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Abstract—Machine learning is rapidly finding its way into the
solving of everyday complex problems. One such application is
in the area of chaotic encryption, where machine learning tech-
niques can be used to improve the security and synchronization
of encryption algorithms. Chaotic encryption is a technique that
uses chaos theory to encrypt messages communicated between a
transmitter and a receiver, making them extremely difficult to
decipher without the correct decryption key.

Here, we first discuss error correction for chaotic synchro-
nization using conventional methods with an accuracy of 86%.
We then use machine learning algorithms to reduce the error
of the decrypted message extracted by learning patterns in the
encrypted message and adjusting the encryption parameters
accordingly. Using linear regression, k-mean, and DB-Scan,
We present an increase in the original accuracy achieved by
the decrypted message. Additionally, we use machine learning
algorithms to detect anomalies in encrypted messages. The use
of machine learning in chaotic encryption has the potential to
greatly improve the security of encryption algorithms.

Index Terms—Machine Learning, Hardware security, Chua’s
Chaotic Equations, Chaos Implantation, IoT

I. INTRODUCTION

Chaotic systems have been of significant interest to re-
searchers due to their complex and unpredictable behavior.
Chaotic synchronization and communication, in particular,
have received significant attention due to their potential use in
secure communication and information processing. However,
the complexity and unpredictability of chaotic systems can
make achieving and maintaining chaotic synchronization and
communication a challenging task [1], [2]. In recent years,
machine learning and artificial intelligence (AI) techniques
have emerged as promising tools for enhancing the perfor-
mance of chaotic systems. These techniques can enable more
efficient and reliable synchronization and communication and
can facilitate the extraction of useful information from chaotic
signals. Using machine learning and Al techniques for chaotic
synchronization and communication can also highlight the
limitations of encryption with various algorithms used to
attack a secure system [3].

The process of error correction in communication systems
involves making inferences based on probabilistic models
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TABLE I: Chua’s equation for continuous time chaotic systems

Name | References Equation Scroll Type
Chua [71, [8] 2/ =o(y—x— f(x)) | Multi Scroll
y=z—y+=z
2 =Py

to determine what was transmitted despite the presence of
noise or other distortions. Previous attempts to use machine
learning for error correction have been limited by the large
number of possible codewords, making it impractical to train
a learning algorithm to correct errors in them [4]. However, a
breakthrough was made when Nachmani et al. [5] showed that
the belief propagation decoding algorithm could be equipped
with learnable weights and trained as a neural network to
achieve improved error correction performance. This approach
allows for the practical implementation of machine learning
in digital communication devices, and a new gradient-based
training method using an unsupervised syndrome-based loss
function has been shown to yield soft decoders with better
frame error rates for a variety of codes [6].

Here we look into the synchronization between the transmit-
ter and receiver in Chua’s chaotic communication system. To
improve the synchronization we implement different machine
learning algorithms and discuss the role of supervised versus
unsupervised algorithms. This paper is presented as follows:
Section II, introduces Chua’s circuit to communicate a pulse
train and looks into synchronization limitations for signals
with different amplitudes and frequencies. Section III presents
different machine learning algorithms and shows the result of
applying these algorithms to our decrypted message, Section
IV, concludes the paper after discussing the results.

II. CHUA’S CHAOTIC SYSTEM FOR COMMUNICATION AND
SYNCHORNIZATION

Chua’s chaotic system is a well-known example of a dy-
namical system that exhibits chaotic behavior, characterized
by its nonlinear and complex dynamics. Due to its rich
dynamics, Chua’s system has been extensively studied in
various scientific disciplines, including physics, engineering,
and mathematics. In recent years, the potential use of Chua’s

chaotic sg(s)tzeténI E%Ecommunication and synchronization has
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Fig. 1: (a) LTSpice design of Chau’s chaos implemented
without Inductor. (b) Chua’s circuit implementation simulated
in LTspice.

attracted significant interest. The use of chaotic signals for
communication and synchronization has several advantages
over traditional methods, such as high security, functionality
in a post-quantum era, and robustness against noise and
interference. However, implementing chaotic communication
and synchronization systems with Chua’s system can be
challenging, as it requires designing suitable encoding and
decoding schemes and robust synchronization methods. The
equation for Chua’s PWD circuit is shown in Table.I. Whre
o, and § are parameters whose choice of value results in a
chaotic system.

Chua’s system can be implemented as a circuit as seen
in Figure 1. Chua’s circuit is a non-repeating and non-linear
chaotic system that is composed of a locally active resistor
and at least three energy storage elements. Its sensitivity to
initial conditions distinguishes it from other commonly used
chaotic systems, such as the Lorenz equations. Chua’s circuit
exhibits a high degree of sensitivity to small variations in its
parameters, which results in extremely different trajectories of
its state variables. In particular, by varying the value of one of
its parameters between 1.0 and 1.1, the trajectories of x(t) can
differ significantly. Chua’s circuit is one of the simplest and
most robust experimental demonstrations of chaos and can be
easily implemented in various ways, the butterfly effect and

double-scroll attractor depict the chaotic behavior of the sys-
tem, which is governed by three nonlinear ordinary differential
equations. The presence of three unstable equilibrium points
in Chua’s circuit leads to more complex and richer dynamics
compared to previous chaotic systems [9].

To implement a communication system a Chua’s circuit is
implemented as a transmitter with the same circuit imple-
mented as the receiver, In this scheme, the message is fed into
the transmitter, the message get’s encrypted and this encrypted
message is sent through a public channel that is visible to
unauthorized users. The encrypted message is then decrypted
with the use of chaotic synchronization in the receiver. In Fig.
2, the out.m represents the message. The message is what the
transmitter aims to cipher and send through the public channel.
out.X represents the message through the public channel. No
data (0 or 1 in the case of our message) should be extracted
from this signal, Looking at out.X, as shown in Fig. 3 there
should be no correlation with the message (out.m). out.sync
is the data that is decoded by the receiver, although it is not a
perfect O and 1 scheme, this deciphered message is correlated
with the message. Most papers in the literature stop here when
achieving a synchronized message, however this decrypted
message still needs processing to be able to rebuild the original
message.

The transformation of the decrypted message to the original
message can be done by applying a moving average and
thresholding. The signal processed using moving averages of
2 and 3 is demonstrated in Fig. 3 ¢ and d, respectively. To
make a pulse train, the Thresholding of the data based on
different values is performed. Here, if data is bigger than the
threshold, the data point will be converted to 5 otherwise it
will be converted to 0 as shown in Fig. 3 d. The accuracy
is calculated by extracting the accumulated number of false
positives and false negatives divided by the total number of
data points. These numbers for 20 cycles of our transient data
leading to 2470 data points are shown in Table. II.

TABLE II: Number of false positives, false negatives and the
accuracy for 20 cycles of transient data

Sampled 0 | Sampled 5 | Grand total Overall
Original 0 1204 161 1365 Accuracy
Original 5 203 1175 1378 86.7%

In the data shared, the correlation of the out.sync is well
visible when the message is slow (1 seconds), as the message
gets faster the correlation begins to suffer but still exists (when
the message is 0.3 or 0.4 seconds). When the message falls
around 0.2 seconds, the message can not be deciphered 5. To
increase the accuracy and maintain the synchronization for a
variety of signals, machine learning algorithms can be used.

III. MACHINE LEARNING FOR CHAOTIC
SYNCHORNIZATION

The complexity and unpredictability of chaotic systems
make synchronization a challenging task, and traditional ap-
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Fig. 2: Chua’s transmitter and receiver implement in MATLAB Simulink.

proaches may not always provide the best performance. Cur-
rently Machine learning has emerged as a promising tool
for enhancing the performance of chaotic synchronization,
which is a crucial process in chaotic communication and infor-
mation processing. Machine learning algorithms are adaptive
to changing environments, which allows them to have more
accurate prediction over chaotic and complex systems. [10]

Recent studies have shown the effectiveness in synchroniza-
tion of chaotic systems using machine-learning approaches
such as reservoir computing, which is a type of recurrent
neural network (RNN) [11], [12], or a deep Long-Short-Term-
Memory (LSTM) network. [10]

RNN uses labeled data where the correct classification is
already given. The training is done through the error back-
propagation algorithm where the model adjusts its weights
based on the difference between the calculated output and
desired output. However, this can cause the problem of over-
fitting which can lead to poor performance on new data and
reduced model accuracy. [13].

Unsupervised models make it possible for us to uncover
hidden patterns and relationships in the data, which is espe-
cially useful in chaotic systems where patterns can be difficult
to identify and predict. Furthermore, the self-organizing maps
(SOM) algorithms [14]. can transform incoming signals into
lower dimensional representations which will help to reveal the
underlying structure of chaotic systems. Thus, we came to the
conclusion that unsupervised algorithms are more suitable for
our data since we aim to keep the original signal confidence
even to the processor in the receiver. Below is a review of 3
algorithms we used to enhance the synchronization.

A. Long short-term memory(LSTM)

The Long short-term memory(LSTM) model is a type of
recurrent neural network (RNN) which is designed to work
with sequential data such as time series data like ours. In our
experiment, the model had a single LSTM layer with 32 units,

which takes the input in the shape of (1, 1) with the next
dense layer with a single output unit and a sigmoid activation
function.

We transformed the input data using the chaos equation
to obtain a synchronized signal and then trained a linear
regression model with the transformed input data and the
desired output signal as the target. In this study, the Adam
optimizer was used for the final result since it gave better
results than Adagrad and Stochastic Gradient Descent(SGD).
The model was trained with the input data of reference and the
target output of Out Sync for a maximum of 10 epochs with a
batch size of 32. After training, the input data was flattened to
a 2D shape and used to make predictions on the target output
which is Out Sync. The model’s performance was evaluated
with different metrics such as mean squared error(MSE),
accuracy score, recall score, f1 score, and precision score.

The MSE score was 8.65, which shows that the LSTM
model was more successful in making the input data closely
match the desired output signal compared to the accuracy of
the synchronized model before the LSTM model was just 87%.
Generated data for Out.Sync with the LSTM model is shown
in Fig. 5. However, the model gave a running time of 4.64
seconds. For LSTM models, the time complexity is usually
O(n2) for the training phase, where n is the number of samples
in the input data. This is relatively poor time complexity
compared to other algorithms which are K-Means and DB-
Scan, both of whose time complexity is O(nlogn).

B. K-Mean and DB-Scan

Looking at our data trend, we believe that the classification
algorithms are more suitable for synchronizing the input data
and the desired output signal, as we are trying to match the
output data to either 0 or 5. To achieve this, we used two
different clustering algorithms: K-means and DBSCAN.

The k-means algorithm divides the dataset into k numbers
of clusters based on how close the data points are to each
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Fig. 3: Use of moving average and thresholding to rebuild
the original message using the decrypted signal from the
receiver. a) Out.m represents the original message fed into
the transmitter. The message is encrypted and sent through
the public channel. out.X. The receiver decrypts the message
(out.Sync) that is synchronized with the original message,
Out.m. b&c) use of moving averages 2 and 3 to rebuild the
pulse train from out.Sync. d) Using a threshold to translate the
output of the moving average to a fuzzy high and low pulse
that is correlated with the message at best with an accuracy
of 87%.

other. It starts by randomly picking a few points as “centroids”
and then iteratively groups the other data points around those
centroids. In our experiment, we made data points into two
clusters of O or 5. After we trained the K-means model on
the input data, the code predicted the cluster for each sample
in the input data and then converts the cluster predictions.
The output data is shown in Fig. 6. The mean squared error
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Fig. 4: Out.Sync showing degredetation in Chaotic synchro-
nization with faster messages and lower amplitude of the
message with a) message with a period of 0.3 seconds and
amplitude of 2 volts. and losing the synchronization with b)
message with a period of 0.2 seconds and amplitude of 2 volts.
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Fig. 5: Out.Sync using LSTM algorithm

(MSE) was improved to 6.91 using the k-means model. Not
only the mean squared error of the model was better, but also
the training time was optimized to 1.94 seconds, which was
less than half of the training time of the LSTM model.
Another clustering algorithm that we used in our experiment
is called DBSCAN. DBSCAN uses density for clustering the
input data while K-means uses the distance between each
data point. This algorithm is more beneficial when picking up
clusters of different shapes and better at handling noise and
outliers. The DBSCAN model was trained using the sklearn li-
brary, specifying a value of eps=0.5 for the radius of the neigh-
borhood around each point, and a value of min_samples=5 as
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Fig. 7: Out.Sync using DBSCAN algorithm

the minimum number of points needed to form a dense region.
The predict function was then used to assign each point to
a cluster label. Finally, the evaluation metrics are computed
using the true labels (Y) and the predicted labels (Y_hat). The
output of the predicted labels is shown in Fig. 7. MSE came
out to be 12.56 which had the highest error rate of all three
models. However, the running time of the model turned out
to be 0.08 seconds which was the most efficient in all three
models.

IV. CONCLUSION

Resource-limited devices depend on low-power modes of
security to transmit data. Due to the dependence of syn-
chronous and asynchronous encryption on power-consuming
processors, implementing these modes of security on resource-
limited devices is becoming more challenging day by day.
To develop a new mode of security, chaotic encryption is
gaining more interest. This work contributes toward the goal
of achieving the efficient chaos ciphering implemented on the
chip along with the sensors to encode the data at its very
origin.

In this work, we first extracted the limitations of conven-
tional error correction like thresholding and moving average
to translate a decrypted message in a chaotic receiver to a
pulse train, achieving 87% accuracy. We then used different
ML categorization and clustering methods which showed the
mean squared errors as 6.91 and 12.56 for each K-means
and DBSCAN, respectively. Moving forward other machine
learning algorithms will be used along with more stages of
hardware data correction to improve the accuracy of our
chaotic communication.
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