
NSDF-Catalog: Lightweight Indexing Service

for Democratizing Data Delivery

Jakob Luettgau

University of Tennessee

Knoxville, TN, USA

jluettga@utk.edu

Christine R. Kirkpatrick

UC San Diego

La Jolla, CA, USA

christine@sdsc.edu

Giorgio Scorzelli and Valerio Pascucci

University of Utah

Salt Lake City, UT, USA

valerio.pascucci@utah.edu

Glenn Tarcea

University of Michigan

Ann Arbor, MI, USA

gtarcea@umich.edu

Michela Taufer

University of Tennessee

Knoxville, TN, USA

taufer@utk.edu

Abstract—Across domains massive amounts of scientific data
are generated. Because of the large volume of information,
data discoverability is a challenge, especially for scientists who
have not generated the data or are from other domains. As
part of the NSF-funded National Science Data Fabric (NSDF)
initiative, we developed a testbed to demonstrate that these
boundaries to data discoverability can be overcome. In support
of this effort, we identify the need for indexing large-amounts
of scientific data across scientific domains. We propose NSDF-
Catalog, a lightweight indexing service with minimal metadata
that complements existing domain-specific and rich-metadata col-
lections. NSDF-Catalog is designed to facilitate multiple related
objectives within a flexible microservice to: (i) coordinate data
movements and replication of data from origin repositories within
the NSDF federation; (ii) build an inventory of existing scientific
data to inform the design of next-generation cyberinfrastructure;
and (iii) provide a suite of tools for discovery of datasets for
cross-disciplinary research. Our service indexes scientific data
at a fine-granularity at the file or object level to inform data
distribution strategies and to improve the experience for users
from the consumer perspective, with the goal of allowing end-to-
end dataflow optimizations.

Index Terms—national science data fabric, scientific data,
cloud, high performance computing

I. INTRODUCTION

The amount of scientific data is exploding rapidly as compu-

tational resources, research instruments, remote sensing, and

environmental sensors grow in fidelity and count. In 2016,

Globus [1], [2], for example, reportedly managed 150 PB of

data spread across 25 billion files [2]. In 2020 [3], Globus

reports showed movement of 100 billion files totaling more

than 790 PB of data. Globus live statistics today show more

than 180 billion files moved with a transfer volume of 1.7 EB.

While most data is collected in the context of a specific

research effort for a group of experts in a given domain,

many datasets later turn out to be useful beyond their original

purpose. For this reason, countless scientific domains and their

sub-fields have set up research data archives [4]–[7]. Because

these data archives are often not public, some institutions

and operators of research data archives have built domain-

specific data repositories to help make their data accessible

to other researchers [7], [8]. These efforts are encouraged

and sometimes required by funding-agencies [9]–[11]. Fur-

thermore, most publishers promote sharing of research artifacts

under the banner of the FAIR principles [12]. Many publishers,

for example, include guidance in their editorial policies [13]

that increasingly state what relevant research artifacts should

be submitted to public data repositories. The general recom-

mendation is to submit data to a domain-specific, community-

recognized repository when possible, and only turn to general

repositories, if specific ones do not exist. This is a dramatic

improvement to discoverability and reuse of scientific data, but

it also leads to data fragmentation, ultimately resulting in the

scientist’s lack of awareness on which repository is the most

appropriate to upload generated data or where to search for

specific datasets.

The overall trend creates a burden for scientists searching

for data to answer scientific queries. Even though several

domain-agnostic data aggregators that collect data from one

or more sources have been developed [14], [15], the definition

of appropriate metadata standards across repositories remains

a major challenge, adding further complexity to the indexing

and search processes. Generally speaking, enforcing metadata

adherence early in the dataset generation is a good strategy be-

cause scanning an entire dataset repository to extract metadata

can be costly. Considering that Globus reported moving 180

billion files, but most of the domain-specific and even multi-

domain repositories are listing only several million files each,

it becomes clear that there is a large gap between searchable

data and available data.

We propose to fill this gap through NSDF-Catalog, a

lightweight, comprehensive indexing data service that comple-

ments the above-mentioned existing efforts and their limits.

In our design and implementation approach, we follow a

paradigm in which we build an inventory of available scientific

data. In other words, NSDF-Catalog accelerates the process of

1

2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)

978-1-6654-6087-3/22/$31.00 ©2022 IEEE
DOI 10.1109/UCC56403.2022.00011

2
0
2

2
 I

E
E

E
/A

C
M

 1
5
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 U

ti
li

ty
 a

n
d
 C

lo
u
d
 C

o
m

p
u
ti

n
g
 (

U
C

C
)

| 9
7
8
-1

-6
6
5
4
-6

0
8
7
-3

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/U

C
C

5
6
4
0
3
.2

0
2
2
.0

0
0
1
1

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

building inventories of scientific data across multiple domain-

specific repositories, while informing the design of cross-

cutting cyberinfrastructure.

NSDF-Catalog is an effort within the NSF-funded National

Science Data Fabric (NSDF) initiative, a project that gathers

scientists, computer scientists, and engineers who share the

mission of building a platform-agnostic testbed for democra-

tizing data delivery. This vision requires an inventory service

across multiple, independently-collected datasets. On the in-

frastructure side, the coordination of data storage, transfer, and

caching requires a federated inventory similar to the Domain

Name System (DNS). On the applications and workflow side,

we met with multiple scientists who reported use cases that can

benefit from even simple keyword search against filenames,

but the effort to develop adapters to various relevant domain-

specific repositories in many cases is still prohibitive for them.

Similarly, scientists from different domains but also young re-

searchers and students often do not know what domain-specific

repositories are most suitable for their scientific queries. The

main contributions of our work are as follows:

• We analyze data collections across multiple domain-

specific repositories in terms of their number and size of

collected data and identify five recurrent patterns that are

useful to optimize various search and transfer scenarios.

• We use the empirical analysis to inform the requirements

for the design of the NSDF-Catalog architecture.

• We design the NSDF-Catalog microservice architecture

for a data catalog that meets the requirements.

• We implement the NSDF-Catalog microservice architec-

ture that is composed of a front-end (Web interface), a

back-end (REST API), and a python client library.

• We test our catalog by indexing across eight different

repositories demonstrating both the interoperability and

scalability of our NSDF-Catalog for datasets totaling 1.6

billion entries.

The remainder of the paper is structured as follows: In

Section II, we analyze various scientific data repositories to

define the requirements for our lightweight indexing service.

In Section III, we leverage the requirements to develop the

NSDF-Catalog microservice architecture. In Section IV, we

perform an evaluation of our NSDF-Catalog architecture with

respect to scalability and interoperability. In Section V, we

discuss related work. Last, we summarize our results and

conclude with future work in Section VI.

II. CATALOG REQUIREMENTS

When designing an indexing data service that allows for

searching across large amounts of raw scientific research data

in multiple repositories, an open question is what requirements

such a service should meet. We establish a set of requirements

from observations of existing data services and properties in

well-known repositories.

A. Lessons from Established Indexing Tools

We study the performance of established private and public

tools providing a wide range of data services such as the

Google Data Commons, Dataverse, and Globus to reason

about requirements in terms of scale metrics and types of

entries (i.e., files or objects) for our indexing catalog. For

instance, Google represents data as graphs and uses triples

for measuring scale. Recent reports indicate that Google has

built two large-scale knowledge graphs one with 850 billion

triples containing 200,000 variables and a second with 1.4

trillion triples containing 100,000 variables [16]. While these

are certainly impressive upper-bound values in terms of knowl-

edge that can be indexed by Google, they may not be intuitive

for scientists who are looking for the location and number

of individual raw data entries. Google is also over-counting

the number of entries because a single raw data entry may

generate many triples. Dataverse reports more intuitive metrics

(i.e., it refers to 200,000 collections in 12,000 Dataverses

for a total of 2.1 million files). Dataverse is under-counting

them because only pre-processed, high-quality data is made

available to users who, in some cases, may need to search

across all available raw data. Globus on its website reports

live statistics indicating that over 180 billion files and 1.7

EB total bytes were transferred. Because of its nature (i.e.,

indexing movement of entries and not number of individual

ones) it can both over-count and under-count entries. Files may

be transferred, and thus counted, multiple times. On the other

hand, not all files on a storage system may be transferred by

Globus and therefore the total files is under-counted. These

observations highlight how an indexing catalog should index

raw data, and count data entries once no matter whether the

data is moved during its lifespan.

B. Lessons from Properties in Existing Datasets

We study the properties (i.e., number and size of files

or objects) and their distributions (i.e., patterns) of existing

private and public data repositories to reason about how to

best search through collections with our indexing catalog.

To this end, we analyze the frequency distributions of 1.6

billion entries from eight repositories, totaling 71.4 PiB of

data. The repositories range from domain-specific collections

in materials science and astronomy (i.e., Digital Rocks Portal

[17], Materials Commons [18], Materials Data Facility [19],

and Arecibo [7]) to general data collections such as AWS

Open Data [20], TACCs Ranch Long-Term Archive [6], and

Zenodo [21] and the Dataverse [22] federation of repositories.

Table I describes the repositories in terms of their number of

collections, entries, and total entry size. For each collection,

we gather an entries’ name, creation time, and size. For each

repository, we generate a repository fingerprint capturing the

relationships between the frequency of entries with a specific

size across collections. In other words, each fingerprint serves

as a proxy for the fragmentation of data that has to be in-

dexed across collections in the associated repository. For each

repository, we create its fingerprint by (i) sampling a subset

of collections from a repository, (ii) building a histogram of

the distributions and frequency of entry sizes for each sample,

and (iii) clustering the histogram. Specifically, the fingerprints

are generated with the Uniform Manifold Approximation and

2

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

(a) Set of domain-specific and general data repositories.

(b) Selected Dataverse repositories.

Fig. 1: Uniform Manifold Approximation and Projection (or UMAP) clustering for different data collections (each represented

by a dot) across different, well-known repositories (figures). The clustering is performed using the distribution of number of

entries (i.e., files or objects) and their frequency (i.e., histogram of file sizes or object sizes). The plots are a proxy for the

repositories’ diversity: the more disperse the dots, the more diverse the entries.

TABLE I: Repositories considered in our study grouped in

domain-specific for materials science and astronomy, general

repositories, and federation of repositories.

Collections # Entries Size
Repository (Bytes)

Digital Rocks Portal 148 17,285 6.1 TiB
Materials Commons 70 258,576 10.2 TiB
Materials Data Facility 178 1,075,706 4.8 TiB
Arecibo Observatory 221 2,045,049 447.4 TiB

AWS Open Data 397 1,617,966,022 50,400.0 TiB
TACC/Ranch 184 1,091,321 20,500.0 TiB
zenodo.org 1,001,459 3,461,517 339.5 TiB

Dataverse 154,472 2,306,495 104.9 TiB

Projection (or UMAP) clustering [23]. Figure 1a presents

the fingerprints for the seven repositories (i.e., Digital Rocks

Portal, Materials Commons, Materials Data Facility, Arecibo

Observatory, AWS Open Data, and TACC Ranch); Figure 1b

shows the fingerprints for seven selected repositories from

the Dataverse federation. The x and y coordinates in each

fingerprint are normalized coordinates of dots representing the

repository’s diversity in number of entries with a given size.

The more dispersed the cluster of dots, the more diverse the

collections in the cluster; the darker the cluster, the larger the

amount of similar collections.

We observe two different patterns. The first pattern (Pattern

1) consists of a dark dot in the central upper part of the

fingerprint – the single cluster indicates a high frequency of

identical-in-size entries, with the darker the cluster, the higher

the frequency. The second pattern (Pattern 2) consists of a

point cloud (i.e., collection of dots) randomly distributed in a

centrally located, horizontal stripe – the many clusters indicate

the presence of different types of entries. Some clusters in

the cloud are darker than others: the darkness represents the

frequency of entries of the given size. We can pinpoint these

patterns in individual repositories. For instance, in Figure 1a,

the three domain-specific repositories for materials sciences

share similar entry properties. All three feature mostly col-

lections with many files with different sizes (Pattern 2); the

Materials Data Facility also features a large pool of collections

with only a single small file in the range of few MB (Pattern

1). Similarly, to Materials Data Facility, Zenodo exhibits

Pattern 1 as it is used extensively to publish snapshots of

research software composed of many usually small files as

well as to publish project reports that often consist only of

a single small sized PDF. Contrary to the materials science

repositories, Zenodo does not gather a rich set of different-in-

size files typical of Pattern 2. Within the Dataverse federation

of repositories, we plot the fingerprints of seven selected

repositories: four of the largest (i.e., dataverse.harvard.edu,

dataverse.asu.edu, dataverse.no, and dataverse.nl), two featur-

ing a small number of clusters (i.e., dataverse.openforestdata.pl

and dataverse.lit.ut), and one featuring only a single cluster

(i.e., dataverse.lfdc.org).The two largest Dataverse repositories

are operated by universities which allow both data and pub-

lications to be archived. This explains the presence of both

patterns. The primary mission of dataverse.no is to preserve

national research data, and hence does not include single file

collections, exhibiting only Pattern 2. On the opposite side of

the spectrum, dataverse.ifdc.org features only reports, and thus

presents only Pattern 1. This observation highlights how our

catalog should ultimately preserve effective indexing across

the different patterns characterizing the targeted datasets.

C. Summary of Requirements

The resulting requirements that are driving our catalog’s

design and implementation are as follows.

• Our catalog should index a broad range of individual data

entries (i.e., files or objects) ranging from several hundred

to millions of data entries.

3

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

• Our catalog should index raw data and complement

existing curated efforts such as Dataverse and domain-

specific repositories.

• Our catalog should establish a criterion to identify unique

data.

• Our catalog should preserve properties including data

such as size, name, collection, and repository.

• Our catalog should preserve effective indexing across the

different distribution patterns characterizing the targeted

datasets.

III. CATALOG DESIGN AND IMPLEMENTATION

We design the microservice architecture of our NSDF-

Catalog based on identified requirements, best practices, and

targeted cyberinfrastructure.

A. Implementation Strategies

We build our architecture using the set of empirical require-

ments from analysing related services and from sampling the

landscape of well-known scientific repositories in Section II.

Directly informed by these requirements, we follow these

implementation approaches:

• We opt for a minimal and thus lightweight metadata

schema.

• We aim for a database agnostic back-end for which both

central and replicated deployments are supported.

• We decouple harvesting workers and database ingest to

allow asynchronous index updates with many parallel

workers.

We further choose to implement the NSDF-Catalog using

the following best practices using cloud native technologies to

reduce the maintenance burden while increasing the robustness

of the catalog’s services:

• All sub-services are containerized, allowing for both co-

located and distributed deployments based on index scales

and query loads.

• Services are designed to be stateless to simplify load-

balancing while avoiding unintended bottlenecks.

• The deployment automation enables leveraging different

academic and commercial cloud resources.

Finally, our microservice architecture design integrates with

other scientific cyberinfrastructure and NSDF-federated ser-

vices through:

• Access control via SciTokens (JSON Web Tokens) to

access protected routes and to allow users searching non-

public or embargoed repositories and collections.

• Protected routes for authorized users and external ser-

vices to access data preparation as well as usage statistics

and analysis.

• Open source software and deployment automation to help

institutions that do not have resources on site to make

their data findable by setting up their own NSDF-catalog

instance.

B. Microservice Architecture Overview

Our indexing service is broken up into multiple microser-

vices. We illustrate the high-level overview of the microser-

vices in Figure 2 and their detailed implementation in Figure 3.

Our indexing service supports both � human users and �

programmatic access as forms of interaction with our NSDF-

Catalog. At the core of our architecture, we place our �

REST-API endpoint. Users can deploy either a web front-end

or the Python client library to interact with this service, for

example, in their Jupyter notebooks. The REST-API endpoint

connects to the database endpoint managing the indexing. Our

architecture is agnostic to the � database back-end. Our initial

prototype and the measurements discussed in Section IV uses

Clickhouse as the back-end. Swapping out a database back-

end only requires a single file in the REST-API back-end to

be changed. We also decouple the harvesting effort from other

operations to allow independent scaling and load balancing.

As indexing has to be kept up to date continuously, we use

an architecture of independent � harvesting workers. Each

worker runs in a container and executes an Extract-Transform-

Load (ETL) pipeline for a repository. We provide a blueprint

for workers that only require added logic to fetch repository

entries and transform them into NSDF-Catalog entries. All

found entries are then stored into a comma-separated values

(CSV) file that are then pushed to a shared storage system

(e.g., S3 object storage) and ingested into an index database

in a separate process. The � web front-end server can be

deployed independently of the REST-API endpoint and both

services are stateless.

We provide a default docker-compose configuration that

spawns a REST-API endpoint and a front-end server along

with a Clickhouse instance. We also include a working con-

figuration for nginx to securely serve both the REST-API

endpoint and the front-end through a single customizable

domain name. The certificates needed to enable HTTPS are

obtained using Let’s Encrypt/Certbot.

C. Minimal Metadata Schema

Our indexing data service uses the query in Listing 1 as

the minimal metadata schema to describe the functional and

semantic properties of a repository and allow querying across

repositories. The schema includes repository, collection, and

name fields needed to uniquely describe a data entry across

repositories. The size and last modified fields are additional

Users

N
G

IN
X

 +
 C

e
rt

b
o

t

Frontend

SPA

REST

Endpoint

(FastAPI)

Storage

(e.g., S3)

Replication

Replication

...

User

Apps

DBMS/

OLAP

(Clickhouse)

Dask

ETL/PrefectHarvesting

Worker

...

Dask

ETL/PrefectHarvesting

Worker
2

1

3 4

6

5

Fig. 2: High-level overview of the NSDF-Catalog microservice

architecture, our lightweight indexing service for scientific

data.

4

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

REST Endpoint (Stateless) (FastAPI + ORM)

Python

requirements.txt

FastAPI

Uvicorn

/search

JSON Web Tokens

(SciToken)
/auth/get_token

clickhouse-driver

or Postgres client

Dockerfile

/docs (OpenAPI)

/entry

pip

Manual Actions:

Set NSDF_CATALOG_INDEX_HOST via

environemnt or compose.yml.

Set SECRET_KEY via environment or

compose.yml as needed for SciToken.

Routes

./main.py + routes/*.py

Frontend (Stateless) (Vue SPA)

yarn

packages.json

Quasar

(GUI Framework)

Vue 3

(MVVM)

Axios

(API/REST)

/search

/entry

/

/advanced

Routes

./router/routes.ts

Dockerfile

./layout/MainLayout.vue

+

No manual actions needed, as long as the REST

Endpoint is exposed via "/api" routed from serving

host (rewrite rule).

Otherwise set NSDF_CATALOG_API_ENDPOINT

in environment or compose.yml.

./pages/IndexPage.vue

./pages/Advanced.vue

./pages/Search.vue

./pages/Entry.vue

DBMS

Dockerfile

Clickhouse/Postgres

(optional with S3

syncronisation)

./data

As the index grows
or query loads

require it, this can

be switched to a
replicated setup.

4

Workers

Dask

requirements.txt

Dockerfile

pip

ETL/Prefect

5
NGINX + Certbot (HTTPS)

certbot

Dockerfile

nginx

/

/api

Rewrite Rules

Frontend IP

REST Endpoint IP

Manual Actions:

Need to update configuration in ./data to

reflect domain name.

May need to update IPs for frontend and

REST endpoint if not localhost.
./data

Users

Notebook/Binder

Jupyter

Ingest (CSV files)

Users

Other

Custom Applications

1

2

36

Fig. 3: Whitebox overview of the microservice architecture to support the search indexing and expose it to users and applications.

make deploy

make on target host

DevOps Ansible
compose.yml

(manual deploy/dev)

devenv

(requirement.txt, ...)

Optional:

nsdf-cloud + Ansible

1. Install development/deploy dependencies locally

2. Configure domain, (multi-host-mapping)?, etc.

6. SSH/login to target host

7. Transfer/modify configuration files.

Ansible

Inventory

File

(Hostlist)

Automatically generates

Ansible Inventory

3. Setup credentials for nsdf-cloud/vault

4. Use nsdf.cloud to obtain ansible inventory

3. make deploy

3.1. installs requirements (docker/podman)

3.2. docker/podman-compose compose.yml

Fig. 4: Deployment automation allowing users to spin up there own index and search with support for academic resources.

metadata needed by other NSDF services to coordinate and

optimize data transfers. The etag field stores a hash of the

data to allow detecting changes in supported repositories.

1 CREATE TABLE nsdf.catalog

2 (

3 ‘repository‘ String,

4 ‘collection‘ String,

5 ‘name‘ String,

6 ‘size‘ Int64,

7 ‘last_modified‘ Nullable(String),

8 ‘etag‘ Nullable(String)

9)

10 ENGINE = MergeTree

11 ORDER BY (repository, collection)

12 SETTINGS index_granularity = 8192

Listing 1: Minimal metadata schema used by NSDF-Catalog

to index data entries across scientific repositories.

D. Database Back-end

We design the different services to be agnostic about which

database back-end can be used. Our prototype uses Clickhouse

as the database back-end. Both the front-end and Python client

library interact with a catalog instance through the REST-API

endpoint. As a result, all logic to interact with the catalog back-

end can be consolidated into a single file within the REST-API

endpoint source code. As the index grows in size, our catalog

can leverage different strategies, including:

• Distributed indexes (e.g., fragmented by repository or

scientific domain) to maintain low query latency;

• Replication for load-balancing and scale out as more

requests are handled; and

• Hybrid approach that mixes different databases that al-

lows adaptation to more complex schema and queries.

5

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

E. ETL Workflow for Asynchronous Harvesting and Ingest

For catalog harvesting, we use the well established ETL

approach with Prefect [24] and Dask [25] for orchestration.

This strategy allows us to decouple harvesting and ingesting

into the catalog and makes the service more scalable. To add a

new repository we provide a template class that the developer

extends with some repository-specific data, to allow for entry

enumeration and data extraction to populate our lightweight

schema as described in Section III-C. Harvesting workers emit

CSV files that are ingested into the global catalog in a separate

process.

F. Open Source and Deployment

All NSDF software is open source. The NSDF-Catalog is

designed so that it can be deployed in isolation (i.e., without

being connected to other NSDF services [26], [27]). This

makes our catalog easily deployable using standard tools such

as Ansible. Because we include a harvesting worker for NSDF-

Catalog instances, connecting to the global NSDF-Catalog is

possible at any time.

We illustrate the different deployment modes and their

dependencies in Figure 4. Within the NSDF federation we use

NSDF-Cloud [28], a unified cloud API to quickly allocate re-

sources for hybrid clouds based on registered credentials. This

allows us to support different commercial and academic cloud

providers. The NSDF-Cloud utility optionally populates an

Ansible inventory file for use by the other deployment stages.

Ansible connects to the host and ensures a suitable container

runtime is installed. On the host systems our microservices’

run inside containers. In the simplest case we use docker-

compose. For manual deployment and development purposes

we also provide make targets to spawn all our individual

services.

IV. EVALUATION

We evaluate the NSDF-Catalog by answering the following

questions:

• Can we harvest data from different repositories? Answer-

ing this question allows us to demonstrate interoperability

of our ETL pipeline across different repositories. It also

helps us to understand the performance requirements

needed to operate the NSDF-Catalog.

• How fast can we ingest data produced by harvesters

into an existing index and across different repositories?

Answering this question allows us to identify architecture

limits due to, for example, the technologies used for the

back-end.

• How does the NSDF-Catalog querying performance

change against a catalog populated with real-world data?

Answering this question allows us to better understand

the cost of operation for a service like NSDF-Catalog and

also informs load-balancing strategies when distributing

the index.

A. Testing Environments

We run our tests using two different cloud providers:

Amazon Web Services (AWS) for the harvesting workers and

Jetstream2 [29] for benchmarking the NSDF-catalog perfor-

mance. For the measurement of the harvesting rates, we use

the AWS c5d.9xlarge instance type in the us-east-1 region.

This instance type features 36 vCPUs with 72.0 GiB of

RAM as well as a 900 GB NVMe SSD and a 10 Gigabit

network connection. For the performance evaluation, we use

the Jetstream2 academic cloud. We use different instance

types for Jetstream2 and list the specifications for each of

the instances in Table II. All nodes in Jetstream2 are based

on AMD Milan 7713 CPUs. Volumes are served by a Ceph

cluster with 14 PB of storage.

B. Interoperability Study

To understand the sustained operational performance of our

indexing service, we study the harvesting of data sources when

searching for new entries and updating existing ones across

six of the eight repositories in Table I (i.e., Digital Rocks

Portal, Materials Common, Materials Data Facility, AWS Open

Data, Zenodo, and Dataverse). We measure the performance

of the search and update operations to understand the resource

requirements to harvest different repositories. Through this

study, we demonstrate that our ETL pipeline is interoperable

as it can harvest from a wide range of different repositories.

The NSDF-Catalog’s harvesters use Python for repository-

specific handling logic. Specifically, we use the client libraries

available through the Python Package Index (PyPI). The

effort to harvest data can vary significantly depending on the

repository and its APIs. For instance, the Digital Rocks Portal

does not expose any public API and the harvester has to scrape

(i.e., crawl the repository loading and parsing all the entries)

the HTML pages using Beautiful Soup [30]. On the other

hand, Materials Commons features a Python client library

(materials-commons on PyPI) and a REST-API. The Materials

Data Facility also offers a Python client library (mdf-forge on

PyPI). Furthermore, the AWS Open Data Registry is managed

through a public Git-repository hosted on GitHub that contains

metadata files. The metadata references S3 buckets that contain

the actual data. For the repository, our harvester reads the

YAML-based metadata files and then inspects all the objects

in the referenced bucket. When harvesting Zenodo, we rely

on the zenodopy library that uses the Zenodo REST-API. This

TABLE II: Specifications for instance types on Jetstream2.

instance-type CPUs RAM Root Disk Ephemeral Disk

m3.tiny 1 3 GB 20 GB none
m3.small 2 6 GB 20 GB none
m3.quad 4 15 GB 20 GB none
m3.medium 8 30 GB 60 GB none
m3.large 16 60 GB 60 GB none
m3.xl 32 125 GB 60 GB none
m3.2xl 64 250 GB 60 GB none

6

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Harvesting performance and network traffic statistics for different repositories.

Repository Digital Rock Portal Materials Common Materials Data Facility AWS Open Data Zenodo Dataverse

Collections 154 81 637 398 1,012,474 150,834
Collections/s 0.05 1.066 0.799 0.001 51.306 8.236
Upload Bytes/Collection 162.0 KiB 132.0 KiB 320.0 KiB 384.7 MiB 45 Bytes 17.8 KiB
Download Bytes/Collection 725.0 KiB 944.7 KiB 2.0 MiB 1.0 GiB 4.1 KiB 168.2 KiB

Entries 139,393 131,091 1,206,801 1,540,162,975 3,485,074 2,596,905
Entries/s 45.257 1724.882 1514.179 5232.136 176.603 141.807
Upload Bytes/Entry 183 Bytes 83 Bytes 172 Bytes 104 Bytes 13 Bytes 1.0 KiB
Download Bytes/Entry 820 Bytes 597 Bytes 1.1 KiB 279 Bytes 1.2 KiB 9.8 KiB

Avg. Up 8.1 KiB 140.7 KiB 255.7 KiB 532.7 KiB 2.3 KiB 146.3 KiB
Avg. Down 36.3 KiB 1006.8 KiB 1.6 MiB 1.4 MiB 209.7 KiB 1.4 MiB
Down/Up Ratio 4.476758 7.154878 6.254201 2.681026 91.409164 9.4708
Total Time (seconds) 51 1 13 4,906 328 305

requires a Zenodo access token before any request is handled.

Zenodo imposes strict rate limits of 60 requests per minute

and 2000 requests per hour that we have to adapt to in the

harvesting process. For Dataverse we use the same handler

for all 43 tested Dataverse installations in combination with

their restful search API.

The complexity of the harvesting process and the structure

of the data in a repository have an impact on the harvesting

rate of the repository. In Table III we report the harvesting

rates (collections per second and entries per second) together

with the average upload/download traffic per collection and

entry respectively as well as total harvesting time in minutes.

All measurements are performed using a single worker. When

harvesting the Digital Rocks Portal, we observe an average

upload traffic of 8.1 KiB/s and download traffic of 36.3 KiB/s.

The harvesting rate is significantly lower and the accumulated

network traffic per collection and entry is no higher than

with the other repositories. This maybe be either the result

of network or rate limits at the repository server or the larger

effort it takes to parse and extract information from the HTML

representation. In Section II-B we notice how the Materials

Commons and the Materials Data Facility repositories share

similar fingerprint patterns. We also observe the similarity

in the harvesting performance: both repositories perform at

similar harvesting rates (one collection per second and about

1,600 entries per second). For Materials Commons we observe

average upload traffic of 140.7 KiB/s and download traffic

of 1.1 MiB/s; for the Materials Data Facility we observe

average upload traffic of 255.7 KiB/s and download traffic

of 1.6 MiB/s. The fact that the average upload/download rates

are similar suggests to us that the observed behavior can be

explained by the similar structures of the two repositories.

For the general data repository we see two repository on

opposite ends of the performance spectrum. On one hand,

for AWS Open Data we observe a low harvesting rate of

only 0.001 collections per second but a very high harvesting

rate of 5,200 entries per second. A closer inspection in line

with our observations discussed in Section II-B outlines how

AWS Open Data counts fewer collections but each collection

features 3.9 million entries on average. For AWS Open data we

observe an average upload rate of 532.7 KiB/s and download

rate of at 1.4 MiB/s. Zenodo exhibits an average of 3 entries

per collection and as a result the higher harvesting rate of

51.3 collections per second. Zenodo allows to request batches

of up to 10,000 collections or entries; this results in a favorable

upload to download ratio. We observe an average upload rate

of 2.3 KiB/s and an download rate of 209.7 KiB/s.

Finally, for Dataverse, which has both general and spe-

cialized domain-specific repositories, we observe the second

highest collection harvesting rate of 8.2 collections per second

and 141.8 entries per second. Overall Dataverse also tends to

feature a lower average of 17 entries per collection but this

depends on the particular Dataverse repository. We observe an

average upload rate of 146.3 KiB/s and an download rate of

1.4 MiB/s.

Based on the performance collected while harvesting data

across the different repositories, we confirm the benefits of

our approach to decouple the harvesting process from other

operations. The decoupling allows us to adapt to the different

harvesting rates observed for the different repositories. The

analysis also gives us a better understanding of the system

requirements for different harvesters. For instance, a user does

not need all the processing power of the AWS c5d.9xlarge

instance type for the harvesting process as many repositories

do not saturate the available network connection.

C. Database Back-end Performance Study

The NSDF-Catalog architecture can combine different tech-

nologies to ensure scalability and responsiveness of services as

the index of scientific data grows. For our prototype we use

Clickhouse, a columnar datastore, as our database back-end

because it features high-ingestion rates and is tailored to enable

aggregation across large amounts of data. We measure the

performance to ingest data as the index grows and break down

our study into the following two aspects. First, to understand

the performance behavior of the back-end under resource

constraints, we fill up a m3.tiny (20 GiB) Jetstream2 instance

and measure the ingestion performance, index size, and disk

fill level under this stress condition. Second, to understand the

performance behavior of ingestors for different instances and

7

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

8 10 11 13 14 15 17 18 20 21 22 24 25 27 28 29 31 32 34 35 36 38 39 41 42

Index Size (Million Entries)

183,000

180,000

176,000

172,000

168,000

165,000

161,000

157,000

154,000

150,000

146,000

142,000

139,000

135,000

131,000

128,000

124,000

120,000

117,000

113,000

109,000

102,000

94,000

In
g
e
s
t

R
a
te

:
E
n
tr

ie
s
/s

Fig. 5: Performance degradation for ingest rates as the index

grows on an m3.tiny instance.

their available memory, we use a 4 TB volume and ingest 1.6

billion entries (the cumulative entries of all the repositories in

Table I) in each of the instances in Table II.

a) Understanding Performance Behavior under Resource

Constraints: To understand the performance and limiting

factors when using Clickhouse as our database back-end we

use the smallest instance type m3.tiny that Jetstream2 offers

and fill to 95% of its 20 GiB disk volume. As new entries

are added to the index, we track the following metrics:

ingestion performance, index size, and disk fill level. We plot

our results in Figure 5. On the x-axis we show the index

size and on the y-axis we plot the ingestion performance

(entries per second). Initially, the ingestion performance is

stable with occasional outliers at about 150,000 entries added

per second. As we approach an index of 28 million entries,

we observe average performance drops to a lower level with

higher variability to the downside. After closer investigation,

this is likely due to the use of the MergeTree Table engine

in Clickhouse. By comparing the disk filling level around

28 million and 42 million marks, it appears that Clickhouse

triggers housekeeping routines including releases of storage as

the MergeTrees are restructured and data is compressed. From

this analysis, we learn that by using the smallest instance type

we can achieve ingest rates of about 150,000 entries per second

and that performance degrades as we approach the system

limits because of Clickhouse’s housekeeping routines.

b) Understanding Ingest Performance Behavior with dif-

ferent Instance Types: To understand how the NSDF-Catalog’s

performance scales as we add new resources, we first eliminate

the constraint on storage capacity by attaching a 4 TB volume.

The volume offers high performance as it is backed by a 14 PB

Ceph cluster. Then we measure the ingest performance of all

1.6 billion entries (the cumulative entries of all the repositories

in Table I). We use the clickhouse-client application

0

1

1e10

Filesize

0

25 Elapsed (s)

0.0

2.5
1e7

Entries/s

0 250 500 750 1000 1250 1500 1750

time (csv file #)

0

1

1e9

Index Size

(a) m3.tiny

0

1

1e10

Filesize

0

250

Elapsed (s)

0

5

1e7

Entries/s

0 250 500 750 1000 1250 1500 1750

time (csv file #)

0

1

1e9

Index Size

(b) m3.xl2

Fig. 6: Profile of the workload over time ingesting 1.6 billion

entries from 1797 harvested CSV files.

within the Clickhouse container and record the time before and

after the Clickhouse’s command-line CSV import in Listing 2

is executed.

1 query="INSERT INTO nsdf.catalog FORMAT CSV"

2 cat ${filename} | clickhouse-client --query=${query}

" --time ... <clickhouse credentials>

Listing 2: Clickhouse’s command-line CSV import.

The commands read the CSV file and pipes its content to the

clickhouse client that then imports the data into the index. Each

CSV represents the output of one of the harvesting workers

which typically generates one CSV file per repository. Two

exceptions to this approach are: AWS Open Data, where each

S3 bucket results in a separate CSV file, and Dataverse, where

each Dataverse installation results in its own CSV file.

We collect performance values for the multiple imports of

CSV files in Listing 2 and analyse the ingest performance

m3.tiny m3.small m3.quad m3.medium m3.large m3.xl m3.2xl

Instance Type

0

20

40

60

80

E
la

p
s
e
d
 (

M
in

u
te

s
)

Fig. 7: Total time taken to ingest 1.6 billion entries on different

instance types using Clickhouse and Jetstream2.

8

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Query performance against the index populated with 1.6 billion entries using the m3.quad instance type.

for differently sized dumps. In Figure 6 we plot the file

size, elapsed time in second, and entries per second from a

workload ingesting 1.6 billion entries from 1797 harvested

CSV files. Across instances we observe similar permanence

behaviors and thus we report here only results for the smallest

m3.tiny instance and largest m3.xl2 instance. The performance

gained when moving from the smallest to the largest instance

is nearly a factor of three. This shows that Clickhouse,

without additional tuning, can parallelize the import process.

In Figure 7 we report the total time taken to import all files.

The figure shows that without further tuning, it is sufficient

to run the import using the m3.large instance type with 16

CPUs and 60 GB of RAM. For larger instances we observe

diminishing returns: the performance is almost identical to

the m3.large instance type. We also learn that performance

gains are tangible only when importing sufficiently large CSV

files for which Clickhouse performs some parallelization when

importing the large files. For our architecture, this means that

harvesting workers should be configured to generate large CSV

files to take advantage of this performance gain.

D. Query Performance Study

Querying data across large tables can be an expensive

operation. We build NSDF-Catalog to support a wide range

of queries meeting the following three scenarios.

First, NSDF-Catalog should support other NSDF services

that coordinate data movements and replication of data from

origin repositories within the federation. Queries related to

this activity are composed of simple ”WHERE” clauses. For

a particular collection, queries can explore individual entries

or all entries. Queries can request to search the full repository,

a collection, or an entry name and its size.

Second, to better understand the inventory of existing

scientific data and improve system designs, NSDF-Catalog

has to generate statistics. Queries related to this activity

should perform ”GROUP BY” operations along with various

aggregations such as counting and building sums.

Finally, as a tool for discovery of available data for users

worldwide, the catalog should serve researchers asking for all

matches through large repositories. Thus, queries related to

this activity should support complex ”WHERE” clauses.

We define nine queries that cater to these three usage scenar-

ios and repeatedly run the query against the index populated

with all 1.6 billion entries on an m3.quad instance. Similar to

our previous analysis, m3.tiny performance is lower, but the

difference for the other instance types is small. We take 10

measurements for each query and report the average execution

time in seconds. We clean caches between measurements.

The results for the different queries are shown in Figure 8.

Queries counting all entries return on average within 10 ms;

the query taking the SUM across all entries requires 6 seconds

on average. For GROUP BY operations, we observe the high-

est query latency, requiring 14 seconds to generate aggregate

statistics for all repositories and 24 seconds for aggregate

statistics on all collections. All queries with aggregations show

higher variability. For searches against the index asking for

the first 10 entries returns within 244 ms; a specific search

independent of the LIMIT return within about 1 second. These

results demonstrate that query performance even with the

specification of the m3.quad featuring only 4 CPUs and 15

GB of RAM provides reasonable querying performance.

V. RELATED WORK

Data repositories and data catalogs have been used across

scientific domains for many years. Many of these repositories

are domain-specific such as [7], [18], [31]; a large number

of efforts provide cross-disciplinary solutions. For instance,

Dataverse [22] and Rucio [31] are open-source efforts ini-

tially funded by institutions in need of a solution otherwise

unfulfilled and currently are used by the scientific communities

around the globe. Other initiatives typically establishing meta

catalogs are enjoying national or government backing, for

example, data.gov [32] and EUDAT [15]. Besides community

and national efforts there are also corporate catalogs or data

replication efforts such as Google’s Data Commons [16] and

AWS Open Data Repository [20]. Our effort complements all

these systems to create an inventory of available scientific data.

The NSDF-catalog uses a system of systems approach that can

support organizations to make their raw data searchable, even

before investing into the effort of getting included in more

curated catalogs. In our discussion on lessons from established

indexing tools in Section II-A we cover key features of

indexing tools used in Google Data Commons or Dataverse,

or data transfer tools such as Globus, outline how our NSDF-

Catalog builds upon these tools and complements them in their

functionalities.

9

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

VI. SUMMARY & CONCLUSION

We present the NSDF-Catalog, a lightweight indexing ser-

vice for searching row data across repositories. We design the

catalog based on lessons learned from established indexing

tools and properties in existing datasets. Our implementa-

tion builds on a decoupled microservice architecture. We

demonstrate the catalog’s performance indexing up to 1.6

billion entries referencing about 71.8 PiB of data across eight

repositories. Our results show that NSDF-Catalog can offer a

lightweight service to make cross-disciplinary data searchable

efficiently.

In future work we will extend our index with a larger suite

of statistics to identify scientific content in data. In particular,

we will leverage scientific content to prefetch and stage data

across the NSDF federation. We also observe how a significant

number of files are self-describing data formats or archives

both of which are composed of sub-structures. Leveraging the

sub-structures to improve the search performance is another

future direction.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-

dation (NSF) under grant numbers #1841758, #2028923,

#2103845 and #2138811; the Extreme Science and Engineer-

ing Discovery Environment (XSEDE) under allocation TG-

CIS210128; Chameleon Cloud under allocation CHI-210923;

and IBM through a Shared University Research Award.

RESEARCH ARTIFACTS

Analysis code and corresponding datasets are available for

download at: https://doi.org/10.5281/zenodo.7268442

REFERENCES

[1] I. Foster, “Globus Online: Accelerating and Democratizing Science
through Cloud-Based Services,” IEEE Internet Computing, vol. 15, no. 3,
pp. 70–73, May 2011.

[2] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent Enhancements and
Future Plans,” in Proceedings of the XSEDE16 Conference on Diversity,

Big Data, and Science at Scale. Miami USA: ACM, Jul. 2016, pp.
1–8.

[3] “January 2020: Globus Turns 10...18 — globus,”
https://www.globus.org/blog/january-2020-globus-turns-1018.

[4] NCAR, “NCAR’s Research Data Archive,” https://rda.ucar.edu/.
[5] R. Petrie, S. Denvil, S. Ames, G. Levavasseur, S. Fiore, C. Allen,

F. Antonio, K. Berger, P.-A. Bretonnière, L. Cinquini, E. Dart,
P. Dwarakanath, K. Druken, B. Evans, L. Franchistéguy, S. Gardoll,
E. Gerbier, M. Greenslade, D. Hassell, A. Iwi, M. Juckes, S. Kinder-
mann, L. Lacinski, M. Mirto, A. B. Nasser, P. Nassisi, E. Nienhouse,
S. Nikonov, A. Nuzzo, C. Richards, S. Ridzwan, M. Rixen, K. Serradell,
K. Snow, A. Stephens, M. Stockhause, H. Vahlenkamp, and R. Wagner,
“Coordinating an operational data distribution network for CMIP6 data,”
Geoscientific Model Development, vol. 14, no. 1, pp. 629–644, Jan. 2021.

[6] TACC, “Ranch - Texas Advanced Computing Center,”
https://www.tacc.utexas.edu/systems/ranch.

[7] Arecibo Observatory, “Arecibo Observatory Data Catalog,”
https://www.naic.edu/datacatalog/.

[8] NASA, “NASA Open Data Portal,” https://data.nasa.gov/.
[9] M. Kozlov, “NIH issues a seismic mandate: Share data publicly,” Nature,

vol. 602, no. 7898, pp. 558–559, Feb. 2022.
[10] European Commision, “Data Guidelines — Open Research Europe,”

https://open-research-europe.ec.europa.eu/for-authors/data-guidelines.
[11] D. Forschungsgemeinschaft, “Guidelines for Safeguarding Good Re-

search Practice. Code of Conduct,” Apr. 2022.

[12] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t
Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone,
A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van
Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop,
A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons,
“The FAIR Guiding Principles for scientific data management and
stewardship,” Scientific Data, vol. 3, no. 1, p. 160018, Mar. 2016.

[13] “Data Repository Guidance — Scientific Data,”
https://www.nature.com/sdata/policies/repositories.

[14] “DataCite Repository Selector,” https://repositoryfinder.datacite.org/.
[15] EUDAT, “B2FIND - Interdisciplinary discovery portal in the EUDAT

Service Catalogue,” http://b2find.eudat.eu/.
[16] Data Commons, “Data Commons 2022,”

https://www.datacommons.org/.
[17] M. Prodanovic, M. Esteva, and M. Hanlon, “Digital Rocks Portal,” Sep.

2015.
[18] B. Puchala, G. Tarcea, E. A. Marquis, M. Hedstrom, H. V. Jagadish,

and J. E. Allison, “The Materials Commons: A Collaboration Platform
and Information Repository for the Global Materials Community,” JOM,
vol. 68, no. 8, pp. 2035–2044, Aug. 2016.

[19] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, and
I. Foster, “The Materials Data Facility: Data Services to Advance
Materials Science Research,” JOM, vol. 68, no. 8, pp. 2045–2052, Aug.
2016.

[20] AWS, “Open Data on AWS,” https://aws.amazon.com/opendata/.
[21] European Organization For Nuclear Research and OpenAIRE, “Zenodo,”

2013.
[22] G. King, “An Introduction to the Dataverse Network as an Infrastructure

for Data Sharing,” Sociological Methods & Research, vol. 36, no. 2, pp.
173–199, Nov. 2007.

[23] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction,” Sep. 2020.

[24] Prefect Technologies, “Prefect,” Prefect, Aug. 2022.
[25] M. Rocklin, “Dask: Parallel computation with blocked algorithms and

task scheduling,” in Proceedings of the 14th Python in Science Confer-

ence, no. 130-136. Citeseer, 2015.
[26] NSDF, “National Science Data Fabric,”

https://nationalsciencedatafabric.org/.
[27] P. Olaya, J. Luettgau, N. Zhou, J. Lofstead, G. Scorzelli, V. Pascucci,

and M. Taufer, “NSDF-FUSE: A Testbed for Studying Object Storage
via FUSE File Systems,” in Proceedings of the 31st International

Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’22. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 277–278.

[28] J. Luettgau, P. Olaya, N. Zhou, G. Scorzelli, V. Pascucci, and M. Taufer,
“NSDF-Cloud: Enabling Ad-Hoc Compute Clusters Across Academic
and Commercial Clouds,” in Proceedings of the 31st International

Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’22. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 279–280.

[29] D. Y. Hancock, J. Fischer, J. M. Lowe, W. Snapp-Childs, M. Pierce,
S. Marru, J. E. Coulter, M. Vaughn, B. Beck, N. Merchant, E. Skidmore,
and G. Jacobs, “Jetstream2: Accelerating cloud computing via Jet-
stream,” in Practice and Experience in Advanced Research Computing,
ser. PEARC ’21. New York, NY, USA: Association for Computing
Machinery, Jul. 2021, pp. 1–8.

[30] “Beautiful Soup: We called him Tortoise because he taught us.”
https://www.crummy.com/software/BeautifulSoup/, 2004.

[31] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado,
D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing,
V. Garonne, A. di Girolamo, L. Goossens, W. Guan, J. Guenther,
T. Javurek, D. Kuhn, M. Lassnig, F. Lopez, N. Magini, A. Molfetas,
A. Nairz, F. Ould-Saada, S. Prenner, C. Serfon, G. Stewart, E. Vaan-
dering, P. Vasileva, R. Vigne, and T. Wegner, “Rucio: Scientific Data
Management,” Computing and Software for Big Science, vol. 3, no. 1,
p. 11, Dec. 2019.

[32] “Data.gov,” https://www.data.gov/.

10

Authorized licensed use limited to: The University of Utah. Downloaded on August 02,2023 at 01:10:32 UTC from IEEE Xplore. Restrictions apply.

