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Restricted latent class models (RLCMs) provide an important framework for supporting diagnostic
research in education and psychology. Recent research proposed fully exploratorymethods for inferring the
latent structure. However, prior research is limited by the use of restrictive monotonicity condition or prior
formulations that are unable to incorporate prior information about the latent structure to validate expert
knowledge. We develop new methods that relax existing monotonicity restrictions and provide greater
insight about the latent structure. Furthermore, existing Bayesian methods only use a probit link function
and we provide a new formulation for using the exploratory RLCM with a logit link function that has an
additional advantage of being computationally more efficient for larger sample sizes. We present four new
Bayesian formulations that employ different link functions (i.e., the logit using the Pòlya–gamma data
augmentation versus the probit) and priors for inducing sparsity in the latent structure. We report Monte
Carlo simulation studies to demonstrate accurate parameter recovery. Furthermore, we report results from
an application to the Last Series of the Standard Progressive Matrices to illustrate our new methods.
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Restricted latent classmodels (“RLCMs”), which are also known as either cognitive diagnosis
models (“CDMs”) in education or latent structure models (von Davier, 2009), are increasingly
beingused as an assessment framework to support learning interventions (Haertel, 1989,Macready
&Dayton, 1977). In contrastwith traditional factor analysismethods,which rank individuals along
a few continuous traits, RLCMs classify individuals into latent classes, or attribute profiles, that
correspond with mastery of a discrete set of skills that are needed for success. More specifically,
RLCMs assume that a binary vector of K attributes α = (α1, . . . , αK )� ∈ {0, 1}K underlies
the observed binary responses to J items, Y = (Y1, . . . ,YJ )

� ∈ {0, 1}J where the number of
dimensions K is smaller than the number of items J . RLCMs offer researchers a framework that is
capable of providing educators with detailed information about student mastery in a given subject
area with examples including: (1) fraction-subtraction (de la Torre & Douglas, 2004, Tatsuoka,
1984); (2) proportional reasoning Tjoe & de la Torre, 2013; (3) elementary probability theory
(Heller & Wickelmaier, 2013); and (4) geometric sequences (Chen & Culpepper, 2020; Shute
et al., 2008). Furthermore, the diagnostic modeling paradigm has proved useful for designing
interventions that aim to enhance learning (e.g., see the Adaptive Content with Evidence-Based
Diagnosis study; Shute et al., 2008). The purpose of our manuscript is to advance exploratory
methods to provide researchers with tools for designing and refining diagnostic assessments.

The success of RLCMs as amethodology in education served as amilestone for researchers to
apply RLCMs more broadly in the psychological sciences. In fact, researchers applied RLCMs to
psychological data involving pathological gambling behaviors (Templin &Henson, 2006), spatial
rotation (Chen et al., 2018b; Culpepper, 2015; Wang et al., 2018), and situational judgment tests
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(Sorrel et al., 2016). However, the aforementioned applications of RLCMs are confirmatory in
nature and require researchers to prespecify the latent structure a priori. In the cognitive diagnosis
context, the Q matrix indicates the latent structure by specifying the attributes related to each
item. More specifically, Q is a J × K binary matrix where the ( j, k) element equals one if
attribute k loads onto item j (i.e., q jk = 1) and zero if having attribute k has no impact on
the probability of responding to item j . In order to apply RLCMs, researchers must specify all
elements of Q. Specifying Q requires detailed theoretical knowledge about the content domain
and is challenging in confirmatory studies given the necessary theory for specifying how attributes
load onto observed items is typically unavailable.

Defining Q may be easier for educational research domains where the attributes required to
succeed on a task are readily known. In contrast, specifying Q is more challenging outside of edu-
cation where the underlying attributes and their relationship with observed responses may be less
clearly understood a priori. The inability to accurately specify Q is a barrier to more widespread
application of RLCMs in psychological research. Recent research overcame limitations of con-
firmatory RLCMs by proposing fully exploratory approaches for estimating the latent structure
Q matrix. Specifically, recent research established new theory and methods for identifying (Xu,
2017; Xu & Shang, 2018; Chen et al., 2015, 2020; Culpepper, 2019b) and estimating model
parameters (Chen et al., 2015, 2018a; Culpepper & Chen, 2019; Culpepper, 2019a; Xu & Shang,
2018). Exploratory RLCMs have been used to estimate the latent structure for matrix reasoning
tasks (Chen et al., 2020), fraction-subtraction (Chen et al., 2015, 2018a; Culpepper, 2019a; Xu
& Shang, 2018), English language proficiency (Culpepper & Chen, 2019), clinical assessment of
social anxiety disorders (Chen et al., 2015), knowledge of elementary probability (Chen et al.,
2020), in addition to ordinal outcomes such as early childhood approaches to learning (Culpepper,
2019b).

Existing exploratory methods provide accurate approaches for inferring the latent structure;
yet, there are three significant challenges that must be overcome to encourage widespread appli-
cation of RLCMs in the educational and psychological sciences. First, new approaches are needed
to enforce monotonicity among the latent classes when inferring the Q matrix. In fact, mono-
tonicity conditions are often needed in the exploratory framework to improve interpretation of
estimated solutions and to prevent within chain attribute-level swapping where the meaning of
α = 0 and α = 1 changes. Imposing monotonicity conditions fixes the interpretation of attributes
by requiring that latent classes withmoremastered attributes have a performance level no less than
classes with fewer attributes. For instance, for K = 3 the monotonicity conditions force response
probabilities for the “011” class to be larger than the “000,” “010,” and “001” classes. Enforcing
monotonicity constraints when updating Q conditioned on the item parameters is challenging
given it involves integration of a multivariate normal prior for item parameters over the monotone
space to obtain a normalizing constant. It is important to note that the sparse latent class model
(SLCM; Chen et al., 2020) effectively handles the monotonicity conditions by applying a heuris-
tic, post-processing step for inferring Q from the item parameters. However, one disadvantage
of the SLCM is that it is not designed to incorporate prior information about Q, which poses a
barrier for validating expert knowledge (e.g., see Culpepper, 2019a).

Second, inferring Q can be computationally demanding for Bayesian methods for larger
sample sizes of 1000 or more. Access to larger datasets continues to expand and computationally
efficient approaches are needed. Consequently, faster algorithms that also impose monotonicity
conditions are needed to infer Q for large-scale applications.
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Weaddress these challenges by proposing several newBayesianmodel formulations. First, we
discuss a newhierarchical prior specification that enforcesmonotonicity conditionswhile inferring
Q. In fact, we improve upon the method of Culpepper (2019a), which imposes a restrictive mono-
tonicity constraint that limits the ability of researchers to uncover disjunctive relationships, which
may be important to model for understanding attributes in clinical settings (Templin & Henson,
2006). A novel feature of our proposed hierarchical model is that we use a confirmatory determin-
istic inputs, noisy “and” gate model (DINA) to specify a prior for item parameters conditioned on
Q. Note that we estimate Q for a general RLCM and the DINA model is used in the hierarchical
prior that relates Q to the item parameters. Furthermore, our hierarchical prior provides a natural
mechanism for including prior information about Q for validating expert knowledge (e.g., our
approach can incorporate the expert prior model described Culpepper (2019a), whereas the Chen
et al. (2020) approach cannot). We report Monte Carlo evidence that this hyper-prior provides an
accurate framework for selecting active attributes in Q. Moreover, the simulation studies suggest
that our proposed methods improve upon both the approaches of Culpepper (2019a) and Chen et
al. (2020).

Second, we show how using the Pòlya–gamma (PG) data augmentation scheme (Polson et
al., 2013a; Windle et al., 2014) for a logistic item response function provides more efficient
Bayesian computations for larger sample sizes, n. That is, existing Bayesian methods use a
probit-link function that requires the sampling of n · J augmented random variables (i.e., one for
each person and item) each step of the Gibbs sampling algorithm. In contrast, we show below
that the application of the Pòlya–gamma formulation reduces the number of sampled augmented
variables to 2K · J (i.e., one for each class and item). So, the Pòlya–gamma data augmentation
approach is likely to be more efficient as long as n > 2K and the computational cost of sampling a
Pòlya–gamma random variable is minimal. In fact, the Pòlya–gamma data augmentation strategy
has been studied for the two-parameter logistic item response theory model (Jiang & Templin,
2019) and the confirmatory DINA model (Zhang et al., 2020). We extend the Pòlya–gamma
formulation to estimate parameters of a general exploratory diagnostic model. In addition to
providing a computationally efficient algorithm for larger sample sizes,we report the firstBayesian
formulation for an exploratory version of the well-known log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009). OurMonte Carlo simulation results provide evidence that the logit-
link approach using the Pòlya–gamma formulation reduces computation time by a half depending
on the number of attributes and sample size when compared to methods that use a probit-link
(Chen et al., 2020; Culpepper, 2019a).

The remainder of the paper includes five sections. First, we introduce readers to the general
restricted latent class framework for multivariate binary data and provide a didactic discussion
regarding the distinction between unrestricted latent classmodels (ULCMs) and RLCMs. The first
section also provides readerswith intuition for how structure is specified inRLCMs in addition to a
discussion of generalmonotonicity conditions. Second,we discuss a newBayesian formulation for
inferring the latent structure. In particular, we discuss a novel data augmentation approach for the
logit-link and provide details about the new hierarchical prior for inferring Q while also enforcing
monotonicity conditions. We discuss a logit-link, and the hierarchical prior for Q can also be
readily applied to models that use a probit-link as we show in the Monte Carlo simulation study.
Note that the second section includes details regarding the specification of the Bayesian model
and we report technical details about full conditional distributions for approximating the posterior
distribution with Gibbs sampling in “Appendices A, B, and C.” The third includes computational
time of models with different two link functions (i.e., logit and probit) and three different prior
specifications for Q. That is, researchers have adopted several different priors for item parameters
to infer Q (e.g., the stochastic search variable selection algorithm of Culpepper (2019a) vs. the
sparse spike-slab prior of Chen et al. (2020)). We report new Monte Carlo simulation evidence
about the performance of these prior formulations as well as the impact of different link functions
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(e.g., probit versus logit) for different study design settings. In the fourth section, we report an
application to 12 items from the last series of the Standard Progressive Matrix (SPM-LS; see
Raven, 1941) to demonstrate the methodology. We discuss the implications of our contributions
in the final section, offer directions for future research, and provide concluding remarks.

1. Restricted Latent Class Models for Binary Data

We next discuss the general RLCM framework for multivariate binary response data. First,
we introduce the ULCM case and introduce notation and details about the model and likelihood
function. Second, we compare ULCMs with RLCMs by describing how the Q matrix imposes
structure on latent class response probabilities. Third, we describe details that enable us to use
Bayesian variable selection methods to infer the latent structure. Specifically, we outline how
to reparameterize latent class response probabilities using a general linear model specification
and motivate our novel prior formulation for Q by introducing a � matrix which provides more
detailed information about the latent structure and the process by which attributes interact to
impact response probabilities. The fourth subsection reviews model identifiability conditions,
and the final subsection describes issues related to monotonicity.

1.1. Overview of Unrestricted Latent Class Models (ULCMs)

We first introduce the ULCM framework for binary data. We let i index individuals
(i = 1, . . . , n), j index items ( j = 1, . . . , J ), and consider Yi j as a random binary variable
for individual i’s response to item j . The observed data are yi j ∈ {0, 1} where yi j = 1 indicates
an affirmative response, such as a correct answer to a cognitive item, an affirmation of a symptom
in clinical settings, or an elicitation of a preference, and yi j = 0 otherwise. We let there be K
attributes and use k to index attributes (k = 1, . . . , K ). Furthermore, the latent attribute profile
for individual i is αi , which is a binary vector such that αi ∈ {0, 1}K . We refer to the J -vector of
random responses for individual i as Y i = (Yi1, . . . ,Yi J )�, and let yi = (yi1, . . . , yi J )� denote
the observed values. In many instances, it is more convenient to use the integer representation
for the binary latent class αc denoted by c. Specifically, we use the bijection between the binary
vector and integers c = α�

c v ∈ {0, 1, . . . , 2K − 1} where v = (2K−1, 2K−2, . . . , 1)�. For exam-
ple, for K = 2, v = (2, 1)� and the integer representations for attribute profiles α0 = (0, 0)�,
α1 = (0, 1)�, α2 = (1, 0)�, and α3 = (1, 1)� are c = 0, 1, 2, and 3, respectively.

The ULCM specifies a different item response function (IRF) for each class and is therefore
the most general mixture model for binary response data. Let θ j = (θ j0, . . . , θ j,2K−1)

� be a 2K

vector where element c denotes the probability members of class c respond with an affirmative
value of one to item j . The probability of an affirmative response for individual i to item j given
αi and θ j is

P(Yi j = 1|αi , θ j ) = pi j =
2K−1∑

c=0

θ jc1(α�
i v = c) (1)

where 1(·) is the indicator function that equals one if α�
i v = c and zero otherwise. Accordingly,

Yi j is a Bernoulli random variable with the probability mass function

p(yi j |αi , θ j ) = (
pi j
)yi j (1 − pi j

)1−yi j (2)
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and assuming individual i’s responses to the J items are conditionally independent given item
parameters and α implies the conditional likelihood of observing Y i = yi given αi and item
parameters are

p( yi |αi ,�) =
J∏

j=1

p(yi j |αi , θ j ) (3)

where � = (θ1, . . . , θ J )
� is a J × 2K matrix of item parameters.

The attributes are unobserved latent variables, so we must marginalize over them to find the
complete-data likelihood. Let π = (π0, . . . , π2K−1)

� be a 2K vector of structural probabilities
where element c denotes the probability a given individual belongs to class c, πc = P(α�

i v =
c). The likelihood for individual i is obtained by computing a weighted average of conditional
likelihoods evaluated at each latent class:

p( yi |�,π) =
2K−1∑

c=0

πc

J∏

j=1

p(yi j |α�
i v = c, θ jc) (4)

and the likelihood of observing a sample of n independent observations is found by multiplying
the likelihoods for all n respondents

p( y1:n|�,π) =
n∏

i=1

p( yi |�,π) (5)

where y1:n = ( y1, . . . , yn)
� is an n × J matrix of observed binary responses.

1.2. Restricted Latent Class Models and the Q Matrix

The aforementioned subsection describes mixture models for binary data in a completely
unstructured framework. That is, � was introduced in a way that did not impose any structure on
its elements. For instance, for K = 3 there are 2K latent classes with a given response probability
vector of

θ = (θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7)
�. (6)

where all of the response probabilities are allowed to differ for ULCMs.
Unlike ULCMs, RLCMs allow for the possibility that some elements in the rows of �

are equal. The pattern of equal and unequal elements in θ j is dictated by the j th row of Q,
q j = (q j1, . . . , q jK ). For example, consider different types of structure for cases where K = 3.
If q = (0, 0, 1) only the third attribute impacts item responses. In this case for q, the associated
vector of item parameters is:

θ = (θ0, θ1, θ0, θ1, θ0, θ1, θ0, θ1)
� (7)

because the α0 = (0, 0, 0)�, α2 = (0, 1, 0)�, α4 = (1, 0, 0)�, and α6 = (1, 1, 0)� latent
classes do not possess attribute three and therefore have the same response probability of θ0 and
the α1 = (0, 0, 1)�, α3 = (0, 1, 1)�, α5 = (1, 0, 1)�, and α7 = (1, 1, 1)� classes all possess
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attribute three and have a common response probability of θ1. We refer to items with a single one
in q j as simple structure, given it relates to just one attribute.

An item with q = (0, 1, 1) has complex structure as it loads on more than one attribute. In
this case, the structure imposed by q includes a more complicated pattern of equalities among
elements in the item parameter vector

θ = (θ0, θ1, θ2, θ3, θ0, θ1, θ2, θ3)
�. (8)

Notice that the classes that are missing both attributes two and three (i.e., α0 = (0, 0, 0)� and
α4 = (1, 0, 0)�) have the same response probability of θ0. Similarly, classes with the second
attribute and not the third (i.e., α2 = (0, 1, 0)� and α6 = (1, 1, 0)�) have the same response
probability of θ2 just as classes with attribute three and not attribute two (i.e., α1 = (0, 0, 1)� and
α5 = (1, 0, 1)�) have response probabilities of θ1. Finally, classes that possess both attributes
(i.e., α3 = (0, 1, 1)� and α7 = (1, 1, 1)�) have a common response probability of θ3.

1.3. Reparameterizing � to Infer the Latent Structure

As noted above, inferring the latent structure can be reduced to the problem of inferringwhich
elements of � are equal. Determining equality among elements in � is more challenging when
considering the parameters on their original probability metric. Following the confirmatory model
parameterizations of von Davier (2008), Henson et al. (2009), and de la Torre (2011), Chen et al.
(2015, 2020) translated the problem of inferring latent structure and equality among elements in
� into a variable selection problem by reparameterizing � as a latent, multivariate, generalized
linear model. Specifically, element ( j, c) of � is reparameterized as

θ jc = �(a�
c β j ) (9)

where �(·) is a general cumulative distribution function (cdf); e.g., Culpepper (2019a) and Chen
et al. (2020) used a probit and Henson et al. (2009) and von Davier (2008) used a logit, and de
la Torre (2011) used the identity, logit, and log link functions). Furthermore, ac is a 2K design
vector that corresponds with attribute profile αc, and β j is a 2

K vector of parameters for item j .
For instance, for K = 3, a and β are

a = (1, α3, α2, α2α3, α1, α1α3, α1α2, α1α2α3)
� (10)

β = (β0, β1, β2, β3, β4, β5, β6, β7)
�. (11)

Equations 10 and 11 show that the reparameterized model can be viewed as a latent analysis of
variance model with all main and interaction effects corresponding with the unobserved classes.
For instance, the first element of a is one and corresponds with the intercept coefficient in β and
the fourth element of a is a two-way interaction term involving α2α3 and the interaction-effect is
β3.

Let B = (β1, . . . ,β J )
� be a J×2K matrix that includes the reparameterized itemparameters.

The problem of inferring the latent structure in � corresponds with identifying which elements
of B are non-zero and active. In fact, each element of q determines whether multiple elements
of β are active. For example, for K = 3, q3 determines whether item parameters associated with
the third attribute, such as β1 for α3, β3 for α2α3, β5 for α1α3, and β7 for α1α2α3, are active and
related to observed response probabilities. Therefore, an item with q = (0, 0, 1) implies that only
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the third attribute is active and the β vector includes zeros for all coefficients with the exception
of the intercept and main effect for α3

β = (β0, β1, 0, 0, 0, 0, 0, 0). (12)

Moreover, the latent structure represented by an item with attributes two and three active (i.e.,
q = (0, 1, 1)) corresponds with a β vector of

β = (β0, β1, β2, β3, 0, 0, 0, 0)
� (13)

where only the intercept, main effects for α2 and α3, and two-way interaction between α2 and α3
are nonzero and active.

Clearly, a givenq jk determines the activeness of several parameters inβ j , so one implication is
that Q characterizes which attributes relate to item responses across main- and interaction-effect
terms. A limitation of relying on Q to interpret the latent structure is that it does not provide
specific details as to the exact underlying process regarding how attributes interact to impact
observed responses. An alternative is to provide a more rich description of the latent structure
by indicating the activeness of each coefficient in B. In fact, Chen et al. (2020) introduced a �

matrix to provide more detailed information about the latent structure. Let � = (δ1, . . . , δ J )
� be

a J × 2K binary matrix with row vectors corresponding to each item. That is, for each item the
elements of δ j = (δ j0, . . . , δ j,2K−1) indicate whether the corresponding elements of β are active
or inactive. For instance, for K = 3,

δ = (δ0, δ1, δ2, δ3, δ4, δ5, δ6, δ7) (14)

and each element indicates whether the corresponding element of β are active or inactive. For
instance, the δ vector corresponding with the β in Eq. 12 is

δ = (1, 1, 0, 0, 0, 0, 0, 0) (15)

and the δ for β in Eq. 13 is:

δ = (1, 1, 1, 1, 0, 0, 0, 0). (16)

Note it is customary to always include the intercept in the model, so δ j0 = 1 for all j .
It is important to note that Q describes the pattern of zeros and ones in � in a similar manner

to the active and inactive values of B. Therefore, q jk is associated with multiple elements in
δ j . In fact, Chen et al. (2020) note that there is a many-to-one mapping between � and Q. We
can demonstrate the many-to-one relationship between δ and q by listing all of the δ’s that are
consistent with a given q. For instance, q = (0, 1, 1) corresponds with five distinct δ vectors

(1, 0, 0, 1, 0, 0, 0, 0) (17)

(1, 0, 1, 1, 0, 0, 0, 0) (18)

(1, 1, 0, 1, 0, 0, 0, 0) (19)

(1, 1, 1, 0, 0, 0, 0, 0) (20)

(1, 1, 1, 1, 0, 0, 0, 0). (21)
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The q = (0, 1, 1) vector implies that both attributes two and three are active in some way and
is consistent with the δ in: (17) where only the interaction effect β3 for attributes two and three
is active; (18) where the both the main effect β2 for α2 and the two-way interaction are active;
(19) which corresponds to an active main effect β1 for α3 and the two-way interaction; (20)
where only the main-effects for α2 and α3 are active; and (21) where both main-effects and the
two-way interaction are active. Notice that a common feature to the five δ’s is that coefficients
involving the first attribute are all inactive as specified by q = (0, 1, 1). Furthermore, this example
shows the difference in information provided by q and δ. The benefit of considering δ is that it
provides greater detail about exactly how the attributes combine to impact affirmative response
probabilities. In contrast, q only indicates if an attribute is needed for an item and does not provide
information as to how an attribute relates to an item in terms of main-effects and interactions.
In short, both Q and � provide researchers with information to interpret the latent structure and
a contribution of our paper is that we provide a unifying framework for jointly modeling these
parameters.

1.4. Identifiability

Model parameter identifiability is a critical issue for inferring latent structure with RLCMs.
Several studies established model parameter identifiability conditions for RLCMs (e.g., see Chen
et al., 2015, 2020; Culpepper, 2019b; Gu & Xu 2020; 2021; Xu, 2017; Xu & Shang, 2018). The
identifiability conditions established in prior research specify conditions that Q must satisfy in
order for the model parameters to be identified. For instance, Theorem 2 of Culpepper (2019b)
indicated that the model parameters are strictly identified (i.e., the likelihood is unique for each
set of parameter values) if Q is in the identifiable set Q that satisfies the following conditions:

(C1) The rows of Q can be permuted to the form, Q� = [IK , IK , (Q∗)�]� where IK is a
K -dimensional identity matrix and Q∗ is a (J − 2K ) × K matrix.

(C2) For any two latent classes c and c′, there exists at least one item in Q∗, in which
θ jc �= θ jc′ .

Stated differently, C1 states that Q must include two simple structure items for each attribute and
C2 indicates that there is at least one item not specified for C1 that distinguishes between all pairs
of classes. Additional advances regarding the identification of RLCMs are discussed in Gu and
Xu (2021, 2020).

The aforementioned identifiability conditions are stated in terms of the Q matrix and do not
directly provide information about identifiability conditions for �. Note that Chen et al. (2020)
present conditions that�must satisfy to ensure identifiability (e.g., see Theorem 2). Furthermore,
Chen et al. (2020) reportweaker conditions for identifyingmodel parameters, referred to as generic
identifiability. The notion of generic identifiability is more technical and involves topics such as
algebraic varieties and measure zero sets, and it essentially states that if certain conditions on �

are satisfied, the set of non-identified parameter values resides in a subset of the parameter space
and is therefore unlikely to arise in applied computations.

1.5. Monotonicity

Monotonicity conditions are important for ensuring interpretability of the exploratory solu-
tion. Xu (2017) defined the monotonicity conditions for a given item of the general diagnostic
model as:

min
c∈S0

θ jc ≥ θ j0 (22)

max
c∈S0

θ jc < min
c∈S1

θ jc = max
c∈S1

θ jc (23)
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where S0 = {c : α�v = c, αk < q jk for k = 1, . . . , K } is the set of classes without the required
attributes specified by q j and S1 = {c : α�v = c, αk ≥ q jk for k = 1, . . . , K } is the set of
classes with the necessary attributes. In short, Eq. 22 states that the class without any attributes
has the lowest response probability and Eq. 23 indicates that: (1) classes without at least one
required attribute have a lower response probability than classes with the necessary attributes, and
(2) classes that possess all of the necessary attributes have the same response probability.

The monotonicity conditions in Eqs. 22 and 23 are stated in terms of elements of � rather
than B. Chen et al. (2020) established a monotonicity condition in terms of elements of β j rather
than θ j . In fact, Chen et al. (2020) showed that it is possible to enforce the monotonicity condition
by sequentially updating elements of β j subject to a lower bound condition such that β j p > L jp

where L jp is a function of β j (p), which includes all of the elements of β j except element p (see
Proposition 1 of Chen et al., 2020 for specific details on the computation of L jp).

As demonstrated in prior research (Culpepper, 2019a;Chen et al., 2020), Bayesian approaches
provide a convenient computational framework for inferring the latent structure while enforcing
monotonicity conditions; however, there are limitations to existing methods. Chen et al. (2020)
report a Gibbs sampling algorithm to estimate � that enforces the monotonicity conditions in
Eqs. 22 and 23. However, a drawback is that the algorithm is designed to infer � and not Q.
Researchers have been traditionally more interested in Q than �, and Monte Carlo simulations
suggest it is somewhat more difficult to accurately estimate the J · 2K elements of � in an
unstructured fashion than the J · K elements of Q. In response, Chen et al. (2020) proposed a
post-processing step to obtain a point estimate for Q from the posterior samples of B. Themethod
demonstrated accurate performance in the studiedMonte Carlo conditions, but the heuristic could
fail in cases where items possess a weaker signal for the relationship between attributes and
responses (i.e., smaller values for β j ). Furthermore, the post-processing method does not provide
a mechanism for incorporating prior expert knowledge about Q. An alternative was proposed by
Culpepper (2019a) who directly estimated Q. A limitation though of this latter approach is that a
more restrictive monotonicity conditions was imposed (i.e., the elements of B were restricted to
be positive) in order to approximate the posterior distribution. Whereas the approach taken was
accurate for inferring Q and appropriate for main-effects, which must always be positive, the
restriction implied the algorithm could not uncover disjunctive relationships (i.e., cases where an
interaction effect is negative), which may be present more generally in psychological data (e.g.,
see Templin & Henson, 2006).

In short, enforcing monotonicity is a critical issue for exploratory RLCMs. The next section
presents a solution to address shortcomings of existing methods.

2. Bayesian Formulation

We next introduce a new Bayesian formulation that: (1) enforces latent monotonicity condi-
tions in Eqs. 22 and 23; (2) jointly infers � and Q from the posterior distribution; and (3) uses a
logistic IRF with the Pòlya–gamma data augmentation strategy to provide more efficient compu-
tations for larger sample sizes. The first subsection outlines the Bayesian model formulation. The
second subsection discusses a Gibbs sampling algorithm for approximating the model parameter
posterior distribution.

2.1. Bayesian Formulation for the Logit-Link General Diagnostic Model

Figure 1 illustrates a directed acyclic graph of the new Bayesian model and shows the hierar-
chical structure of the model parameters. We next describe various components of the new model
formulation by discussing models for: (1) the observed response Yi j and the augmented response
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Figure 1.
Directed acyclic graph of Bayesian model for the logit-link general diagnostic model. Note The square node denotes an
observed random variable, circles indicate unknown model parameters, solid arrows denote stochastic relationships, the
dashed arrow indicates a deterministic relationship, and the plates with rounded corners indicate parameters that share a
common subscript

Y ∗
i j ; (2) the attribute profiles αi and the latent class probabilities π ; (3) the item parameters β j ; (4)

the item activeness indicators δ j and associated hyper-parameters s and g; and (5) the structure
vector q j and its hyper-parameter ω.

2.1.1. Model for Yi j Figure 1 shows that Yi j lies within the intersection of the individual and
item plates. Furthermore, the Pòlya–gamma random variable Y ∗

i j is also specific to each item and
individual. We use a logistic cdf for the IRF. The model for Yi j conditioned upon membership in
class c and the item parameter vector β j is

Yi j |αi ,β j ∼ Bernoulli

⎛

⎝
2K−1∏

c=0

θ
1(α�

i v=c)
jc

⎞

⎠ (24)

θ jc = exp
(
a�
c β j

)

1 + exp
(
a�
c β j

) . (25)

Polson et al. (2013a) showed that themodel in Eqs. 24 and 25 can be augmentedwith the following
integral identity

(
eψ
)a

(
1 + eψ

)b = 2−beκψ

∫ ∞

0
e−wψ2/2 p(w)dw (26)
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for b > 0, κ = a−b/2, andw distributed as a Pòlya–gamma randomvariable (i.e.,w ∼ PG(b, 0)).
We apply the Pòlya–gamma data augmentation for the model in Eqs. 24 and 25 by noting that
ψ = a�

c β j and specifying the Pòlya–gamma distribution for the augmented data, Y ∗
i j ∼ PG(b, 0).

Polson et al. (2013a) showed that augmenting the likelihood leads to an efficient Gibbs sampling
algorithm.

We can see why the Pòlya–gamma approach requires fewer samples by examining the con-
ditional likelihood for a sample of responses to a given item j

p
(
y1:n, j |α1:n,β j

) =
n∏

i=1

⎡

⎢⎣

⎛

⎝
2K−1∏

c=0

exp
(
a�
c β j

)

1 + exp
(
a�
c β j

)

⎞

⎠
1(α�

i v=c)
⎤

⎥⎦

yi j

⎡

⎢⎣

⎛

⎝
2K−1∏

c=0

1

1 + exp
(
a�
c β j

)

⎞

⎠
1(α�

i v=c)
⎤

⎥⎦

1−yi j

=
n∏

i=1

2K−1∏

c=0

[(
exp

(
a�
c β j

))yi j

1 + exp
(
a�
c β j

)
]1(α�

i v=c)

(27)

where y1:n, j = (y1 j , . . . , ynj )�. Recall thatαi equals one of 2K possible response patterns, which
implies that there are groups of terms in the product of Eq. 27 that are equal. We can collapse the
conditional likelihood for item j over individuals in the same class to yield

p
(
y1:n, j |α1:n,β j

) =
2K−1∏

c=0

(
exp

(
a�
c β j

))n jc

(
1 + exp

(
a�
c β j

))nc (28)

where nc = ∑n
i=1 1(α�

i v = c) is the number of individuals in class c and n jc = ∑n
i=1 1(α�

i v =
c)yi j is the number of individuals in class c with a response equal to one on item j . Consequently,
we can use the Pòlya–gamma identity in Eq. 26 to augment the likelihood for each class and item
rather than each individual and item by defining a ψ jc = a�

c β j , a = n jc, and b = nc in Eq. 26.

2.1.2. Models for α and π Figure 1 shows that attributes impact observed responses. Similar
to Culpepper (2015), we use a categorical prior for αi conditioned upon the latent class structural
probabilities π . The conditional probability that αi has the attribute configuration of class c given
π is P

(
α�
i v = c|π) = πc.

We adopt an unstructured model for the latent class probabilities1 and specify a semi-
conjugate Dirichlet prior

π ∼ Dirichlet(n0) (29)

with prior parameter n0. Note we implement a uniform prior for π and set the elements of n0
equal to one (i.e., n0 = 12K ).

1Note there are alternatives to the unstructured model. Researchers considered a higher-order structure where the
attributes load onto a continuous trait (de la Torre & Douglas, 2004) as well as a multivariate probit model (Henson et al.,
2009; Templin et al., 2008) with a tetrachoric correlation matrix (see related Bayesian formulations in Chen & Culpepper,
2020; Culpepper & Chen, 2019).
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2.1.3. Models for β j We consider two variable selection priors for β j . The first prior is the
stochastic search variable selection (SSVS) prior specification forβ j (e.g., see Culpepper, 2019a),
and the second is a spike-slab mixture distribution with a Dirac delta function (e.g., see Chen et
al., 2020).
SSVS Prior The prior for β j conditioned on δ j is a truncated multivariate normal distribution

β j |δ j ∼ NP
(
0,	 j

)
1(β j ∈ B) (30)

where B is the set of coefficients that satisfy the monotonicity condition, P = 2K , the mean
vector is zero, and 	 j is the variance-covariance matrix. Note that 	 j is a diagonal matrix with
the variances specified as a function of the elements of δ j ,

	 j = diag(σ 2
j0, . . . , σ

2
j,P−1) (31)

σ 2
j p = δ j p/c1 + (1 − δ j p)/c0. (32)

The prior for β j in Eq. 30 is a spike-slab prior used to infer active and inactive elements of β j
with the SSVS algorithm. That is, the precision for β j p (i.e., the inverse of its variance) is c1 when
δ j p = 1 and c0 if δ j p = 0. The SSVS approach uses fixed values for the constants c0 and c1.
Specifically, c0 is set to a large value (e.g., we set c0 = 100/3 in this paper) to reflect a smaller
variance for β j p and a distribution that is more concentrated near zero. Coefficients with smaller
variances are therefore interpreted as inactive. In contrast, c1 is fixed as a smaller value (e.g., we
set c1 = 1) to depict a prior distribution for β j p with a larger variance that is consistent with an
active coefficient.
Dirac Delta Prior The second prior is a spike-slab prior as described by Chen et al. (2020). The
prior formulation in Eq. 30 does not penalize inactive elements of β j exactly to zeros. Instead, the
inactive elements will be near zero. In contrast, Chen et al. (2020) used a Dirac delta function for
the spike distribution to shrink inactive coefficients exactly to zero.More formally, the conditional
spike-slab prior for β j p and p > 0 is

β j p|β j (p), δ j p ∼
{
1(β j p = 0) δ j p = 0
N (0, σ 2

j p)1(β j p > L jp) δ j p = 1 (33)

where σ 2
j p is the prior variance for the slab that is fixed to a constant (e.g., see a discussion of our

implementation in the description of the simulation study) and L jp is the lower-bound for β j p

given β j (p) (see Proposition 1 of Chen et al. 2020 for a definition of L jp).

2.1.4. Model for δ j and q j We next describe a novel aspect of our prior specification that
enables joint inference of � and Q while enforcing monotonicity constraints. We introduce a
stochastic rather than deterministic relationship between elements of � and Q. Furthermore, we
use a logical “and” gate to describe the relationship between δ j and q j . The “and” gate is based on
the idea that a given δ j p will be active and equal to one with a higher probability if the associated
elements of q j are active and equal to one. Likewise, δ j p should be zero with high probability to
indicate an inactive coefficient when the corresponding elements of q j are inactive.

We introduce additional notation in order to specify the logical “and” gate function. Let Q′
be a P × K matrix that specifies which elements of q j and δ j are linked. The (p, k) element
of Q′ is defined as q ′

pk = 1 if q jk is linked with δ j p and zero otherwise. For instance, Table 1
presents the Q′ for K = 3. Note the rows of Table 1 are in the order of the bijection with the first
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Table 1.
Relationship between δ, q, and q′ for K = 3

Q′

p α β δ q ′
1 q ′

2 q ′
3

0 000 β0 δ0 0 0 0
1 001 β1 δ1 0 0 1
2 010 β2 δ2 0 1 0
3 011 β3 δ3 0 1 1
4 100 β4 δ4 1 0 0
5 101 β5 δ5 1 0 1
6 110 β6 δ6 1 1 0
7 111 β7 δ7 1 1 1

column including integers from zero to seven and the second column including the associated
attribute profiles. The third and fourth columns list item parameters β and activeness indicators
δ in the order of the bijection, as well. The fifth through seventh columns of Table 1 include
the Q′ matrix. For instance, the p = 1 row of Table 1 corresponds with the main-effect β1 for
attribute three. In this case, δ1 is only linked to q3, so q ′

1 = (0, 0, 1). Additionally, the interaction
between attribute one and three is represented by the p = 5 row with the interaction-effect β5.
The activeness indicator δ5 is therefore linked with both q1 and q3 and noted by q ′

5 = (1, 0, 1).
Finally, row p = 7 is the three-way interaction and δ7 is related to all elements of q as indicated
by q ′

7 = (1, 1, 1).
Next, we specify a deterministic “and” gate to denote whether the elements of q j that are

linked to δ j p through q ′
p are active. That is, we define η j p as

η j p =
K∏

k=1

q
q ′
pk

jk (34)

where we use the convention that 00 = 1, so that η j p = 1 if all of the associated q jk’s linked to
δ j p are one and zero if at least one associated q jk is not one. We seek a stochastic relationship
between δ j and q j , so we define s = P(δ j p = 0|η j p = 1) as the probability that δ j p = 0 when the
associated elements of q j are active and g = P(δ j p = 1|η j p = 0) as the probability that δ j p = 1
when at least one related q jk is inactive. Note this is a DINA model as described in the cognitive
diagnosis literature (Haertel, 1989) where s is referred to as the probability of “slipping” and g is
the probability of “guessing.”

Our confirmatory DINA model prior for relating δ j and q j is

δ j p|q j , s, g ∼ Bernoulli
(
(1 − s)η j p g1−η j p

)
. (35)

Note we fix δ j0 = 1 for all j and always allow the intercept to be active. We specify a
truncated, bivariate, uniform prior for the s and g hyper-parameters

p(s, g) ∝ 1(0 < g < 1 − s)1(0 < s < 1). (36)
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That is, we enforce the monotonicity condition that g < 1 − s (Junker & Sijtsma, 2001), so that
q j and δ j are positively related.

2.1.5. Model for q j The final portion of our model corresponds to a prior for elements of Q.
Each q jk is binary, so we choose the following Bernoulli distribution with probability ω,

q jk |ω ∼ Bernoulli(ω)1(Q ∈ Q). (37)

It is important to note that the prior for q jk is restricted to the identifiable set of Q matrices, Q
as described above. To complete the model, we use a semi-conjugate Beta prior for ω defined as
ω ∼ beta(a, b).

2.2. Posterior Approximation

The posterior distribution of interest is:

p( y∗
1:n,α1:n, B,π ,�, Q, s, g, ω| y1:n) (38)

where y∗
1:n is the n× J matrix of augmented Pòlya–gamma random variables. Note we use aGibbs

sampling Markov chain Monte Carlo (MCMC) algorithm to infer parameters from the posterior
distribution. We discuss details for implementing the Gibbs sampling algorithm in “Appendix A.”
Note we consider two different prior specifications for B and provide details about full conditional
distributions for the SSVS approach in “AppendixA,” the full conditional distribution forβ j using
a logit-link in “Appendix B,” and the Dirac delta prior in “Appendix C.”

3. Monte Carlo Simulation Study

3.1. Overview

We conducted aMonte Carlo simulation to contribute new knowledge about the performance
of RLCMs in recovering the latent structure. Specifically, we compare the performance and
accuracy of our novel formulation that uses a hierarchical prior involving� and Q with Culpepper
(2019a), which we refer to as “probit-Restricted” as it only uses Q and enforces more restrictive
monotonicity conditions. Furthermore, we report evidence of model accuracy for four different
versions of our algorithm for two different link functions (i.e., probit and logit) and the two prior
specifications for B (i.e., SSVS and Dirac delta).

We studied the performance of the algorithms by manipulating three design characteristics:
(1) sample size, n; (2) the number of attributes, K ; and (3) the correlation structure among
attributes, ρ. We considered three sample sizes of n = 500, 1000, and 2000 as well as four
conditions for K = 2, 3, 4, and 5. Attributes were generated using a multivariate normal probit
model following Chiu et al. (2009) with a population tetrachoric correlation set to ρ = 0, 0.15, or
0.25 with thresholds defined by �−1(k/(K + 1)) for k = 1, . . . , K . The true elements of � were
generated by following the Xu and Shang (2018) approach of computing each element of � as
0.2 + (0.8 − 0.2) × K ′

j/K j , where K j represents the number of attributes as required by item j
and K ′

j is number of K j attributes given by a specific class.
Recovery performance for each conditionwas assessed by comparing the estimated parameter

values with the oracle population values used to generate the simulation data. Specifically, the
model parameters are identified up to swapping of class labels, so in order to evaluate parameter
recovery the estimated values were first oriented according to the oracle values by permuting the



JAMES JOSEPH BALAMUTA, STEVEN ANDREW CULPEPPER 917

estimated �̂ matrix against the oracle � matrix. Once the permutation order was determined,
each parameter of interest was re-oriented under the permutation and then recovery metrics were
computed.

Permutation order used was obtained by minimizing the mean absolute deviation (“MAD”)
difference between the estimated and population IRFs across t = 1, . . . , T iterations from the
posterior. In particular,

MAD(θ̂ jc, θ jc) = 1

T

T∑

t=1

∣∣∣θ̂ (t)
jc − θ

(t)
jc

∣∣∣ (39)

To condense the result, an overall expected mean average deviation (“EMAD”) was taken
across the matrix.

EMAD(�̂,�) = 1

2K J

J−1∑

j=0

2K−1∑

c=0

MAD(θ̂ jc, θ jc) (40)

For both the Q and � matrix, the element-wise recovery rates were computed. Under the
element-wisemetric, the proportion of correctly estimated elementswithin thematrix is calculated
by first constructing the posterior mode across t = 1, . . . , T iterations from the posterior yielding
Q = 1

T

∑T
t=1 Q(t) and� = 1

T

∑T
t=1 �(t). Individual matrix element estimates are then obtained

by using the posteriormode under the decision rule of 0.5. In the case of the Qmatrix, the posterior
estimated element-wise mode is defined as q̂ jk = I (q jk > 0.5

)
. Similarly, for � matrix, the

posterior element-wise mode would be δ̂ j p = I (δ j p > 0.5
)
. With the posterior estimated modes

in hand, the element-wise recovery rate (RR) comparison against the oracle for Q is then computed
as

RR( Q̂, Q) = 1

J K

J−1∑

j=0

K−1∑

k=0

I (q̂ jk = q jk
)
. (41)

Similarly, for � we have

RR(�̂,�) = 1

J
(
2K − 1

)
J−1∑

j=0

2K−1∑

c=1

I
(
δ̂ jc = δ jc

)
. (42)

Note, unlike with the Q matrix, the � matrix assumes that the first column containing the
intercept will always be active. To fairly assess recovery, we then remove the first column from
consideration yielding only 2K − 1 columns compared instead of 2K .

Additional work was done to understand different sampling techniques raised in Windle et
al. (2014). Details on how each sampling routine performed are found in “Appendix D.” As a
result of this work, the underlying sampler for Pòlya–gamma augmented data is taken to be the
Saddlepoint approximation approach as it performed the best across varying study conditions in
recovery, speed, and stability.

Moreover, in a separate simulation found in “Appendix E,” we considered how the estimation
methods performed when a disjunctive relationship was present in the data. When the disjunction
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was present, the newly derived exploratory variants performed better than the existing probit-
Restricted and on par with the SLCM. There was evidence the Delta variants had improved
recovery of � in comparison to the SLCM. Thus, if there is suspicion that the data have a
disjunctive relationship, it would be advantageous to use the newly derived exploratory Delta and
Dirac approaches.

We also considered additional values for dependency between attributes. In particular, we
examined additional cases where ρ = 0.30, 0.35, 0.40, 0.45, 0.50. Results from this set of sim-
ulations are found in “Appendix G.” The simulation displays a slight decrease to the existing
strong recovery rates as correlations increase. This is inline with what the underlying theory
suggests when using an over-parameterized Dirichlet prior for π to estimate the attribute depen-
dence. Within the discussion section, we review a potential future methodological approach for
addressing attribute dependencies that are described by a factor model.

The simulation was performed using “R” 3.6.2 on a cluster with varying node configura-
tions (R Core Team, 2020). Due to the varying node configurations, the algorithm’s run time is
more variable. Each algorithm was implemented in “C++” through “armadillo” linear algebra
library (Sanderson & Curtin, 2016) and made available in “R” through the combination of “Rcp-
pArmadillo” and “Rcpp” packages (Eddelbuettel & Sanderson, 2014; Eddelbuettel & Balamuta,
2018; Eddelbuettel, 2013; Eddelbuettel & François, 2011).

Note we implemented the algorithms with a chain length of 60,000 iterations and 20,000
burn-in iterations. Furthermore, our SSVS algorithm requires researchers to prespecify values for
the prior precision parameters, c0 and c1, to define active and inactive coefficients. We follow
Culpepper (2019a) and use the values c0 = 100 and c1 = 1 for the implementation of the SSVS
with a probit-link function and we use c0 = 100/3 and c1 = 1/3 for the logit-link to align with
the logistic distribution’s variance of π2

3 . Furthermore, for the Dirac variant of our algorithm we
set c1 = 2 for the probit-link and c1 = 2/3 for the logit-link.

3.2. Results

The Monte Carlo simulation results provide ample evidence to the effectiveness of item and
structural parameters recovery across all sample sizes. Within Table 2, the average mean absolute
deviation (MAD) for the � and π are reported. Specifically, Table 2 shows that average MAD for
the probit variants is similar to that of the logit variants when the sample size is large n = 1000
and 2000 alongside small K = 2 and 3. As the number of attributes increases, the probit variants
perform better than the logit variants.

Furthermore, Table 3 contains the accuracy of the posterior element-wise mean for both Q
and �. In fact, the element-wise recovery rate for Q for the proposed methods exceeds that of
the probit-Restricted and SLCM for the majority of studied conditions. However, for the K = 2
attributes case and of sample size N = 500 and 1000, the proposed Delta and Dirac variants
have a lower recovery rate for the � matrix in comparison to the SLCM’s recovery rate of 88%.
Partially, this is because of the selected spike and slab precision parameters. In particular, we
conducted additional simulations and found higher recovery for � when K = 2 under a smaller
slab precision (i.e., c1 < 0.25). Whereas the recover of � is lower for the proposed methods
when K = 2, it is important to note that the results in Table 2 suggest that the recovery of � is
comparable between methods. As N and K increase, the Delta and Dirac variants considerably
improve on both the probit-Restricted and SLCM formulations. Furthermore, the logit variants
perform on par with the probit variants when estimating entries in �.

Having addressed recovery performance, our attention now turns to the computational speed
of the algorithms.Reported inTable 4 are the average run times of the algorithmover the considered
simulation settings. The logit variant performs over one-half faster than the probit variants for large
n. However, as K increases to K = 5, the logit speed gains are slowly diluted when compared
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Table 2.
Summary of exploratory general diagnostic models under Delta and Dirac augmentations ability to estimate � and π
measured by the average mean absolute deviation (MAD) across 100 replications for each sample size, N , attributes, K ,
and attribute dependence, ρ

Logit Probit
Delta Dirac Delta Dirac Restricted SLCM

N K J ρ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂

500 2 12 0.00 0.04 0.03 0.04 0.02 0.04 0.03 0.04 0.02 0.04 0.02 0.04 0.02
0.15 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02
0.25 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02

500 3 20 0.00 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02
0.15 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02
0.25 0.06 0.02 0.05 0.02 0.06 0.03 0.05 0.02 0.05 0.02 0.05 0.02

500 4 20 0.00 0.07 0.02 0.05 0.02 0.06 0.02 0.05 0.02 0.06 0.02 0.06 0.02
0.15 0.07 0.02 0.06 0.02 0.07 0.02 0.06 0.01 0.06 0.02 0.07 0.02
0.25 0.07 0.02 0.06 0.02 0.07 0.02 0.06 0.02 0.06 0.02 0.07 0.02

500 5 30 0.00 0.10 0.02 0.08 0.01 0.10 0.02 0.08 0.01 0.09 0.02 0.10 0.02
0.15 0.10 0.02 0.08 0.02 0.10 0.02 0.08 0.02 0.09 0.02 0.10 0.02
0.25 0.11 0.02 0.08 0.02 0.10 0.02 0.08 0.02 0.09 0.02 0.11 0.02

1000 2 12 0.00 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
0.15 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
0.25 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02

1000 3 20 0.00 0.04 0.02 0.03 0.01 0.04 0.02 0.03 0.01 0.04 0.01 0.03 0.01
0.15 0.04 0.02 0.03 0.01 0.04 0.02 0.03 0.01 0.04 0.01 0.03 0.01
0.25 0.04 0.02 0.03 0.01 0.05 0.03 0.04 0.02 0.04 0.02 0.04 0.02

1000 4 20 0.00 0.05 0.01 0.04 0.01 0.05 0.01 0.04 0.01 0.05 0.01 0.04 0.01
0.15 0.05 0.02 0.04 0.01 0.05 0.02 0.04 0.01 0.05 0.01 0.05 0.01
0.25 0.05 0.02 0.04 0.01 0.05 0.02 0.04 0.01 0.05 0.02 0.05 0.01

1000 5 30 0.00 0.08 0.01 0.05 0.01 0.08 0.01 0.05 0.01 0.07 0.01 0.07 0.01
0.15 0.08 0.02 0.05 0.01 0.08 0.01 0.05 0.01 0.07 0.01 0.07 0.02
0.25 0.08 0.02 0.05 0.01 0.08 0.02 0.06 0.01 0.08 0.02 0.08 0.02

2000 2 12 0.00 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
0.15 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
0.25 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01

2000 3 20 0.00 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01
0.15 0.03 0.01 0.02 0.01 0.04 0.02 0.02 0.01 0.03 0.01 0.02 0.01
0.25 0.04 0.02 0.03 0.01 0.04 0.02 0.04 0.02 0.03 0.01 0.04 0.02

2000 4 20 0.00 0.04 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04 0.01 0.03 0.01
0.15 0.04 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04 0.01 0.04 0.01
0.25 0.05 0.02 0.03 0.01 0.05 0.02 0.04 0.02 0.04 0.01 0.04 0.02

2000 5 30 0.00 0.07 0.01 0.03 0.01 0.06 0.01 0.04 0.01 0.06 0.01 0.05 0.01
0.15 0.07 0.01 0.04 0.01 0.07 0.01 0.04 0.01 0.06 0.01 0.06 0.01
0.25 0.07 0.01 0.05 0.01 0.07 0.01 0.05 0.01 0.06 0.01 0.07 0.02

against the probit variants. In comparison with the probit-Restricted, all algorithms take double
the amount of time due to the calculation of the � matrix.
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Table 3.
Summary of exploratory general diagnostic models under Delta and Dirac augmentations ability to estimate Q and �
matrices as measured by element-wise accuracy across sample size, N, attributes, K, and attribute dependence, ρ

Logit Probit
Delta Dirac Delta Dirac Restricted SLCM

N K J ρ Q � Q � Q � Q � Q Q �

500 2 12 0.00 0.96 0.80 0.91 0.74 0.95 0.79 0.90 0.72 0.99 1.00 0.91
0.15 0.96 0.79 0.91 0.73 0.95 0.78 0.89 0.71 0.99 0.99 0.92
0.25 0.95 0.79 0.90 0.71 0.95 0.78 0.88 0.69 0.99 1.00 0.91

500 3 20 0.00 0.95 0.86 0.97 0.88 0.96 0.87 0.97 0.88 0.94 0.97 0.82
0.15 0.95 0.86 0.97 0.88 0.96 0.87 0.96 0.87 0.94 0.97 0.82
0.25 0.95 0.85 0.97 0.87 0.94 0.84 0.96 0.86 0.94 0.97 0.82

500 4 20 0.00 0.91 0.89 0.93 0.90 0.92 0.90 0.93 0.90 0.92 0.93 0.84
0.15 0.92 0.90 0.93 0.90 0.92 0.90 0.93 0.90 0.91 0.93 0.85
0.25 0.91 0.90 0.93 0.90 0.92 0.90 0.92 0.90 0.91 0.92 0.84

500 5 30 0.00 0.86 0.93 0.90 0.94 0.87 0.93 0.89 0.94 0.86 0.81 0.86
0.15 0.85 0.93 0.89 0.94 0.86 0.93 0.88 0.94 0.85 0.80 0.86
0.25 0.85 0.93 0.88 0.94 0.85 0.93 0.88 0.94 0.85 0.80 0.86

1000 2 12 0.00 0.99 0.82 0.96 0.79 0.98 0.82 0.95 0.77 1.00 1.00 0.92
0.15 0.99 0.82 0.95 0.78 0.98 0.82 0.93 0.77 1.00 1.00 0.91
0.25 0.98 0.82 0.95 0.77 0.98 0.81 0.94 0.76 0.99 1.00 0.92

1000 3 20 0.00 0.98 0.89 0.99 0.92 0.98 0.89 0.99 0.92 0.97 0.99 0.83
0.15 0.98 0.88 0.99 0.92 0.98 0.88 0.99 0.92 0.97 0.99 0.84
0.25 0.97 0.88 0.99 0.91 0.96 0.86 0.98 0.89 0.97 0.98 0.83

1000 4 20 0.00 0.92 0.89 0.94 0.91 0.93 0.89 0.94 0.91 0.92 0.97 0.85
0.15 0.93 0.90 0.95 0.91 0.93 0.90 0.95 0.91 0.93 0.96 0.85
0.25 0.93 0.90 0.94 0.91 0.93 0.90 0.94 0.91 0.93 0.96 0.84

1000 5 30 0.00 0.91 0.94 0.94 0.95 0.91 0.94 0.94 0.95 0.90 0.89 0.87
0.15 0.90 0.94 0.94 0.95 0.91 0.94 0.94 0.95 0.90 0.88 0.87
0.25 0.90 0.94 0.94 0.95 0.90 0.94 0.93 0.95 0.89 0.86 0.87

2000 2 12 0.00 0.99 0.92 0.97 0.84 0.99 0.92 0.97 0.84 1.00 1.00 0.91
0.15 1.00 0.92 0.97 0.85 1.00 0.91 0.97 0.84 1.00 1.00 0.91
0.25 1.00 0.90 0.97 0.82 1.00 0.89 0.96 0.81 1.00 1.00 0.91

2000 3 20 0.00 1.00 0.90 0.99 0.92 0.99 0.90 0.99 0.92 0.99 1.00 0.84
0.15 0.99 0.89 0.99 0.92 0.98 0.89 0.99 0.92 0.99 0.99 0.84
0.25 0.98 0.88 0.98 0.91 0.97 0.87 0.97 0.89 0.98 0.96 0.83

2000 4 20 0.00 0.92 0.89 0.95 0.91 0.92 0.89 0.96 0.92 0.92 0.99 0.85
0.15 0.93 0.89 0.96 0.92 0.93 0.90 0.96 0.92 0.93 0.97 0.85
0.25 0.93 0.90 0.96 0.91 0.93 0.90 0.95 0.91 0.93 0.96 0.84

2000 5 30 0.00 0.93 0.94 0.97 0.96 0.94 0.95 0.97 0.96 0.93 0.94 0.87
0.15 0.93 0.94 0.97 0.95 0.94 0.94 0.96 0.95 0.92 0.92 0.87
0.25 0.92 0.94 0.95 0.95 0.93 0.94 0.94 0.95 0.91 0.89 0.87

When computing recovery rates for � matrix, the first column is omitted as it is assumed to be always
present. In addition, the restricted model only estimates the Q matrix and, thus, we omit� recovery column.

4. Application: Last Series of the Standard Progressive Matrices (“SPM-LS”)

4.1. Overview

Within this section, the probit and logit model variants are applied to n = 499 responses
across J = 12 items on the last series of the Standard Progressive Matrices (“SPM-LS,” see
Raven, 1941). In comparison with other series within the test, the last series represent the most
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Table 4.
Summary of the average run time (in minutes) to estimate the exploratory models across sample size, n, the number of
attributes, K , and attribute dependence, ρ

Logit Probit
N K J ρ Delta Dirac Delta Dirac Restricted SLCM

500 2 12 0.00 0.4 0.5 1.1 0.8 1.0 1.0
0.15 0.5 0.4 0.8 0.9 1.0 1.0
0.25 0.6 0.4 0.9 0.9 1.0 0.9

500 3 20 0.00 1.4 1.3 2.4 2.0 2.3 2.3
0.15 1.4 1.2 1.8 2.3 1.9 2.2
0.25 1.4 1.2 1.9 1.9 2.3 2.2

500 4 20 0.00 2.7 2.5 3.2 2.8 2.7 3.4
0.15 2.6 2.3 3.7 2.9 3.4 2.9
0.25 3.3 2.6 3.0 3.4 3.5 3.2

500 5 30 0.00 10.5 9.1 12.2 8.1 7.6 8.5
0.15 10.2 8.3 9.7 8.2 7.9 8.1
0.25 10.2 14.7 9.7 8.1 7.8 8.0

1000 2 12 0.00 0.6 0.7 1.7 1.7 2.0 2.0
0.15 0.7 0.6 2.0 2.1 1.6 2.0
0.25 1.2 0.6 1.7 1.7 1.7 1.9

1000 3 20 0.00 1.8 1.8 4.3 4.2 4.4 4.1
0.15 2.3 2.2 3.5 3.3 4.3 4.1
0.25 2.3 2.3 3.5 3.2 4.3 3.8

1000 4 20 0.00 3.5 3.3 5.2 4.6 5.1 5.4
0.15 4.3 4.2 5.2 6.1 5.0 5.9
0.25 3.5 4.3 4.8 4.7 6.1 5.4

1000 5 30 0.00 15.2 10.1 13.3 13.2 15.3 14.4
0.15 12.5 10.4 17.3 13.2 15.3 14.9
0.25 12.3 10.7 14.8 11.9 13.0 13.6

2000 2 12 0.00 1.0 0.9 3.3 3.2 3.2 3.8
0.15 1.3 1.3 3.4 3.0 3.3 3.3
0.25 0.9 2.0 3.2 3.9 3.9 3.3

2000 3 20 0.00 2.8 2.4 8.2 6.1 6.6 8.2
0.15 2.9 2.5 6.6 6.1 6.8 7.9
0.25 2.5 2.6 8.3 8.2 7.0 7.6

2000 4 20 0.00 5.0 4.4 9.6 9.3 9.6 11.5
0.15 5.0 4.5 11.7 9.7 9.8 10.3
0.25 5.0 4.6 10.0 9.4 9.5 11.2

2000 5 30 0.00 16.9 15.4 25.5 28.3 27.5 26.9
0.15 21.3 14.3 25.0 23.4 22.5 23.8
0.25 17.0 19.1 21.9 23.4 22.8 25.4

difficult items on the assessment. Each item is structured so that the respondent must observe
an incomplete 3 × 3 matrix and identify the missing element from among 8 possible responses.
Identifying the correct answer from among 7 distractors requires the respondent to deduce which
response completes the pattern shown in the matrix. As SPM-LS is still actively used as a “general
cognitive ability” test, we direct readers to Raven and Raven (2003) for a sample item used on
the test.



922 PSYCHOMETRIKA

Table 5.
Summary of 20-fold cross-validated deviance on SPM-LS data containing n = 499 observations across exploratory
general diagnostic model variants

Logit Probit
K Delta Dirac Delta Dirac Restricted SLCM

2 103,651.3 103,963.3 103,457.2 103,797.9 103,911.2 104,886.2
3 102,660.6 103,194.3 102,459.1 103,177.6 103,695.0 104,028.3
4 104,457.5 104,982.4 103,833.2 104,366.8 103,908.4 103,624.5
5 104,739.1 105,676.3 104,285.4 105,868.4 104,645.5 105,847.5

Bold value represents the model chosen after applying cross-validation

Table 6.
Summary of the average run time (in minutes) for estimating 20-fold cross-validation on SPM-LS data containing either
n = 474 or n = 475 observations across exploratory general diagnostic model variants

Logit Probit
K Delta Dirac Delta Dirac Restricted SLCM

2 0.5 0.6 0.9 0.8 0.6 0.8
3 1.0 1.0 1.2 1.1 0.8 1.1
4 1.9 1.6 1.8 1.4 1.0 1.6
5 4.8 4.5 4.0 2.9 2.2 3.3

Bold value indicates the selected model’s runtime

4.2. Data

The data analyzed were obtained fromMyszkowski and Storme (2018), who gave the assess-
ment to 214 male and 285 female native French undergraduate students aged between 19 and 24
(x̄ = 20.7, σx̄ = 0.93). Respondents in the study were encouraged to answer every item even if
they were unsure of their answer and faced no time limit. They participated on a voluntary basis
without any monetary compensation and were unfamiliar with the assessment.

4.3. Model Selection

We selected a value for K by performing a 20-fold cross-validation across K = 2, . . . , 5.
Each model was fit with n = 474 or 475 observations, a chain length of 40,000, and a burn-in
of 20,000. Table 5 reports the results of the 20-fold cross-validation, which identified K = 3
and the probit-Delta variant as the best candidates. Notably, all models selected K = 3 and all
of the newly proposed methods that utilized a � matrix to infer the latent structure with weaker
monotonicity conditions outperformed the probit-Restricted model for K = 3. Lastly, Table 6
shows the average runtime in minutes across each fold estimated.

4.4. Results

Following from the model selection phase, we estimated the probit-Delta model fit with
K = 3 using all n = 499 observations. The model was fit with a chain length of 100,000 and a
burn-in of 20,000. Fitting the model and summarizing the Markov chains took 2.97 minutes (178
s) on the cluster.

In Table 7, we report the estimated posterior means for Q, B, and π . Upon viewing the
estimated Q matrix, there is uncertainty on inclusion of each attribute that may be attributed to
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Table 7.
Summary of element-wise means of Q, B, and π for the SPM-LS data with n = 499 using the probit-delta exploratory
general diagnostic model variant

B
Q 1 α3 α2 α2α3 α1 α1α3 α1α2 α1α2α3

Items q1 q2 q3 000 001 010 011 100 101 110 111

1 0.29 0.33 0.64 −0.29 1.07 0.11 0.05 0.09 0.05 0.08 0.03
2 0.50 0.33 0.62 0.12 1.44 0.12 0.06 0.33 0.41 0.11 0.19
3 0.30 0.34 0.67 −0.71 1.90 0.09 0.16 0.07 0.19 0.05 0.08
4 0.66 0.44 0.59 −1.33 1.66 0.26 0.08 2.72 0.24 0.68 0.20
5 0.66 0.44 0.59 −1.23 2.03 0.23 0.06 2.60 0.24 0.77 0.23
6 0.55 0.43 0.63 −1.26 1.67 0.23 0.38 0.56 0.51 0.03 −0.11
7 0.55 0.59 0.37 −0.78 0.24 0.96 0.44 0.92 0.08 0.04 −0.09
8 0.54 0.63 0.44 −1.50 0.33 1.55 0.20 0.78 0.34 0.05 −0.28
9 0.39 0.53 0.49 −0.86 0.25 0.20 1.49 0.16 0.11 0.06 0.07
10 0.65 0.41 0.53 −2.14 0.40 0.17 0.24 0.76 0.80 0.19 0.46
11 0.42 0.45 0.34 −1.26 0.07 0.07 0.05 0.09 0.15 0.07 1.71
12 0.47 0.55 0.29 −1.36 0.06 0.15 0.05 0.12 0.06 1.39 0.06
π 0.10 0.10 0.01 0.13 0.03 0.26 0.05 0.31

A chain of length of 100,000 was run with a burn-in of 20,000. Q is the posterior mean of the sampled
binary Q matrices.

the tuning of the spike-slab hyperparameters. However, when observing B, it is clear the data
support a sparse structure. For instance, items 11 and 12 demonstrate conjunctive relationships
similar to a DINA model where there is only an intercept and one slope (interaction terms for
these items). In particular, item 11 has an estimate of 1.71 for the three-way interaction effect β7
for α1α2α3 and item 12 has an estimate of 1.39 for the two-way interaction β6 for α1α2. Note
that the other β values for items 11 and 12 are close to zero in value. Comparing the posterior
estimates of element-wise posterior means of the � matrix reported in Table 9 (i.e., �) with the
estimated B matrix shows a close reflection of the patterns of active coefficients. Thus, sparsity
and latent structure exhibited by the B are more clearly captured by the � matrix in contrast
with the Q matrix, which pools information at the item-attribute level from the item-class level
of the � matrix. We report the element-wise standard deviations of B within Table 18 found in
“Appendix F.”

Finally, in the last row of Table 7, we report the posterior mean of the latent class structural
parameter, π . The largest three classes as suggested by estimated values of π were “111,” “101,”
and “011” with class probabilities of π̂7 = 0.31, π̂5 = 0.26, and π̂3 = 0.13, respectively.
For the lowest group membership, the three smallest classes were “010,” “100,” and “110” with
probabilities equal to π̂2 = 0.01, π̂4 = 0.03, and π̂6 = 0.05. Based on this estimation, the sample
suggests that respondents tended to belong to classes with more attributes being present.

Table 8 reports the estimated correlations among the three attributes as well as the marginal
probabilities of mastering the three attributes. Let r̂kk′ denote the estimated correlation between
attribute k and k′. Table 8 shows that the estimated correlations are r̂12 = 0.15, r̂13 = 0.26, and
r̂23 = 0.20. Furthermore, the estimated marginal probability of mastering attributes one through
three are reported in the last column of Table 8 were 0.65, 0.50, and 0.80, respectively, and the
corresponding estimated standard deviations were 0.48, 0.50, and 0.40.
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Table 8.
Summary of estimated attribute correlations and marginal probabilities for the SPM-LS data with n = 499 using the
probit-delta exploratory general diagnostic model variant

Correlations
Attributes 1 2 3 P(αk = 1)

1 1 0.15 0.26 0.65
2 0.15 1 0.20 0.50
3 0.26 0.20 1 0.80

Table 9.
Summary of element-wise posterior means of � for the SPM-LS Data with n = 499 using the probit-delta exploratory
general diagnostic model variant

�

Items δ000 δ001 δ010 δ011 δ100 δ101 δ110 δ111

1 1 1.00 0.24 0.17 0.19 0.17 0.18 0.18
2 1 1.00 0.25 0.21 0.58 0.55 0.27 0.34
3 1 1.00 0.22 0.34 0.17 0.36 0.13 0.25
4 1 0.99 0.43 0.33 1.00 0.49 0.64 0.42
5 1 1.00 0.40 0.31 1.00 0.51 0.68 0.44
6 1 1.00 0.43 0.61 0.73 0.66 0.23 0.35
7 1 0.45 0.89 0.56 0.95 0.31 0.33 0.32
8 1 0.55 0.99 0.42 0.85 0.54 0.36 0.46
9 1 0.50 0.42 1.00 0.35 0.27 0.19 0.27
10 1 0.61 0.33 0.43 0.82 0.82 0.39 0.64
11 1 0.17 0.21 0.13 0.23 0.30 0.16 1.00
12 1 0.14 0.37 0.14 0.30 0.14 1.00 0.21

A chain of length of 100,000 was run with a burnin of 20,000. � is the posterior mean of the sampled binary
� matrices.

5. Discussion

We reported new methodology for inferring structure in restricted latent class models for
binary response data. OurMonte Carlo simulation studies provide evidence of accurate parameter
recovery as well as improvement to existing Bayesian methods. In this section, we discuss the
implications of this work, offer additional research directions, and provide concluding remarks.

We compared several variants of our exploratory RLCM (i.e., two priors for item parame-
ters and two link functions). We offer several important contributions. First, we report methods
for enforcing monotoncity in a manner that allows for potentially disjunctive relationships as
characterized by negative interaction effects. In fact, we found some evidence of negative inter-
actions in our application, which may explain the improved cross-validated performance of our
new algorithms in comparison to previous research. Consequently, our application demonstrates
the importance of using the least restrictive monotonicity constraints in practice. Second, we pro-
vide evidence that using the Pòlya–gamma formulation yields a significantly faster application of
the logit-link function in comparison to the traditional probit-link. Improved computation with a
logit-link provides more efficient methods for researchers who are interested in large-scale testing
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data, such as the National Assessment of Education Progress (“NAEP”; e.g., see, Culpepper &
Park, 2017) or other international assessments.

Furthermore, the developed algorithms have been made available through “R” packages
hosted on the Comprehensive R Archival Network (“CRAN”) and can be found in supplemental
material associated with the paper. By open-sourcing the algorithms accompanying the paper, we
hope to lower the barrier of entry to using the newly developed methods in everyday applications
and provide a foundation for further research on these methods.

There are opportunities for future research. First,weprovided evidence that the latent structure
is more difficult to uncover as the number of attributes increases. Future research will consider
extensions to deal with cases when there are more than K = 5 attributes (i.e., 32 latent classes).
Second, researchers should consider Bayesian approaches for inferring the number of attributes,
K . In our application, we used k-fold cross-validation to infer K , whichwas fairly easywith access
to high-performance computing facilities, but it could pose a barrier for applied researchers.
Bayesian methods may provide a computationally efficient approach for jointly inferring the
latent structure and the latent dimensionality. Future research should consider deploying Bayesian
methods (e.g., Dirichlet processes) for inferring the number of attributes as described in Fang et
al. (2019) and Chen et al. (2021). Third, we used a novel confirmatory DINA model in the
hierarchical prior that relates B to Q. It is important to note that we could use another CDM for
the hierarchical prior and that we picked the DINA as it is the simplest conjunctive model for
specifying the relationship between Q and �. Conjunctive models are attractive for the purpose
of selecting interactions given that all associated attributes must be active for an interaction
to be present. More precisely, a δ j p that corresponds with an interaction should be viewed as
active only if all associated attributes in q j are active. In contrast, a disjunctive model such
as a Deterministic Input Noisy Output “OR” gate (DINO; Templin & Henson, 2006) would be
inappropriate because the activeness of an interaction effect would arise if any associated attribute
was active. An alternative to our DINA prior could be to use a more general conjunctive model
such as the reduced reparameterized unified model (rRUM; Culpepper & Hudson, 2018, Hartz,
2002) and we recommend future research investigate the relative merits of using a conjunctive
prior that includes more parameters.

In closing, throughout our work on exploratory RLCMs, the developed methodology con-
tributes greatly to the customization of exploratory models. By enabling the use of the logit-link
function, there now is an alternative to the probit-link function to estimate models. Moreover, the
modifications to the existing work on probit models ensure the monotonicity requirements are
met.
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Appendix A: Derivation of Metropolis-Within-Gibbs Sampling Steps

The purpose of this section is to derive the MCMC sampling steps. We present full conditional
distributions for αi , π , B, s, g, andω and outlineMetropolis–Hastings (MH) updates for elements
of � and Q. The steps of the MCMC sampling algorithm are as follows.

1. For t = 0 initialize ω(0), s(0), g(0), Q(0), �(0), B(0), and π (0). Fix δ j0 = 1 for all j , so
the intercept remains active.

2. For t = 1, . . . , T repeat the following steps.

(a) Update attributes. For i = 1, . . . , n sample α
(t)
i at iteration t from the categori-

cal full conditional distribution α
(t)
i |Y i , B(t−1),α

(t)
1 , . . . ,α

(t)
i−1,α

(t−1)
i+1 , . . . ,α

(t−1)
n

where the conditional probability α
(t)
i is classified as profile c is

P(α
(t)�
i v = c|Y i , B(t−1),α

(t)
1 , . . . ,α

(t)
i−1,α

(t−1)
i+1 , . . . ,α(t−1)

n )

=
(nci + nc0)

∏J
j=1 θ

(t−1)
jc,yi j

∑2K−1
c=0 (nci + nc0)

∏J
j=1 θ

(t−1)
jc,yi j

(A1)

Notice that we integrate π from the prior distribution p(A,π) = p(α1, . . . ,αn|π)

p(π) and instead use the conditional prior distribution p(αi |α(t)
1 , . . . ,α

(t)
i−1,

α
(t−1)
i+1 , . . . ,α

(t−1)
n ) which implies the usual πc (e.g., see Equation 7 of Culpep-

per, 2019a) is replaced with nci +nc0 where nci is the number of respondents other
than i that are classified in class c and nc0 is the prior Dirichlet parameter (note
nc0 = 1 for a uniform prior).

(b) Update π . The full conditional distribution for π is a Dirichlet distribution defined
as:

π |α1:n ∼ Dirichlet(n + n0). (A2)

Note n is a 2K vector with element c defined as nc = ∑n
i=1 1(α�

i v = c). Recall
we use a uniform prior for π and set n0 = 12K .

(c) For j = 1, . . . , J ,

(a) For k = 1, . . . , K sampleq jk using aMHstep. Specifically, theMHacceptance
ratio is

A(q∗, q(t−1)
jk ) = p(δ j |s, g, q∗, q j (k))p(q

∗|Q) f (q(t−1)
jk |q∗)

p(δ j |s, g, q(t−1)
jk , q j (k))p(q

(t−1)
jk |Q) f (q∗|q(t−1)

jk )
(A3)

Note that we use deterministic proposal distributions, so f (q∗|q(t−1)
jk ) =

f (q(t−1)
jk |q∗) = 1, where the proposed value is defined as q∗ = 1 − q(t−1)

jk .
Furthermore, the prior distributions are Bernoulli distributions with the restric-
tion that q∗ must yield an identified Q∗ otherwise p(q∗|Q) = 0. Finally, note
that the ratio of p(δ j |s, g, q∗, q j (k)) to p(δ j |s, g, q(t−1)

jk , q j (k)) simplifies as

p(δ j |s, g, q∗)
p(δ j |s, g, q jk = q(t−1)

jk )
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=
∏P

p=1

[
(1 − s)η

∗
j p g1−η∗

j p

]δ j p [
sη∗

j p (1 − g)1−η∗
j p

]1−δ j p

∏P
p=1

[
(1 − s)η

(t−1)
j p g1−η

(t−1)
j p

]δ j p
[
sη

(t−1)
j p (1 − g)1−η

(t−1)
j p

]1−δ j p

= (1 − s)S11gS01sS10(1 − g)S00 (A4)

where η∗
j p is the “and” gate with the proposed q

∗, η(t−1)
j p is the “and” gate from

the previous iteration, and

S11 =
P∑

p=1

(
η∗
j p − η

(t−1)
j p

)
δ j pq

′
pk (A5)

S01 =
P∑

p=1

(
η

(t−1)
j p − η∗

j p

)
δ j pq

′
pk (A6)

S10 =
P∑

p=1

(
η∗
j p − η

(t−1)
j p

)
(1 − δ j p)q

′
pk (A7)

S00 =
P∑

p=1

(
η

(t−1)
j p − η∗

j p

)
(1 − δ j p)q

′
pk . (A8)

We accept q∗ and set q(t)
jk = q∗ if ln

[
A(q∗, q(t−1)

jk )
]

> ln(U ) for U ∼
uniform(0, 1). Otherwise, q(t)

jk = q(t−1)
jk .

(b) For p = 1, . . . , 2K −1 sample δ j p using a MH step. The MH acceptance ratio
is

A(δ∗, δ(t−1)
j p ) = p(β j p|β j (p), δ

∗)p(δ∗|q j , s, g) f (δ
(t−1)
j p |δ∗)

p(β j p|β j (p), δ
(t−1)
j p )p(δ(t−1)

j p |q j , s, g) f (δ∗|δ(t−1)
j p )

(A9)

where we use a deterministic proposal distribution with δ∗ = 1−δ
(t−1)
j p . Recall

the prior for β j p given δ j p and the other item parameters ,β j (p) is

p(β j p|β j (p), δ j p) = 1√
2πσ 2

j p

(
1 − �

(
L jp
σ j p

)) exp

(
−1

2

β2
j p

σ 2
j p

)
(A10)

where L jp is the lower bound forβ j p givenβ j (p),σ
2
j p = δ j p/c1+(1−δ j p)/c0,

and 1 − �
(
L jp
σ j p

)
is the prior probability β j p > L jp. The ratio of priors for

β j p given the proposal and current state is

p(β j p|β j (p), δ
∗
j p)

p(β j p|β j (p), δ
(t−1)
j p )

=
√√√√σ

2 ,(t−1)
j p

σ 2 ∗
j p

⎛

⎜⎜⎝

1 − �

(
L jp

σ
(t−1)
j p

)

1 − �

(
L jp
σ ∗
j p

)

⎞

⎟⎟⎠
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exp

[
1

2

(
1

σ
2,(t−1)
j p

− 1

σ 2∗
j p

)
β2
j p

]
(A11)

where σ 2∗
j p = δ∗/c1 + (1− δ∗)/c0 and σ

2,(t−1)
j p = δ

(t−1)
j p /c1 + (1− δ

(t−1)
j p )/c0.

p(δ∗|q j , s, g)

p(δ(t−1)
j p |q j , s, g)

=
(
(1 − s)η j p g1−η j p

)δ∗ (
sη j p (1 − g)1−η j p

)1−δ∗

(
(1 − s)η j p g1−η j p

)δ(t−1)
j p

(
sη j p (1 − g)1−η j p

)1−δ
(t−1)
j p

=
[(

1 − s

s

)η j p
(

g

1 − g

)1−η j p
]δ∗−δ

(t−1)
j p

(A12)

If ln
[
A(δ∗, δ(t−1)

j p )
]

> ln(U ) for U ∼ uniform(0, 1) we accept the move to

δ∗ and set δ(t)
j p = δ∗. Otherwise, δ(t)

j p = δ
(t−1)
j p .

(c) Sample augmented data. For c = 0, . . . , 2K −1 sample Y ∗
jc from the following

Pòlya–gamma distribution Y ∗
jc ∼ PG

(
nc, ψ jc

)
where ψ jc = α�

c β j .

(d) Sample item coefficients. For p = 0, . . . , 2K − 1 sample β j p from a truncated
normal distribution,

β j p|β j (p),α1:n,Y1:n, j ,Y∗
1:n, j , δ j p ∼ N (m jp, v

2
j p)1(β j p ≥ L jp) (A13)

where L j0 = −∞. The conditional variance and mean are

v2j p = 1

A�
p
 j Ap + 1/σ 2

j p

(A14)

m jp = v2j pA
�
p
 j z̃ j (A15)

where Ap is the pth column of the 2K × 2K attribute design matrix A =
(a0, . . . , a2K−1)

�, 
 j = diag(y∗
j0, . . . , y

∗
j,2K−1

), z̃ j = z j − A(p)β j (p), z j =
(κ j0/y∗

j0, . . . , κ j,2K−1/y
∗
j,2K−1

)�, κ jc = n jc − nc/2, and A(p) is the matrix
A without column p. See the derivation of the full conditional distribution for
β j p in “Appendix B.”

(d) Sample hyper-parameters s and g. We sample the s and g hyper-parameters from
a truncated beta distribution. Specifically, note that the full conditional distribution
is

p(s, g|�, Q) ∝ p(�|Q, s, g)p(s, g)

=
⎛

⎝
J∏

j=1

P∏

p=2

[
(1 − s)η j p g1−η j p

]δ j p [
sη j p (1 − g)1−η j p

]1−δ j p

⎞

⎠ p(s, g)

= sas (1 − s)bs gag (1 − g)bg1(0 < g < 1 − s)1(0 < s < 1) (A16)
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where

as =
J∑

j=1

P∑

p=2

η j p(1 − δ j p), bs =
J∑

j=1

P∑

p=2

η j pδ j p

ag =
J∑

j=1

P∑

p=2

(1 − η j p)δ j p, bg =
J∑

j=1

P∑

p=2

(1 − η j p)(1 − δ j p).

Note we sample s and g sequentially from the truncated beta distribution as
described in Culpepper (2015).

(e) Sample hyper-parameter ω. The hyper-parameter for Q is conditionally distributed
as a beta distribution. Specifically, we sample ω from

ω|Q ∼ Beta

⎛

⎝
J∑

j=1

K∑

k=1

q jk + a,

J∑

j=1

K∑

k=1

(1 − q jk) + b

⎞

⎠ . (A17)

Note we use a uniform prior and set a = b = 1.

Appendix B: Derivation of Full Conditional Distribution for β j p Under the Logit-Link

We next derive the full conditional distribution for the item parameters β j . Let y1:n, j =
(y1 j , . . . , ynj )� be the observed responses for item j and y∗

j = (y∗
j0, . . . , y

∗
j,2K−1

)� the 2K

vector of augmented data for item j .
In order to derive the full conditional distribution for β j , we first substitute the Pòlya–gamma
identity in Eq. 26 into the collapsed conditional likelihood in Eq. 28 to yield,

p
(
y1:n, j |α1:n,β j

) =
2K−1∏

c=0

(
exp

(
ψ jc

))n jc

(
1 + exp

(
ψ jc

))nc

=
2K−1∏

c=0

2−nc exp
(
κ jcψ jc

) ∫ ∞

0
exp

(
−1

2
y∗
jcψ

2
jc

)
p(y∗

jc)dy
∗
jc. (B1)

where κ jc = (
n jc − nc

2

)
. Therefore, the joint conditional distribution for y1:n, j and y∗

j is propor-
tional in terms of ψ jc to

p
(
y1:n, j , y

∗
j |α1:n,β j

)
∝

2K−1∏

c=0

2−nc exp
(
κ jcψ jc

)
exp

(
−1

2
y∗
jcψ

2
jc

)
. (B2)

Recall that completing the square under the transformation of: x2 − bx = (
x − b

2

)2 + (b)2.
Therefore, the product can be rewritten as

2K−1∏

c=0

exp

(
κ jcψ jc − 1

2
y∗
jcψ

2
jc

)
=

2K−1∏

c=0

exp

(
−1

2
y∗
jc

(
ψ2

jc − 2κ jc

y∗
jc

ψ jc

))
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=
2K−1∏

c=0

exp

⎛

⎝−1

2
y∗
jc

⎛

⎝
(

ψ jc − κ jc

y∗
jc

)2

−
(
2κ jc

y∗
jc

)2
⎞

⎠

⎞

⎠

=
2K−1∏

c=0

exp

⎛

⎝−1

2
y∗
jc

(
ψ jc − κ jc

y∗
jc

)2

+ 2
κ2
jc

y∗
jc

⎞

⎠. (B3)

Retaining the terms that are proportional to β j yields

∝
2k−1∏

c=0

exp

⎛

⎝−1

2
y∗
jc

(
ψ jc − κ jc

y∗
jc

)2
⎞

⎠ = exp

⎛

⎝−1

2

2k−1∑

c=0

⎡

⎣y∗
jc

(
ψ jc − κ jc

y∗
jc

)2
⎤

⎦

⎞

⎠

= exp

⎛

⎝−1

2

2k−1∑

c=0

⎡

⎣y∗
jc

(
α�
c β j − κ jc

y∗
jc

)2
⎤

⎦

⎞

⎠

= exp

⎛

⎝−1

2

2k−1∑

c=0

⎡

⎣y∗
jc

(
κ jc

y∗
jc

− α�
c β j

)2
⎤

⎦

⎞

⎠

= exp

(
−1

2

(
z j − Aβ j

)T

 j

(
z j − Aβ j

))
(B4)

where A = (a0, . . . , a2K−1)
� is a 2K × 2K matrix with the latent class design vectors, z j is a

2K vector with element c defined as κ jc/y∗
jc, and 
 j = diag(y∗

j0, . . . , y
∗
j,2K−1

).
Let κ j = (κ j0, . . . , κ j,2K−1). Multiplying Eq. B4 by the prior for β j in Eq. 30 implies the full
conditional distribution for β j is

β j |α1:n, y∗
j , y1:n, j , δ j ∼ NP

(
m j , V j

)
1(β j ∈ B) (B5)

V j =
(
A�
 j A + 	−1

j

)−1
(B6)

m j = V j A�κ j . (B7)

We update the elements of β j sequentially in order to enforce monotonicity conditions. Specifi-
cally, the term in the exponential of Eq. B4 times the prior for β j p equals

−1

2

(
z j − Aβ j

)T

 j

(
z j − Aβ j

)− β2
j pσ

2
j p

= −1

2

[(
z̃ j − Apβ j p

)T

 j

(
z̃ j − Apβ j p

)+ β2
j pσ

2
j p

]
(B8)

where z̃ j = z j − A(p)β j (p), A(p) is the matrix A without column p, and β j (p) is β j without
element p. Completing the square implies that the full conditional distribution forβ j p is a truncated
normal with β j p > L jp with

v2j p = 1

A�
p
 j Ap + 1/σ 2

j p

(B9)

m jp = v2j pA
�
p
 j z̃ j . (B10)
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Note L j0 = −∞ so the full conditional distribution for intercepts are unrestricted normal distri-
butions.

Appendix C: Implementation of a Dirac Delta Spike Distribution

The purpose of this section is to provide details on updating item parameters under a spike-slab
prior for B using a mixture of a normal distribution for the slab and a spike distribution with a
point mass at zero. Special care is needed for updating δ j p and β j p in the case where the spike
distribution is a point mass. We next report steps for updating δ j p and β j p.

5.1. Updating δ j p

Weupdate δ j p after integratingβ j p from the posterior distribution.We let the posterior distribution
after marginalizing over β j p be

p( y∗
1:n,α1:n, B( j,p),�, Q,π , ω, s, g| y1:n) =

∫
p( y∗

1:n,α1:n, B,�, Q,π , ω, s, g| y1:n)dβ j p

(C1)

where B( j,p) is all of B except β j p.
We next construct a Metropolis–Hastings step using the marginalized posterior distribution to
update δ j p. Specifically, as described above, we use a deterministic proposal distribution and

define the candidate as δ∗ = 1 − δ
(t−1)
j p . The acceptance ratio is:

A(δ∗, δ(t−1)
j p ) = p( y∗

1:n,α1:n, B( j,p),�( j,p), δ j p = δ∗, Q,π , ω, s, g| y1:n)
p( y∗

1:n,α1:n, B( j,p),�( j,p), δ j p = δ
(t−1)
j p , Q,π , ω, s, g| y1:n)

(C2)

where �( j,p) excludes δ j p and the ratio of proposal distributions is excluded as it equals one.
The challenge is integrating β j p from the posterior. Our framework allows sampling from the
full conditional distributions and we can therefore find an analytic solution to each integral. In
fact, derivations in Appendix D of Chen et al. (2020) can be adapted to show that the acceptance
probability can be written as

A(δ∗, δ(t−1)
j p ) =

⎡

⎢⎢⎣

�
(−L jp

σ j p

)−1 v j p
σ j p

exp

(
1
2
m2

j p

v2j p

)
�
(
m jp−L jp

v j p

)
P(δ j p = 1|q j , s, g)

P(δ j p = 0|q j , s, g)

⎤

⎥⎥⎦

δ∗
j p−δ

(t−1)
j p

(C3)

where L jp is the lower-bound for β j p, σ 2
j p is the prior variance for β j p for the case where δ j p = 1,

and, as defined in Eqs. B9 and B10, v2j p is the conditional variance and m jp is the conditional
mean of β j p. Rearranging terms and plugging in the prior for δ j p yield

A(δ∗, δ(t−1)
j p ) =

⎡

⎣
(

v j p

σ j p

) �
(
m jp−L jp

v j p

)

�
(−L jp

σ j p

) exp

(
1

2

m2
j p

v2j p

)(
1 − s

s

)η j p
(

g

1 − g

)1−η j p

⎤

⎦
δ∗
j p−δ

(t−1)
j p

(C4)
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Chen et al. (2020) indicated that δ
(t)
j p = 0 is not possible in cases where L jp > 0. Therefore,

δ
(t−1)
j p can only be updated when L jp ≤ 0. Therefore, the update rule for δ j p is if L jp ≤ 0 and

ln
[
A(δ∗, δ(t−1)

j p )
]

> ln(U ) for U ∼ uniform(0, 1) we accept the move to δ∗ and set δ
(t)
j p = δ∗.

Otherwise, δ(t)
j p = δ

(t−1)
j p .

5.2. Updating β j p

A Gibbs step is available for sampling β j p from its full conditional distribution. Specifically, the
full conditional distribution is

β j p| y1:n, j , y
∗
1:n, j ,α1:n,β j (p), δ j p ∼

{
1(β j p = 0) δ j p = 0

N (m jp, v
2
j p)1(β j p > L jp) δ j p = 1 . (C5)

Appendix D: Evaluating Routines for Generating Pòlya–gamma Random Variables

We next present a closer look at how different logit variants perform across the techniques for
sampling a random variables from a Pòlya–gamma distribution. The implementation of Pòlya–
gamma samplers follows from the techniques presented in Windle et al. (2014). Principally, these
methods are given as sum of gammas (“G”), Devroye method (“DM”), hybrid (“H”), normal
approximation (“N”), and saddlepoint approximation (“SP”). Omitted from this list is the alternate
sampler given the routine was deactivated pending review in the “BayesLogit” package (Polson,
Scott, & Windle, 2013b).
With this being said, the hybrid sampler consists of a mixture of the four other methods at various
sample size n cutoffs. In particular, the sum of gammas method is used for n ∈ (1, 13)\ {1, 2},
Devroye method for n = 1, 2, Saddlepoint method when 3 ≤ n < 170, and Normal Approxi-
mation for n ≥ 170. If the alternate sampler was enabled, then it would be used to sample when
n ∈ (1, 13)\ {2} and cause the sum of gammas to non-integer values between 0 < n < 1.
In Table 10, we present the element-wise recovery rates for the Q matrix under different sampling
routines. Each of the samplers returns a similar conclusion with recovery accuracy being nearly
identical across sample sizes and K attributes. As the correlation increases, there is a slightly
worse recovery across the board. Similar conclusions are able to be made when observing the
average MAD entries for � in Table 11 (Table 12).
Reported with Table 13 are the run times associated with each sampler. The normal approximation
is the quickest to be estimated with times ranging between 18 s when n = 500 and K = 2 are
small to 14 minutes when n = 2000 and K = 5 are large. However, the stability of the normal
approximation is problematic as shown in Table 14 as indicated by the finding that not all models
returned estimable results. Non-estimable results were returned as a “Not a Number” (NaN). From
Table 14, the instability was striking in extent when K = 5 and ρ = 0.15, 0.25, especially under
the logit-Delta formulation. As the hybrid sampler relies on the normal approximation, it also
falls into similar stability issues due to its reliance on the sampler when n > 170.

Appendix E: Disjunction Simulation Study

Within this appendix, we apply the novel Bayesian formulations to 100 simulated disjunctive
data sets. Unlike in the prior simulations, which simulated data from a tetrachoric population
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Table 10.
Overview of how each Pòlya–gamma random variable sampling routine performed in the respective Logit Delta and Dirac
model variants under Q

Logit-Delta Logit-Dirac
N K ρ DM G H N SP DM G H N SP

500 2 0.00 0.960 0.960 0.960 0.960 0.956 0.925 0.922 0.921 0.925 0.924
0.15 0.950 0.948 0.950 0.949 0.949 0.902 0.901 0.903 0.903 0.902
0.25 0.957 0.957 0.956 0.951 0.957 0.902 0.901 0.902 0.902 0.900

500 3 0.00 0.953 0.952 0.953 0.901 0.952 0.970 0.969 0.970 0.963 0.971
0.15 0.950 0.952 0.948 0.872 0.951 0.968 0.968 0.968 0.963 0.968
0.25 0.955 0.950 0.951 0.842 0.952 0.967 0.968 0.967 0.953 0.967

500 4 0.00 0.910 0.910 0.910 0.749 0.910 0.928 0.928 0.928 0.919 0.928
0.15 0.910 0.910 0.909 0.761 0.910 0.925 0.925 0.923 0.917 0.925
0.25 0.912 0.912 0.912 0.747 0.913 0.928 0.928 0.928 0.923 0.928

500 5 0.00 0.865 0.865 0.866 0.599 0.865 0.899 0.901 0.898 0.757 0.900
0.15 0.857 0.857 0.860 0.599 0.858 0.888 0.888 0.890 0.765 0.891
0.25 0.854 0.854 0.853 0.599 0.853 0.879 0.879 0.879 0.766 0.881

1000 2 0.00 0.990 0.990 0.990 0.990 0.990 0.955 0.954 0.955 0.951 0.955
0.15 0.989 0.988 0.989 0.986 0.989 0.950 0.951 0.952 0.950 0.952
0.25 0.980 0.982 0.980 0.979 0.981 0.935 0.935 0.935 0.933 0.935

1000 3 0.00 0.979 0.979 0.973 0.971 0.979 0.990 0.990 0.991 0.991 0.990
0.15 0.978 0.975 0.969 0.935 0.978 0.988 0.987 0.977 0.983 0.989
0.25 0.967 0.962 0.962 0.868 0.966 0.975 0.977 0.978 0.965 0.981

1000 4 0.00 0.922 0.922 0.916 0.865 0.923 0.935 0.938 0.939 0.931 0.939
0.15 0.926 0.928 0.924 0.869 0.926 0.947 0.948 0.949 0.948 0.946
0.25 0.928 0.926 0.926 0.854 0.928 0.946 0.945 0.946 0.938 0.945

1000 5 0.00 0.904 0.904 0.904 0.598 0.904 0.941 0.941 0.941 0.901 0.941
0.15 0.901 0.901 0.901 0.604 0.901 0.936 0.935 0.935 0.908 0.935
0.25 0.899 0.899 0.899 0.623 0.898 0.931 0.930 0.931 0.914 0.931

2000 2 0.00 0.996 0.996 0.996 0.996 0.996 0.973 0.968 0.969 0.969 0.974
0.15 0.993 0.993 0.992 0.991 0.992 0.965 0.965 0.962 0.964 0.965
0.25 0.994 0.994 0.995 0.990 0.995 0.971 0.972 0.969 0.972 0.971

2000 3 0.00 0.987 0.994 0.994 0.994 0.988 0.996 0.993 0.995 0.991 0.992
0.15 0.985 0.986 0.983 0.980 0.986 0.989 0.992 0.989 0.985 0.986
0.25 0.973 0.986 0.983 0.895 0.983 0.979 0.986 0.981 0.990 0.973

2000 4 0.00 0.923 0.923 0.926 0.895 0.925 0.958 0.959 0.956 0.950 0.959
0.15 0.930 0.932 0.923 0.874 0.932 0.970 0.967 0.965 0.949 0.961
0.25 0.930 0.932 0.927 0.865 0.929 0.954 0.958 0.954 0.950 0.959

2000 5 0.00 0.932 0.934 0.935 0.625 0.931 0.967 0.970 0.968 0.961 0.971
0.15 0.929 0.929 0.920 0.665 0.929 0.967 0.967 0.961 0.932 0.964
0.25 0.920 0.920 0.923 0.678 0.923 0.950 0.954 0.952 0.927 0.956

Closer to 1 indicates higher element-wise recovery. “G” is sum of gammas, “DM” Devroye method, “H” is
hybrid, “N” normal approximation, and “SP” saddlepoint approximation. Results based on the number of
numerically stable replications as reported in Table 14.
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Table 11.
Summary of the average mean absolute deviation (MAD) of � estimated by the Logit Delta and Dirac variants under
different sampling routines for Pòlya–gamma distribution

Logit-Delta Logit-Dirac
N K J ρ DM G H N SP DM G H N SP

500 2 12 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.15 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.25 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

500 3 20 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.25 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05

500 4 20 0.00 0.07 0.07 0.07 0.06 0.07 0.05 0.05 0.05 0.06 0.05
0.15 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06
0.25 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06

500 5 30 0.00 0.10 0.10 0.10 NaN 0.10 0.08 0.08 0.08 0.08 0.08
0.15 0.10 0.11 0.10 NaN 0.10 0.08 0.08 0.08 0.08 0.08
0.25 0.11 0.11 0.11 NaN 0.11 0.08 0.08 0.08 0.08 0.08

1000 2 12 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.15 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.25 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

1000 3 20 0.00 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
0.15 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
0.25 0.04 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.03

1000 4 20 0.00 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04
0.15 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04
0.25 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04

1000 5 30 0.00 0.08 0.08 0.08 NaN 0.08 0.05 0.05 0.05 0.05 0.05
0.15 0.08 0.09 0.09 NaN 0.08 0.05 0.05 0.05 0.05 0.05
0.25 0.08 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05

2000 2 12 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.15 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.25 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

2000 3 20 0.00 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
0.15 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
0.25 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.03

2000 4 20 0.00 0.04 0.04 0.04 0.04 0.04 0.03 0.02 0.02 0.03 0.02
0.15 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.03 0.03 0.03
0.25 0.05 0.04 0.05 0.04 0.04 0.04 0.03 0.04 0.03 0.03

2000 5 30 0.00 0.07 0.06 0.06 0.06 0.07 0.04 0.03 0.04 0.03 0.03
0.15 0.06 0.07 0.07 0.06 0.06 0.04 0.04 0.04 0.04 0.04
0.25 0.07 0.07 0.07 0.06 0.07 0.05 0.04 0.05 0.04 0.04

Values closer to 0 indicates higher recovery. “G” is sum of gammas, “DM” Devroye method, “H” is hybrid,
“N” normal approximation, and “SP” saddlepoint approximation.Results based on the number of numerically
stable replications as reported in Table 14. “NaN” denotes 0 replications were completed successfully.
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Table 12.
Comparison across each Pòlya–gamma random variable sampling routine performed in the respective Logit Delta and
Dirac model variants under �

Logit-Delta Logit-Dirac
N K ρ DM G H N SP DM G H N SP

500 2 0.00 0.792 0.792 0.793 0.792 0.794 0.743 0.743 0.740 0.743 0.744
0.15 0.782 0.783 0.781 0.780 0.783 0.719 0.718 0.719 0.718 0.718
0.25 0.789 0.789 0.790 0.785 0.788 0.716 0.716 0.717 0.716 0.715

500 3 0.00 0.860 0.861 0.860 0.819 0.860 0.884 0.883 0.884 0.880 0.884
0.15 0.857 0.860 0.853 0.788 0.861 0.878 0.878 0.879 0.871 0.878
0.25 0.861 0.855 0.857 0.740 0.860 0.873 0.875 0.872 0.855 0.872

500 4 0.00 0.893 0.893 0.892 0.827 0.893 0.897 0.897 0.897 0.896 0.898
0.15 0.894 0.894 0.894 0.851 0.894 0.899 0.899 0.899 0.897 0.899
0.25 0.895 0.895 0.895 0.829 0.895 0.899 0.899 0.899 0.897 0.899

500 5 0.00 0.929 0.929 0.929 0.828 0.928 0.940 0.940 0.940 0.908 0.939
0.15 0.928 0.928 0.929 0.802 0.928 0.939 0.938 0.938 0.881 0.938
0.25 0.928 0.928 0.928 0.806 0.928 0.937 0.937 0.936 0.877 0.937

1000 2 0.00 0.822 0.822 0.821 0.823 0.822 0.784 0.783 0.784 0.777 0.784
0.15 0.822 0.821 0.822 0.819 0.822 0.780 0.780 0.780 0.775 0.780
0.25 0.816 0.816 0.816 0.816 0.816 0.764 0.764 0.764 0.761 0.765

1000 3 0.00 0.887 0.886 0.876 0.876 0.886 0.922 0.922 0.922 0.922 0.922
0.15 0.877 0.875 0.864 0.837 0.879 0.921 0.917 0.914 0.913 0.922
0.25 0.868 0.858 0.860 0.778 0.866 0.898 0.898 0.901 0.886 0.904

1000 4 0.00 0.893 0.893 0.892 0.874 0.893 0.907 0.907 0.907 0.906 0.907
0.15 0.895 0.896 0.895 0.873 0.895 0.909 0.909 0.909 0.910 0.909
0.25 0.896 0.897 0.896 0.868 0.897 0.908 0.907 0.908 0.906 0.908

1000 5 0.00 0.936 0.937 0.937 0.794 0.936 0.952 0.952 0.952 0.937 0.952
0.15 0.937 0.937 0.937 0.823 0.937 0.949 0.949 0.949 0.937 0.949
0.25 0.937 0.937 0.937 0.836 0.937 0.947 0.948 0.948 0.937 0.948

2000 2 0.00 0.916 0.917 0.916 0.914 0.916 0.844 0.843 0.839 0.838 0.844
0.15 0.906 0.905 0.904 0.903 0.905 0.832 0.830 0.824 0.827 0.830
0.25 0.894 0.894 0.893 0.885 0.891 0.818 0.818 0.816 0.818 0.818

2000 3 0.00 0.895 0.903 0.903 0.903 0.894 0.927 0.922 0.926 0.919 0.922
0.15 0.884 0.886 0.880 0.884 0.885 0.919 0.924 0.919 0.914 0.915
0.25 0.873 0.890 0.887 0.790 0.887 0.905 0.911 0.907 0.920 0.896

2000 4 0.00 0.893 0.893 0.894 0.883 0.893 0.917 0.918 0.919 0.916 0.918
0.15 0.896 0.896 0.894 0.875 0.896 0.919 0.919 0.918 0.916 0.916
0.25 0.895 0.896 0.893 0.842 0.895 0.912 0.913 0.913 0.907 0.914

2000 5 0.00 0.943 0.943 0.944 0.792 0.943 0.955 0.956 0.956 0.954 0.957
0.15 0.941 0.941 0.940 0.838 0.941 0.953 0.954 0.952 0.940 0.953
0.25 0.941 0.941 0.941 0.827 0.941 0.949 0.949 0.949 0.946 0.950

Closer to 1 indicates higher element-wise recovery. “G” is sum of gammas, “DM” Devroye method, “H” is
hybrid, “N” normal approximation, and “SP” saddlepoint approximation. Results based on the number of
numerically stable replications as reported in Table 14.
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Table 13.
Summary of the average run time in minutes of the Delta and Dirac Logit variants under different sampling routines for
Pòlya–gamma distribution

Logit-Delta Logit-Dirac
N K J ρ DM G H N SP DM G H N SP

500 2 12 0.00 3.3 4.8 0.4 0.3 0.6 3.8 4.3 0.5 0.3 1.1
0.15 3.3 5.0 0.5 0.4 0.6 3.8 4.6 0.4 0.3 0.5
0.25 3.3 4.6 0.5 0.3 0.5 3.2 4.4 0.5 0.3 0.5

500 3 20 0.00 5.4 16.0 1.5 1.1 1.7 5.9 14.7 1.5 1.1 1.4
0.15 5.9 15.9 1.6 1.1 1.7 6.1 15.3 1.6 0.9 1.3
0.25 5.5 14.6 1.7 2.2 3.1 5.6 16.0 1.7 1.1 1.4

500 4 20 0.00 7.1 29.5 5.2 1.7 3.3 6.7 30.6 4.9 2.0 2.6
0.15 6.8 31.4 4.2 1.7 3.3 6.6 30.0 4.8 1.6 2.6
0.25 7.9 30.2 5.0 2.1 3.3 6.5 39.3 4.8 1.6 2.5

500 5 30 0.00 15.5 101.6 18.8 9.1 12.5 17.3 91.9 18.3 6.5 9.1
0.15 17.4 96.0 16.1 7.6 10.2 14.9 97.3 15.1 7.2 9.3
0.25 15.3 101.3 19.3 7.5 12.4 13.8 93.3 15.6 6.6 9.3

1000 2 12 0.00 6.4 4.7 0.6 0.5 0.8 6.8 4.6 0.7 0.6 0.7
0.15 6.5 4.6 0.6 0.6 0.7 6.2 4.8 0.6 0.6 0.8
0.25 6.1 5.0 0.7 0.5 0.8 6.5 5.2 0.7 0.6 0.7

1000 3 20 0.00 12.6 14.8 2.1 1.7 2.3 11.2 15.6 1.7 1.3 2.3
0.15 12.3 15.8 2.2 1.4 2.3 11.3 20.3 1.8 1.6 1.9
0.25 12.2 16.7 2.3 1.3 1.9 11.6 15.8 2.2 1.3 1.8

1000 4 20 0.00 12.1 33.1 4.1 3.1 4.3 15.5 33.3 4.4 3.0 3.4
0.15 12.6 30.2 4.1 3.1 4.3 12.4 33.7 5.0 2.9 4.2
0.25 11.7 30.2 5.1 3.1 3.6 11.4 30.3 5.1 2.9 4.2

1000 5 30 0.00 26.1 97.8 16.9 9.7 12.6 23.4 100.1 15.9 10.3 13.7
0.15 26.4 110.4 20.7 9.9 15.3 24.0 98.4 16.1 8.6 13.8
0.25 23.5 106.7 20.5 11.9 15.3 23.0 106.8 19.3 8.6 11.5

2000 2 12 0.00 14.0 5.4 1.2 0.9 1.3 12.1 5.8 1.1 1.1 1.1
0.15 12.1 6.2 0.9 2.3 1.3 12.2 5.2 1.1 1.1 1.1
0.25 12.8 6.8 1.1 1.1 1.3 12.9 4.9 1.1 1.0 1.1

2000 3 20 0.00 23.0 20.3 2.5 2.3 3.4 22.8 17.0 3.0 2.8 2.9
0.15 21.6 16.6 3.1 2.8 2.8 22.1 17.3 2.5 2.3 2.8
0.25 21.2 18.1 2.6 2.8 3.4 21.1 17.2 2.5 2.8 2.9

2000 4 20 0.00 29.2 34.4 6.3 5.0 5.2 24.0 30.8 6.1 4.8 11.2
0.15 30.1 34.8 5.1 4.2 6.3 25.0 31.9 5.1 4.8 4.8
0.25 24.7 34.5 5.2 5.2 6.4 24.2 33.0 5.2 4.0 4.9

2000 5 30 0.00 48.2 115.3 19.8 17.2 21.3 52.1 101.5 22.5 12.9 19.3
0.15 45.5 97.2 20.6 14.0 17.4 57.5 104.5 18.5 15.7 16.4
0.25 45.5 102.0 19.4 14.6 17.2 51.0 98.7 19.2 13.0 19.2

“G” is sum of gammas, “DM” Devroye method, “H” is hybrid, “N” normal approximation, and “SP”
saddlepoint approximation. Results based on all 100 iterations regardless of stability.
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Table 14.
Summary of Pòlya–gamma distribution random variable sampler stability

Logit-Delta Logit-Dirac
N K J ρ DM H N SP G DM H N SP G

500 2 12 0.00 100 100 100 100 100 100 99 100 100 100
0.15 100 100 99 100 100 100 100 100 100 100
0.25 100 100 98 100 100 100 100 100 100 100

500 3 20 0.00 100 100 79 100 100 100 100 98 100 100
0.15 100 100 75 100 100 100 100 99 100 100
0.25 100 100 63 100 100 100 100 97 100 100

500 4 20 0.00 100 100 29 100 100 100 100 96 100 100
0.15 100 100 35 100 100 100 100 97 100 100
0.25 100 100 34 100 100 100 100 97 100 100

500 5 30 0.00 100 100 0 100 100 100 100 36 100 100
0.15 100 100 0 100 100 100 100 40 100 100
0.25 100 100 0 100 100 100 100 41 100 100

1000 2 12 0.00 100 100 100 100 100 100 100 98 100 100
0.15 100 100 99 100 100 100 100 98 100 100
0.25 100 100 99 100 100 100 100 99 100 100

1000 3 20 0.00 100 99 96 100 100 100 99 99 100 100
0.15 100 99 88 100 100 100 98 100 100 100
0.25 100 99 72 100 100 100 100 97 100 100

1000 4 20 0.00 100 98 68 100 100 100 100 95 100 100
0.15 100 99 75 100 100 100 100 99 100 100
0.25 100 100 75 100 100 100 100 97 100 100

1000 5 30 0.00 100 100 0 100 100 100 100 83 100 100
0.15 100 100 0 100 100 100 100 88 100 100
0.25 100 100 3 100 100 100 100 93 100 100

2000 2 12 0.00 100 100 100 100 100 100 99 98 100 100
0.15 100 100 99 100 100 100 99 99 100 100
0.25 100 100 98 100 100 100 99 100 100 100

2000 3 20 0.00 100 100 100 100 100 100 99 97 100 100
0.15 100 99 94 100 100 100 100 99 100 100
0.25 100 99 74 100 100 100 99 99 100 100

2000 4 20 0.00 100 99 88 100 100 100 99 97 100 100
0.15 100 97 82 100 100 100 100 98 100 100
0.25 100 99 76 100 100 100 100 97 100 100

2000 5 30 0.00 100 99 2 100 100 100 99 97 100 100
0.15 100 96 14 100 100 100 99 86 100 100
0.25 100 100 16 100 100 100 100 89 100 100

Samplers with less than 100 replications provided problematic output under the given condition. “G” is
sum of gammas, “DM” Devroye method, “H” is hybrid, “N” normal approximation, and “SP” saddlepoint
approximation
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Table 15.
Summary of exploratory general diagnostic models under Delta and Dirac augmentations ability to estimate � and π
measured by the average mean absolute deviation (MAD) across 100 replications for each sample size, N , attributes,
K = 3, and attribute dependence, ρ = 0

Logit Probit

Delta Dirac Delta Dirac Restricted SLCM

N �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂

500 0.09 0.03 0.09 0.04 0.09 0.04 0.10 0.04 0.14 0.08 0.10 0.04
1000 0.08 0.04 0.08 0.04 0.09 0.04 0.09 0.05 0.14 0.09 0.09 0.04
2000 0.07 0.03 0.08 0.04 0.09 0.05 0.09 0.04 0.13 0.08 0.09 0.05

correlation according to Chiu et al. (2009), we define a B and Q matrix with J = 21 items and
K = 3 attributes that exhibits the desired disjunctive behavior under ρ = 0.

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.84 1.68 0 0 0 0 0 0
−0.84 1.68 0 0 0 0 0 0
−0.84 1.68 0 0 0 0 0 0
−0.84 0 1.68 0 0 0 0 0
−0.84 0 1.68 0 0 0 0 0
−0.84 0 1.68 0 0 0 0 0
−0.84 0 0 0 1.68 0 0 0
−0.84 0 0 0 1.68 0 0 0
−0.84 0 0 0 1.68 0 0 0
−0.84 1.68 1.68 −1.68 0 0 0 0
−0.84 1.68 1.68 −1.68 0 0 0 0
−0.84 1.68 1.68 −1.68 0 0 0 0
−0.84 1.68 1.68 −1.68 0 0 0 0
−0.84 1.68 0 0 1.68 −1.68 0 0
−0.84 1.68 0 0 1.68 −1.68 0 0
−0.84 1.68 0 0 1.68 −1.68 0 0
−0.84 1.68 0 0 1.68 −1.68 0 0
−0.84 0 1.68 0 1.68 0 −1.68 0
−0.84 0 1.68 0 1.68 0 −1.68 0
−0.84 0 1.68 0 1.68 0 −1.68 0
−0.84 0 1.68 0 1.68 0 −1.68 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
1 0 0
1 0 0
1 0 0
0 1 1
0 1 1
0 1 1
0 1 1
1 0 1
1 0 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0
1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E1)

Found in Table 16 are the average MAD entries for � matrix. Within Table 15, we present the
element-wise recovery rate (RR) for the Q matrix and � matrix under different sample sizes
as defined by Eqs. 41 and 42. As the number of subjects increases, there is improved recovery
of elements in � marked by lower MAD values. Most notably, the recovery rate for probit-
Restricted are lower in the presence of a disjunctive relationship in comparison to the newly
developed methodology and SLCM. Meanwhile, the SLCM method performs on par in terms of
�, Q, π recovery; though, the recovery with respect to � is slightly lower (Table 16). Finally,
Table 17 provides an overview of runtime.
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Table 16.
Summary of exploratory general diagnostic models to estimate a disjunction population under Delta and Dirac augmen-
tations ability to estimate Q and � matrices as measured by element-wise accuracy across sample size, N , attributes,
K = 3, and attribute dependence, ρ = 0

Logit Probit

Delta Dirac Delta Dirac

N Q � Q � Q � Q �

500 0.92 0.88 0.88 0.83 0.90 0.86 0.84 0.80
1000 0.91 0.89 0.86 0.82 0.90 0.87 0.82 0.79
2000 0.95 0.92 0.86 0.80 0.86 0.84 0.86 0.80

Table 16.
continued

Probit
Restricted SLCM

N Q Q �

500 0.79 0.89 0.81
1000 0.79 0.89 0.81
2000 0.80 0.88 0.81

The column for � matrix is omitted for the Restricted model as the method only estimates the Q matrix.

Table 17.
Summary of the average run time (in minutes) to estimate a disjunction population using exploratorymodels across sample
size, n, with K = 3 attributes, and an attribute dependence ρ = 0

Logit Probit
N Delta Dirac Delta Dirac Restricted SLCM

500 1.8 1.7 2.5 2.4 1.9 1.9
1000 2.4 2.3 4.5 4.4 3.5 3.6
2000 3.6 3.7 8.5 8.3 7.0 8.2

Appendix F: Additional Estimation Details on the SPM-LS Application

Due to space limitations within the main manuscript, readers may be interested in understanding
the standard deviation of the element-wise estimates for the B matrix. Inside of Table 18, we
provide the element-wise standard deviation.Most of the active standard deviations are small with
the exception of two elements β4,6 and β5,6. In these cases, the standard deviations are around
0.7 which is comparable in magnitude to the size of the actual coefficient. The corresponding
elements of � convey the probability the coefficients are active to be around 0.6.
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Table 18.
Summary of element-wise standard deviation of B for the SPM-LS data with n = 499 using the probit-delta exploratory
general diagnostic model variant

B
Items 000 001 010 011 100 101 110 111

1 0.16 0.20 0.11 0.10 0.09 0.10 0.11 0.12
2 0.17 0.30 0.15 0.17 0.28 0.55 0.19 0.42
3 0.20 0.30 0.10 0.23 0.07 0.26 0.08 0.19
4 0.25 0.43 0.32 0.28 0.57 0.56 0.74 0.55
5 0.26 0.38 0.29 0.22 0.61 0.58 0.76 0.58
6 0.24 0.34 0.26 0.41 0.42 0.51 0.15 0.30
7 0.19 0.25 0.49 0.54 0.34 0.25 0.25 0.31
8 0.29 0.32 0.47 0.41 0.44 0.47 0.27 0.42
9 0.18 0.23 0.22 0.36 0.16 0.17 0.12 0.22
10 0.35 0.38 0.21 0.34 0.50 0.56 0.31 0.46
11 0.15 0.06 0.10 0.08 0.09 0.19 0.11 0.27
12 0.14 0.06 0.16 0.09 0.13 0.09 0.29 0.17
π 0.02 0.03 0.01 0.04 0.02 0.05 0.02 0.03

A chain of length of 100,000 was run with a burn-in of 20,000.

Appendix G: Impact of Larger Attribute Dependence on Parameter Recovery

This subsection includes extended Monte Carlo simulation results regarding parameter recovery
for cases with larger values for the attribute correlation, ρ. We examined attribute dependency
when ρ = 0.3, 0.4, 0.5. Table 19 reports information about recovery of � and π for the various
methods, Table 20 reports details concerning the recovery of Q and �, and Table 21 reports the
average run time of the algorithms in minutes. Overall, the results from the extended simulation
provide evidence that the methods, which use an over-parameterized Dirichlet prior for attribute
correlations, are accurate for larger attribute correlations. Note that the use of an over-specified
model for attribute dependence does lead to slightly larger MADs for � and π and smaller
recovery rates for Q and � as ρ increases. Furthermore, note that parameter recovery improves
as N increases.
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Table 19.
Summary of exploratory general diagnostic models under Delta and Dirac augmentations ability to estimate � and π
measured by the average mean absolute deviation (MAD) across 100 replications for each sample size, N , attributes, K ,
and attribute dependence, ρ

Logit Probit

Delta Dirac Delta Dirac Restricted SLCM

N K J ρ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂ �̂ π̂

500 2 12 0.3 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02
0.4 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02
0.5 0.04 0.02 0.04 0.02 0.04 0.02 0.05 0.02 0.04 0.02 0.04 0.02

500 3 20 0.3 0.06 0.02 0.05 0.02 0.06 0.03 0.05 0.02 0.05 0.02 0.05 0.02
0.4 0.06 0.03 0.05 0.02 0.07 0.03 0.06 0.02 0.05 0.02 0.05 0.02
0.5 0.08 0.04 0.06 0.03 0.09 0.06 0.07 0.03 0.05 0.02 0.05 0.02

500 4 20 0.3 0.07 0.02 0.06 0.02 0.07 0.02 0.06 0.02 0.06 0.02 0.07 0.02
0.4 0.08 0.02 0.06 0.02 0.07 0.02 0.07 0.02 0.07 0.02 0.08 0.02
0.5 0.08 0.03 0.07 0.02 0.08 0.03 0.08 0.02 0.07 0.02 0.08 0.03

500 5 30 0.3 0.11 0.02 0.09 0.02 0.10 0.02 0.09 0.02 0.10 0.02 0.11 0.03
0.4 0.11 0.03 0.09 0.02 0.11 0.02 0.09 0.02 0.10 0.02 0.12 0.03
0.5 0.11 0.03 0.10 0.02 0.11 0.03 0.10 0.02 0.10 0.03 0.12 0.03

1000 2 12 0.3 0.03 0.02 0.03 0.01 0.03 0.02 0.03 0.01 0.03 0.02 0.03 0.01
0.4 0.03 0.02 0.03 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
0.5 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02

1000 3 20 0.3 0.05 0.03 0.04 0.02 0.06 0.03 0.04 0.02 0.04 0.02 0.04 0.02
0.4 0.07 0.04 0.05 0.02 0.07 0.05 0.05 0.03 0.04 0.02 0.05 0.03
0.5 0.08 0.06 0.06 0.03 0.09 0.06 0.06 0.04 0.04 0.01 0.06 0.04

1000 4 20 0.3 0.05 0.02 0.04 0.01 0.06 0.02 0.04 0.01 0.05 0.01 0.05 0.02
0.4 0.06 0.02 0.05 0.01 0.06 0.02 0.05 0.02 0.05 0.02 0.06 0.02
0.5 0.07 0.03 0.06 0.02 0.08 0.03 0.07 0.03 0.05 0.02 0.07 0.03

1000 5 30 0.3 0.09 0.02 0.06 0.01 0.08 0.02 0.06 0.01 0.08 0.02 0.08 0.02
0.4 0.09 0.02 0.06 0.01 0.09 0.02 0.07 0.01 0.08 0.02 0.10 0.02
0.5 0.09 0.02 0.07 0.01 0.09 0.02 0.08 0.02 0.08 0.02 0.10 0.02

2000 2 12 0.3 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
0.4 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02
0.5 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.03

2000 3 20 0.3 0.05 0.02 0.04 0.02 0.06 0.03 0.04 0.02 0.03 0.01 0.05 0.03
0.4 0.07 0.04 0.05 0.03 0.08 0.05 0.06 0.04 0.03 0.01 0.06 0.04
0.5 0.09 0.06 0.07 0.05 0.10 0.08 0.07 0.05 0.03 0.01 0.08 0.07

2000 4 20 0.3 0.05 0.02 0.04 0.02 0.05 0.02 0.05 0.02 0.04 0.01 0.05 0.02
0.4 0.07 0.03 0.05 0.03 0.08 0.03 0.06 0.03 0.04 0.01 0.07 0.03
0.5 0.09 0.04 0.07 0.03 0.10 0.04 0.08 0.04 0.05 0.01 0.08 0.04

2000 5 30 0.3 0.07 0.01 0.05 0.01 0.07 0.02 0.06 0.02 0.06 0.01 0.08 0.02
0.4 0.08 0.02 0.07 0.02 0.08 0.02 0.07 0.02 0.07 0.01 0.09 0.02
0.5 0.09 0.02 0.09 0.02 0.12 0.03 0.10 0.03 0.07 0.02 0.10 0.03
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Table 20.
Summary of exploratory general diagnostic models under Delta and Dirac augmentations ability to estimate Q and �
matrices as measured by element-wise accuracy across sample size, N, attributes, K, and high attribute dependence, ρ

Logit Probit

Delta Dirac Delta Dirac Restricted SLCM

N K J ρ Q � Q � Q � Q � Q Q �

500 2 12 0.3 0.95 0.79 0.90 0.71 0.94 0.77 0.87 0.69 0.99 0.99 0.91
0.4 0.95 0.78 0.88 0.70 0.93 0.77 0.85 0.67 0.99 0.99 0.91
0.5 0.94 0.77 0.87 0.68 0.92 0.76 0.85 0.65 0.99 0.99 0.90

500 3 20 0.3 0.95 0.86 0.97 0.87 0.95 0.85 0.96 0.86 0.94 0.96 0.82
0.4 0.94 0.84 0.95 0.84 0.93 0.82 0.95 0.83 0.94 0.95 0.82
0.5 0.91 0.81 0.94 0.80 0.90 0.76 0.92 0.76 0.93 0.95 0.82

500 4 20 0.3 0.92 0.90 0.93 0.90 0.92 0.90 0.93 0.90 0.92 0.92 0.84
0.4 0.91 0.90 0.93 0.90 0.91 0.90 0.92 0.89 0.91 0.90 0.83
0.5 0.91 0.90 0.92 0.89 0.90 0.89 0.91 0.89 0.91 0.90 0.83

500 5 30 0.3 0.84 0.93 0.87 0.93 0.85 0.93 0.87 0.93 0.85 0.78 0.86
0.4 0.83 0.92 0.86 0.93 0.84 0.93 0.85 0.93 0.84 0.78 0.86
0.5 0.82 0.92 0.83 0.93 0.82 0.92 0.83 0.93 0.83 0.77 0.86

1000 2 12 0.3 0.98 0.82 0.94 0.76 0.98 0.81 0.92 0.74 1.00 1.00 0.91
0.4 0.98 0.82 0.94 0.76 0.97 0.81 0.92 0.74 1.00 1.00 0.91
0.5 0.98 0.81 0.93 0.75 0.97 0.80 0.91 0.73 0.99 0.99 0.91

1000 3 20 0.3 0.96 0.86 0.97 0.89 0.95 0.85 0.97 0.89 0.97 0.98 0.83
0.4 0.93 0.83 0.96 0.86 0.93 0.83 0.93 0.82 0.96 0.96 0.82
0.5 0.91 0.80 0.94 0.81 0.89 0.77 0.91 0.75 0.96 0.92 0.81

1000 4 20 0.3 0.93 0.90 0.94 0.91 0.93 0.90 0.94 0.90 0.93 0.95 0.84
0.4 0.92 0.90 0.94 0.90 0.92 0.90 0.94 0.90 0.93 0.93 0.84
0.5 0.92 0.90 0.94 0.90 0.91 0.89 0.92 0.88 0.92 0.91 0.84

1000 5 30 0.3 0.90 0.94 0.93 0.95 0.90 0.94 0.93 0.95 0.89 0.86 0.87
0.4 0.89 0.94 0.92 0.94 0.89 0.94 0.91 0.94 0.88 0.84 0.86
0.5 0.88 0.93 0.90 0.94 0.87 0.93 0.89 0.94 0.87 0.83 0.86

2000 2 12 0.3 0.99 0.90 0.97 0.82 0.99 0.89 0.96 0.81 1.00 1.00 0.92
0.4 0.99 0.87 0.96 0.80 0.99 0.86 0.95 0.79 1.00 0.99 0.91
0.5 0.99 0.84 0.96 0.79 0.99 0.83 0.95 0.78 1.00 0.97 0.89

2000 3 20 0.3 0.96 0.86 0.97 0.88 0.95 0.84 0.96 0.87 0.98 0.94 0.81
0.4 0.93 0.81 0.95 0.86 0.92 0.80 0.92 0.81 0.98 0.91 0.80
0.5 0.90 0.78 0.91 0.78 0.88 0.75 0.90 0.76 0.98 0.87 0.79

2000 4 20 0.3 0.93 0.90 0.95 0.91 0.93 0.90 0.94 0.90 0.93 0.94 0.84
0.4 0.91 0.89 0.95 0.90 0.91 0.89 0.94 0.90 0.93 0.90 0.83
0.5 0.89 0.89 0.92 0.89 0.89 0.88 0.92 0.88 0.93 0.89 0.84

2000 5 30 0.3 0.92 0.94 0.95 0.95 0.93 0.94 0.93 0.94 0.91 0.87 0.86
0.4 0.91 0.94 0.92 0.94 0.91 0.94 0.91 0.94 0.91 0.85 0.86
0.5 0.90 0.94 0.89 0.93 0.88 0.93 0.88 0.93 0.90 0.83 0.86
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Table 21.
Summary of the average run time (in minutes) to estimate the exploratory models across sample size, n, the number of
attributes, K , and high attribute dependence, ρ

Logit Probit
N K J ρ Delta Dirac Delta Dirac Restricted SLCM

500 2 12 0.3 0.6 0.6 0.9 0.9 1.0 0.9
0.4 0.5 0.5 1.1 0.9 1.0 0.9
0.5 0.4 0.5 0.9 1.1 0.9 0.9

500 3 20 0.3 1.4 1.7 2.4 2.0 1.8 1.9
0.4 1.4 1.7 2.0 1.9 2.2 1.8
0.5 1.7 1.7 2.4 1.9 1.8 1.9

500 4 20 0.3 2.7 3.2 3.7 2.8 2.7 2.8
0.4 2.7 2.6 3.0 2.8 2.7 2.8
0.5 2.7 2.6 3.7 3.5 2.7 2.7

500 5 30 0.3 12.3 10.9 10.0 9.5 7.6 8.0
0.4 12.3 9.4 9.8 9.5 7.5 8.0
0.5 12.2 9.4 11.3 8.6 7.6 8.0

1000 2 12 0.3 0.8 0.8 2.0 1.7 1.6 1.7
0.4 0.7 0.7 1.7 2.0 1.7 1.6
0.5 0.6 0.7 1.7 1.7 2.0 1.7

1000 3 20 0.3 2.3 2.2 3.5 3.5 3.4 3.6
0.4 1.9 2.2 4.3 3.5 4.2 3.3
0.5 2.3 1.9 3.6 4.2 4.2 3.6

1000 4 20 0.3 4.3 3.5 5.1 5.0 4.9 5.1
0.4 3.7 3.4 6.4 5.2 4.9 5.0
0.5 4.4 3.5 5.1 5.1 4.9 5.0

1000 5 30 0.3 12.8 13.6 17.4 12.7 15.3 13.2
0.4 15.1 13.6 14.4 12.9 15.3 12.8
0.5 15.2 13.6 15.1 12.8 15.3 12.8

2000 2 12 0.3 1.1 1.1 3.9 3.4 3.4 3.4
0.4 1.1 1.3 3.3 3.3 3.2 3.4
0.5 1.1 1.3 3.3 3.3 3.2 3.2

2000 3 20 0.3 2.9 3.4 8.1 6.7 6.8 7.1
0.4 3.4 2.9 6.7 6.7 8.0 6.5
0.5 3.4 2.9 8.1 6.8 7.0 7.0

2000 4 20 0.3 6.3 6.1 9.7 9.4 9.2 9.7
0.4 6.4 6.1 9.8 9.7 9.3 9.7
0.5 6.4 5.1 9.4 9.3 9.2 9.7

2000 5 30 0.3 17.6 19.2 29.5 27.6 27.4 23.5
0.4 17.6 19.3 29.5 23.4 27.5 22.6
0.5 20.7 16.6 29.5 23.0 23.3 23.2
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