p(v|ṽ)dξ︸ ︷︷ ︸
=:GR

−
∫
R

(ũS
ξ )−Xp(v|ṽ)dξ

︸ ︷︷ ︸
=:I21

,

I3 =
∫
R

(u− ũ)
(1
v
(u− ũ)ξ

)
ξ
dξ = −

∫
R

1
v

∣∣(u− ũ)ξ
∣∣2dξ

︸ ︷︷ ︸
=:D1

,

I4 =
∫
R

(u− ũ)
((

1
v
− 1

ṽ

)
ũξ

)
ξ

dξ,

I6 = −
∫
R

(u− ũ)

⎛⎝( (ũS
ξ )−X

(ṽS)−X − ũξ

ṽ

)
ξ

+
(
p(ṽ) − p(ṽR) − p((ṽS)−X)

)
ξ

⎞⎠ dξ.

In addition, since (∇η)(U |Ũ) =
(−p(v|ṽ)

0
)
, we have I5 = 0.

Since (2.2) and (2.4) yields
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|Y1| ≤
√√√√∫

R

|(ṽSξ )−X|dξ
√√√√∫

R

|(ṽSξ )−X||v − ṽ|2dξ ≤
√

δS
√
GS ,

we have

|Ẋ||Y1| ≤
δS
4 |Ẋ|2 + CGS .

To control Y2, we will use the follows estimate: as done in (4.51),

|u− ũ| ≤ |h− h̃| + C(|(v − ṽ)ξ| + |ṽξ||v − ṽ| + |(ṽSξ )−X||ṽR − vm| + |ṽRξ |).

In addition, using the fact that

(p(v) − p(ṽ))ξ = p′(v)(v − ṽ)ξ + ṽξ(p′(v) − p′(ṽ)),

and so,

|(v − ṽ)ξ| ≤ C|(p(v) − p(ṽ))ξ| + C|ṽξ||v − ṽ|,

we have

|Y2| ≤ C

∫
R

|(ṽSξ )−X|
(∣∣∣h− h̃− p(v) − p(ṽ)

σ

∣∣∣+ |p(v) − p(ṽ)|

+ |(p(v) − p(ṽ))ξ| + |ṽξ||v − ṽ| + |(ṽSξ )−X||ṽR − vm| + |ṽRξ |
)
dξ.

Then, using Lemma 4.2 to have

|Y2| ≤ C

∫
R

|(ṽSξ )−X|
(∣∣∣h− h̃− p(v) − p(ṽ)

σ

∣∣∣+ |p(v) − p(ṽ)|

+ |(p(v) − p(ṽ))ξ| + |ṽξ||v − ṽ| + |(ṽSξ )−X||ṽR − vm| + |ṽRξ |
)
dξ

≤ C
( δS√

λ

√
G1 +

√
δS

√
GS + δS

√
D + δSδRe

−CδSt
)
.

Thus,

|Ẋ||Y2| ≤
δS
4 |Ẋ|2 + C

δS
λ
G1 + CGS + CδSD + CδSδ

2
Re

−CδSt.

For I2, note first that GR ≥ 0 by ũR
ξ > 0. Using Lemma 2.1,

|I21| ≤ CGS .
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We will use the good terms GR and D1 to control I4, I6.
Using |ũR

ξ | ≤ CδR, |(ũS
ξ )−X| ≤ δS and Young’s inequality, we have

|I4| ≤
∫
R

|(u− ũ)ξ| |v − ṽ|
(
|ũR

ξ | + |(ũS
ξ )−X|

)
dξ ≤ 1

4D1 + CδRG
R + CδSG

S .

For I6, using (4.54) and (as done in (4.53))∣∣∣∣∣∣
(

(ũS
ξ )−X

(ṽS)−X

)
ξ

−
(
ũξ

ṽ

)
ξ

∣∣∣∣∣∣
≤ C

(
|(ũR)ξξ| + |(ũR)ξ||(ṽR)ξ| + (|(ũS)−X

ξξ | + |(ũS)−X
ξ ||(ṽS)−X

ξ |)|ṽR − vm|

+ |(ũR)ξ||(ṽS)−X
ξ | + |(ṽR)ξ||(ũS)−X

ξ |
)

≤ C
(
|(ũR)ξξ| + |(ũR)ξ|2 + (|(ṽS)−X

ξξ | + |(ṽS)−X
ξ |2)|ṽR − vm|

+ |(ṽR)ξ||(ṽS)−X
ξ |
)
,

(5.5)

we have

I6 ≤ C

∫
R

|u− ũ|
(
|(ũR)ξξ| + |(ũR)ξ|2

)
dξ + C

∫
R

|u− ũ|·

(
|(ṽS)−X

ξ ||ṽR − vm| + |(ṽR)ξ||(ṽS)−X − vm| + |(ṽR)ξ||(ṽS)−X
ξ |
)
dξ

=: Q1 + Q2.

Using the same estimates as in (4.55) with (3.16), we have

Q1 ≤ C‖u− ũ‖1/2
L2(R)‖(u− ũ)ξ‖1/2

L2(R)‖(ũ
R)ξξ‖L1(R) + C‖u− ũ‖L2(R)‖(ũR)ξ‖2

L4(R)

≤ C
√
ε1

4
√

D1‖(ũR)ξξ‖L1(R) + Cε1‖(ũR)ξ‖2
L4(R)

≤ 1
4D1 + Cε

2/3
1 ‖(ũR)ξξ‖4/3

L1(R) + Cε1‖(ũR)ξ‖2
L4(R).

Using (3.16), we have

Q2 ≤ Cε1
∥∥|(ṽS)−X

ξ ||ṽR − vm| + |(ṽR)ξ||(ṽS)−X − vm| + |(ṽR)ξ||(ṽS)−X
ξ |
∥∥
L2(R).

Therefore, from the above estimates, we find that for some constant c1 > 0,

d

dt

∫
η
(
U(t, ξ)|Ũ(t, ξ)

)
dξ + 1

2G
R + 1

2D1
R
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≤ δS
2 |Ẋ|2 + C

δS
λ
G1 + c1G

S + CδSD + Cε
2/3
1 ‖(ṽR)ξξ‖4/3

L1(R) + Cε1‖(ṽR)ξ‖2
L4(R)

+ Cε1
∥∥|(ṽS)−X

ξ ||ṽR − vm| + |(ṽR)ξ||(ṽS)−X − vm| + |(ṽR)ξ||(ṽS)−X
ξ |
∥∥
L2(R)

+ CδSδ
2
Re

−CδSt.

Integrating the above inequality over [0, t] for any t ≤ T , and using (4.56)-(4.58), we 
have

∫
R

(
|u− ũ|2

2 + Q(v|ṽ)
)

(t, ξ)dξ + 1
2

t∫
0

(
GR(U) + D1(U)

)
ds

≤
∫
R

(
|u0 − ũ(0, ξ)|2

2 + Q(v0|ṽ(0, ξ))
)
dξ

+
t∫

0

(
δS
2 |Ẋ|2 + C

δS
λ
G1 + c1G

S + CδSD

)
ds + Cδ

1/3
R .

(5.6)

Therefore, multiplying (5.6) by the constant 1
2 max{1,c1} , and then adding the result to 

(4.7), together with the smallness of δS/λ, δS , ε1, we have

‖(v − ṽ)(t, ·)‖2
L2(R) + ‖(h− h̃)(t, ·)‖2

L2(R) + ‖(u− ũ)(t, ·)‖2
L2(R)

+ δS

t∫
0

|Ẋ|2ds +
t∫

0

(
GR + GS + D + D1

)
ds (5.7)

≤ C
(
‖v0 − ṽ(0, ·)‖2

L2(R) + ‖(h− h̃)(0, ·)‖2
L2(R) + ‖u0 − ũ(0, ·)‖2

L2(R)
)

+ Cδ
1/3
R ,

where we have used that (by Lemma 2.1 and (4.34))

C−1∣∣v − ṽ
∣∣2 ≤ Q(v|ṽ) ≤ C

∣∣v − ṽ
∣∣2.

Finally, to complete the proof, we will show that

‖(v − ṽ)ξ‖2
L2(R) ≤ C

[
‖h− h̃‖2

L2(R) + ‖u− ũ‖2
L2(R) + ‖v − ṽ‖2

L2(R) + δ2
R

]
, (5.8)

and

‖(h− h̃)(0, ·)‖2
L2(R) ≤ C

[
‖v0 − ṽ(0, ·)‖2

H1(R) + ‖u0 − ũ(0, ·)‖2
L2(R) + δ2

R

]
. (5.9)

Using the definition of h in (4.1) and h̃ in (4.4), we observe that

(u− ũ) − (h− h̃) =
(
ln v − ln(ṽS)−X)

ξ
=

(
v − (ṽS)−X)

ξ +
(ṽS)−X

ξ

(
(ṽS)−X − v

)
S −X ,
v v(ṽ )
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which yields

(v − ṽ)ξ =
(
v − (ṽS)−X)

ξ
−
(
ṽ − (ṽS)−X)

ξ

= v(u− ũ) − v(h− h̃) +
(ṽS)−X

ξ

(
(v − ṽ) + (ṽR − vm)

)
(ṽS)−X − ṽRξ .

This with Lemma 3.2 and Lemma 4.2 implies (5.8).
As in (4.51), we have

‖(h− h̃)(0, ·)‖2
L2(R)

≤ C
[
‖v0 − ṽ(0, ·)‖2

H1(R) + ‖u0 − ũ(0, ·)‖2
L2(R) + δ2

R‖ṽSξ ‖2
L2(R) + ‖ṽRξ (0)‖2

L2(R)

]
,

which together with Lemmas 2.2 and 3.2 implies (5.9).
Hence, the combination of (5.7), (5.8) and (5.9) implies the desired estimate. �
5.2. Estimates for ‖∂ξ(u − ũ)‖L2(R)

We here complete the proof of Proposition 3.2, by using the following lemma together 
with the following two estimates (by using Lemma 2.1):

GS(U) =
∫
R

|(ṽS)−X
ξ ||v − ṽ|2dξ ≤ CGS(U),

GR(U) =
∫
R

|ũR
ξ |
∣∣v − ṽ

∣∣2dξ ≤ CGR(U).

Lemma 5.2. Under the hypotheses of Proposition 3.2, there exist C1, C > 0 (independent 
of δ0, ε1, T ) such that for all t ∈ (0, T ],

‖(v − ṽ)(t, ·)‖2
H1(R) + ‖(u− ũ)(t, ·)‖2

H1(R) + δS

t∫
0

|Ẋ|2ds

+
t∫

0

(
GS(U) + GR(U) + D(U) + D1(U) + D2(U)

)
ds

≤ C
(
‖v0 − ṽ(0, ·)‖2

H1(R) + ‖u0 − ũ(0, ·)‖2
H1(R)

)
+ Cδ

1/3
R ,

where GS , D are as in (4.8), and GR, D1 are as in (5.2), and

D2(U) :=
∫ ∣∣(u− ũ)ξξ

∣∣2dξ.

R
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Proof. For notational simplicity, we set ψ := u − ũ. Then, it follows from the second 
equations of (3.4) and (3.14) that

ψt − σψξ − Ẋ(ũS)−X
ξ + (p(v) − p(ṽ))ξ =

(
uξ

v
− ũξ

ṽ

)
ξ

− F1 − F2.

Multiplying the above equation by −ψξξ and integrating the result w.r.t. ξ, we have

d

dt

∫
R

|ψξ|2
2 dξ + σ

∫
R

(
|ψξ|2

2

)
ξ

dξ

︸ ︷︷ ︸
=0

= −Ẋ
∫
R

(ũS)−X
ξ ψξξdξ +

∫
R

(p(v) − p(ṽ))ξψξξdξ

−
∫
R

(
uξ

v
− ũξ

ṽ

)
ξ

ψξξdξ +
∫
R

(F1 + F2)ψξξdξ

=: J1 + J2 + J3 + J4.

First, we get a good term

D2 :=
∫
R

1
v
|ψξξ|2dξ

from J3 as follows:

J3 = −
∫
R

1
v
|ψξξ|2dξ −

∫
R

(
1
v

)
ξ

ψξψξξdξ −
∫
R

ũξξ

(
1
v
− 1

ṽ

)
ψξξdξ

−
∫
R

ũξ

(
1
v
− 1

ṽ

)
ξ

ψξξdξ

=: −D2 + J31 + J32 + J33.

We use the good terms D2, D, D2, GS and GR to control the remaining terms as follows.
Using Young’s inequality,

|J1| ≤ |Ẋ|
∫
R

|(ũS)−X
ξ ||ψξξ|dξ ≤ δS

2 |Ẋ|2 + Cδ2
SD2 ≤ δS

2 |Ẋ|2 + 1
8D2,

|J2| ≤
1
8D2 + CD.

Using 
( 1
v

)
ξ
≤ C|vξ| ≤ C(|(v − ṽ)ξ| + |ṽξ|), and the interpolation inequality and (3.16), 

we have
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|J31| ≤ ‖(v − ṽ)ξ‖L2(R)‖ψξ‖L∞(R)‖ψξξ‖L2(R) + ‖ṽξ‖L∞(R)‖ψξ‖L2(R)‖ψξξ‖L2(R)

≤ Cε1‖ψξ‖1/2
L2(R)‖ψξξ‖1/2

L2(R)‖ψξξ‖L2(R) + C(δS + δR)‖ψξ‖L2(R)‖ψξξ‖L2(R)

≤ C(ε1 + δS + δR)
(
‖ψξ‖2

L2(R) + ‖ψξξ‖2
L2(R)

)
≤ 1

8D2 + C(ε1 + δS + δR)D1.

Using |(ũR
ξξ)| ≤ C|(ũR

ξ )| (by Lemma 3.2),

|J32| ≤ C

∫
R

(|(ũS
ξ )| + |(ũR

ξ )|)|v − ṽ||ψξξ|dξ ≤ 1
8D2 + CδSG

S + CδRG
R,

|J33| ≤ C

∫
R

(|(ũS
ξ )| + |(ũR

ξ )|)
(
|v − ṽ| + |(v − ṽ)ξ|

)
|ψξξ|dξ

≤ 1
8D2 + C(δS + δR)(GS + GR + D).

Using (5.5),

|J4| ≤ C‖ψξξ‖L2(R)
∥∥|(ũR)ξξ| + |(ũR)ξ|2 + (|(ṽS)−X

ξξ | + |(ṽS)−X
ξ |2)|ṽR − vm|

+ |(ṽR)ξ||(ṽS)−X
ξ |
∥∥
L2(R)

≤ 1
8D2 + C‖(ũR)ξξ‖2

L2(R) + C‖(ũR)ξ‖4
L4(R)

+ C‖|(ṽS)−X
ξ ||ṽR − vm| + C|(ṽR)ξ||(ṽS)−X

ξ |‖2
L2(R).

Therefore, we find that for some c2 > 0,

d

dt

∫
R

|ψξ|2
2 dξ = −1

4D2 + δS
2 |Ẋ|2 + c2D + C(ε1 + δS + δR)(GS + GR + D1)

+ C‖(ũR)ξξ‖2
L2(R) + C‖(ũR)ξ‖4

L4(R) + C‖|(ṽS)−X
ξ ||ṽR − vm| + |(ṽR)ξ||(ṽS)−X

ξ |‖2
L2(R).

Integrating the above estimate over [0, t] for any t ≤ T , and using (4.57) and the fact 
that (by Lemma 3.2)

∞∫
0

‖(ũR)ξξ‖2
L2(R)ds ≤ CδR,

∞∫
0

‖(ũR)ξ‖4
L4(R)ds ≤ Cδ3

R,

we have

∫
R

|(u− ũ)ξ|2
2 (t, ξ)dξ ≤

∫
R

|(u0 − ũ(0, ξ))ξ|2
2 dξ +

t∫
0

[
− 1

4D2 + δS
2 |Ẋ|2

+ c2D + C(ε1 + δS + δR)(GS + GR + D1)
]
ds + CδR.
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Multiplying the above inequality by the constant 1
2 max{1,c2} , and then adding the result 

to (5.1), together with the smallness of ε1, δS , δR, we have

‖(v − ṽ)(t, ·)‖2
H1(R) + ‖(u− ũ)(t, ·)‖2

H1(R) + δS

t∫
0

|Ẋ|2ds

+
t∫

0

(
GR + GS + D + D1 + D2

)
ds

≤ C
(
‖v0 − ṽ(0, ·)‖2

H1(R) + ‖u0 − ũ(0, ·)‖2
H1(R)

)
+ Cδ

1/3
R .

This implies the desired result in Lemma 5.2. �
Declaration of competing interest

The authors declared that they have no conflicts of interest to this work.

Acknowledgment

The authors thank Professors Akitaka Matsumura and Feimin Huang for their helpful 
suggestions on the manuscript.

References

[1] S. Bianchini, A. Bressan, Vanishing viscosity solutions to nolinear hyperbolic systems, Ann. Math. 
166 (2005) 223–342.

[2] D. Bresch, B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow 
water model and for compressible Navier-Stokes models, J. Math. Pures Appl. 86 (9) (2006) 362–368.

[3] K. Choi, M.-J. Kang, Y. Kwon, A. Vasseur, Contraction for large perturbations of traveling waves 
in a hyperbolic-parabolic system arising from a chemotaxis model, Math. Models Methods Appl. 
Sci. 30 (2) (2020) 387–437.

[4] C. Dafermos, Entropy and the stability of classical solutions of hyperbolic systems of conservation 
laws, in: Recent Mathematical Methods in Nonlinear Wave Propagation, Montecatini Terme, 1994, 
in: Lecture Notes in Math., vol. 1640, Springer, Berlin, 1996, pp. 48–69.

[5] C.M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal. 70 (2) 
(1979) 167–179.

[6] R.J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 28 (1) 
(1979) 137–188.

[7] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. 
Ration. Mech. Anal. 95 (4) (1986) 325–344.

[8] L. He, F.M. Huang, Nonlinear stability of large amplitude viscous shock wave for general viscous 
gas, J. Differ. Equ. 269 (2) (2020) 1226–1242.

[9] F. Huang, A. Matsumura, Stability of a composite wave of two viscous shock waves for the full 
compressible Navier-Stokes equation, Commun. Math. Phys. 289 (3) (2009) 841–861.
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