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Abstract 
In this paper, we develop an inferential method based on conformal prediction, which can wrap around any 
survival prediction algorithm to produce calibrated, covariate-dependent lower predictive bounds on survival 
times. In the Type I right-censoring setting, when the censoring times are completely exogenous, the lower 
predictive bounds have guaranteed coverage in finite samples without any assumptions other than that of 
operating on independent and identically distributed data points. Under a more general conditionally 
independent censoring assumption, the bounds satisfy a doubly robust property which states the following: 
marginal coverage is approximately guaranteed if either the censoring mechanism or the conditional 
survival function is estimated well. The validity and efficiency of our procedure are demonstrated on 
synthetic data and real COVID-19 data from the UK Biobank.
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1 Introduction
The COVID-19 pandemic has placed extraordinary demands on health systems (e.g., Ranney 
et al., 2020). In turn, these demands create an unavoidable need for medical resource allocation 
and, in response, several groups of researchers have communicated clinical ethics recommenda-
tions (e.g., Emanuel et al., 2020; Vergano et al., 2020). By and large, these recommendations re-
quire a reliable individual risk assessment for patients who test positive; see Table 2 of Emanuel 
et al. (2020). Clearly, one risk measure of interest might be the survival time, the time lapse be-
tween the con!rmation of COVID-19 and an event such as death or reaching a critical state, 
should this ever occur.

1.1 Survival analysis
Survival times are not always observed due to censoring (Leung et al., 1997). A main goal of sur-
vival analysis is to infer the survival function—the probability that a patient will survive beyond 
any speci!ed time—from censored data. The Kaplan–Meier curve (Kaplan & Meier, 1958) pro-
duces such an inference when the population under study is a group of patients with certain char-
acteristics. On the positive side, the Kaplan–Meier curve does not make any assumption on the 
distribution of survival times. On the negative side, it can only be applied to a handful of subpo-
pulations because it requires suf!ciently many events in each subgroup (Kalb"eisch & Prentice, 
2011). More often than not, the scientist has available multiple categorical and continuous 
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covariates, and it thus becomes of interest to understand heterogeneity by studying the conditional 
survival function; that is, the dependence on the available factors. In the conditional setting, how-
ever, distribution-free inference for the conditional survival function gets to be challenging. 
Standard approaches make parametric or nonparametric assumptions about the distribution of 
the covariates and that of the survival times conditional on covariate values. A well-known ex-
ample is of course the celebrated Cox model which posits a proportional hazards model in which 
an unspeci!ed nonparametric base line is modi!ed via a parametric model describing how the haz-
ard varies in response to explanatory covariates (Breslow, 1975; Cox, 1972). Other popular mod-
els, such as accelerated failure time (AFT) (Cox, 1972; Wei, 1992) and proportional odds models 
(Harrell, 2015; Murphy et al., 1997), also combine non-parametric and parametric model 
speci!cations.

As medical technologies produce ever larger and more complex clinical datasets, we have wit-
nessed a rapid development of machine learning methods adapted to high-dimensional and hetero-
geneous survival data (e.g., Faraggi & Simon, 1995; Goeman, 2010; Gui & Li, 2005; Hothorn 
et al., 2006; Ishwaran et al., 2008; Katzman et al., 2016; Lao et al., 2017; Li & Bradic, 2020; 
Simon et al., 2011; R. Tibshirani, 1997; Verweij & Van Houwelingen, 1993; Wang et al., 
2019; Witten & Tibshirani, 2010; Zhang & Lu, 2007). An appealing feature of these methods 
is that they typically do not make modelling assumptions. To quote from Efron (2020): 
‘Neither surface nor noise is required as input to randomForest, gbm, or their kin’. The downside 
is that it is often challenging to quantify the uncertainty for these methods. To be sure, blind ap-
plication of off-the-shelf uncertainty quanti!cation tools, such as the bootstrap (Efron, 1979; 
Efron & Tibshirani, 1994), can yield unreliable results since their validity (1) rests on implicit 
modelling assumptions, and (2) holds only asymptotically (e.g., L. Lei & Candès, 2021; 
Ratkovic & Tingley, 2021).

1.2 Prediction intervals
For decision-making in sensitive and uncertain environments—think of the COVID-19 pandemic 
—it is preferable to produce prediction intervals for the uncensored survival time with guaranteed 
coverage rather than point predictions. In this regard, the use of (1 − α) prediction intervals is an 
effective way of summarizing what can be learned from the available data; wide intervals reveal a 
lack of knowledge and keep overcon!dence at arm’s length. Here and below, an interval is said to 
be a (1 − α) prediction interval if it has the property that it contains the true label, here, the survival 
time, at least 100(1 − α)% of the time (a formal de!nition is in Section 2). Prediction intervals have 
been widely studied in statistics (e.g., Aitchison & Dunsmore, 1980; Geisser, 1993; 
Krishnamoorthy & Mathew, 2009; Stine, 1985; Vovk et al., 2005; Wald, 1943; Wilks, 1941) 
and much research has been concerned with the construction of covariate-dependent intervals.

Of special interest is the subject of conformal inference, a generic procedure that can be used in 
conjunction with sophisticated machine learning prediction algorithms to produce prediction in-
tervals with valid marginal coverage without making any distributional assumption whatsoever 
(e.g., J. Lei & Wasserman, 2014; Saunders et al., 1999; R. J. Tibshirani et al., 2019; Vovk, 
2002; Vovk et al., 2005). While coverage is only guaranteed in a marginal sense, it has been the-
oretically proved and empirically observed that some conformal prediction methods can also 
achieve near conditional coverage—that is, coverage assuming a !xed value of the covariates— 
when some key parameters of the underlying conditional distribution can be estimated reasonably 
well (e.g., L. Lei & Candès, 2021; Sesia & Candès, 2020).

1.3 Our contribution
Standard conformal inference requires fully observed outcomes and is not directly applicable to 
samples with censored outcomes. In this paper, we extend conformal inference to handle right- 
censored outcomes in the setting of Type-I censoring (e.g., Leung et al., 1997). This setting assumes 
that the censoring time is observed for every unit while the outcome is only observed for uncen-
sored units. In particular, we generate a covariate-dependent lower prediction bound (LPB) on 
the uncensored survival time, which can be regarded as a one-sided (1 − α)-prediction interval. 
As we just argued, the LPB is a conservative assessment of the survival time, which is particularly 
desirable for high-stakes decision-making. A low LPB value suggests either a high risk for the 
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patient, or a high degree of uncertainty for similar patients due to data scarcity. Either way, the 
signal to a decision-maker is that the patient deserves some attention.

Under the completely independent censoring assumption de!ned below, which states that the 
censoring time is independent of both the outcome and covariates, our LPB provably yields a (1 − 
α) prediction interval. This property holds in !nite samples without any assumption other than 
that of operating on i.i.d. samples. Under the more general conditionally independent censoring 
assumption introduced later, our LPB satis!es a doubly robust property which states the follow-
ing: marginal coverage is approximately guaranteed if either the censoring mechanism or the con-
ditional survival function is estimated well. In the latter case, the LPB even has approximately 
guaranteed conditional coverage.

Readers familiar with conformal inference would notice that the above guarantees can be 
achieved by simply applying conformal inference to the censored outcomes, i.e., by constructing 
an LPB on the censored outcome treated as the response. This unsophisticated approach is conser-
vative. Instead, we will see how to provide tighter bounds and sharper inference by applying con-
formal inference on a subpopulation with large censoring times; that is, on which censored 
outcomes are closer to actual outcomes. To achieve this, we shall see how to carefully combine 
the selection of a subpopulation with ideas from weighted conformal inference (R. J. Tibshirani 
et al., 2019).

Lastly, while we focus on clinical examples, it will be clear from our exposition that our methods 
can be applied to other time-to-event outcomes in a variety of other disciplines, such as industrial 
life testing (Bain, 2017), sociology (Allison, 1984), and economics (Hong & Tamer, 2003; Powell, 
1986; Sant’Anna, 2016).

2 Prediction intervals for survival times
2.1 Problem set-up
Let Xi, Ci, Ti, i = 1, . . . , n, be respectively the vector of covariates, the censoring time, and the sur-
vival time of the ith unit/patient. Throughout the paper, we assume that (Xi, Ci, Ti) are i.i.d. copies 
of the random vector (X, C, T). We consider the Type I right-censoring setting, where the observ-
ables for the ith unit include Xi, Ci, and the censored survival time T̃i, de!ned as the minimum of 
the survival and censoring time:

T̃i = min (Ti, Ci).

For instance, if Ti measures the time lapse between the admission into the hospital and death, and 
Ci measures the time lapse between the admission into the hospital and the day data analysis is 
conducted, then T̃i = Ti if the ith patient died before the day of data analysis and T̃i = Ci if she sur-
vives beyond that day.

The censoring time C partially masks information from the inferential target T. As discussed by 
Leung et al. (1997), it is necessary to impose constraints on the dependence structure between T 
and C to enable meaningful inference. In particular, we make the following conditionally inde-
pendent censoring assumption (e.g., Kalb"eisch & Prentice, 2011):

Assumption 1 (conditionally independent censoring)

T ⫫ C ∣ X. (1) 

This assumes away any unmeasured confounder affecting both the survival and censoring time; 
see immediately below for an example. In some cases, we also consider the completely independent 
censoring assumption, which is stronger in the sense that it implies the former:

Assumption 2 (completely independent censoring)

(T, X) ⫫ C. (2) 

For instance, in a randomized clinical trial, the end-of-study censoring time C is de!ned as the 
time lapse between the recruitment and the end of the study. For single-site trials, C is often 
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modelled as a draw from an exogenous stochastic process (e.g., Carter, 2004; Gajewski et al., 
2008) and thus obeys (2). For multicentral trials, C is often assumed to depend on the site location 
only (e.g., Anisimov & Fedorov, 2007; Barnard et al., 2010; Carter et al., 2005), and thus (1) holds 
as soon as the vector of covariates includes the site of the trial. For an observational study such as 
the COVID-19 example discussed later in Section 5, additional covariates would be included to 
make the conditionally independent censoring assumption plausible.

Although (1) is a strong assumption, it is a widely used starting point to study survival analysis 
methods (Kalb"eisch & Prentice, 2011). We leave the investigation of informative censoring (e.g., 
Lagakos, 1979; Scharfstein & Robins, 2002; Wu & Carroll, 1988) to future research. 
Additionally, whereas the setting of Type I censoring appears to be restrictive, we will show in 
Section 6.1 that an LPB in this setting can still be informative for other censoring types.

2.2 Naive lower prediction bounds
Our ultimate goal is to generate a covariate-dependent LPB as a conservative assessment of the 
uncensored survival time T. Denote by L̂(·) a generic LPB estimated from the observed data 
(Xi, Ci, T̃i)n

i=1. We say an LPB is calibrated if it satis!es the following coverage criterion:

P(T ≥ L̂(X)) ≥ 1 − α, (3) 

where α is a pre-speci!ed level (e.g., 0.1), and the probability is computed over both L̂(·) and a fu-
ture unit (X, C, T) that is independent of (Xi, Ci, Ti)n

i=1.
Since T̃ ≤ T, any calibrated LPB on the censored survival time T̃ is also a calibrated LPB on 

the uncensored survival time T. Consequently, a naive approach is to discard the censoring 
time Ci’s and construct an LPB on T̃ directly. Since the samples (Xi, T̃i) are i.i.d., a 
distribution-free calibrated LPB on T̃ can be obtained via standard techniques from conform-
al inference (e.g., J. Lei et al., 2018; Romano, Patterson, et al., 2019; Vovk et al., 2005). Our 
!rst result is somewhat negative: indeed, it states that all distribution-free calibrated LPBs on 
T must be LPBs on T̃.

Theorem 1. Take X ∈ R p and C ≥ 0, T ≥ 0. Assume that L̂(·) is a calibrated LPB on T for 
all joint distributions of (X, C, T) obeying the conditionally independent cen-
soring assumption with X being continuous and (T, C) being continuous or 
discrete. Then for any such distribution,

P(T̃ ≥ L̂(X)) ≥ 1 − α.

Our proof can be extended to include the case where either C or T or both are mixtures of dis-
crete and continuous distributions but we do not consider such extensions here. An LPB con-
structed by taking T̃ as the response may be calibrated but also overly conservative because of 
the censoring mechanism. To see this, note that the oracle LPB on T̃ is, by de!nition, the αth con-
ditional quantile of T̃ ∣ X, denoted by q̃α(X). Similarly, let qα(X) be the oracle LPB on T. Under the 
conditionally independent censoring assumption,

P(T ≥ qα(x) ∣ X = x) = 1 − α = P(T̃ ≥ q̃α(x) ∣ X = x)
= P(T ≥ q̃α(x) ∣ X = x)P(C ≥ q̃α(x) ∣ X = x).

If the censoring times are small, the gap between q̃α(x) and qα(x) can be large. For illustration, as-
sume that X, C, and T are mutually independent, and T ∼ Exp(1), C ∼ Exp(b). It is easy to show 
that qα(X) = − log (1 − α) and q̃α(X) = − log (1 − α)/(1 + b). Thus, a naive approach taking T̃ as a 
target of inference can be arbitrarily conservative.

In sum, Theorem 1 implies that any calibrated LPB on T must be a calibrated LPB on T̃, under 
the conditionally independent censoring assumption only. This is why to make progress and over-
come the limitations of the naive approach, we shall need additional distributional assumptions.
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2.3 Leveraging the censoring mechanism
We have just seen that the conservativeness of the naive approach is driven by small censoring 
times. A heuristic way to mitigate this issue is to discard units with small values of C. Consider 
a threshold c0, and extract the subpopulation on which C ≥ c0. One immediate issue with this 
is that the selection induces a distributional shift between the subpopulation and the whole popu-
lation, namely,

(X, C, T)≠
d
(X, C, T) ∣ C ≥ c0.

For instance, the patients with larger censoring times tend to be healthier than the remaining ones. 
To examine the distributional shift in detail, note that the joint distribution of (X, T̃) on the whole 
population is PX × PT̃∣X while that on the subpopulation is

P(X,T̃)∣C≥c0
= PX∣C≥c0 × PT̃∣X,C≥c0

.

Next, observe that PT̃∣X,C≥c0
≠ PT̃∣X even under the completely independent censoring 

assumption because (T, X)⫫C does not imply T̃⫫C ∣ X in general. For example, as in Section 

2.2, if X, C, and T are mutually independent and T, C ∼i.i.d.Exp(1), then 
P(T̃ ≥ a, C ≥ a) = P(T̃ ≥ a) > P(T̃ ≥ a)P(C ≥ a), for any a > 0. As a result, both the covariate dis-
tribution and the conditional distribution of T̃ given X differ in the two populations.

Now consider a secondary censored outcome T̃ ∧ c0, where a ∧ b = min {a, b}. We have

P(X,T̃∧c0)∣C≥c0
= PX∣C≥c0 × PT̃∧c0∣X,C≥c0

=(a)
PX∣C≥c0 × PT∧c0 ∣X,C≥c0

=(b)
PX∣C≥c0 × PT∧c0∣X,

(4) 

where (a) uses the fact that

T ∧ c0 = T̃ ∧ c0, if C ≥ c0, 

and (b) follows from the conditionally independent censoring assumption. On the other hand, the 
joint distribution of (X, T ∧ c0) on the whole population is

P(X,T∧c0) = PX × PT∧c0∣X. (5) 

Contrasting (4) with (5), we observe that there is only a covariate shift between the subpopulation 
and the whole population.

The likelihood ratio between the two covariate distributions is

dPX

dPX∣C≥c0

(x) = P(C ≥ c0)
P(C ≥ c0 ∣ X = x)

. (6) 

While there is a distributional shift between the selected units and the target population, the special 
form of the covariate shift allows us to adjust for the bias by carefully reweighting the samples. In 
particular, applying the one-sided version of weighted conformal inference (R. J. Tibshirani et al., 
2019), discussed in the next section, gives a calibrated LPB on T ∧ c0, and thus a calibrated LPB on 
T. With suf!ciently many units with large values of C, we can choose a large threshold c0 to reduce 
the loss of power caused by censoring. We emphasize that there is no contradiction with Theorem 
1 because, as shown in Section 3, weighted conformal inference requires P(C ≥ c0 ∣ X) to be (ap-
proximately) known.
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We refer to the denominator P(C ≥ c0 ∣ X = x) in (6) as the censoring mechanism, denoted by 
c(x; c0). We write it as c(x) for brevity when no confusion can arise. This is the conditional survival 
function of C evaluated at c0. Under a censoring of Type I, the Ci’s are fully observed while the Ti’s 
are only partially observed. Thus, P(C ∣ X) is typically far easier to estimate than P(T ∣ X). 
Practically, the censoring mechanism is usually far better understood than the conditional survival 
function of T; for example, as mentioned in Section 2.1, in randomized clinical trials, C often sole-
ly depends on the site location.

Under the completely independent censoring assumption, the covariate shift even disappears 
since PX = PX∣C≥c0 . In this case, we can apply a one-sided version of conformal inference to ob-
tain a calibrated LPB on T ∧ c0, and hence a calibrated LPB on T (e.g., J. Lei et al., 2018; 
Romano, Patterson, et al., 2019; Vovk et al., 2005). With in!nite samples, as c0 ! ∞, the meth-
od is tight in the sense that the censoring issue disappears. Again, this result does not contradict 
Theorem 1, which requires the LPB to be calibrated under the weaker condition (1). With !nite 
samples, there is a tradeoff between the choice of the threshold c0 and the size of the induced 
subpopulation.

3 Conformal inference for censored outcomes
3.1 Weighted conformal inference
Returning to (4) and (5), the goal is to construct an LPB L̂(·) on T ∧ c0 from training samples 
(Xi, T̃i ∧ c0)Ci≥c0

= (Xi, Ti ∧ c0)Ci≥c0 
such that

P(T ∧ c0 ≥ L̂(X)) ≥ 1 − α.

Since T ∧ c0 ≤ T, L̂(·) is a calibrated LPB on T. We consider c0 to be a !xed threshold in 
Sections 3.1 and 3.2, and discuss a data-adaptive approach to choosing this threshold in 
Section 3.4.

To deal with covariate shifts, R. J. Tibshirani et al. (2019) introduced weighted conformal in-
ference, which extends standard conformal inference (e.g., Barber et al., 2019a, 2019b; 
Cauchois et al., 2020; J. Lei & Wasserman, 2014; Romano et al., 2020; Sadinle et al., 2019; 
Shafer & Vovk, 2008; Vovk et al., 2005). Imagine we have i.i.d. training samples (Xi, Yi)n

i=1 drawn 
from a distribution PX × PY∣X and wish to construct prediction intervals for test points drawn from 
the target distribution QX × PY∣X (in standard conformal inference, PX = QX). Assuming w(x) = 
dQX(x)/dPX(x) is known, then weighted conformal inference produces prediction intervals Ĉ(·) 
with the property

P(X,Y)∼QX×PY∣X (Y ∈ Ĉ(X)) ≥ 1 − α.

Above, the probability is computed over both the training set and the test point (X, Y). In our case, 
the outcome is T ∧ c0 and the covariate shift w(x) = P(C ≥ c0)/c(x), as shown in (6).

In Algorithm 1, we sketched a version of weighted conformal inference based on data splitting, 
which is adapted to our setting and has low computational overhead. Operationally, it has three 
main steps: 

(a) split the data into a training and a calibration fold;
(b) apply any prediction algorithm on the training fold to generate a conformity score 

indicating how atypical a value of the outcome is given observed covariate values; here, 
we generate a conformity score such that a large value indicates a lack of conformity to train-
ing data.

(c) calibrate the predicted outcome by the distribution of conformity scores on the calibration 
fold. In the calibration step from Algorithm 1, Quantile(1 − α; Q) is the (1 − α) quantile 
of the distribution Q de!ned as

Quantile(1 − α; Q) = sup {z : Q(Z ≤ z) < 1 − α}.
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Algorithm 1: conformalized survival analysis

Input: level α; data Z = (Xi, T̃i, Ci)i∈I ; testing point x;

function V(x, y; D) to compute the conformity score between (x, y) and data D;

function ŵ(x; D) to !t the weight function at x using D as data;

function C(D) to select the threshold c0 using D as data.

Procedure:

1. Split Z into a training fold Ztr W (Xi, Yi)i∈I tr 
and a calibration fold Zca W (Xi, Yi)i∈Ica

.

2. Select c0 = C(Ztr) and let I 0ca = {i ∈ Ica : Ci ≥ c0}.

3. For each i ∈ I 0ca, compute the conformity score Vi = V(Xi, T̃i ∧ c0; Ztr).

4. For each i ∈ I 0ca, compute the weight Wi = ŵ(Xi; Ztr) ∈ [0, ∞).

5. Compute the weights p̂i(x) = WiP
i∈I 0ca

Wi+ŵ(x; Ztr) 
and p̂∞(x) = ŵ(x; Ztr)P

i∈I 0ca
Wi+ŵ(x; Ztr)

.

6. Compute η(x) = Quantile(1 − α;
P

i∈I 0ca
p̂i(x)δVi + p̂∞(x)δ∞).

Output: L̂(x) = inf {y : V(x, y; Ztr) ≤ η(x)} ∧ c0

A few comments regarding Algorithm 1 are in order. First, when the covariate shift w(x) is un-
known, it can be estimated using the training fold. Second, note that in step 4, if ŵ(x; Ztr) = ∞, 
then p̂i(x) = 0 (i ∈ Zca) and p̂∞(x) = 1. In this case, step 5 gives L̂(x) = −∞. Third, the require-
ment that Wi ∈ [0, ∞) is natural because Xi ∼ PX and w(X) ∈ [0, ∞) almost surely under PX 
even if QX is not absolutely continuous with respect to PX. Fourth, it is worth mentioning in pass-
ing that η(x) is invariant to positive rescalings of ŵ(x). Thus, we can set w(x) = 1/ĉ(x) in our case 
where ĉ(x) is an estimate of c(x). Finally, apart from !tting V( · , · ; Ztr) and ŵ( · ; Ztr) once on the 
training fold, the additional computational cost of our algorithm comes from computing |I 0ca| con-
formity scores and !nding the (1 − α)th quantile. We provide a detailed analysis of time complex-
ity in Section D.4 of the Supplementary material.

In the algorithm, the conformity score function V(x, y; D) can be arbitrary and we discuss three 
popular choices from the literature: 

• Conformalized mean regression (CMR) scores are de!ned via V(x, y; Ztr) = m̂(x) − y, where 
m̂(·) is an estimate of the conditional mean of Y given X. The resulting LPB is then 
(m̂(x) − η(x)) ∧ c0. This is the one-sided version of the conformity score used in Vovk et al. 
(2005) and J. Lei and Wasserman (2014).

• Conformalized quantile regression (CQR) scores are de!ned via V(x, y; Ztr) = q̂α(x) − y, 
where q̂α(·) is an estimate of the conditional αth quantile of Y given X. The resulting LPB is 
then (q̂α(x) − η(x)) ∧ c0. This score was proposed by Romano, Patterson, et al. (2019); it is 
more adaptive than CMR and usually has better conditional coverage.

• Conformalized distribution regression (CDR) scores are de!ned via 
V(x, y; Ztr) = α − F̂Y∣X=x(y), where F̂Y∣X=x(·) is an estimate of the conditional distribution of 
Y given X. The resulting LPB is then F̂−1

Y∣X=x(α − η(x)) ∧ c0, or equivalently, the (α − η(x))th 
quantile of the estimated conditional distribution. This score was proposed by 
Chernozhukov et al. (2019). It is particularly suitable to our problem because most survival 
analysis methods estimate the whole conditional distribution.

Under the completely independent censoring assumption, P(C ≥ c0 ∣ X) = P(C ≥ c0) almost 
surely. As a consequence, we can set ŵ(x) = w(x) ≡ 1 and obtain a calibrated LPB without any dis-
tributional assumption.

Proposition 1 (Corollary 1 of R. J. Tibshirani et al., 2019)

Let c0 be any threshold independent of Zca. Consider Algorithm 3.1 with Yi = Ti ∧ c0 and 
ŵ(x; D) ≡ 1. Under the completely independent censoring assumption, L̂(X) is calibrated.
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3.2 Doubly robust lower prediction bounds
Under the more general conditionally independent censoring assumption, the censoring mechan-
ism needs to be estimated. We can apply any distributional regression techniques such as the kernel 
method or the newly invented distribution boosting (J. H. Friedman, 2020) to estimate 
c(x) = P(C ≥ c0 ∣ X = x). For two-sided weighted split-CQR, L. Lei and Candès (2021) prove 
that the intervals satisfy a doubly robust property which states the following: the average coverage 
is guaranteed if either the covariate shift or the conditional quantiles are estimated well, and the 
conditional coverage is approximately controlled if the latter is true. In Section B in the 
Supplementary material, we present more general results, both non-asymptotic and asymptotic, 
that are applicable to a broad class of conformity scores proposed by Gupta et al. (2019), including 
the CMR-, CQR-, and CDR-based scores.

In this section, we !rst present a version of the asymptotic result tailored to the CQR-LPB for 
simplicity.

Theorem 2. Let N = |Ztr|, n = |Zca|, c0 be any threshold independent of Zca, and qα(x; c0) 
denote the αth conditional quantile of T ∧ c0 given X = x. Further, let ĉ(x) 
and q̂α(x; c0) be estimates of c(x) and qα(x; c0) respectively using Ztr, and 
L̂(x) be the corresponding CQR-LPB. Assume that there exists δ > 0 such 
that E[1/ĉ(X)1+δ] < ∞ and E[1/c(X)1+δ] < ∞. Suppose that either A1 or A2 
(or both) holds: 

(A1) limN!∞ E[|1/ĉ(X) − 1/c(X)|] = 0.
(A2) 
(i) There exists b2 > b1 > 0 and r > 0 such that, for any x and ε ∈ [0, r],

P(T ∧ c0 ≥ qα(x; c0) + ε ∣ X = x) ∈ [1 − α − b2ε, 1 − α − b1ε], if qα(x; c0) + ε < c0.

(ii) limN!∞ E[E(X)/ĉ(X)] = limN!∞ E[E(X)/c(X)] = 0, where E(x) = |q̂α(x; c0) − qα(x; c0)|.

Then

lim
N,n!∞

P(T ∧ c0 ≥ L̂(X)) ≥ 1 − α.

Furthermore, under A2, for any ε > 0,

lim
N,n!∞

P(E[1{T ∧ c0 ≥ L̂(X)} ∣ X] > 1 − α − ε) = 1.

Remark 1 The condition A2(i) holds if T has a bounded and absolutely continuous dens-
ity conditional on X in a neighbourhood of qα(x). In fact, noting that 
qα(x; c0) = qα(x) ∧ c0, when qα(x; c0) + ε ≤ c0, we have qα(x) ≤ c0 and thus T ∧ 
c0 ≥ qα(x) ∧ c0 if and only if T ≥ qα(x).

Intuitively, if ĉ(x) ≈ c(x), then the procedure approximates the oracle version of weighted 
split-CQR with the true weights, and the LPBs should be approximately calibrated. On the other 
hand, if q̂α(x; c0) ≈ qα(x; c0), then Vi ≈ qα(Xi; c0) − Ti ∧ c0. As a result,

P(Vi ≤ 0 ∣ Xi) ≈ P(Ti ∧ c0 ≤ qα(Xi; c0) ∣ Xi) = α.

Thus, the (1 − α)th quantile of the Vi’s conditional on Ztr is approximately 0. To keep on going, 
recall that η(x) is the (1 − α)th quantile of the random distribution 

P
i∈Zca

p̂i(x)δVi + p̂∞(x)δ∞, and 
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set G to be the cumulative distribution function of this random distribution. Then,

G(0) ≈ E[G(0) ∣ Ztr] =
X

i∈Zca

p̂i(x)P(Vi ≤ 0 ∣ Ztr) ≈
X

i∈Zca

p̂i(x)(1 − α) ≈ 1 − α, 

implying that η(x) ≈ 0. Therefore, L̂(x) ≈ qα(x; c0), which approximately achieves the desired con-
ditional coverage.

With the same intuition, we can establish a similar result for the CDR-LPB with a slightly more 
complicated version of Assumption A2.

Theorem 3. Let F(· ∣ x) denote the conditional distribution of T ∧ c0 given X = x. With 
the same settings and assumptions as in Theorem 2, the same conclusions 
hold if A2 is replaced by the following conditions: 

(i) there exists r > 0 such that, for any x and ε ∈ [0, r],

P(T ∧ c0 ≥ qα+ε(x; c0) ∣ X = x) = 1 − α − ε, if qα+ε(x; c0) < c0.

(ii) lim
N!∞

E[E(X)/ĉ(X)] = lim
N!∞

E[E(X)/c(X)] = 0, where

E(x) = sup
s∈[α−r,α+r]

|F(q̂s(x; c0) ∣ x) − F(qs(x; c0) ∣ x)|.

The double robustness of weighted split conformal inference has some appeal; indeed, the 
researcher can leverage knowledge about both the conditional survival function and the cen-
soring mechanism without any concern for which is more accurate. Suppose the Cox model is 
adequate in a randomized clinical trial; then it can be used to produce q̂α(x; c0) in conjunction 
with the known censoring mechanism. If the model is indeed correctly speci!ed, the LPB is 
conditionally calibrated, as are classical prediction intervals derived from the Cox model 
(Kalb"eisch & Prentice, 2011); if the model is misspeci!ed, however, the LPB is still 
calibrated.

Remark 2 A special case is when the completely independent censoring assumption holds, 
yet the researcher is unaware of this and still applies the estimated ĉ(·) to obtain 
the prediction intervals. As implied by Theorems 2 and 3, if ĉ(·) is approximate-
ly a constant function, the prediction interval is approximately calibrated. 
Notably, even if ĉ(·) deviates from a constant, our prediction interval still 
achieves coverage as long as the estimated weights are non-decreasing in the 
conformity scores. We present this additional robustness result in Section 
D.3 of the Supplementary material.

As a concluding remark, the prediction interval can become numerically and statistically un-
stable in the presence of extreme weights since the proposed method depends on c(x) (or the esti-
mated ĉ(x)) through its inverse. The reader may have observed that c(x) plays a role similar to that 
of the propensity score in causal inference; the reweighting step in Algorithm 1 is analogous to in-
verse propensity score weighting-type methods. Assumption A1 in Theorem 2 mimics the overlap 
condition (e.g., D’Amour et al., 2021) in the causal inference literature. That said, there is a crucial 
difference. In a typical causal setting, the overlap condition is an assumption about the unknown 
data generating process, which cannot be manipulated. In contrast, in our work Assumption A1 
can always be satis!ed by selecting a suf!ciently low threshold c0. We provide a detailed discussion 
in Section D.1 of the Supplementary material.

3.3 Adaptivity to high-quality modelling
We have seen that when the quantiles of survival times are well estimated, L̂(x) ≈ qα(x; c0), 
which is the oracle lower prediction bound for T ∧ c0, had the true survival function been 
known. This holds without knowing whether the survival model is well estimated or not. This 
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suggests that conformalized survival analysis has favourable adaptivity properties, as formalized 
below.

Theorem 4. (a) Under the settings and assumptions of Theorem 2, assume further that 
A2(ii) holds and a modi!ed version of A2 (i) holds: there exists b1 > 0 and r > 0 such that, 
for any x and ε ∈ [0, r],

P(T ∧ c0 ≥ qα(x; c0) − ε ∣ X = x) ≥ 1 − α + b1ε.

Then, for any ε > 0,

lim
N,n!∞

PX∼QX (L̂(X) ≥ qα(X; c0) − ε) = 1.

(1) (b)] Under the settings and assumptions of Theorem 3, assume further the condition (ii) and 
the modi!ed version of condition (i): there exists r > 0 such that, for any x and ε ∈ [0, r],

P(T ∧ c0 ≥ qα−ε(x; c0) ∣ X = x) ≥ 1 − α + ε.

Then, for any ε > 0,

lim
N,n!∞

PX∼QX (L̂(X) ≥ qα−ε(X; c0)) = 1.

In theory, if c0 is allowed to grow with n and C exceeds c0 with suf!cient probability, then 
L̂(x) ≈ qα(x) (see Supplementary material, Appendix C.3). In practice, it would however be wiser 
to tune c0 in a data-adaptive fashion (discussed in the next subsection) than to prescribe a prede-
termined growing sequence.

3.4 Choice of threshold
The threshold c0 induces an estimation-censoring tradeoff: a larger c0 mitigates the censoring ef-
fect, closing the gap between the target outcome T and the operating outcome T ∧ c0, but reduces 
the sample size to estimate the censoring mechanism and the conditional survival function. It is 
thus important to pinpoint the optimal value of c0 to maximize ef!ciency.

To avoid double-dipping, we choose c0 on the training fold Ztr. In this way, c0 is independent of 
the calibration fold Zca and we are not using the same data twice. In particular, Proposition 1, 
Theorems 2 and 3 all apply. Concretely, we (1) set a grid of values for c0, (2) randomly sample 
a holdout set from Ztr, (3) apply Algorithm 1 on the rest of Ztr for each value of c0 to generate 
LPBs for each unit in the holdout set, and (4) select c0 which maximizes the average LPBs on 
the holdout set. One way to see all of this is to pretend that the training fold is the whole dataset 
and measure ef!ciency as the average realized LPBs. In practice, we choose 25% units from Ztr as 
the holdout set. The procedure is convenient to implement, though it is by no means the most 
powerful approach.

Under suitable conditions, we can choose c0 by using the calibration fold Zca and have the re-
sulting LPBs still be (approximately) calibrated. To be speci!c, given a candidate set C for c0, we 
simply maximize the average LPB on Zca:

ĉ0 = argmax
c0∈C

1
|I ca|

X

i∈I ca

L̂c0 (Xi), 

where L̂c0 (X) is given by the conformalized survival analysis with the threshold c0. In Section D.2 
of the Supplementary material we derive uniform results for the c0’s in C, and prove coverage guar-
antees for Lĉ0 (X) via a generalization of the techniques for unweighted conformal inference by 
Yang and Kuchibhotla (2021).
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4 Simulation studies
In this section, we design simulation studies to evaluate the performance of our method. 
Speci!cally, we run four sets of experiments detailed in Table 1. In each experiment, we compare 
the CQR- and CDR-LPB with the following alternatives: 

• Cox model: we generate the LPB as the αth quantile from an estimated Cox model. The meth-
od is implemented via the survival R-package (Therneau, 2020).

• Accelerated failure time (AFT) model: we generate the LPB as the αth quantile from an esti-
mated AFT model with Weibull noise. The method is implemented in the survival R 
package.

• Censored quantile regression: we consider three variants of quantile regression methods, pro-
posed by Powell (1986), Portnoy (2003), and Peng and Huang (2008), respectively. All three 
procedures are implemented in the quantreg R package (Koenker, 2020).

• Censored quantile regression forest (Li & Bradic, 2020): this is a variant of quantile random 
forest (Athey et al., 2019) designed to handle time-to-event outcomes. We reimplement the 
method based on the code provided in https://github.com/AlexanderYogurt/censored_ 
ExtremelyRandomForest.

• Naive CQR: we apply split-CQR (Romano, Patterson, et al., 2019) naively to (Xi, T̃i)n
i=1, 

where the quantiles are estimated by the quantreg R package.

For the CQR-LPB, the conditional quantiles are estimated via censored quantile regression forest 
or distribution boosting (J. H. Friedman, 2020); for the CDR-LPB, the conditional survival func-
tion is estimated via distribution boosting, which is implemented in the R package conTree 
(J. Friedman & Narasimhan, 2020).

In each experiment, we generate 200 independent datasets, each containing a training set of size 
n = 3000, and a test set of size n = 3000. For conformal methods, 50% of the training set is used 
for !tting the predictive model, and the remaining 50% of the training set is reserved for calibra-
tion. The splitting ratio between the training set and the test set is slightly different from the rec-
ommendation by Sesia and Candès (2020), where they suggest using 75% of the data for training 
and 25% for calibration. We reserve more data for calibration to ensure there are still enough sam-
ples in the calibration set after the selection and to decrease the variability of the LPBs. We then 
evaluate the coverage of LPBs as (1/ntest)

Pntest
i=1 1{Ti ≥ L̂(Xi)}. All the results in this section can 

be replicated with the code available at https://github.com/zhimeir/cfsurv_paper. In addition, 
the proposed CQR- and CDR-LPB are implemented in the R package cfsurvival, available 
at https://github.com/zhimeir/cfsurvival.

The covariate vector X ∈ Rp is generated from PX. The survival time T is generated from an AFT 
model with Gaussian noise, i.e.

log T ∣ X ∼ N (μ(X), σ2(X)).

Table 1. Parameters used in the simulation study

Dimension p PX PC∣X μ(x) σ(x)

Uvt. + Homosc. 1 U(0, 4) E(0.4) 2 + 0.37
ÅÅ
x

p
1.5

Uvt. + Heterosc. 1 U(0, 4) E(0.4) 2 + 0.37
ÅÅ
x

p
1 + x/5

Mvt. + Homosc. 100 U([ − 1, 1]p) E(0.4) log 2 + 1 + 0.55(x2
1 − x3x5) 1

Mvt. + Heterosc. 100 U([ − 1, 1]p) E(0.4) log 2 + 1 + 0.55(x2
1 − x3x5) |x10| + 1

Note. ‘Homosc.’ and ‘Heterosc.’ are short for homoscedastic and heteroscedastic; ‘Uvt.’ and ‘Mvt.’ are short for 
univariate and multivariate. U(a, b) denotes the uniform distribution supported on [a, b]; E(λ) denotes the exponential 
distribution with rate λ.
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We consider 2 × 2 settings with univariate or multivariate covariates plus homoscedastic or heter-
oscedastic errors. Here the term ‘homoscedastic’ or ‘heteroscedastic’ is applied to log T. The 
choice of the parameters in each setting is speci!ed in Table 1.

Finally, we apply all the methods with target coverage level 1 − α = 90%. In each experiment, 
we estimate c(x) by distribution boosting.

Figure 1 presents the empirical coverage of the LPBs on uncensored survival times. Censored 
random forests, the Cox model, the AFT model, and the three quantile regression methods fail 
to achieve the target coverage in most cases. On the other hand, the naive CQR attains the desired 
coverage but at the price of being overly conservative. In contrast, both the CQR- and CDR-LPB 
achieve near-exact marginal coverage, as predicted by our theory.

Next, we investigate the conditional coverage and ef!ciency of these methods. In Figure 2a, we 
plot the empirical conditional coverage as a function of the conditional variance of T on X. In par-
ticular, we stratify the data into 10 groups based on equispaced percentiles of Var(T ∣ X) and plot 
the average coverage within each stratum along with a 90% con!dence band obtained via repeated 
sampling. Note that in either the homoscedastic or the heteroscedastic case, Var(T ∣ X) is varying 
with X. Not surprisingly, the naive CQR is conditionally conservative. In the univariate case, both 
the CQR- and CDR-LPB approximately achieve desired conditional coverage; in the multivariate 
case, the conditional coverage is slightly uneven, though still concentrating around the target line. 
Figure 2b presents the ratio between the LPBs and the true αth conditional quantile as a function of 
Var(T ∣ X). This is a measure of ef!ciency since the true conditional quantile is the oracle LPB. 
Here, we observe that naive CQR-LPBs are close to zero, con!rming that they are overly conser-
vative, while the CQR- and CDR-LPBs are fairly close to the oracle LPB, implying that both meth-
ods are relatively ef!cient.

5 Application to UK Biobank COVID-19 data
We apply our method to the UK Biobank COVID-19 dataset to demonstrate robustness and prac-
ticability. UK Biobank (Bycroft et al., 2018) is a large-scale biomedical database and research re-
source, containing in-depth genetic and health information from half a million UK participants. In 
April 2020, UK Biobank started to release COVID-19 testing data, and has since continued to 
regularly provide updates. This gives researchers access to a cohort of COVID-19 patients, along 
with their date of con!rmation, survival status, pre-existing conditions, and other demographic 
covariates.

We include in our analysis all individuals in UK Biobank who received a positive COVID-19 test 
result before 21 January 2021. This results in a dataset of size n = 14, 861 with 484 events, de!ned 
as a COVID-related death. We extract eight covariate features, namely, age, gender, body mass 
index (BMI), waist size, cardiovascular disease status, diabetes status, hypothyroidism status, 
and respiratory disease status. As in Section 2, the censoring time is the time lapse between the 
date of a positive test and 21 January 2021. The survival time is the time lapse between the 
date of a positive test and the event (which may have yet to occur).

We wish to harness this data to produce an LPB on the survival time of each COVID-19 patient. 
To apply the CQR- or CDR-LPB, we set the threshold c0 to be 14 days. Since survival time assess-
ment likely informs high-stakes decision-making, we set the target level to 99% for reliability.

Figure 1. Empirical 90% coverage of the uncensored survival time T . ‘CQR-cRF’ is short for the CQR-LPB with 
censored quantile regression forest; ‘CQR-conTree’ and ‘CDR-conTree’ are short for the CQR- and CDR-LPB with 
distribution boosting. The other abbreviations are the same as in Table 1.
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5.1 Semi-synthetic examples
To demonstrate robustness, we start our analysis with two semi-synthetic examples so that the 
ground truth is known and calibration can be assessed (results on real outcomes are presented 
next). We keep the covariate matrix X from the UK Biobank COVID-19 data. In the !rst simula-
tion study, we substitute the censoring time with a synthetic C. In the second, each survival time, 
observed or not, is substituted with a synthetic version. Details follow: 

• Synthetic C: we take the censored survival time T̃ as the uncensored survival time and generate 
the censoring time Csyn as

Csyn ∼ E(0.001 · age + 0.01 · gender).

In this setting, the observables are (X, Csyn, T̃ ∧ Csyn), and we wish to construct LPBs on T̃.
• Synthetic T: we keep the real censoring time C, and generate a survival time Tsyn as:

log Tsyn ∣ X ∼ N (2 + 0.05 · age + 0.1 · gender, 1).

In this setting, the observables are (X, C, Tsyn ∧ C), and we wish to construct LPBs on Tsyn.

Figure 3 shows the histograms of the survival time, censoring time, and censored survival time 
from the two simulated datasets. We apply the CDR-LPB (with c0 = 14) to both. For comparison, 
we also apply the AFT and naive CQR. To evaluate the LPBs, we randomly split the data into a 
training set with 75% of the data and a holdout set with the remaining 25%. Each method is ap-
plied to the training set, and the resulting LPBs are evaluated on the holdout set. We repeat the 
above procedure 100 times to create 100 pairs of training and test data sets.

To visualize conditional calibration, we !t a Cox model on the data to generate a predicted risk 
score for each unit and stratify all units into 10 subgroups de!ned by deciles of the predicted risk. 
The results for synthetic C and T are plotted in Figures 4 and 5, respectively. As in the simulation 
studies from Section 4, we see that the naive CQR is overly conservative. Notably, although the 
AFT-LPB is well calibrated in the synthetic-C setting, this method is overly conservative in the 
synthetic-T setting, even though the model is correctly speci!ed. In contrast, the CDR-LPB is cali-
brated in both examples. From the middle panels of Figures 4 and 5, we also observe that the 

(a) (b)

Figure 2. Results from the experiments detailed in Table 1: (a) empirical 90% conditional coverage and (b) ratio 
between the LPB and the theoretical quantile as a function of Var(T ∣ X). The blue curves correspond to the mean 
coverage in (a) and the median ratio in (b). The grey confidence bands correspond to the 95% and 5% quantiles of 
the estimates over repeated sampling. The abbreviations are the same as in Figure 1.
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CDR-LPB is approximately conditionally calibrated. Finally, the right panels show that CDR-LPB 
nearly preserves the rank of the predicted risk given by the Cox model. The "at portion of the LPB 
towards the left end corresponds to the threshold, implying that at least 99% of people with pre-
dicted risk scores lower than 0.5 can survive beyond 14 days.

5.2 Real data analysis
We now turn attention to actual COVID-19 responses. Again, we randomly split the data into a 
training set including 75% of data and a holdout set including the remaining 25%. Then we run 
the CDR on the training set and validate the LPBs on the holdout set. The issue is that the actual 
survival time is only partially observed, and thus, the coverage of a given LPB cannot be assessed 
accurately (this is precisely why we generated semi-synthetic responses in the previous section.) 
Nevertheless, we note that

βlo : = P(T̃ ≥ L̂(X)) ≤ P(T ≥ L̂(X)) ≤ 1 − P(T̃ < L̂(X), T ≤ C) = : βhi, 

where both βlo and βhi are estimable from the data. This says that we can assess the marginal cover-
age of the LPBs by evaluating a lower and upper bound on the coverage. Of course, this extends to 
conditional coverage.

To assess the stability, we evaluate our method on 100 independent sample splits. Figure 6
presents the empirical lower and upper bound of the marginal coverage and those of the condition-
al coverage as functions of the predicted risk (as in the semi-synthetic examples), together with 
their variability across 100 sample splits. The left panel shows that the upper bound is very close 
to the lower bound, and both concentrate around the target level. Thus, we can be assured that the 
CDR-LPB is well calibrated. Similarly, the other panels show that the CDR-LPB is approximately 
conditionally calibrated. We conclude this section by showing in Figure 7 the LPBs as functions of 
the percentiles of the predicted risk, age, and BMI, respectively.

6 Discussion and extensions
6.1 Beyond Type-I censoring
In practice, censoring can be driven by multiple factors. As discussed in Leung et al. (1997), the 
two most common types of right censoring in a clinical study are the end-of-study censoring caused 
by the trial termination and the loss-to-follow-up censoring caused by unexpected attrition; see 
also Korn (1986) and Schemper and Smith (1996) for an account of the two types of censoring. 
Let Cend denote the former and Closs the latter. By de!nition, Cend is observable for every patient, 
as long as the entry times are accurately recorded. When the event is not death (e.g., the patient’s 
returning visit), Closs is observable if all patients are tracked until the end of the study. However, 
when the event is death, Closs can only be observed for surviving patients. This is because for dead 
patients, it is impossible to know when they would have been lost to follow-up, had they survived.

Figure 3. Histograms of the survival time, censoring time, and censored survival time defined as the minimum 
between the two, in each simulation setting.
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Figure 4. Results for synthetic censoring times across 100 replications: empirical coverage (left), empirical 
conditional coverage of the CDR-LPB (middle), and CDR-LPB as a function of the percentile of the predicted risk 
(right). The target coverage level is 99%. The blue curves correspond to the mean coverage in the middle panel and 
the median LPB in the right panel; the grey confidence bands correspond to the 5% and 95% quantiles of the 
estimates across 100 independent replications.

Figure 5. Results for synthetic survival times: everything else is as in Figure 4.

(a) (b) (c)

Figure 6. Analysis of the UK Biobank COVID-19 data: (a) lower and upper bounds of the empirical coverage; (b) 
lower and (c) upper bounds of empirical coverage as a function of the predicted risk. The target coverage level is 
99%. The blue curves correspond to the mean coverage, and the grey confidence bands correspond to the 5% and 
95% quantiles of the estimates across 100 sample splits.

Figure 7. Analysis of the UK Biobank COVID-19 data: LPBs on the survival time of COVID-19 patients as a function 
of the percentiles of predicted risk (left), age (middle) and BMI (right). The target coverage level is 99%. The blue 
curves correspond to the median LPB across 100 sample splits.
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In survival analysis without loss-to-follow-up censoring, or time-to-event analysis with non- 
death events, the setting of Type I censoring considered in this paper is plausible. However, it is 
found that both the end-of-study and loss-to-follow-up censoring are involved in many applica-
tions (Leung et al., 1997). In these cases, the effective censoring time C is the minimum of Cend 
and Closs, and is only observable for surviving patients, namely the patients with T > C. This situ-
ation prevents us from applying Algorithm 1 because the subpopulation with C ≥ c0 is not fully 
observed. If we use the subpopulation whose C is (1) observed and (2) larger than or equal to a 
threshold c0 instead, then the joint distribution of (X, T) becomes PX∣C≥c0,T>C × PT∣X,C≥c0,T>C. 
The extra conditioning event T > C induces a shift of the conditional distribution, since 
PT∣X,C≥c0,T>C ≠ PT∣X,C≥c0 in general, rendering the weighted split conformal inference invalid.

Our method can nevertheless be adapted to yield meaningful inference under an additional as-
sumption:

(T, Closs) ⫫ Cend ∣ X. (7) 

Unlike Korn (1986) and Schemper and Smith (1996), (7) does not impose any restrictions on the 
dependence between T and Closs, which is harder to conceptualize. The assumption (7) tends to be 
plausible, especially when the total length of follow-up is short, since the randomness of the 
end-of-study censoring time often comes from the entry time of a patient, which is arguably ex-
ogenous to the survival time and attrition, at least when conditioning on a few demographic var-
iables. There are certain cases where (7) could be violated. For example, if new treatments become 
available during the course of a study, subjects who enter later are different from those who enter 
earlier as they could have been given the alternative treatments, but were not.

Let T0 = T ∧ Closs, the survival time censored merely by the loss to follow-up. Then the censored 
survival time T̃ = T ∧ C = T0 ∧ Cend, and (7) implies that T0⫫Cend ∣ X, an analogue of the condi-
tionally independent censoring assumption (1). Since Cend is observed for every patient, 
Algorithm 1 can be applied to produce an LPB L̂(·) such that

P(T0 ≥ L̂(X)) ≥ 1 − α=)P(T ≥ L̂(X)) ≥ 1 − α.

In Section D.5 of the Supplementary material, we provide an additional simulation illustrating the 
result of our method in this setting. An observation in conjunction with this line of reasoning is 
that, unlike most survival analysis techniques, our method distinguishes two sources of censoring 
and takes advantage of the censoring mechanism itself. It can be regarded as a building block to 
remove the adverse effect of Cend. It remains an interesting question whether the censoring issue 
induced by Closs can be resolved or alleviated in this context.

6.2 Sharper coverage criteria
It is more desirable to achieve a stronger conditional coverage criterion:

P(T ≥ L̂(X) ∣ X = x) ≥ 1 − α, (8) 

which states that L̂(X) is a conditionally calibrated LPB. Clearly, (8) implies valid marginal cover-
age. Theorems 2 and 3 show that the CQR- and CDR-LPB are approximately conditionally cali-
brated if the conditional quantiles are estimated well. However, without distributional 
assumptions, we can show that (8) can only be achieved by trivial LPBs.

Theorem 5. Assume that X ∈ R p and C ≥ 0, T ≥ 0. Let P(X,C) be any given distribution of 
(X, C). If L̂(·) satis!es (8) uniformly for all joint distributions of (X, C, T) 
with (X, C) ∼ P(X,C), then for all such distributions,

P(L̂(x) = 0) ≥ 1 − α, 

at almost surely all points x aside from the atoms of PX.
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Theorem 5 implies that no non-trivial LPB exists even if the distribution of (X, C) is known. Put 
another way, it is impossible to achieve desired conditional coverage while being agnostic to the 
conditional survival function. This impossibility result is inspired by previous works on uncen-
sored outcomes and two-sided intervals (Barber et al., 2019a; Vovk, 2012).

It is valuable to !nd other achievable coverage criteria which are sharper than the marginal 
coverage criterion (3). Without censoring and covariate shift, Vovk et al. (2003) introduced 
Mondrian conformal inference to achieve desired marginal coverage over multiple subpopula-
tions. The idea is further developed from different perspectives (Barber et al., 2019a; Guan, 
2019; J. Lei et al., 2013; Romano, Barber, et al., 2019; Vovk, 2012). Given a partition of the co-
variate space {X1, . . . , XK}, Mondrian conformal inference guarantees that

P(Y ∈ Ĉ(X) ∣ X ∈ Xk) ≥ 1 − α, k = 1, . . . , K.

Mondrian conformal inference allows the subgroups to also depend on the outcome; see Vovk 
et al. (2005), which refers to the rule of forming subgroups as a ‘taxonomy’. Besides, the subgroups 
can also be overlapping; see Barber et al. (2019a). Following their techniques, we can extend 
Mondrian conformal inference to our case by modifying the calibration term η(x) (in Algorithm 1):

η(x) = Quantile 1 − α;

P
i∈I ca,Xi∈Xk

p̂i(x)δVi + p̂∞(x)δ∞P
i∈I ca,Xi∈Xk

p̂i(x) + p̂∞(x)

 !

, 8x ∈ Xk. (9) 

Suppose X1 and X2 correspond to male and female subpopulations. Then η(x) is a function of both 
the testing point x and the gender. That said, estimation of censoring mechanisms and conditional 
survival functions can still depend on the whole training fold Ztr as joint training may be more 
powerful than separate training on each subpopulation (Romano, Barber, et al., 2019).

When the censoring mechanism is known, we can prove that

P(T ∧ c0 ≥ L̂(X) ∣ X ∈ Xk) ≥ 1 − α, k = 1, . . . , K. (10) 

By the conditionally independent censoring assumption, the target distribution in the localized cri-
terion (10) for a given k can be rewritten as

(X, T ∧ c0) ∣ C ≥ c0, X ∈ Xk ∼ PX∣C≥c0,X∈Xk × PT∧c0 ∣X.

The covariate shift between the observed and target distributions is

wk(x) = dPX∣C≥c0,X∈Xk

dPX
(x) ∝ I(x ∈ Xk)

P(C ≥ c0 ∣ X = x)
.

This justi!es the calibration term (9) in the weighted Mondrian conformal inference. Since the 
weighted Mondrian conformal inference is a special case of Algorithm 1, it also enjoys the double 
robustness property, implied by Theorem B.4 in Section B in the Supplementary material.

6.3 Survival counterfactual prediction
The proposed method in this paper is designed for a single cohort. In practice, patients are often 
exposed to multiple conditions, and the goal is to predict the counterfactual survival times had the 
cohort been exposed to a different condition. For example, a clinical study typically involves a 
treatment group and a control group. For a new patient, it is of interest to predict her survival 
time had she been assigned the treatment. For uncensored outcomes, L. Lei and Candès (2021)
proposed a method based on weighted conformal inference for counterfactual prediction under 
the potential outcome framework (Neyman, 1923/1990; Rubin, 1974). We can extend their strat-
egy to handle censored outcomes and apply it to the survival counterfactual prediction.

Suppose each patient has a pair of potential survival times (T(1), T(0)), where T(1) (resp. T(0)) 
denotes the survival time had the patient been assigned into the treatment (resp. control) group. 
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Our goal is to construct a calibrated LPB on T(1), given i.i.d. observations (Xi, Wi, Ci, Ti)n
i=1 with 

Wi denoting the treatment assignment and

Ti = Ti(1), Wi = 1,
Ti(0), Wi = 0.

⇢

Without further assumptions on the correlation structures between T(1) and T(0), it is natural to 
conduct inference based on the observed treated group since the control group contains no infor-
mation about T(1). The joint distribution of (X, T(1) ∧ c0) on this group becomes

(X, T(1) ∧ c0) ∣ C ≥ c0, W = 1 ∼ PX∣C≥c0,W=1 × PT(1)∧c0∣X,C≥c0,W=1.

Under the assumption that (T(1), T(0))⫫(W, C) ∣ X, the conditional distribution of T(1) ∧ c0 
matches the target:

PT(1)∧c0∣X,C≥c0,W=1 = PT(1)∧c0∣X.

The assumption is a combination of the strong ignorability assumption (Rubin, 1978), a widely 
accepted starting point in causal inference, and the conditionally independent censoring assump-
tion. The density ratio of the two covariate distributions can be characterized by

w(x) = dPX∣C≥c0,W=1

dPX
(x) ∝ 1

P(C ≥ c0, W = 1 ∣ X = x)
.

In many applications, it is plausible to further assume that C⫫W ∣ X. In this case,

P(C ≥ c0, W = 1 ∣ X = x) = P(C ≥ c0 ∣ X = x)P(W = 1 ∣ X = x), 

where the !rst term is the censoring mechanism and the second term is the propensity score 
(Rosenbaum & Rubin, 1983). Therefore, we can obtain calibrated LPBs on counterfactual sur-
vival times if both the censoring mechanism and the propensity score are known. This assumption 
is often plausible for randomized clinical trials. Furthermore, it has a doubly robust guarantee of 
coverage that is similar to Theorems 2 and 3.
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Data availability
The code for reproducing the simulations in Section 4 are publicly available at https://github.com/ 
zhimeir/cfsurv˙paper. The data used in Section 5 is provided by UK Biobank, and cannot be shared 
due to the privacy of the participants. An R-package to implement the procedures proposed in this 
paper can be found at https://github.com/zhimeir/cfsurvival.
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