3268

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

A Visual Comparison of Silent Error Propagation

Zhimin Li

, Harshitha Menon, Kathryn Mohror, Member, IEEE, Shusen Liu
Peer-Timo Bremer™, Member, IEEE, and Valerio Pascucci

, Luanzheng Guo™,
, Member, IEEE

Abstract—High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and
complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process
increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will
experience a random bit-flip error that corrupts a program’s output also increases, which is often recognized as silent data corruption.
Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC
application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption
is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC
researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application’s
error propagation to study a program’s resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple
interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between
error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation
visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or

amplified by program execution.

Index Terms—~Fault tolerance boundary, information visualization, graph visualization, error propagation, silent data corruption

1 INTRODUCTION

IGH-PERFORMANCE computation (HPC) systems are criti-
Hcal for advancing science. The demand for higher com-
putation speed and larger data processing will increase the
scale of such systems in the near future. However, this scale
will make the systems vulnerable to different types of errors.
One of the most dangerous errors is the soft error [1], which is
caused by device noise, low voltage, or cosmic radiation. A
soft error is a temporal error that affects computation for only
a short period of time, causes a random bit-flip event during
a program’s computation, and introduces error into the
application’s computation. Such an event is often recognized
as silent data corruption (SDC), in which a program’s execu-
tion is corrupted and generates an incorrect computation
result without notification. Recently, this computation

e Zhimin Li and Valerio Pascucci are with the Scientific Computing and
Imaging Institute, University of Utah, Salt Lake City, UT 84112 USA.
E-mail: {zhimin, pascucci)@sci.utah.edu.

e Harshitha Menon, Kathryn Mohror, Shusen Liu, and Peer-Timo Bremer
are with Lawrence Livermore National Laboratory, Livermore, CA 94550-
9234 USA. E-mail: {gopalakrishn1, mohrorl, liud2, bremer5j@IInl.gov.

o Luanzheng Guo is with Pacific Northwest National Laboratory, Richland,
WA 99354 USA. E-mail: lenny.guo@pnnl.gov.

Manuscript received 21 November 2021; revised 2 December 2022; accepted 9
December 2022. Date of publication 20 December 2022; date of current version
26 June 2024.

This work was supported in part by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Award DE-
S5C0014098 and Lawrence Livermore National Laboratory, U.S. Department
of Energy, under Contract DE-AC52-07NA27344 (LLNL-JRNL-843184).
(Corresponding author: Zhimin Li.)

Recommended for acceptance by C. Garth.

This article has supplementary downloadable material available at https://doi.
0rg/10.1109/TVCG.2022.3230636, provided by the authors.

Digital Object Identifier no. 10.1109/TVCG.2022.3230636

concern has attracted the attention of the HPC community [2],
[3], [4] and industry [5]".

Understanding the influence of silent data corruption on
HPC programs is critical for designing efficient solutions to
improve the resiliency of these programs. However, analyz-
ing SDC can be a difficult task because of the number of var-
iables that can be corrupted. The classical solution [6], [7] to
study a program’s resiliency to SDC is through fault-injec-
tion experiments, in which a tool injects an error (e.g., flips a
single bit of a variable) during an application’s execution
and observes the impact of the error on the program’s out-
put. One drawback of this approach is that obtaining a full
resiliency profile of an application can require a large
amount of computation resources [8], and it costs too much
time to be practical. Therefore, some researchers have tried
to study the resiliency of a program through error propaga-
tion [9], [10].

Previously, researchers [11], [12] have demonstrated that
using error propagation can significantly reduce the number
of fault injection experiments to understand a program’s
resiliency. Compared with the classical solution, error propa-
gation analysis is able cover more computation components
in a single fault injection experiment. Furthermore, under-
standing the propagation behavior of the errors that result in
SDC or are mitigated during computation can provide valu-
able information for reasoning about the vulnerability of
computation units and designing efficient protection or
recovery mechanisms (e.g., which checkpoint the HPC appli-
cation will roll back for recovering once an error is detected).
However, most works [13], [14], [15] only design solutions to
detect SDC and improve a program’s resiliency with a

1. The Universe is Hostile to Computers https://www.youtube.
com/watch?v=AaZ RStOKP8&ab channel=Veritasium

1077-2626 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

certain heuristic without exploring and understanding these
complex error propagation behaviors.

Currently, understanding the error propagation process
of a program is still a challenging task. A program’s error
propagation process often involves a large amount of inter-
mediate variables. Observing error propagation [16] through
these variables is tedious and often misses critical informa-
tion. Meanwhile, how these variables influence each other
and lead to different corruption outcomes can be too com-
plex to understand. For example, why does one error corrup-
tion lead to error explosion during program computation but
another is mitigated? Does an error corrupt the same variable
of a program but called by program at a different time may
share the same propagation behavior?

To address the above challenges, we design an interactive
visualization system to help HPC researchers understand a
program’s error propagation and study its resiliency. The
system engages a program’s fault tolerance boundary [11],
which gives the maximum error that each variable can toler-
ate without causing silent data corruption. Coordinating
with the boundary visualization, it displays a summarized
resiliency profile of a program and an overview of error
propagation similarity to jointly study a program’s resil-
iency. For a specific error corruption experiment, we propose
a nonmonotonic inference method to locate error mitigation
and amplification during propagation and design a graph
visualization to highlight the error propagation process. We
summarize our main contributions as follows:

e A new interactive visualization system to study HPC
applications’ resiliency to silent error corruption and
propagation (Section 6).

e A novel visual design that reveals the complex spa-
tial and temporal correlation between different error
propagation (Section 6.1).

e An adjustable graph design that is integrated with a
nonmonotonic error analysis model to study error
propagation and identify error mitigation and ampli-
fication (Section 5, Section 6.5).

o Three use cases and two examples of domain feed-
back to evaluate the usability of the visualization sys-
tem (Section 7).

2 RELATED WORK

In this section, we discuss the relevant literature and com-
pare our work with current state-of-the art studies in SDC
analysis.

2.1 Fault Tolerance Analysis

The HPC community has been dedicated to addressing the
challenge of silent data corruption for decades [13], [17],
[18], [19]. The classical approach for studying the problem
is to use a fault injection campaign, which repeatedly tests
an application over different locations to get a resiliency sta-
tistical profile [20]. This approach requires numerous fault
injection tests to achieve full coverage of an application, and
that translates to a large amount of computation resources
and time. Many researchers [8], [21] have tried to reduce the
number of fault injection experiments by using methods
such as instruction clustering or selecting representative

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at O

3269

instructions to approximate a program’s resiliency. This
approach can significantly reduce the number of tests but
sacrifice the accuracy of the resiliency measurement.

An alternative approach uses static and dynamic program
analysis to predict a dynamic instruction’s resiliency [22],
[23]. The approach needs only a few fault injection experi-
ments with the data dependency graph and control flow
graph to approximate the program’s resiliency. However,
achieving high accuracy of the approximation result using
this approach is difficult. Researchers have also tried to
design algorithms to auto-detect the occurrence of an SDC
event during program computation [14]. Berrocal et al. [15]
designed an auto-detection method based on temporal infor-
mation. Huang and Jacob [24] developed an error-correcting
matrix multiplication by adding an additional column and
row in the matrix for verification. Di et al. [25] suggested a
solution to auto-detect the occurrence of soft error based on
the assumption that nearby computation elements have a
natural correlation with each other and their value ranges
are within a certain threshold. These approaches are often
application-specific and cannot apply to general programs.
Meanwhile, all the above approaches try to reduce or detect
the SDC but few try to understand the error propagation
after an error corruption. To fill this gap, we have designed
an interactive visualization to reveal the dynamic of the inner
state behavior of error-corrupted programs and how the pro-
gram’s variables interact with each other. Such information
improves domain experts’ understanding of an error-cor-
rupted program and helps them design efficient solutions
for better detection and protection.

2.2 Performance Visualization
Due to the complexity and large scale of the data log of an
HPC computation, many visualization techniques have
been proposed to debug and improve the performance of
HPC systems. Guo et al. [26] designed the LaVALSE visuali-
zation system to analyze the state log information of the
supercomputer Mira. LaVALSE is targeted to help HPC
researchers debug the potential source of a failure event in
supercomputers but is not specific to a silent data corrup-
tion event. Wongsuphasawat et al. [27] designed a visuali-
zation to show the data flow of the neural network
computation model, which helps machine learning engi-
neers understand and debug the neural network model. Xie
et al. [28] proposed stack2vec, a context-based approach to
learning a vector representation for a call stack of an HPC
application, and used an active learning approach to iden-
tify the potential anomalous function executions. Significant
efforts in this field have contributed to visualizing the call
paths and computation logs of large parallel systems. For
more detail, refer to the survey by Isaacs et al. [29].
However, none of the above work has focused on the
impact of silent data corruption in the HPC system specifi-
cally. In previous research, Li et al. [16] designed a visualiza-
tion system to present the impact of every bit-flip error in a
single view and visualize the propagation of the error with-
out variable-dependency information. Observing the error
propagation is time consuming and tedious for domain
experts. They need to spend a great deal of time exploring

the data and figurin% out which fault injection experiments
:23:11 UTC from IEEE Xplore. Restrictions apply.

3270

izaton

XTI roan Tee View < | Propagaton

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Anaiis Mode

Dataset
Analysis Option

conjugate /'

[Campaign]
® Yes O No
® Yes O No

Non-monotonic
_SDC Ratio

Fancion Call Flow.

@4

Time Step

— —woe (1) mam (D% %)
T L i
® Non-monotonic 20 .: - {"‘ v.:
0 e F &
Sias
Ea ‘ 5 5 2 "ﬁ'
5 é]
\ > s ®ecaiin®
170 175 180 185 190 195 200 205 210 215 220 225 230 201 « -~ » 5
FL10—— os - a 0 e, -
P ST T -
= PHCr crcrfY e { bl 02 =
g N o1 ke] b 1 1 H 0 El| a0 £ -
S 100 200 300 00 500 600 700 o -40 -30 -20 1—_159\[[;]0 10 20

(3) Display Options
Mcas [00 vskedflf sovs s O SDCratio O corruption frequency
Predict Outcome Summary Corruption Frequency
ot o aom e
.)
Progrm Function Varisble Line N 5 % & oo % hm B A bbb ®
\ — 10
() TR E—
\ —/ N :\1 " 677| 25 AP | 7~ 15.057435950750866
]) - JONNNR. s n aO) cramisosis
= 1%
\ S — i 680 25 Ap -8.08955588111613
\ \ J . 681 25 Ap -4.8727624596118355
A~ % i
. Y »
N \‘ % _ 683| 25 Ap -31.397654019198193
i os =
: ST AT U, e s
98 686 25 Ap -109.06070046627218
us— _
u 687| 25 Ap -124.467787714771
- IO | e s e . s O] | Aol e
S —] [B
o 00,) 690| 25 Ap 32.3253570671511

Fig. 1. View (1) on the left shows a fault tolerance boundary visualization of the conjugate gradient algorithm. An execution interval is selected in the
boundary view, and the related bit-flip outcome over each bit in the interval is displayed in (3). The error propagation that starts from the selected
interval is highlighted in view (2), and similar error propagations are clustered together. Views (4), (5), and (6) on the right coordinate with each other
to demonstrate a nonmonotonic error propagation case in which a large error is injected in the middle of the program but mitigated.

are informative and which potential components can miti-
gate or amplify error. In comparison, our system coordinates
multiple views to compare error propagations from different
experiments. The system helps domain experts track down
useful fault injection experiments and provides a nonmono-
tonic error propagation model to locate the computation
units that have the properties to mitigate or amplify error.

2.3 Graph Visual Encoding

Visualizing a program’s data dependency graph is critical
for studying its error propagation. However, visualizing the
dynamic of an error propagating through the data depen-
dency graph intuitively is still an on-going challenge. Two
classical approaches to visualize graph data are the node-
link diagram and adjacency matrices. The authors of previ-
ous studies [30], [31] have compared user performance on
these visual encodings. Their studies have found that the
node-link diagram is better to visualize small-scale and
sparse data. The adjacency matrix outperforms the node-
link diagram with a dense graph having more than 20 nodes
in a few basic user tasks. However, the adjacency matrix
demonstrates poor performance with path tracking, which
makes tracking the path between nodes in the graph difficult.
Different innovative graph encodings have been proposed to
address the scale challenge of visualizing large-scale gene
graph data, such as BioFabric [32] and Quilts [33]. More visual
encodings for graph data can be found in the surveys in [34],
[35]. In comparison, we have designed a hybrid graph visual
encoding based on the adjacency matrix and node-link dia-

gram to visualize a program’s dependency gragh. It keeps the
Authorized licensed use limited to: The University of

semantics of a program’s execution and improves the path
tracking difficulty in the adjacency matrix visualization.

2.4 Dimension Reduction and Time Series Analysis
Each error propagation dataset records the error in each
variable during program execution, and error propagation
data can be considered as a multivariate time series. Time
series comparison and visualization [36], [37] is an impor-
tant topic. Van Wijk and Van Selow [38] proposed a cluster
and calendar-based visualization that analyzes univariate
time series data. Ruta et al. [39] designed a visualization
tool that enables users to explore large time series data col-
lections from a global scale to a single observation. Anna
et al. [40] compared the line and color encoding of a time
series visualization for a similarity search task. Because of
the limited screen pixels, visualizing a whole time series
with millions of time steps is difficult. Many algorithms [41],
[42], [43] have proposed to reduce the amount of informa-
tion for visualization. To visualize the fault tolerance
boundary and an overview of error propagation detail, we
use the a dimension reduction technique M4 [44], which
uses four selected points of a selected subinterval of the
time series data to present the selected interval with only a
minor loss of information.

Instead of comparing multiple pairs of time series one by
one, we perform the dimension reduction approach that
projects all error propagations into a 2D view and coordi-
nates it with the temporal and spatial information to ana-
lyze these error propagations. The common dimension
reduction techniques include PCA [45] and MDS [46], which

reserve the maximum variance or distance information.

tah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

3271

“,:/'\ fault injection tool

fault injection
campaign

where, when, and what is the scale
of a bit error injected

data processing &

each fault
injection
experiment’s
error propagation
records

~HPC Application

T
1
A Understand a programs’ resiliency, perform nonmonotonic & monotonic analysis, compare error propagation :

Fig. 2. A workflow of the designed visualization to analyze an HPC application’s resiliency. Domain experts use the fault injection tool to perform a
fault injection campaign, and collect fault injection data and error propagation data. The design system processes the data and visualizes the results.
At the end, domain experts can use the visualization result to perform a program’s resiliency analysis and explore efficient application protection

mechanisms.

More techniques can be found in the survey [47]. In this
work, we focus on the dimension reduction techniques that
preserve the neighbor information, such as T-SNE [48] and
UMAP [49].

3 BACKGROUND

Before getting into the detail of the system, we first intro-
duce the necessary background knowledge and key termi-
nologies used in our study. The workflow overview of this
study is summarized in Fig. 2.

3.1 Soft Errors

Soft errors are temporal errors that affect a program’s com-
putation for only a short period of time. Soft errors are
caused by cosmic radiation and device noise, and their
occurrence often leads to bit-flip errors in storage, data
transmission, and compute units. These bit-flip errors can
bypass the hardware protection mechanism, further affect-
ing the application state, and finally corrupting the applica-
tion outcome. Soft errors can occur in an unpredictable
manner and influence an application in many different
ways. One of the ways in which they can affect a program is
by corrupting pointer and control variables. This kind of
corruption often shows up as a program crash, which is
easy to detect and can be addressed by rolling back the
application to a previous checkpoint state. Soft errors might
be masked by the hardware or the application, in which
case they do not affect the program’s output. The most chal-
lenging case is when the soft error occurs in a data variable
without obvious symptoms and the error propagates to the
final output.

To clarify concepts, Fig. 3 shows a bit-flip error corrupt-
ing variable d and changing its value without warning.
Under this condition, the program continues to execute and
produce an incorrect final output pi. To verify whether the
final output is acceptable despite the errors introduced, we
use a SDC threshold (e.g., 0.00001), which is often defined by
domain experts. If the error in the final output is within the
threshold, we consider that the error is masked. However, if
the final output error is greater than the threshold, then it is
considered as SDC. We summarize the three different out-
comes of soft errors below.

e Silent Data Corruption (SDC): The fault injected appli-
cation execution produces a different outcome from
the outcome of fault free runs. Further, the execution
does not pass the result verification phase.

e Masked: The application execution outcome is found
to be the same as the outcome of fault free runs. It
can be different, but the fault injected application
execution passes the result verification phase.

e Interruption (Crash): The fault-injected application
execution does not make it to the end, but is inter-
rupted in the middle of the execution.

3.2 Fault Model

In our analysis, we consider soft errors that occur in registers,
logic circuits, and data transmission. We do not consider soft
errors found in system memory components, such as on-
chip cache, because those memory architectures are typically
protected by error correcting code (ECC) or parity bit from
the architecture level. These assumptions are common in the
current fault tolerance analysis literature [50], [51], [52], [53].

— double getPI(){ Tracking Spot
double pi = 0;
Bit int n = 4; .
Flip int a = 0; Dependency
- T double d = 1.0; -
...... i
| for(uint i = 0; i < 1000; i++){
1 a =2 % (i ¥2) -4;
: pi =pi+a*n/d;
——=» d=4d + 2.0;
— }
return pi;
}
------------------------- Tracking Error Propagation +----------------------moomoooo
error
12 3 4 5 6 7 8 9 ... 97 98 99 time
apidapidapid ... a pi d

Fig. 3. A simple program for calculating Pi to demonstrate the process of
fault injection and error propagation tracking. The fault injection experi-
ment flips a bit of variable d of function getP/ and tracks the function’s
three critical data variables a, pi, and d to understand how errors propa-
gate through a program’s computation. The bottom plot displays a fault
injection experiment’s error in variables a, pi, and d over time.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

3272
=== Fault-tolerance boundary @ Masked @ SDC
error °
PS [] [] ®
(&) (¢ e
@ o) (6]
172 3 4 5 6 7 8 9 10 11 12 13 14 15

a pid api dapidapidapid time

Fig. 4. A synthetic fault tolerance boundary of the getP! function. A fault
injection experiment with injected error above the fault tolerance bound-
ary will be predicted as SDC, and below will be predicted as Masked.

We use the most common single bit-flip error model [8], [52],
[54], [55] instead of the multi-bit-flip error model as multi
bit-flips are highly unlikely in HPC systems. In a single bit-
flip model, a fault injection tool introduces a single-bit flip in
a variable. In our study, we perform the fault-injection exper-
iment on variables at the source-code level to provide
insights and analysis, which is the most suitable abstraction
for designing resilience techniques.

An example of a fault injection is shown in Fig. 3, where a
single bit of variable d is flipped, which results in an error
that gets propagated to subsequent computations. The bot-
tom line plot displays the error in each tracked variable
over time. The initial error happens in variable 4, and it
propagates to pi and d in the next iteration and continues
until the end of the execution. In this case, the error propaga-
tion data can be considered as multidimensional time series
data with 99 elements.

In this study, we conduct a fault injection campaign to
collect the error propagation information of a program. A
fault injection campaign is a collection of fault injection runs
where a fault is injected at a randomly chosen location,
called the fault injection site, for each run. An exhaustive fault
injection campaign is a collection of fault injection experi-
ments that flip every bit of a program’s fault injection sites.
In the case of Fig. 3, each of three variables over different
times can be considered as a fault injection site. The exhaus-
tive fault injection campaign will test all three variables
over the entire execution.

We use the SDC ratio to quantify the overall resiliency of
the program. The SDC ratio is defined as “, in which .
is the number of times fault injection runs lead to SDC, and
N is the total number fault injection runs. The value range
of SDC ratio is between 1 and 0. The value close to zero
means robust, and close to one vulnerable.

3.3 Data Dependency Graph

An error that corrupts a variable of a computation will
propagate to subsequent computations that depend on the
variable. In this study, we also track the dependency of criti-
cal data variables of a program to study error propagation.
For example, in Fig. 3, we track the value of three data varia-
bles in the getPI function to understand the error propaga-
tion process. For example, variable a2 does not depend on
variables pi and d, and an error that corrupts either variable
will not affect variable a in the subsequent computation.
However, pi depends on itself, 4, and d. An error corrupting
any of them will propagate to pi, which leads to final output
corruption. A program’s dynamic data dependency graph
is extracted by using an LLVM tool during the program

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

execution. Extracting an accurate dynamic program depen-
dency graph is not a trivial task. The dependency graph
may be incomplete as it might be input-dependent; there-
fore, the domain expert will still need to be involved in the
analysis process to fix the dependency graph if some depen-
dencies are found to be missing.

3.4 Fault Tolerance Boundary

Previous work [11] has defined the fault tolerance boundary
of a program as a set that consists of the maximum error
that can be tolerated at each program variable. The formal
definition is given in Definition 1. It is guaranteed that a
threshold, §, exists for each variable of a program. The worst
case is that § = 0, and the variable is sensitive to any level of
perturbation (e.g., a pointer variable).

Definition 1. For a variable of a program at a certain time, a
maximum amount of perturbation § € R exists, such that
with Ve € (=8, 8] error in the variable, the program still gener-
ates an acceptable output. The fault tolerance boundary is a set
that has the § value of each fault injection site of a program.

Fig. 4 displays a synthetic fault tolerance boundary of the
getPI function. The red and green dots are a set of fault injec-
tion experiments from a fault injection campaign. The
injected error above the threshold will be predicted as SDC
and below as Masked. Researchers can use the fault toler-
ance boundary to study a program’s resiliency to bit-flip
errors. The threshold value in each fault injection site
reveals its SDC ratio. For example, a double type variable
has 64 bits, and if the value of the variable is known, then
all possible 64 bit flip errors can also be calculated through
the floating point representation.

Calculating a program’s fault tolerance boundary is
expensive. The brute-force approach needs to test a pro-
gram’s unit many times to find the fault tolerance threshold
value. Considering the number of units that need to be
tested in a program, calculating a program’s fault tolerance
boundary is difficult. In this work, we use an error propaga-
tion method (EPM) [11] to approximate a program’s fault tol-
erance boundary. EMP specifically selects the fault injection
experiments with the masked outcome to approximate a
program’s fault tolerance boundary. For selected experi-
ments, the method tracks the maximum error that propa-
gates through each variable. Once the algorithm goes
through all available experiments, it will output the tracked
maximum value in each variable as the fault tolerance
threshold value. This approach can save up to several
orders of magnitude samples to understand a program’s
resiliency, and the information revealed by the boundary
can be used to directly calculate the SDC ratio of each com-
ponent of a program.

4 DOMAIN TASK

It is a common challenge in the HPC domain that having a
complete testing covering all units of a program will require
a significant amount of computation resources. For exam-
ple, an exhaustive fault injection campaign, which covers all
critical data variables, on the conjugate gradient algorithm
with a 200x200 input matrix will take a week on a 16G mem-
ory and Intel i7 machine. Instead, domain experts tell us

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

that it is typical for them to test only 1% or less of locations
and generate a statistical summary resiliency profile based
on that. However, the locations that are not covered by these
tests will not have any resiliency information. Under this
condition, any resiliency feedback on these regions is
valuable.

Meanwhile, the resiliency requirement of applications
changes in different applications. For example, the finance
application has a much higher standard for a program’s
resiliency. An application often shows more resilience if
domain experts are able to accept a small flaw in the final
outcome. On the opposite side, if the final output requires
high output quality, then such an application needs more
protection. Revealing the resiliency profile update with dif-
ferent error thresholds will help domain experts to properly
consider SDC’s impact in different application scenarios
and to design a customized strategy to improve a program’s
resiliency.

The other key driving force of this new platform is the
difficulty of targeting informative computation units that
mitigate or amplify error. Meanwhile, comparing the simi-
larity and difference of error propagation can improve
domain experts’ understanding of a program’s resiliency
and give insight into a program’s corrupted behaviors. Dur-
ing our separate discussions with three domain experts, we
found out that none of them could definitively answer how
to identify an experiment that has valuable propagation
information. They suggested that instead of analyzing fault
injection experiments one by one, having a visualization
system that highlights important propagation information
can save them considerable time. One potential solution is
to compare the similarity of error propagations starting
from different computation units and execution times. Also,
a program execution involves a large number of intermedi-
ate variables; therefore, quickly locating a set of them that
can mitigate or amplify error can speed up the error propa-
gation analysis process. Overall, we summarized the follow-
ing four domain tasks. These tasks are aimed at providing a
better understanding of a program’s resiliency and improv-
ing it by modifying the code, adding protection, or helping
design a better protection strategy.

Task 1: Studying a program’s resiliency with its fault tolerance
boundary. Understanding the fault tolerance boundary that
is approximated by these fault injection experiments can
provide further understanding of a program’s resiliency in
addition to the overall statistical summary result. Display-
ing the relationship between the fault tolerance boundary
and the fault tolerance requirement can give more informa-
tion to improve a program’s resiliency.

Task 2: Revealing the temporal and spatial correlation between
error propagations. When and where an error is injected will
lead to different error corruption behaviors of a program.
This information reveals the diverse corrupted behaviors of
a program.

Task 3: Locating computation units that mitigate or amplify
error for error propagation analysis. Identifying which fault
injection experiment has useful information for the domain
experiment to understand the mitigation and the explosion
behavior is not a trivial task. Showing the propagation pro-
cess of these examples will provide useful insights for

domain experts to design better protection strategies.
Authorized licensed use limited to:

3273

Task 4: Correlating source code and analysis result. The data-
driven analysis often ends up with a source code’s modifica-
tion to improve a program’s resiliency (e.g., instruction
duplication). The domain experts often want to go back and
forth between the source code and the analysis result to
understand the resiliency profile and design strategies that
improve the current program’s resiliency.

5 MONOTONIC AND NONMONOTONIC
CORRUPTION ANALYSIS

Our regular discussions with domain experts revealed that
they are generally interested in analyzing two categories of
error propagation processes: error mitigation and error
amplification. Error mitigation during propagation indi-
cates that the program computation can eliminate error and
recover from the error corruption. Learning from the under-
lying mechanism of a program that leads to such a behavior
helps domain experts design robust HPC applications.
Error amplification indicates that the program accelerates
the corruption during execution. Locating the computation
units that amplify the corrupt error and protecting them can
improve a program’s resiliency. The challenge in perform-
ing such an analysis comes from the complex computation
logic of a computation algorithm and the large amount of
tracking variables that need to be examined. For example,
when and where error is mitigated or amplified is difficult
to answer just by observing error propagation without addi-
tional assistance. In this section, we describe a method that
models the error propagation process to help locate compu-
tation units that mitigate or amplify errors and speeds up
the propagation analysis.

Before presenting a solution, we discuss an assumption
called error monotonicity. This assumption can be formulated
as more errors often cause a worse outcome. For the fault toler-
ance analysis of a program, this assumption can be
rephrased as more errors in a program have a high proba-
bility of leading to a worse computation outcome. The
monotonic reaction to error leads to more interpretable pro-
gram behavior after corruption, since the result always gets
worse. Previous works have used the error monotonicity
design protection [56] to improve neural network models’
resiliency or reduce the number of experiments to under-
stand a program’s resiliency [11]. Here we integrate it into
our system to speed up the propagation analysis. To explain
the monotonic and nonmonotonic analysis in detail, let us
look at two fault injection experiments with different
amounts of error injection and compare their propagation
processes. In Fig. 5, two fault injection experiments are com-
pared for three scenarios.

In Fig. 5, case (1) has errors injected into the same loca-
tion. For case (1) el < e2, errors are injected into component
Al and propagate to components B1, C1, D1. If the result is
(a), the experiment with e2 error leads to SDC, and the one
with the el error generates a masked outcome. This case fol-
lows the monotonic assumption that a location with a large
error will cause a worse outcome. If the result is (b), a larger
error el leads to a masked outcome, and a smaller error e2
results in a worse outcome, which is SDC. This case breaks
the monotonic assumption, and the follow-up propagation

he University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

3274
Mitigation or Amplification
g) el : 2 Propagation Region (a) (b)
rror e i N -~
| |
=) (a1) (1) D1) || (S
1 _/ U [H : : |
| I
Error e2 : : | 1 |
(— @ e (c1) D1 | :‘.
I___-/______!_________I . A 4
2)el<e2
(@et<e Propagation Error e1 (a) (b)
Errore e
@ (81—~ c1) D1 .
&y |
1
1
O OOy X
P A
Error e2
(3)e1>e2
Propagation Error e1 (a) (b)
Error e /—\ - -—/——\- ———————— 1
(— @ B1 —(c1 D1 f
AN, ,
1
1
O O O Osy X |
o ___—_] 1
Error e2

Fig. 5. Enumerating the relationships between a masked experiment and
an SDC experiment to infer a program’s mitigation and amplification
behavior. This enumeration is based on an error monotonic assumption
that a large error causes a worse outcome. In the above comparison,
case (1) with outcome (b), case (2) with outcome (b), and case (3) with
outcome (a) break the monotonic assumption. The experiments that
break the monotonic assumption are interesting cases to understand a
program’s mitigation and amplification phenomena.

has mitigated/amplified events when they propagate
through B1, C1, and D1.

Whereas case (1) has errors injected at the same location,
case (2) has errors injected at different locations. Here, we
have two experiments. In one experiment, the error e is
injected into component Al, and the error propagates to
component Bl, which causes el error. The experiment’s
final outcome is Masked. The other experiment injects error
into B1 with error e2 and the final outcome is SDC. If the
result is (a), it follows the monotonic assumption as el <
e2, and a small error leads to a masked outcome, and a
larger error leads to an SDC outcome. However, if the result
is (b), Al is corrupted with error e, and Bl has error el,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

which leads to an SDC final outcome. In comparison, the
other experiment has an error in Bl with e2, and Al is error
free but the final experiment’s final outcome is masked,
which breaks the monotonic assumption. The follow-up
propagation process has mitigated and amplified events
when errors propagate through C1, D1.

Case (3) also has errors injected into different locations.
Case (3) is similar to case (2), but the initial injected error is
different where el > e2. If the final result is (a). This experi-
ment breaks the monotonic assumption, in which a larger
error leads to a Masked outcome and a smaller error leads
to an SDC outcome. On the other hand, if the final result is
(b), then the experiment follows the monotonic assumption.

6 SYSTEM DESIGN

The designed system coordinates six views to address tasks
discussed in the previous section: 1) fault tolerance bound-
ary view, 2) bit-flip summary view, 3) propagation similar-
ity view, 4) propagation tracking view, 5) data log view,
and 6) source code view.

The source code (Fig. 1 (5)) and data log view (Fig. 1 (6))
have a relatively simple and straightforward design, as they
mostly complement other views for inspecting the correla-
tion to the source code or tracking log (Task 4). Here, we
focus the discussion on the design of the other four views.

6.1 Overview, Interaction, and Tasks

Before getting into each individual view, we discuss the
workflow overview of the visualization system, which is
briefly summarized in Fig. 6. Users can explore the fault tol-
erance boundary view and bit-flip summary view to under-
stand a program’s resiliency (Fig. 6 (I'])). It helps to answer
questions such as whether a computation variable appear-
ing during a different time of program computation has a
similar resiliency profile or whether the variables called by
the program nearby during the execution share a similar
resiliency.

Meanwhile, users can coordinate the fault tolerance
boundary view, bit-flip summary view, and propagation
similarity view to study propagations” spatial and temporal
correlations (Fig. 6 (I')). In Fig. 6, a user selects a subset of
experiments in the propagation similarity view (Fig. 6a),

SDC threstld Sample Density
1 — 0

[
o T

(w20 300 00 500
197 K ’ p
54 ;

»

-40 -30 -20 -10 0 10 20

Masked SDC)
@]

TSNE1

Fig. 6. A subset of samples, which share a similar propagation pattern, are selected in the propagation similarity summary view (a). The correspond-

ing fault injection regions of these error propagation experiments are highlighted in the fault tolerance boundary (b) and indicate when these errors

are injected. Meanwhile, the bit-flip summary view shows where these error are injected and which bits are flipped to cause these propagations.
Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

3275

TABLE 1
Composition of Visual Components to Address Each Domain Task

Visual Components T1
\Tasks

T2 T3 T4

Fault Tolerance v
Boundary View

Bit-Flip Summary v
View

Propagation

Similarity Summary

View

Error Propagation

Tracking View

Source Code View

Data Log View

v v

v v
v v

which shares similar propagation patterns. The fault toler-
ance boundary view highlights the corresponding temporal
regions (Fig. 6b) in which errors are injected. The bit-flip
summary view clearly shows which components these
errors are injected into and which bit is flipped (Fig. 6c).
Such a design can help answer questions such as whether
the error injected into the same variable will have similar
propagation, whether similar propagation experiments start
from the same computation units, and whether error propa-
gations starting from the nearby instructions during the
computation are similar. The similar selection operation can
be performed in the fault tolerance boundary view, in which
users can select a sub-time interval, and the relative error
propagation experiments will update in the propagation
view and bit-flip summary view. The same operation can
also be performed in the bit-flip summary view, in which
users can select a component, and the relative temporal
information and propagation similarity will be presented in
the boundary view and propagation view.

After the exploration, users can select a nonmonotonic
sample from the fault tolerance boundary view or an interest-
ing error propagation experiment from the propagation simi-
larity view to examine the detail error propagation (Fig. 6

). The propagation process can be explored in the error
propagation tracking view. The last piece of the task is the
source code and data correlation (Fig. 6 (I'), which is used to
support the previous task. Overall, we summarize how each
task is addressed by corresponding designs in Table 1.

6.2 Fault Tolerance Boundary View

In fault tolerance analysis, domain experts often start the
analysis with an overview of a program’s resiliency. The fault
tolerance boundary view (Fig. 7) is designed as a temporal
data visualization that presents domain experts an overview
of a program’s resiliency and highlights nonmonotonic error
corruptions. The temporal data visualization component con-
sists of two timeline panels to present a program’s fault toler-
ance boundary (Task 1). The bottom panel (Fig. 7 ©) shows
the entire boundary (blue color) and SDC ratio (purple color),
whereas the top panel shows a zoomed view (Fig. 7 ®) of the
selected time duration in the global timeline. Users can brush
the bottom panel and select a time interval that will be
zoomed in for detail analysis. It reveals a program’s resil-
iency over execution, and indicates execution intervals that

are robust or vulnerable. This feedback can help domain
experts examine these intervals and perform further analysis.

In the zoomed boundary visualization (Fig. 7 ®), we use
red circles to highlight the fault injection experiments, in
which nonmonotonic corruption propagation occurs. Each
highlighted sample is an error propagation case that breaks
the monotonic assumption in section 5. The location of a sam-
ple indicates where an error corruption happens and the
value scale of a corruption error. Each sample is useful for
understanding the error amplification or mitigation during
error propagation (Task 3) based on the discussion in sec-
tion 5. Because the highlighted samples in the bottom bound-
ary view (Fig. 7 (©) can be dense and overlap with each other,
we use a heat-map with the color bar (Fig. 7 @) to display the
nonmonotonic samples density in different regions.

Scaling is a common challenge in the fault tolerance analy-
sis, and the scale capability in the current visualization is par-
ticularly important when analyzing the error boundary of a
program with large amounts of intermediate variables. Our
two-layer boundary visualization design can increase scal-
ability and flexibility, i.e., it enables users to examine the
global trend as well as to investigate localized concerns. For
the bottom boundary and SDC ratio visualization, we apply
the dimensionality reduction technique [44] to reduce the
number of elements of the fault tolerance boundary.

An important task that the domain experts are interested
in is to adjust the SDC threshold of a program and under-
stand how the SDC ratio and fault tolerance boundary
change. Interactively adjusting the SDC threshold (Fig. 7a)
will update a program’s fault tolerance boundary and SDC
ratio, and provide domain experts a comprehensive under-
standing of a program’s resiliency under different fault

SDC threshold
| 0.0700

T®

.

j_ﬂ“—r
270 275 280 285 290 295 300 305 310 315 320

1o, wuilist | BRI) -

100 200 300 400 500 600
‘Time Step

e SDC Ratio

Sample Density
@x I 20

© Non-monotonic

— FTB

|

o wo o

(o130) xoaay

Fig. 7. A fault tolerance boundary visualization presents an overview of a
program’s fault tolerance boundary and SDC ratio, and highlights non-
monotonic error corruption cases.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

3276
P T T T T T ae
| SDC —— SDC Ratio
== T T T T T T T T - e FTB
|| 1 fed4 1e3 1e2 1ed 1et0 fer! 1es2 1erd Aetd 1
11000001 100000
| =
I 210 2]
| = I w L
TSI I 04 &
l '5 -7 ‘\\ - ‘\\ /" ‘\\ '02 ;_\.’;U
"2 gl (B~ (Rl) (R.O 100 =
: S V) S8 N 2000 S 30 400 T VU ©
10
|
|l 54,777
oA , L dly ril.
0oNe__-7 100 200 300 400

Fig. 8. Users can manually adjust a program’s SDC threshold and check
the SDC ratio and the fault tolerance boundary to locate spots that are
robust or vulnerable to soft errors. With the highest threshold value
(10000), region B still has SDC output, which indicates that these
regions are vulnerable to soft error. With the lowest SDC threshold
(0.00001), the A regions that have the zero SDC ratio are robust to soft
error.

tolerance requirements. As Fig. 8 shows, a user can adjust
the threshold to the maximum and minimum values to
locate the most robust or most vulnerable code region. The
threshold is set to the maximum (e.g., 100000) to tolerate a
large error, but the location (B) still generates an SDC out-
come that indicates these locations are vulnerable to a bit-
flip corruption. Once a domain expert adjusts the threshold
to the minimum value (e.g., 0.00001), but region (A) does
not generate any SDC outcome indicating that it is robust to
the bit flip corruption. A bit flip in these regions will not
cause the final output quality to change significantly. Both
cases A and B are interesting regions to understand how an
error is amplified or mitigated by the program. An error
propagation starting from region A helps clarify why an
error is mitigated by the program since most bit-flips here
will not lead to an SDC outcome. An error propagation
starting from region B helps domain experts understand
why an error will explode since a bit flip corrupting this
region can lead to a large final error.

6.3 Propagation Similarity View

Each fault injection experiment has its relevant error propa-
gation, and studying the similarity of error propagation is
valuable to understand a program’s behavior after error cor-
ruption. The propagation similarity view is designed to
accomplish such a purpose. A propagation similarity visu-
alization (Fig. 9) is a 2D t-SNE dimension reduction visuali-
zation that displays corruption experiments’ propagation
similarities (Task 2) in a single view. t-SNE is a dimension
reduction algorithm [48] that projects high-dimensional
data into a two-dimensional space, and the resulting projec-
tion has the feature that a similar propagation experiment
will be projected to nearby locations. With the design visu-
alization, domain experts can analyze whether an error that
corrupts different variables of a program will affect a pro-
gram’s computation in similar or different ways. Users can
also brush a rectangle to select these samples’ properties. A
point cluster in the visualization indicates that these error
propagation experiments share the same propagation pat-
tern. In Fig. 9, the largest point cluster is the fault injection
experiments in which a bit-flip error corrupts a low

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Masked SDC

1 @ o
*

Masked SDC
24 0

rﬁG

204 -

TANSL
THANSL
o

20 . 26

404 . . B
-40 30 -20 -10 0 40 -30 20 -10 0 10 20
TSNEL TSNEL

10 20

Fig. 9. A propagation summary view displays a 2D t-SNE projection, in
which similar error corruption propagation experiments are nearby. In
this dataset, the error propagation experiments that lead to SDC out-
come are different from the majority of the experiments that end up with
Masked outcome. A density heat-map is an option to address the data-
scaling problem.

mantissa bit of the variable, and does not cause significant
error propagation during computation.

Scaling is also a concern in this visualization since the
number of fault injection experiments can reach to millions
or billions of experiments. To accommodate this concern,
the system provides a heat-map option to display the sam-
ple density with different corruption outcomes. The number
of variables in each fault injection experiment can also affect
the scalability of this view. It takes a very long time for t-
SNE algorithm to converge if the number of intermediate
variables is thousands, and the number of total experiments
is millions or more (e.g., fast Fourier transform in Section
7.1.1). To address this problem, the system performs princi-
pal component analysis to reduce the number of dimensions
of each propagation experiment to hundreds of dimensions,
before performing the t-SNE algorithm to generate the
visualization.

6.4 Bit-Flip Summary View

The bit-flip summary view displays current available bit-flip
experiments in a single view under different levels of granu-
larities. It is a tree-based visualization that presents a statisti-
cal summary of a bit-flip’s impact in a program. The view
contains two components: a visual tree view that displays
the hierarchical structure of a program and a statistical fault
injection summary view of each program component. The
tree hierarchy (Fig. 11 @) is organized based on the natural
hierarchical structure of a program, which is a program, a
program’s function, a program’s variable, and a specific line.
Any of these component can be selected for detail analysis in
the fault tolerance boundary view and propagation similar-
ity view.

Each statistical fault injection summary view is a leaf of
the tree (Fig. 11 ®) that displays the fault injection summary
of a program component. It contains two views. The left
view is an IEEE floating-point base stacked bar chart that
shows the ratio of different outcomes or the number of fault
injection experiments over each bit (Task 1, 2), and the right
view is a summary of the corruption experiments’ outcome
ratio. Above the tree visualization, a visualization (Fault
Injection Summary) displays a summary of all current
selected fault injection experiments” outcome ratio. Domain

experts can selective&r collaﬁnse a tree node that aﬁgregates
TC from |IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

Er&vzﬂlﬂt)
o)
[] 50 100 150 200 250 300
Time Step
----------------- Legend oeeeeeeeeeeeny
Masked Propagation i
func C
= SDC Propagation ;
0 error 428 |
fun 4
— (&) nethline of code
. ° Variable Dependency
Function Call Flow
—
func B

7@
@ o ®

Fig. 10. The time series visualization (@) displays an overview of error in
different time steps during propagation. A graph diagram (®) displays a
program’s function call flow and data dependency graph of each func-
tion. Each function is visualized as an independent matrix-link visualiza-
tion and is connected with the function call flow. Each matrix-link
visualization (func_C) can also be collapsed to reduce the number of ele-
ments presented in the visualization.

its child nodes’ data and presents a summary view of the
tree node (e.g., function). Meanwhile, the collapse operation
also helps mitigate the scaling challenge if the diagnosed
application has a large amount of variables or functions.

6.5 Error Propagation Tracking View

After exploration, users need to choose a fault injection
experiment to study its detail error propagation in the error
propagation tracking view. This view is a graph-based visu-
alization that shows the dynamic of how an error corruption
propagates through a program’s critical data elements (Task
3) during execution. The view consists of two components:
an overview time series visualization of the error of the dif-
ferent data variables at different time steps ((Fig. 10 @); and
a graph visualization of a program’s functions and their
data dependency and call flow ((Fig. 10 ®);. These two com-
ponents coordinate with each other to show the corrupted
state of a program during error propagation.

The critical unit of the visualization is a graph visual
encoding (matrix-link) (Fig. 10 func_B) that visualizes the
main elements of a function computation. It encodes the
execution order, the line number of critical data variables,
and the data dependency. A matrix-link is a hybrid of a
node-link diagram and adjacency matrix in which the diag-
onal rectangle represents the function line, and the circle
between each rectangle indicates variable dependency. Red

@ B Crash B Masked Il soc @ -

Fault Injection Summary

Function Variable Line

bmodd |

627

daxpy

D @
880

h
i
I
1
1
1
1
I
I
1
I

alpha 629 .
I
I
I
1
i)
I
I
I
I
i
I
1
]

3277

indicates the error scale in a specific line. The gray line rep-
resents the data dependency. Blue represents the function
call and in this case func_B line 48 calls func_A.

Previous works [30], [31] have performed user studies to
compare the pros and cons between the adjacency matrix
and the node-link diagram for graph visualization. A poten-
tial drawback of using the adjacency matrix is that it per-
forms poorly at the path tracking tasks. To mitigate the
difficulty of path tracking, the matrix-link diagram adds an
additional orthogonal link path between two connected
nodes to emphasize the dependency information. The other
challenge of using an adjacency matrix to visualize the graph
data is the order of nodes. Different orders reveal different
data patterns [57] of a graph. However, in our context, the
execution order is the default order to visualize a programs’
dependency graph. Following the execution order is impor-
tant to understand the meaning of the code and analyze the
corruption propagation through it. Meanwhile, this default
execution order is helpful for domain experts to identify the
loop of the code, as the latter execution depends on the previ-
ous execution, which means a loop exists.

Because of the sparsity of a program’s data depen-
dency graph, we have also considered of using a node-
link diagram to visualize this data dependency graph.
However, the standard force-directed graph layout does
not consider the execution order in the layout and will
cause difficulties in tracking the error propagation. Our
designed matrix-link visual encoding follows the execu-
tion order of a program, and is simple and easily imple-
mented. We also perform a pilot user study to compare
the performance among, the node-link diagram, adja-
cency matrix, and matrix-link visualization. The result
can be found in supplementary material 1, available
online. To mitigate the scaling challenge with a large
amount of tracking elements, the visualization also pro-
vides a collapse operation over each matrix-link (Fig. 10
func_C) graph to reduce the number of displaying ele-
ments. Users also can adjust each function graph’s loca-
tion after the initial matrix layout to better customize
graph view.

7 EVALUATION

In this section, we discuss three use cases and domain
experts” feedback to demonstrate the usability of our design
system. We use the conjugate gradient and fast Fourier
transform benchmarks to evaluate the usability of the

7777 Predict Outcome Summary 7T TSDCRatio T :

SDC Ratio

Fig. 11. A bit summary view is constructed as a tree structure @ to display a program’s components in a hierarchical manner, and the view ® displays
a statistical summary of each component’s fault injection outcome. The visualization gives domain experts a clear understanding of the impact of

each bit of a variable.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

3278

SDC threshold
(b) (c)

@ [oooo1
|

s SDC Ratio Sample Density

1 .

03 12 i tew ter 1z e tees iffs| == FIB

® Non-monotonic

"I RIT cecoe TIE

|‘ lll “I “ ‘ " ‘ | H ”

1)

(o

rAure)

ER-R-

(©

(0130y) 0.1y

10,000

11 N
0 2,000 4,000 6,000 8,000
Time Step

ocwus

(a)

(o170y) J0.1y

0o nncimn
0 2,000 4,000 6.000 8.000 10,000 12,000
Time Step

Fig. 12. FFT application shows more resiliency in the later computation
than in an earlier computation under different SDC threshold configura-
tions. Even with a large error tolerance, the later computation can still
produce an SDC outcome with an error corruption.

system. The conjugate gradient has 50 thousand experi-
ments and the total size of dataset is 1.5 Gigabyte. The fast
Fourier transform benchmark has 1.1 million experiments
and the total size of the dataset is around 200Gigabyte.

7.1 Use Cases

These three use cases show how domain experts use the
design system to understand a program’s resiliency, reveal
complex correlation patterns between error propagations,
and demonstrate how the visualization system helps
domain experts understand the amplification and mitiga-
tion behavior during the error propagation process. These
use cases are performed in an interactive remote meeting
environment and constructed with the guidance of domain
experts. In the following discussion, we also highlight how
each use case addresses domain tasks proposed in Section 5.

7.1.1 Exploring a Program’s Resiliency Through

Fault Tolerance Boundary

We start our evaluation by analyzing a fast Fourier trans-
form’s resiliency with the fault tolerance boundary (Task 1).
Fig. 12 shows a fast Fourier transform’s fault tolerance
boundary and SDC ratio with three SDC thresholds. From
the visualization, we can tell that the early execution of the
fast Fourier transform has a high SDC ratio, and the later
execution has a low SDC ratio. The later execution is much
less sensitive to the SDC threshold update than the early
execution. These observations indicate that the early com-
putation is much more vulnerable to the soft error than the
later execution.

The similarity of error propagation that starts from differ-
ent regions is displayed in Fig. 13. The error propagation
experiments that start from regions (a) and (b) are more com-
plex than an error propagation starting from region (c). The
result also implies that detecting all error corruptions starting
at the beginning of the computation can be more difficult than
error corruptions that occur in region (c). From the visualiza-
tion, we also find that nonmonotonic examples (Task 3) do not
exist in the boundary view. The phenomenon indicates that
all fault injection experiments in the FFT benchmark follow
the propagation pattern (1)-(a), (2)-(a) and (3)-(b) in Fig. 5, and
the error corrupts data variables in FFT following the mono-
tonic assumption that more errors in the variable will cause a
worse computation outcome.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

eo9
o s

oney HAs

T i

=

(01301) 20445

2,000 4,000 6,000 8,000 10.000 12,000 14.000 16.00
Time Step

Masked SDC Masked SDC Masked SDC

(a) [[(b) ® ® | (c) ® []

", A". g
20 v Q' gl ,?

T g
£,
-10 ﬁ -10 *

20 30 "2 o 6 10 20 30
TSNEL

g
:

0 6 10 5
TSNE! 20 -10 rgymm 20 30

Fig. 13. Comparing the SDC cases where an error corruption propa-
gates from (a) and (b) with a diverse propagation pattern. An error cor-
rupting the later execution has a similar and coherent propagation
pattern.

7.1.2 Understanding a Program’s Corruption
Behavior by Comparing Error Propagation

Comparing a program’s error propagation (Task 2) is impor-
tant to understand a program’s behavior after error corrup-
tion. Fig. 14 presents overviews of the error propagation
similarity of the conjugate gradient (Fig. 14 left) and fast
Fourier transform’s (Fig. 14 right). Both propagation over-
views share a similar pattern: a large of amount fault injec-
tion experiments cluster together and the rest of the error
propagation experiments are distributed into multiple clus-
ters. By selecting the largest cluster in each view, the bit-flip
summary view gives a detailed summary of the relevant bits
that are corrupted, leading to these propagations. The visual-
ization reveals that most of these experiments’ error propa-
gation is caused by a bit flip corrupting the low bit, and these
experiments do not cause significant error propagation. This
observation also implies that a bit flip in the low bit often
does not lead to the SDC outcome, and error propagation
from these experiments provides only limited value to
understand a program’s behavior after error corruption.

Furthermore, we choose the conjugate gradient and
examine its nearby executions” error propagation similarity.
Fig. 15 compares the propagation similarity of error propa-
gation over two regions (Figs. 15) andb). Previous discus-
sions have already clarified that error propagations in
region (c) are caused by a bit flip in the low bit and do not
cause significant error propagation. The visualization shows

W Crash M Maked i SDC

| 5% W Masked M soc

Predict Outcome Summary Predict Outcome Summary

2000,
o o

60 55 % 45 40 35 30 25 20 15 10 5

Masked f SDC \
__b74

° ol

TANSL
€
1
TANSL

404 e K 20
4030 20 A0 6 10 20 |
L TSNEL Y,

20 10 0 10 20 30
TSNE1

Fig. 14. The conjugate gradient (left view) and FFT (right view) in the
visualization shows that a large amount of fault injection experiments
that happen in the low bit of a program do not cause significant error
propagation, and they share a similar error propagation pattern.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

por— N1 f. i 1% T — 21
0 el e L2 S
s 190 | 200 300 L_____ 400_______ 500_“ 600 001 003

404 &
240 30 20 -fo 0 10 20
TSNEL

Fig. 15. An error corrupts nearby executions that share a similar error
propagation pattern.

that an error propagation starting from the nearby execution
in (a) has a similar error propagation pattern. The same pat-
tern can also be applied to an error propagation starting
from (b).

The above visualization indicates an interesting observa-
tion that error propagations collected from different bench-
marks contain numerous experiments that are corrupted by
a bit-flip error and will not cause significant error propaga-
tion. These experiments include error corruption not only in
low mantissa bits but also in some of the exponent bits. Fur-
thermore, many error propagations share a similar propaga-
tion pattern, and they are redundant to understand a
program’s corruption behavior.

7.1.8 Locating Nonmonotonic Propagation Examples
and Studying Mitigation/Amplification
Propagation

In the last use case, we demonstrate that a fault injection

experiment injects a large error into a computation, but the

error is mitigated during error propagation (Task 3). We
explain how the error mitigation happens by coordinating

multiple views in the visualization tool (Task 4).

SDC threshold — SDC Ratio

3279

In Fig. 16, we select a fault injection experiment from
location (B). It this experiment, a large error corrupts the
program computation, but the error is mitigated after the
error is propagated for a while. As we can see from Fig. 16
(2), the error propagation summary chart shows that a large
error is injected around 200 time steps and causes a large
vibration in the subsequent execution. These errors are miti-
gated after 281 time steps. The orange color in the figure
highlights the location where the error starts to be miti-
gated. From the data log (5), we can see that alpha is set to
0. To simplify the dependency graph, we collapse the func-
tion graphs, which are not used in this current analysis. The
dependency graph (4) on the right shows that line 91 is
used by line 92 and line 93, both of which call the daxpby
function. Previous executions do not depend on line 92, but
the result of line 93 variable r is used by the previous execu-
tion lines 80, 83, and 85. In the source code (3) (Task 4),
daxpby(-alpha, Ap, 1, r) is a function that performs the
operation r = —alpha * Ar 4+ r. The variable alpha is zero,
which makes the above equation end as = r, meaning the
large error causes the program to not do anything in the cur-
rent iteration. The large error makes the algorithm automat-
ically skip a serious error-corrupted result of the current
iteration and automatically roll back to the state of the previ-
ous iteration.

One of the surprising insights we obtained using our
visualization analysis framework is that for some cases of
soft errors, the conjugate gradient algorithm is able to auto-
matically fix the corrupted computation by discarding the
current iteration result and rolling back to the previous iter-
ation, recomputing it, and generating a correct output. The
mitigation mechanism we learned from this use case may
be applied to other iterative applications to improve their
computation resiliency.

7.2 Domain Feedback

We also interviewed two domain experts individually to
collect their feedback regarding the final version of the sys-
tem. They are also actively involved in the design of the tool
and provide valuable feedback for the early iteration of the

Sample Density
— 0

| — FIB

|uo7oo
ey ey e

® Non-monotonic

Non monotonic Case

180 185 190 195 200 205 210

e (PR A T T

36— 600 700
“Time Step

Propagation l
Tl Overview W (2)
: |
-100
0 200 28

400
‘Time Step

_____________________________________ e

20 57 sum| - NaN.

st 57 wm| (D) NaN
252] 90 pap.0] Nan/|
283 91 alpha 0
284| 40 y| 0310609848491 8688
285 40 y| -0.10094050164853408
286| 40 | 0.3903445251414925
287 40 y| -023834089264778946
28| 90| y| oarsiosorssnaizes

37. void daxpby(double a, double* x, double b, double* y) {

int i;
39, for (i=0; 1<N; +i){ (3)

4. yli]=a*x[i] + b *y[i];
3

78, for (K = 1; k <= MAX_ITER & norar > tolerance|
7. if (k=1) {

8. T, b (11 1

81} else{

8. oldrtrans = rtrans;

8. rtrans = dot_r2(r);

8. double beta - rtrans/oldrtrans;

8. daxpby(1, r, beta, p);

8. normr = sqrt(rtrans);

8. matvec(h, p, Ap);
9. p_ap_dot = dot(Ap, p);
91. | alpha - rtrans/p_ap_dot:
92. daxpby(alpha, p, 1, X);
93. daxpby(-alpha, Ap, 1, r);

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#. 1) L

Fig. 16. All locations labeled B have a similar propagation pattern, in which a large error corrupts the computation but the error starts to disappear
after the error propagates for a while. The error starts to disappear after the relative error in variable alpha in line 91 becomes 0, which causes the

computation to discard the current iteration and automatically roll back to the previous iteration’s computation state.
Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

3280

tool. For the final assessment, we go through a few stereo-
typical usage scenarios and identify where and how the tool
can improve domain experts’ daily task of analyzing the
fault tolerance of HPC applications.

The Summary of the First Domain Expert Response. Overall, the
resilience visualization framework lets us see fine-grained
application resilience of not only the whole application and
specific code regions but also individual instructions. The error
propagation probing modules help us identify the cause of
fault masking and propagation events behind SDCs at relevant
locations, and further determine if a protection mechanism is
needed or not at particular locations (such as instruction dupli-
cation for individual instructions). It provides us in-depth
insights for error propagation that are not found in existing
resilience analytical models.

The Summary of the Second Domain Expert Response. With
this tool, we can quickly assess the vulnerable regions and
also look at individual fault injection cases to see how the
error propagated and locations that resulted in the amplifi-
cation of the errors and mitigation of the errors. This visuali-
zation also captures critical features and enables us to
visualize in a compact form how they are related. It clearly
shows that cases that result in SDCs are spatially co-located.
Previously, identifying vulnerable regions of the code was
tedious and error-prone. To obtain detailed information, we
would have to examine a large number of fault injection
runs. With this tool, we are not only able to instantly obtain
an overall resiliency profile of the application, but also to do
so with very few fault injection runs. We plan to use this
information to apply fault detectors at those locations to
detect SDCs. I also anticipate this tool to be useful for other
kinds of error propagation analysis, including errors due to
the loss of precision or approximations.

8 LIMITATION AND FUTURE WORKS

In the HPC domain, researchers select a standard input for
the diagnostic application for resiliency analysis, but a pro-
gram’s resiliency profile can vary with a different input.
The infinite possible inputs of a program with a different
scale (e.g, 8x8 or 100x100 matrix) are a general challenge in
HPC resiliency analysis [22]. Using the fault tolerance
boundary to analyze a program’s resiliency also faces a sim-
ilar problem. In this study, we focused our analysis on
small-scale HPC computation kernels (e.g, conjugate gradi-
ent, FFT). Although the applications run on the HPC system
can be much more complex, their main computation is com-
prised of core kernels similar to the ones studied in this
paper. Therefore, the insights obtained from our study of
representative kernels can be applied to a certain extent in
the context of the larger application and different inputs. In
the HPC community, many researchers [58] have traded
precision for performance. For example, lossy compression
[59] techniques can significantly reduce the amount of data
that needs to be moved and stored in the HPC system by
allowing a small amount of precision loss. Mixed-precision
tuning [60] techniques selectively reduce certain computa-
tion precision to alleviate the memory and energy cost for
performance benefit. Both approaches introduce small
errors in a trade-off for the performance improvement.
However, how to convince researchers to use such

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

techniques for scientific discovery is still a challenge due to
the potential for error corruption propagation. Researchers
do not know what information is corrupted with the intro-
duced error’s propagation and how important this informa-
tion is. Understanding the error propagation of these
techniques and presenting it to domain experts is helpful to
address this challenge. In this study, the fault tolerance
boundary giving the maximum threshold value of each
dynamic instruction can be perturbed individually to assure
a program’s final output correctness. This concept can also
be generalized to numerous dynamic instructions for lossy
compression and pruning tuning, in which errors are intro-
duced in several locations. In this study, the error propaga-
tion to approximate the fault tolerance boundary single
dynamic instruction has shown a promising result. Under-
standing how this approach helps to bound the error in
multiple locations such as lossy compression or precision
tuning is interesting and will be explored in future research.

9 CONCLUSION

In this work, we perform a study of a program’s resiliency
through error propagation and design a visualization sys-
tem to explore the error propagation behavior of a program.
The result of our study reveals that using a small portion of
samples to study a program’s resiliency specific to each bit
of the computation is possible. We demonstrate how our
system can coordinate multiple views to present a pro-
gram’s fault tolerance boundary, a detail bit-flip summary,
and a propagation summary in a united interface. This
design enables domain experts to examine a program'’s
resiliency from multiple perspective and provides valuable
feedback for the domain experts in designing better protec-
tion mechanisms to improve programs’ resiliency. During
the exploration, our visualization revealed interesting
insights, such as many error propagation experiments are
redundant, or an error in these experiments does not lead to
significant error propagation. At the same time, the error
propagation visualization with nonmonotonic analysis
shows that the conjugate gradient algorithm can automati-
cally roll back to the previous iteration to fix the error in the
computation. At the end, we evaluate the performance of
our tool with three use cases and domain experts’ feedback.

REFERENCES

[1] M. Snir et al., “Addressing failures in exascale computing,” Int.
J. High Perform. Comput. Appl., vol. 28, no. 2, pp. 129-173, 2014.

[2] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spectr.,
vol. 53, no. 3, pp. 30-35, 2016.

[3] T. Benacchio et al., “Resilience and fault-tolerance in high-perfor-
mance computing for numerical weather and climate prediction,”
Int.]. High Perform. Comput. Appl., vol. 35, no. 4, pp. 85-311, 2020.

[4] S.S.Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error prob-
lem: An architectural perspective,” in Proc. 11th Int. Symp. High-
Perform. Comput. Architect., 2005, pp. 243-247.

[5] H. D. Dixit et al., “Silent data corruptions at scale,” 2021,
arXiv:2102.11245.

[6] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve,
“Approxilyzer: Towards a systematic framework for instruction-
level approximate computing and its application to hardware
resiliency,” in 2016 49th Annu. IEEEJACM Int. Symp. on Microarchi-
tecture (MICRO). IEEE, 2016, pp. 1-14.

[71 R.Venkatagiri et al., “Gem5-approxilyzer: An open-source tool for
application-level soft error analysis,” in Proc. IEEE/IFIP 49th Annu.
Int. Conf. Dependable Syst. Netw., 2019, pp. 214-221.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

LI ETAL.: VISUAL COMPARISON OF SILENT ERROR PROPAGATION

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: Exploiting application-level fault equivalence to analyze
application resiliency to transient faults,” ACM SIGARCH Comput.
Architect. News, vol. 40, no. 1, pp. 123134, 2012.

S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabi-
listic soft error reliability on the cheap,” ACM SIGARCH Comput.
Architect. News, vol. 38, no. 1, pp. 385-396, 2010.

Q. Lu, G. Li, K. Pattabiraman, M. S. Gupta, and J. A. Rivers,
“Configurable detection of SDC-causing errors in programs,”
ACM Trans. Embedded Comput. Syst., vol. 16, no. 3, pp. 1-25, 2017.
Z. Li, H. Menon, K. Mohror, P.-T. Bremer, Y. Livant, and V. Pas-
cucci, “Understanding a program’s resiliency through error prop-
agation,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2021, pp. 362-373.

S. K. Sastry Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi,
“Ganges: Gang error simulation for hardware resiliency eval-
uation,” ACM SIGARCH Comput. Architect. News, vol. 42, no. 3,
pp- 61-72,2014.

L. Bautista-Gomez and F. Cappello, “Detecting silent data corrup-
tion for extreme-scale MPI applications,” in Proc. 22nd Eur. MPI
Users’ Group Meeting, 2015, pp. 1-10.

P.-L. Guhur, E. Constantinescu, D. Ghosh, T. Peterka, and F. Cap-
pello, “Detection of silent data corruption in adaptive numerical
integration solvers,” in Proc. IEEE Int. Conf. Cluster Comput., 2017,
pp. 592-602.

E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,
“Lightweight silent data corruption detection based on runtime
data analysis for hpc applications,” in Proc. 24th Int. Symp. High-
Perform. Parallel Distrib. Comput., 2015, pp. 275-278.

Z. Li et al., “SpotSDC: Revealing the silent data corruption propa-
gation in high-performance computing systems,” IEEE Trans. Vis.
Comput. Graph., vol. 27, no. 10, pp. 3938-3952, Oct. 2021.

T. C. May and M. H. Woods, “Alpha-particle-induced soft errors
in dynamic memories,” IEEE Trans. Electron Devices, vol. 26, no. 1,
Pp- 2-9, Jan. 1979.

F. Cappello, R. Gupta, S. Dj, E. Constantinescu, T. Peterka, and S.
M. Wild, “Understanding and improving the trust in results of
numerical simulations and scientific data analytics,” in Proc. Eur.
Conf. Parallel Process., 2017, pp. 545-556.

L. Guo, D. Li, and I. Laguna, “Paris: Predicting application resil-
ience using machine learning,” J. Parallel Distrib. Comput., vol. 152,
pp- 111-124, 2021.

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert,
“Statistical fault injection: Quantified error and confidence,” in
Proc. Des., Automat. Test Europe Conf. Exhib., 2009, pp. 502-506.

S. K. S. Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi,
“Ganges: Gang error simulation for hardware resiliency eval-
uation,” in Proc. IEEEJACM 41st Int. Symp. Comput. Architect.,
2014, pp. 61-72.

G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai,
“Modeling soft-error propagation in programs,” in Proc. IEEE/
IFIP 48th Annu. Int. Conf. Dependable Syst. Netw., 2018, pp. 27-38.
A.R. Anwer, G. Li, K. Pattabiraman, M. B. Sullivan, T. Tsai, and S.
K. S. Hari, “GPU-trident: Efficient modeling of error propagation
in GPU programs,” Int. Conf. High Perform. Comput., Netw., Storage
Anal., 2020, pp. 1-15.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance
for matrix operations,” IEEE Trans. Comput., vol. 100, no. 6,
pp- 518-528, Jun. 1984.

S. Dj, E. Berrocal, and F. Cappello, “An efficient silent data corrup-
tion detection method with error-feedback control and even sam-
pling for HPC applications,” in Proc. IEEEJACM 15th Int. Symp.
Cluster, Cloud Grid Comput., 2015, pp. 271-280.

H. Guo, S. Di, R. Gupta, T. Peterka, and F. Cappello, “La VALSE:
Scalable log visualization for fault characterization in super-
computers,” in Proc. Symp. Parallel Graph. Visualization, 2018,
pp- 91-100.

K. Wongsuphasawat et al., “Visualizing dataflow graphs of deep
learning models in tensorflow,” IEEE Trans. Vis. Comput. Graph.,
vol. 24, no. 1, pp. 1-12, Jan. 2018.

C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for
the detection of anomalous call stack trees in high performance
computing applications,” IEEE Trans. Vis. Comput. Graph., vol. 25,
no. 1, pp. 215-224, Jan. 2019.

K. E. Isaacs et al., “State of the art of performance visualization,”
in Proc. Eurograph. Conf. Visualization, 2014, pp. 141-160.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

3281

M. Ghoniem, J.-D. Fekete, and P. Castagliola, “A comparison of
the readability of graphs using node-link and matrix-based repre-
sentations,” in Proc. IEEE Symp. Inf. Visualization, 2004, pp. 17-24.
R. Keller, C. M. Eckert, and P. J. Clarkson, “Matrices or node-link
diagrams: Which visual representation is better for visualising
connectivity models?,” Inf. Visualization, vol. 5, no. 1, pp. 62-76,
2006.

W.].R. Longabaugh, “Combing the hairball with biofabric: A new
approach for visualization of large networks,” BMC Bioinf.,
vol. 13, pp. 275-275, 2012.

B. Watson, D. Brink, T. Lograsso, D. Devajaran, T. Rhyne, and H.
Patel, “Visualizing very large layered graphs with quilts,” Dept.
Comput. Sci., North Carolina State Univ., Raleigh, NC, USA, 2008.
C. Nobre, D. Wootton, L. Harrison, and A. Lex, “Evaluating multi-
variate network visualization techniques using a validated design
and crowdsourcing approach,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., 2020, pp. 1-12.

C. Vehlow, F. Beck, and D. Weiskopf, “Visualizing group struc-
tures in graphs: A survey,” Comput. Graph. Forum, vol. 36,
pp- 201-225, 2017.

T. Siddiqui, P. Luh, Z. Wang, K. Karahalios, and A. Parames-
waran, “ShapeSearch: A flexible and efficient system for shape-
based exploration of trendlines,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2020, pp. 51-65.

T. Rakthanmanon et al., “Searching and mining trillions of time
series subsequences under dynamic time warping,” in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discov. and Data Mining, 2012,
pp- 262-270.

J.J. Van Wijk and E. R. Van Selow, “Cluster and calendar based
visualization of time series data,” in Proc. IEEE Symp. Inf. Visuali-
zation, 1999, pp. 4-9.

N. Ruta, N. Sawada, K. McKeough, M. Behrisch, and J. Beyer, “Sax
navigator: Time series exploration through hierarchical clustering,”
in Proc. IEEE Visualization Conf., 2019, pp. 236-240.

A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos,
“Comparing similarity perception in time series visualizations,”
IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 523-533, Jan. 2019.
U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl, “Faster visual
analytics through pixel-perfect aggregation,” Proc. VLDB Endow-
ment, vol. 7, no. 13, pp. 1705-1708, 2014.

G. Burtini, S. Fazackerley, and R. Lawrence, “Time series com-
pression for adaptive chart generation,” in Proc. IEEE 26th Can.
Conf. Elect. Comput. Eng., 2013, pp. 1-6.

A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R.
Rubinfeld, “Rapid sampling for visualizations with ordering
guarantees,” in Proc. VLDB Endowment Int. Conf. Very Large Data
Bases, vol. 8, no. 5, 2015, Art. no. 521.

U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl, “M4: A visual-
ization-oriented time series data aggregation,” Proc. VLDB Endow.,
vol. 7, no. 10, pp. 797-808, Jun. 2014.

I. T. Jolliffe and J. Cadima, “Principal component analysis: A
review and recent developments,” Philos. Trans. Roy. Soc. A:
Math., Phys. Eng. Sci., vol. 374, no. 2065, 2016, Art. no. 20150202.

A. Buja, D. F. Swayne, M. L. Littman, N. Dean, H. Hofmann, and
L. Chen, “Data visualization with multidimensional scaling,”
J. Comput. Graphical Statist., vol. 17, no. 2, pp. 444-472, 2008.

C. O. S. Sorzano,]J. Vargas, and A. P. Montano, “A survey of
dimensionality reduction techniques,” 2014, arXiv:1403.2877.

L. Van der Maaten and G. Hinton, “Visualizing data using
T-SNE,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579-2605, 2008.

L. Mclnnes,]. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” 2018,
arXiv:1802.03426.

J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware
faults,” in Proc. IEEE[IFIP 44th Annu. Int. Conf. Dependable Syst.
Netw., 2014, pp. 375-382.

J. Calhoun, M. Snir, L. N. Olson, and W. D. Gropp, “Towards a
more complete understanding of SDC propagation,” in Proc. 26th
Int. Symp. High-Perform. Parallel Distrib. Comput., 2017, pp. 131-142.
H. Menon and K. Mohror, “DisCVar: Discovering critical varia-
bles using algorithmic differentiation for transient faults,” ACM
SIGPLAN Notices, vol. 53, no. 1, pp. 195-206, 2018.

L. Guo, D. Lj, I. Laguna, and M. Schulz, “FlipTracker: Understand-
ing natural error resilience in HPC applications,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2018, pp. 94-104.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

3282

[54] 1. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson,
“IPAS: Intelligent protection against silent output corruption in
scientific applications,” in Proc. IEEE/ACM Int. Symp. Code Gener.
Optim., 2016, pp. 227-238.

L. Guo and D. Li, “"MOARD: Modeling application resilience to
transient faults on data objects,” in Proc. Int. Parallel Distrib. Pro-
cess. Symp., 2019, pp. 878-889.

Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector
for deep neural networks through range restriction,” in Proc.
IEEE/IFIP 51st Annu. Int. Conf. Dependable Syst. Netw., 2021, pp. 1-
13.

M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete,
“Matrix reordering methods for table and network visualization,”
in Comput. Graph. Forum, vol. 35, no. 3, 2016, pp. 693-716.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2674-2683, Dec.
2014.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data com-
pression with SZ,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2016, pp. 730-739.

W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalak-
rishnan, and Z. Rakamari¢, “Rigorous floating-point mixed-preci-
sion tuning,” in Proc. 44th ACM SIGPLAN Symp. Princ. Program.
Lang., 2017, pp. 300-315.

[55]

[56]

[57]

[58]

[59]

[60]

Zhimin Li received the BS degree in computer
science and mathematics from the University of
Utah, in 2016. He is currently working toward the
PhD degree with the School of Computing, Uni-
versity of Utah. Zhimin is also a research assis-
tant with the University of Utah’s Scientific
Computing and Imaging Institute. His research
interests include visualization and interpretable
machine learning.

Harshitha Menon received the MS and PhD
degrees from the University of lllinois at
Urbana-Champaign, in 2012 and 2016, respec-
tively. She is a computer scientist with the Cen-
ter for Applied Scientific Computing (CASC),
Lawrence Livermore National Laboratory. She
joined CASC as a postdoctoral research staff,
in 2016. Her research focuses on floating-point
mixed-precision, approximate computing, and
fault tolerance of HPC applications. She was
awarded the ACM/IEEE-CS George Michael
Fellowship, in 2014, the Anita Borg Scholarship, in 2014 and the Sie-
bel Scholarship, in 2012.

Kathryn Mohror (Member, IEEE) is a computer
scientist with the Center for Applied Scientific
Computing (CASC), Lawrence Livermore National
Laboratory (LLNL). She serves as the deputy
director for the Laboratory Directed Research &
Development (LDRD) program, LLNL, lead for the
NNSA Software Technologies Portfolio for the U.S.
Exascale Computing Project (ECP), and as the
ASCR Point of Contact for computer science with
LLNL. Her research on high-end computing sys-
tems is currently focused on /O for extreme scale
systems. He has been working with LLNL since 2010 and is a 2022 fellow
with the Oppenheimer Science and Energy Leadership Program and a
2019 recipient of the DOE Early Career Award.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Shusen Liu received the PhD degree in comput-
ing from the University of Utah, in 2017. He is a
computer scientist with the Center for Applied
Scientific Computing (CASC), Lawrence Liver-
more National Laboratory (LLNL). His research
interests lie primarily in high-dimensional data
visualization and interpretable machine learning.

Luanzheng Guo received the PhD degree in
electrical engineering and computer science from
the University of California-Merced, in 2020. He
is a postdoctoral researcher with the Pacific
Northwest National Laboratory, working with the
HPC Group. His current research focuses on Al-
centric compiler optimization and system runtime
for heterogenous systems. His PhD research
focused on system resilience and reliability in
large-scale parallel HPC systems. His research
on HPC system fault tolerance has been
highlighted by HPCwire in its “What's new in HPC research,” in 2018
and 2021. He is an NSF Trusted Cl fellow of Class 2020.

Peer-Timo Bremer (Member, IEEE) received the
diploma in mathematics and computer science
from Leibniz University, Hannover, Germany, in
2000, and the PhD degree in computer science
from the University of California, Davis, in 2004.
He is a member of technical staff and project
leader with the Center for Applied Scientific Com-
puting (CASC), Lawrence Livermore National
Laboratory (LLNL) and associated director for
research with the Center for Extreme Data Man-
agement, Analysis, and Visualization, University
of Utah.

Valerio Pascucci (Member, IEEE) the Inaugural
John R. Parks Endowed chair of the University of
Utah and the founding director of the Center for
Extreme Data Management Analysis and Visuali-
zation (CEDMAV) of the University of Utah. He is
also a faculty of the Scientific Computing and
Imaging Institute, a professor of the School of
Computing, University of Utah, and a laboratory
fellow, of PNNL and a visiting professor with
KAUST. Before joining the University of Utah, he
was the data analysis group leader of the Center
for Applied Scientific Computing, Lawrence Livermore National Labora-
tory, and an adjunct professor of computer science with the University of
California Davis. His research interests include Big Data management
and analytics, progressive multi-resolution techniques in scientific visual-
ization, discrete topology, geometric compression, computer graphics,
computational geometry, geometric programming, and solid modeling.
He is the coauthor of more than two hundred refereed journal and con-
ference papers and is an associate editor of the IEEE Transactions on
Visualization and Computer Graphics.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 02:23:11 UTC from IEEE Xplore. Restrictions apply.

