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This paper studies the construction of p-values for nonparametric out-
lier detection, from a multiple-testing perspective. The goal is to test whether
new independent samples belong to the same distribution as a reference data
set or are outliers. We propose a solution based on conformal inference, a
general framework yielding p-values that are marginally valid but mutually
dependent for different test points. We prove these p-values are positively de-
pendent and enable exact false discovery rate control, although in a relatively
weak marginal sense. We then introduce a new method to compute p-values
that are valid conditionally on the training data and independent of each other
for different test points; this paves the way to stronger type-I error guarantees.
Our results depart from classical conformal inference as we leverage con-
centration inequalities rather than combinatorial arguments to establish our
finite-sample guarantees. Further, our techniques also yield a uniform confi-
dence bound for the false positive rate of any outlier detection algorithm, as
a function of the threshold applied to its raw statistics. Finally, the relevance
of our results is demonstrated by experiments on real and simulated data.

1. Introduction.

1.1. Problem statement and motivation. We consider an outlier detection problem in
which one observes a data set D = {Xi}2n

i=1 containing 2n independent and identically dis-
tributed points Xi ∈ Rd drawn from an unknown distribution PX (which may be continuous,
discrete or mixed). The goal is to test which among a new set of ntest ≥ 1 independent ob-
servations Dtest = {X2n+i}ntest

i=1 are outliers, in the sense that they were not drawn from the
same distribution PX . By contrast, we refer to samples from PX as inliers. This problem has
applications in many domains, including medical diagnostics [76], spotting frauds or intru-
sions [58], forensic analysis [25], monitoring engineering systems for failures [75] and out-
of-distribution detection in machine learning [32, 46, 47, 50]. A variety of machine-learning
tools have been developed to address this task, which is sometimes called one-class classifi-
cation [55, 60] because the data in D do not contain any outliers. However, such algorithms
are often complex and their outputs are not directly covered by any precise statistical guar-
antees. Fortunately, conformal inference [82, 83] allows one to practically convert the output
of any one-class classifier (if it is invariant to the ordering of the training observations) into a
provably valid p-value for the null hypothesis H0,i : Xi ∼ PX , for any Xi ∈ Dtest.

In many applications, the number of outlier tests, ntest, is large and, therefore, it may be
necessary to account for multiple comparisons to avoid making an excessive number of false
discoveries. A meaningful error rate in this setting is the false discovery rate (FDR) [9]: the

Received April 2021; revised May 2022.
MSC2020 subject classifications. Primary 62G10, 62J15; secondary 62G15.
Key words and phrases. Conformal inference, out-of-distribution, false discovery rate, positive dependence.

149

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/22-AOS2244
http://www.imstat.org
mailto:stephenbates@cs.berkeley.edu
mailto:candes@stanford.edu
mailto:lihualei@stanford.edu
mailto:yromano@cs.technion.ac.il
mailto:sesia@marshall.usc.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


150 S. BATES ET AL.

expected proportion of true inliers among the test points reported as outliers. For example, if
a particular financial transaction is labeled by an automated system as likely to be fraudulent
(i.e., unusual, or out-of-distribution compared to a data set of normal transactions), some-
one may then need to review it manually, and possibly contact the involved customer. Since
these follow-up procedures have a cost, controlling the FDR may be a sensible solution to
ensure resources are allocated efficiently. From a statistical perspective, multiple testing in
this setting requires some care because classical conformal p-values corresponding to differ-
ent values of i > 2n are independent of each other only conditional on D, although they are
valid only marginally over D. This situation is delicate because FDR control typically re-
quires p-values that either are mutually independent or follow certain patterns of dependence
[11, 19]. Similarly, global testing (i.e., aggregating evidence from multiple observations to
test weaker batch-level hypotheses) may also require independent p-values. This paper ad-
dresses the above issues by carefully studying the theoretical properties of some standard
multiple testing procedures applied to conformal p-values, and by developing new methods
to compute p-values with stronger validity properties.

The conformal inference methods studied in this paper are statistical wrappers for one-
class classifiers. The latter are algorithms trained on data clean of any outliers to compute a
score function ŝ : Rd → R assigning a scalar value to any future data point, so that smaller
(e.g.) values of ŝ(X) provide evidence that X may be an outlier. By design, the classifier at-
tempts to construct scores that separate outliers from inliers effectively, by learning from the
data what inliers typically look like, and it may be based on sophisticated black-box models
to maximize power. While often effective in practice, these machine-learning algorithms have
the drawback of not offering any clear guarantees about the quality of their output. For exam-
ple, they do not directly provide a null distribution for the classification scores ŝ evaluated on
true inliers, or any particular threshold to limit the rate of false positives. This is where con-
formal inference comes to help. After training ŝ on a subset of the observations in D, namely
those in Dtrain = {X1, . . . ,Xn}, the scores are evaluated on the remaining n hold-out sam-
ples in Dcal = {Xn+1, . . . ,X2n}. (Note that Dtrain and Dcal do not need to contain the same
number of observations, although the current choice simplifies the notation without loss of
generality). Let us assume, for simplicity, that ŝ(X) has a continuous distribution if X ∼ PX

is independent of the data used to train ŝ, although this assumption could be relaxed at the
cost of some additional technical details. Then define F as the cumulative distribution func-
tion (CDF) of ŝ(X). If we knew F , we could utilize F(ŝ(Xi)) as an exact p-value for the null
hypothesis H0,i : Xi ∼ PX , for any Xi ∈ Dtest, in the sense that F(ŝ(Xi)) would be uniformly
distributed if H0,i is true. In practice, however, we do not have direct access to F because
PX is unknown and the machine-learning algorithm upon which ŝ depends is assumed to be
a black box. Instead, we can evaluate the empirical CDF of ŝ(Xi) for all Xi ∈ Dcal, which
we denote as F̂n. In the following, we will discuss how to construct provably valid conformal
p-values for a future observation X2n+1 by evaluating

(1) û(X2n+1) = (g ◦ F̂n ◦ ŝ)(X2n+1),

where g is a suitable adjustment function, and the symbol ◦ denotes a composition; that is,
(f ◦g)(x) = f (g(x)). Note that, hereafter, we will treat the observations in Dtrain as fixed and
focus on the randomness in the calibration (Dcal) and test (Dtest) data, upon which conformal
inferences are generally based.

1.2. Preview of contributions. In Section 2, we will focus on the classical confor-
mal inference methods, which produce marginally superuniform (conservative) p-values
û(marg)(X2n+1) satisfying

(2) P
[
û(marg)(X2n+1) ≤ t

] ≤ t,
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FIG. 1. Visualization of the joint distribution of the conformal p-values. The distribution of ŝ(x) is the same for
calibration and inlier test points. The conformal p-value for each test point is the number of calibration points to
its left, divided by the total number of calibration points plus one, as in (3).

for any t ∈ (0,1), whenever X2n+1 is an inlier. We say these p-values are marginally valid
because they depend on the calibration data in Dcal, and both Dcal and X2n+1 are random
in (2). In particular, the classical û(marg) is computed by applying the adjustment function
g(marg)(x) = (nx + 1)/(n + 1) to (1), that is,

(3) û(marg)(x) = 1 + |{i ∈ Dcal : ŝ(Xi) ≤ ŝ(x)}|
n + 1

.

Note that (2) is implied by (3) because when ŝ(X) follows a continuous distribution,
û(marg)(X) is uniformly distributed on {1/(n+1),2/(n+1), . . . ,1} if X ∼ PX independently
of the data in Dtrain [82, 83]. (If ŝ(X) is not continuous, one can still verify that û(marg)(X)
is superuniform in distribution.) However, this is not necessarily true if one conditions on
D = Dtrain ∪ Dcal, in which case û(marg)(X) may become anticonservative due to random
fluctuations in the distribution of scores within Dcal. Intuitively, this means the marginal p-
values in (3) are only valid on average if data in Dcal are treated as random. Unfortunately,
this guarantee may be too weak to be satisfactory for a practitioner who wants to compute
p-values for a large number of test points but is constrained to working with a single cali-
bration data set. Indeed, the numerical experiments presented in Section 5.2 will show that
inferences based on marginal conformal p-values may be systematically invalid for a large
fraction of practitioners working with “unlucky” calibration data sets.

Marginal p-values corresponding to different test points, {û(marg)(X)}X∈Dtest , are not mutu-
ally independent because they are all affected by Dcal; see Figure 1. This should be taken into
account when adjusting for multiplicity in outlier detection applications because some com-
mon testing procedures are not generally valid for dependent p-values. For example, we will
prove in Section 2 that the dependence among marginal p-values invalidates Fisher’s combi-
nation test [24] for the global null that there are no outliers in Dtest, even if the calibration
data in Dcal are treated as random, although this can be easily fixed by suitably adjusting the
critical value. By contrast, we can prove the dependence between conformal p-values does
not break the average FDR control of the Benjamini–Hochberg (BH) procedure [9], even if
the latter is applied with Storey’s correction [72]. The behaviors of additional multiple testing
procedures, such as the harmonic mean [93], Simes method [69] and Stouffer’s method [73],
applied to conformal p-values will be investigated empirically in Section 5.

In any case, regardless of whether the mutual dependence among marginal p-values the-
oretically invalidates the average inferences of a particular multiple-testing procedure, one
may sometimes be interested in obtaining stronger guarantees conditional on the calibration
data. Consider for instance the following prototypical scenario. A researcher, or a company,
acquires an expensive data set D containing clean examples of some variable X of interest,
and wishes to leverage that information to construct a system to detect outliers in future test
points, while avoiding an excess of false positives. If the stakes are high, the researcher may
need clear statistical guarantees about the output of such procedure (as opposed to blindly
trusting a black-box model) and, therefore, decides to employ conformal inference. Unfortu-
nately, the marginal validity property in (2) tells us very little about how this outlier detection
system may perform in the future for this particular researcher relying on these data D. In-
stead, marginal validity suggests the system will work on average for different researchers
starting from different data; of course, that may not be fully satisfactory for any one of them.
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Thus, we will construct in Section 3 conformal p-values satisfying a stronger property:
calibration-conditional validity (CCV). Formally, the novel p-values û(ccv)(x) will satisfy

(4) P
[
P

[
û(ccv)(X2n+1) ≤ t | D] ≤ t for all t ∈ (0,1)

] ≥ 1 − δ,

if X2n+1 ∼ PX , for any value of δ ∈ (0,1) prespecified by the user. The crucial difference
between (4) and (2) is that the latter intuitively guarantees the p-values are valid for at least
a fraction 1 − δ of researchers; this can give a precise measure of confidence to each one
of them. Further, calibration-conditional p-values have the advantage of making multiple
testing straightforward. In fact, these p-values are still trivially independent of one another
conditional on the calibration data, so their high-probability guarantee of validity will extend
to the output of any downstream multiple-testing procedure that assumes independence.

While most of this paper focuses on the validity of conformal p-values from a multiple-
testing perspective, Section 4 will show our high-probability results can also be utilized
to construct a uniform upper confidence bound for the false positive rate of any machine-
learning algorithm for outlier detection, as a function of the threshold applied to its raw out-
put scores. This may be helpful to interpret the output of black-box methods directly, without
p-values. (However, as statisticians, we prefer the p-value approach because it is more versa-
tile.) Further, we will show our results can be easily leveraged to obtain predictive sets with
stronger coverage guarantees compared to existing conformal methods.

Finally, in Section 5, we will compare the performance of marginal and calibration-
conditional conformal p-values on simulated and real data, in combination with different
multiple testing procedures. These experiments will confirm empirically our theoretical re-
sults, and also highlight how stronger guarantees sometimes come at the cost of lower power.

1.3. Related work. The outlier detection problem considered in this paper is fully non-
parametric, in the sense that we leverage the information contained in a clean data set, and
nothing else, to infer whether a future test point may be an outlier. This is in contrast with the
more classical problem of multivariate outlier detection within a single data set, leveraging
modeling assumptions rather than clean external samples [16, 30, 62, 92]. A wealth of data
mining and machine-learning methods have been developed to address our nonparametric
task [1, 2, 17, 37, 65]; these do not provide finite-sample guarantees on their own, but we can
leverage them to compute scoring functions that powerfully separate outliers from inliers.

Our paper is based on conformal inference [82, 83], which has been applied before in the
context of outlier detection [13, 27, 29, 35, 45, 70]. However, previous works did not study
the implications of marginal p-values on the validity of multiple outlier testing procedures,
nor did they seek the conditional guarantees obtained here. Another line of work applied
conformal inference to test the global null for streaming data [23, 80, 81, 84, 86]. However,
that guarantee no longer holds in the offline setting or beyond the global null. The most
closely related work is that of [78], which extends conformal inference to provide a form of
calibration-conditional coverage. That paper focused on the prediction setting rather than on
outlier detection, but is also directly relevant in our context, as discussed in Section 3.1. The
main difference is that our novel high-probability bounds in Section 3 hold simultaneously
for all possible coverage levels (in the language of [78]) not just for a prespecified one—this
feature being necessary to obtain conditionally valid p-values for multiple outlier testing.

Other works on conformal inference focused on different types of conditional coverage.
For example, [5] studied the difficulty of computing valid conformal predictions (in a super-
vised setting) conditional on the features of a new test point, while we are interested in condi-
tioning on the calibration data (in an outlier detection setting). Other works have focused on
seeking approximate feature-conditional coverage in multiclass classification [3, 15, 31, 64]
or in regression [18, 28, 36, 40, 63]. This paper is orthogonal, as our results can be applied
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to strengthen their coverage guarantees by conditioning on the calibration data. It should be
noted that, although conformal inference can be based on different data hold-out strategies
[4, 38, 79], our paper focuses on sample splitting [48, 56]. The latter has the advantage of be-
ing computationally efficient, and is necessary for us in theory because our high-probability
bounds require the independence of the data points in addition to their exchangeability.

Further, the problem we consider is related to classical two-sample testing [89], although
we take a different perspective. Two-sample testing compares two data sets to determine
whether they were sampled from the same distribution, while our goal is to contrast many
independent test points (or batches thereof) to the same reference set accounting for multi-
plicity. Several works have explored the use of machine-learning and data hold-out methods
for two-sample testing [26, 34, 39, 44, 52], reinforcing the connection with our work.

Finally, the duality between hypothesis testing and confidence intervals connects our con-
ditionally calibrated p-values to the classical statistical topic of tolerance regions, which goes
back to Wilks [90, 91], Wald [87] and Tukey [77]. See [43] for a overview of the subject,
[78] for a discussion of their connection with conformal inference, and [6, 57] for modern
examples using tolerance regions for predictive inference with neural networks. (Tolerance
regions are predictive sets with a high-probability guarantee to contain the desired fraction
of the population. For example, one can generate a tolerance region guaranteed to contain at
least 80% of the population with probability 99%.) The construction of predictive intervals
with (asymptotic) conditional validity in the aforementioned sense was also recently studied
in [96] with bootstrap rather than conformal inference methods.

2. Marginal conformal inference for outlier detection. We begin by carefully study-
ing the marginal validity of multiple tests based on split-conformal outlier detection p-values.
The conformal p-values in (3) are marginally valid for the hypothesis that a test point follows
the distribution PX (see (2)), but they are not independent of each other when considering
multiple test points. Consequently, they cannot be naively used to test a global null hypoth-
esis that no points in a test set are outliers, with Fisher’s combination test [24], for example.
The failure of Fisher’s test is caused by the particular dependence induced by the shared cal-
ibration data, although other procedures turn out to be robust to such dependence. In particu-
lar, we will prove conformal p-values are positive regression dependent on a subset (PRDS),
which combined with the results of [11], implies the BH procedure will control the FDR.

2.1. A negative result: Global testing with conformal p-values can fail. Fisher’s combi-
nation test [24] is a widely-used method to test the global null, in our case

H0 : X2n+1, . . . ,X2n+m
i.i.d.∼ PX.

The idea is to aggregate the evidence from the individual tests, as follows. Given a p-value
pi for each null hypothesis i, Fisher’s test rejects the global null at level α if

−2
m∑

i=1

logpi ≥ χ2(2m;1 − α),

where χ2(2m;1 − α) is the (1 − α)th quantile of the chi-square distribution with 2m degrees
of freedom. This test is valid if the p-values stochastically dominate Unif([0,1]) and are inde-
pendent of each other. However, we prove in the following lemma that the standard (marginal)
conformal p-values are positively correlated under arbitrary transformations, suggesting an
inflation of the variance of the combination statistics.
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LEMMA 2.1. Assume that ŝ(X) is continuously distributed. Then, for any finite-valued
function G : [0,1] )→ R, and for any pair of nulls (i, j),

Cor
[
G

(
û(marg)(X2n+i )

)
,G

(
û(marg)(X2n+j )

)] = 1
n + 2

.

Motivated by Lemma 2.1 (see Section S1.1 in the Supplementary Material [7] for a detailed
discussion), we obtain the following result, which shows Fisher’s combination test becomes
invalid when applied to marginal conformal p-values. In particular, we characterize its type-I
error in the asymptotic regime where |Dtest| is proportional to |Dcal|.

THEOREM 2.2 (Type-I error of Fisher’s combination test). Assume ŝ(X) is continuously
distributed. Under the global null, if m = *γn+ for some γ ∈ (0,∞), as n tends to infinity,

P
[

−2
m∑

i=1

log
[
û(marg)(X2n+i )

] ≥ χ2(2m;1 − α)

]

→ %̄

(
z1−α√
1 + γ

)
,

where z1−α and %̄ denote the (1−α)th quantile and survival function of the standard normal
distribution, respectively. Furthermore, under the same asymptotic regime, for W ∼ N(0,1),

(5) P
[

−2
m∑

i=1

log
[
û(marg)(X2n+i )

] ≥ χ2(2m;1 − α) | D
]

d→ %̄(z1−α + √
γW).

The above asymptotic limits are independent of the distribution of ŝ(X). In Section S1
of the Supplementary Material, we prove Theorem 2.2 holds for a broad class of com-
bination tests based on

∑n
i=1 G(û(marg)(X2n+i )), as long as G(U) has finite moments for

U ∼ Unif([0,1]); Fisher’s combination test is a special case with G(u) = −2 logu and
G(U) ∼ χ2(2).

As γ > 0, the marginal type-I error is larger than α whenever α < 0.5. For illustration,
consider α = 5%. If γ = 3, the marginal type-I error is 20.5%; when γ → ∞, the marginal
type-I error approaches 50%. Similarly, by (5), the 90th percentile of the conditional type-I
error converges to the 90th percentile of %̄(z1−q + √

γW), which is %̄(z0.95 + √
γ z0.1). If

γ = 3, the limit is 71.7%; when γ → ∞, the limit approaches 100%. This demonstrates a
substantial adverse effect of dependence among marginal conformal p-values.

Corrections of Fisher’s combination test are possible for some dependence structures. By
Lemma 2.1, the variance of the combination statistic is inflated by a factor (1 + γ ) compared
to that of the χ2(2m;1 − α) distribution (see Section S1.1 of the Supplementary Material
for details). This yields an intuitive correction which divides the combination statistic by√

1 + γ . Surprisingly, this correction is asymptotically too conservative for marginal confor-
mal p-values. We prove in Section S1.2 of the Supplementary Material (Theorem S1) that a
valid correction rejects the global null if

(6)
−2

∑m
i=1 log[û(marg)(X2n+i )] + 2(

√
1 + γ − 1)m√

1 + γ
≥ χ2(2m;1 − α).

In Section S1.2 of the Supplementary Material, we also confirm the validity of (6) via Monte-
Carlo simulations and show this is asymptotically equivalent to the correction proposed by
[12, 42] to address p-value dependence in more general contexts.

2.2. A positive result: Conformal p-values are positively dependent. Certain multiple
testing methods, such as the BH procedure, are known to be robust to a particular type of
mutual p-value dependence called positive regression dependent on a subset (PRDS) [11].
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DEFINITION 2.3. A random vector X = (X1, . . . ,Xm) is PRDS on I0 ⊂ {1, . . . ,m} if
P[X ∈ A | Xi = x] is increasing in x for any i ∈ I0 and any increasing set A.

In the multiple testing literature, X is often said to be PRDS if it is PRDS on the set of
nulls. Above, for vectors a and b of equal dimension, we say a / b if all coordinates of a

are no smaller than those of b, pairwise, and a set A ⊂ Rm is increasing if a ∈ A and b / a

implies b ∈ A. The PRDS property is a demanding form of positive dependence, which can be
loosely interpreted as saying all pairwise correlations are positive. In view of the definition
of marginal p-values in (3) and of Lemma 2.1, it should be intuitive that larger calibration
scores make the p-values for all test points simultaneously smaller, and vice versa. This idea
is formalized by the following result proving marginal conformal p-values are PRDS.

THEOREM 2.4 (Conformal p-values are PRDS). Assume that ŝ(X) is continuously dis-
tributed. Consider m test points X2n+1, . . . ,X2n+m such that the inliers are jointly in-
dependent of each other and of the data in D. Then the marginal conformal p-values
(û(marg)(X2n+1), . . . , û

(marg)(X2n+m)) are PRDS on the set of inliers.

If ŝ(X) is not continuous, we can prove the PRDS property by modifying the p-value
definition in (3); see Section S1.3 of the Supplementary Material. Theorem 2.4 implies that
marginal conformal p-values can be used with the BH procedure to control the FDR for the
null hypotheses

H0,i : Xi ∼ PX, i ∈ {2n + 1, . . . ,2n + m},
although this guarantee only holds on average over random test and calibration data sets.

COROLLARY 2.5 (Benjamini and Yekutieli [11]). In the setting of Theorem 2.4, the BH
procedure applied at level α ∈ (0,1) to (û(marg)(X2n+1), . . . , û

(marg)(X2n+m)) controls the
FDR at level π0α, where π0 is the proportion of true nulls. That is,

(7) E
[ |R ∩ H0|

max{1, |R|}
]

≤ π0α ≤ α,

where H0 = {i : H0,i holds} ⊆ {2n + 1, . . . ,2n + m} is the subset of true inliers in the test
set, and R ⊆ {2n + 1, . . . ,2n + m} is the subset of test points reported as likely outliers.

REMARK. The BH procedure applied to the marginal conformal p-values is equivalent
to the semisupervised BH procedure proposed by [53] (posted on arXiv 2 months after our
paper), which was first studied by [88] and later generalized by [95] and [61]. These works
employ a martingale-based technique to prove FDR control without relying on the PRDS
property. Theorem 3.1 in [53] also proves a lower bound showing the FDR is almost π0α.

2.3. A positive result: Storey’s correction does not break FDR control. When the pro-
portion of nulls is much smaller than one, as it may be the case in many out-of-distribution
detection problems, the BH procedure is conservative, as shown in Corollary 2.5. If π0 is
known, a simple remedy is to replace the target FDR level with α/π0. However, π0 is rarely
known in practice, and hence it needs to be estimated. Given p-values pi for all null hypothe-
ses, it was proposed by Storey et al. in [71, 72] to estimate π0 as

π̂0 = 1 + ∑m
i=1 I (pi > λ)

m(1 − λ)
,
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and then to apply the BH procedure at level α/π̂0; see Section S1.4 of the Supplementary
Material for details. If the null p-values are superuniform (2), mutually independent and in-
dependent of the nonnull p-values, this provably controls the FDR in finite samples [72].
However, unlike in its standard version, the BH procedure with Storey’s correction is not
generally guaranteed to control the FDR if the p-values are PRDS; see Section 6.3 of [10].

Surprisingly, we show below that the positive correlation (Lemma 2.1) among the marginal
conformal p-values does not break the FDR control at all. The proof of Theorem 2.6 rests on
a novel FDR bound for the BH procedure with Storey’s correction applied to any type of
superuniform p-values that are PRDS and almost surely bounded from below by a constant;
see Theorem S2 in Section S1.4 of the Supplementary Material [7]. This result is not limited
to conformal p-values and may also be useful for other multiple testing problems, such as
those involving permutation p-values.

THEOREM 2.6 (Storey’s BH with conformal p-values controls the FDR). Set λ =
K/(n + 1) for any integer K . Assume ŝ(X) is continuously distributed. In the setting of
Corollary 2.5, the BH procedure with Storey’s correction applied to marginal conformal p-
values (û(marg)(X2n+i ))

m
i=1 controls the FDR at the nominal level.

3. Calibration-conditional conformal p-values.

3.1. Warm up: Analyzing the false positive rate. Having noted that conformal inferences
hold in theory only marginally over the calibration data, the first question one may ask is:
how bad can these inferences be conditional on a particular calibration set? We address this
question by developing high-probability bounds for the conditional deviation from uniformity
of marginal p-values, starting here from the simplest case of pointwise bounds. The purpose
of a pointwise bound is to control the probability that a null p-value (corresponding to a true
inlier) is below α, conditional on D, for a fixed threshold α ∈ (0,1). In other words, we wish
to understand the conditional false positives rate (FPR) corresponding to the threshold α,

(8) FPR(α;D) := P
[
û(marg)(X2n+1) ≤ α | D]

,

beyond what we know from (2), which is E[FPR(α;D)] ≤ α. The quantity in (8) was al-
ready studied precisely by [78]. We revisit this topic here because it serves as an intuitive
introduction to the more involved novel high-probability bounds presented later.

Looking at û(marg)(X) in (3), we see that, if ŝ(X) has a continuous distribution,

FPR(α;D) = F

(
F̂−1

n

(
(n + 1)α

n

))
,

where F and F̂n are, respectively, the true and empirical (evaluated on the calibration data)
CDF of ŝ(X). Therefore, the deviation of FPR(α;D) (a random variable depending on D)
from α depends on the quality of F̂−1

n ((n + 1)α/n) as an approximation of F−1(α), which
can be understood through classical results for the order statistics of uniform variables.

PROPOSITION 3.1 (Pointwise FPR of marginal conformal p-values, from [78]). Let ( =
*(n + 1)α+. If ŝ(X) is continuously distributed, FPR(α;D) ∼ BETA((, n + 1 − ().

Figure 2 visualizes the FPR distribution from Proposition 3.1 for different calibration set
sizes. This shows precisely how a smaller Dcal makes marginal p-values more conservative
on average, but also more likely to be overly liberal on occasion. For example, there is a non-
negligible probability that FPR(0.1;D) > 0.15 with 100 calibration points, whereas it seems
very unlikely that FPR(0.1;D) > 0.12 with 1600 calibration points. However, it is still quite
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FIG. 2. Distribution of the false positive rate obtained by thresholding marginal conformal p-values at levels
α = 0.01 and α = 0.1, as a function of the number of calibration points.

possible that FPR(0.01;D) > 0.015 even with 1600 calibration points. In general, Propo-
sition 3.1 implies the coefficient of variation (relative spread) of the FPR is approximately
proportional to (|Dcal|α)−1/2. While this result is informative and it is broadly relevant to the
issue of how to best choose the number of calibration data points for split-conformal infer-
ence [68], it is limited for our purposes. In fact, it provides only a pointwise bound—it takes
α as fixed—whereas uniform bounds are needed to construct conditionally valid p-values that
can be safely used with any multiple-testing procedure, as discussed in the next section.

3.2. A generic strategy to adjust marginal conformal p-values. Proposition 3.1 implies
marginal conformal p-values may be anticonservative conditional on D. Therefore, in the
language of (1), our goal is to find an adjustment function leading to conditionally valid p-
values, that is, satisfying (4). The following theorem suggests a generic strategy through a
simultaneous upper confidence bound for order statistics.

THEOREM 3.2 (Conditional p-value adjustment). Let U1, . . . ,Un
i.i.d.∼ Unif([0,1]), with

order statistics U(1) ≤ U(2) ≤ · · · ≤ U(n), and fix any δ ∈ (0,1). Suppose 0 ≤ b1 ≤ b2 ≤ · · · ≤
bn ≤ 1 are n reals such that

(9) P[U(1) ≤ b1, . . . ,U(n) ≤ bn] ≥ 1 − δ.

Let also b0 = 0, bn+1 = 1, and h : [0,1] )→ [0,1] be a piecewise constant function such that

h(t) = b2(n+1)t3, t ∈ [0,1].(10)

Then û(ccv)(X2n+1) is a calibration-conditional valid p-value.

Figure 3 illustrates the idea of Theorem 3.2. Here, we set n = 1000 and generate 100 inde-
pendent realizations of the order statistics (U(1), . . . ,U(n)). Each of the 100 blue curves corre-
sponds to a sample path, plotted against the normalized index i/n. The black curve tracks the
theoretical mean of (U(1), . . . ,U(n)), while the orange and yellow curves correspond to two
particular sequences of bi values derived from the generalized Simes inequality for δ = 0.1
and the DKWM [21, 54] inequality, detailed in the next subsection. We observe relatively few
paths cross the orange curve, and all crossings occur at small indices. This suggests the upper
confidence bounds provided by Theorem 3.2 can be especially tight for lower indices of the
order statistics, which is essential to obtain reasonably powerful CCV p-values for outlier
detection. Of course, calibration-conditional validity still necessarily comes at some power
cost. For example, a marginal p-value of û(marg)(X) = 25/(n + 1) ≈ 0.025 results in a CCV
p-value of h(25/(n + 1)) = b25 ≈ 0.0377 in this case.



158 S. BATES ET AL.

FIG. 3. Illustration of Theorem 3.2 with n = 1000 and δ = 0.1. The orange and yellow curves give the sequences
derived by the generalized Simes inequality with k = 500 and the DKWM inequality, respectively. The blue and
green curves (very close to each other) give the corresponding sequences obtained with the asymptotic and Monte
Carlo adjustments described below. The right panel zooms in on small indices.

3.3. Simes adjustment of marginal conformal p-values. Large p-values typically do not
matter in multiple testing problems, as it is the small ones that determine the rejections.
Therefore, to maximize power, we would like the bi values in Theorem 3.2 to be as small as
possible for low indices i, while we may be satisfied with letting bi = 1 for large i. The gener-
alized Simes inequality yields a desirable class of (b1, . . . , bn) sequences with this property.

PROPOSITION 3.3 (Generalized Simes inequality, from equation (3.5) in [66]). For any
positive integer k ≤ n, the uniform bound (9) in Theorem 3.2 holds with

bs
n+1−i = 1 − δ1/k

(
i · · · (i − k + 1)

n · · · (n − k + 1)

)1/k

, i = 1, . . . , n.(11)

The original motivation of [66] was to compute thresholds for step-up procedure to achieve
k-FWER control; there the parameter k was set to be a small integer. Here, we exploit
Proposition 3.3 differently, choosing k = n/2 so that the bs

i values with lower indices i
are as small as possible while those with larger indices i may be uninformative (note that
bs
n−k+2 = · · · = bs

n = 1). In particular, our choice corresponds to

bs
1 = 1 − δ2/n = 1 − exp

{
−2 log(1/δ)

n

}
≈ 2 log(1/δ)

n
.

Therefore, the smallest possible marginal p-value would be mapped to h(1/(n + 1)) ≈
2 log(10)/n = 4.61/n, if δ = 0.1, for example, since û(ccv)(X) = h(û(marg)(X)). If n = 1000,
then h(1/(n + 1)) ≈ 0.0046, which is larger than the marginal p-value, but much smaller
than what one would obtain from other standard uniform bounds. For example, the DKWM
inequality [21, 54] would imply a result similar to that of Proposition 3.3 but with

(12) bd
i = min

{
(i/n) +

√
log(2/δ)/2n,1

};

this would map the smallest possible marginal p-value to 1/(n + 1) + √
log(2/δ)/2n > 0.1,

in the above example. The comparison between the generalized Simes inequality and the
DKWM inequality is expanded in Section S3 of the Supplementary Material [7], where we
also consider an additional uniform bound based on the linear-boundary crossing probability
for the empirical CDF [20]. This comparison confirms the generalized Simes inequality yields
the most powerful adjustment for our multiple testing purposes. In practice, we find that
k = n/2 works well, as motivated empirically in Section S4 of the Supplementary Material
[7]. (Note that larger values of k would lower further the smallest possible adjusted p-value,
but at the cost of raising other small p-values).
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3.4. Asymptotic adjustment of marginal conformal p-values. The Simes adjustment with
k = n/2 leads to p-values satisfying (4) exactly; however, this causes the smallest possible
marginal conformal p-values to be inflated by a factor of order 1/n, and larger ones may
be inflated even more. A natural question is whether this approach is efficient or whether
more powerful alternatives may be available to achieve (4). We begin to address this matter
by comparing the Simes adjustment to an alternative asymptotic approach that provides a
natural benchmark; this solution will be valid in the limit of large n but does not guarantee
(4) exactly in finite samples. Recall Donsker’s theorem, the classical result from empirical
process theory stating that, in the large-n limit, the rescaled difference between the true and
the empirical CDFs of the calibration scores respectively F and F̂n, converges in distribution

to a standard Brownian Bridge. Precisely,
√

n(F̂n−F)
d→ G, where G is the Gaussian process

on [0,1] with mean zero and covariance E[G(t1)G(t2)] = t1 ∧ t2 − t1t2, for all t1, t2 ∈ [0,1].
This result suggests the following asymptotic adjustment of marginal conformal p-values.

As a starting point, note that supt∈[0,1] |G(t)| follows the Kolmogorov distribution [41],
whose 1 − δ quantile, namely qK

δ , can be computed. Therefore, a simple way of constructing
approximately valid conditional conformal p-values would be to add qK

δ /
√

n to the marginal
p-values. Unfortunately, this naive solution would suffer from the same limitation of the
DKWM approach mentioned in the previous section: it is a correction of constant size which
is not very attractive for multiple testing because it is extremely conservative for small p-
values of order 1/n. Instead, a more useful solution is suggested by the adaptive bound of
[22], which proved that the empirical process V̂n(t) defined as

V̂n(t) = √
n

F(t) − F̂n(t)√
F̂n(t)[1 − F̂n(t)]

, t ∈ [0,1],

satisfies limn→∞ P[supt∈[0,1] V̂n(t) ≤ cn(δ)] ≥ 1 − δ, where cn(δ) is defined as

cn(δ) := − log[− log(1 − δ)] + 2 log logn + (1/2) log log logn − (1/2) logπ√
2 log logn

.

This yields a straightforward asymptotic simultaneous upper confidence bound for F(t) and,
in light of Theorem 3.2, it suggests the following approximately valid adjustment:

û(a-ccv) = ha ◦ û(marg),(13)

where ha is the piecewise constant function on [0,1] defined such that ha(t) = ba
2(n+1)t3, for

t ∈ [0,1], with ba
0 = 0, ba

n+1 = 1, and

ba
i = min

{
i

n
+ cn(δ)

√
i(n − i)

n
√

n
,1

}
, i = 1, . . . , n.(14)

In Section S2.1.1 of the Supplementary Material [7], we will show that ba
1 ≤ ba

2 ≤ · · · ≤ ba
n,

as required by Theorem 3.2. See Figure 3 for a visualization of the simultaneous CDF bound
corresponding to this adjustment function. The smallest possible marginal p-value is mapped
by this function to ha(1/(n + 1)) ≈ (1 + cn(δ))/n. For example, if δ = 0.1 and n = 1000,
this is approximately 4.09/n ≈ 0.0041, which is very similar to the corresponding constant
0.0046 obtained with the Simes adjustment. However, û(a-ccv) has the advantage of being
reasonably tight for all p-values, not just the smallest ones, and thus it will generally allow
for higher power compared to the Simes adjustment when n is large.
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FIG. 4. Comparison of different adjustment functions, with n = 1000 and δ = 0.1. In the zoomed-in panel on
the right-hand side, the Simes (orange) and Monte Carlo (green) curves cannot be distinguished.

3.5. Monte Carlo adjustment of marginal conformal p-values. Although the Simes ad-
justment is more conservative than the asymptotic one in the limit of large n, it has two
distinct advantages in finite samples. First, it leads to p-values satisfying (4) exactly, with no
asymptotic approximations. Second, the peculiar shape of its uniform empirical CDF enve-
lope allows it to apply smaller corrections to relatively low p-values, possibly yielding higher
power in multiple-testing applications; see Figure 4 for an illustration. These observations
motivate the development of the following new type of adjustment function, which is based
on Monte Carlo rather than analytical calculations and is designed to combine the strengths
of the two aforementioned approaches. In particular, the Monte Carlo solution proposed here
is based on a uniform empirical CDF bound that is (a) theoretically valid in finite samples and
(b) whose shape mimics that of the Simes approach for very small p-values while tracking
the asymptotic envelope relatively closely for larger ones; see Figure 4 for a preview.

Having fixed any n and δ, denote by hs : [0,1] → [0,1] the Simes piecewise constant
function obtained by combining (10) with (11), using k = n/2. Recall that this satisfies (9)
exactly. Let also ha,δ̂ : [0,1] → [0,1] denote the asymptotic piecewise constant function ob-
tained by combining (10) with (14), after replacing the prespecific parameter δ with a variable
δ̂, which can take any values in (0,1). Note that it will be useful to keep the dependence of
this function on δ̂ explicit. Recall that ha,δ̂ satisfies (9) approximately if n is large and δ̂ = δ.
Next, define a new piecewise constant function hm,δ̂ : [0,1] → [0,1] as

hm,δ̂(t) = min
{
hs(t), ha,δ̂(t)

}
, t ∈ [0,1].(15)

Note that this function can be conveniently written in the form of (10) with a suitable choice of
b1, . . . , bn. Now, the goal is to find the smallest possible δ̂, as a function of n and δ, such that
the b1, . . . , bn sequence corresponding to the function hm,δ̂ defined in (15) satisfies (9). The
problem can be solved with a bisection search for δ̂ on (0,1), approximating the probability
in (9) through a simple Monte Carlo simulation—it suffices to generate a sufficiently large
number of independent random samples of size n from a uniform distribution. A feasible
solution always exists because hm,δ̂ reduces to hs as δ̂ → 1, and hs satisfies (9). This Monte
Carlo simulation is not computationally expensive for reasonable values of n, as long as δ is
not too small; for example, it takes a few seconds on a personal computer to obtain a very
accurate estimate of δ̂ with δ = 0.1 and n as large as 10,000. Of course, if n is extremely
large, the Monte Carlo simulation is not even needed, as in that case one could just rely
directly on the asymptotic adjustment. See Figure 3 for a visualization of the simultaneous
CDF bound corresponding to this adjustment function.

While the Monte Carlo adjustment approaches the asymptotic one in the limit of large n,
it may lead to more powerful p-values for multiple testing if n is small. In fact, the Simes
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function hs(t) can be lower than the asymptotic ha,δ(t) for values of t very close to 0, and
hm,δ̂(t) inherits this ability of preserving very small p-values relatively intact, as shown in
Figure 4. At the same time, as it will be demonstrated shortly, the Monte Carlo adjustment
tends to be more powerful than the Simes adjustment when testing a single hypothesis, or
when dealing with many nonnull hypotheses, because ha,δ(t) is lower than hs(t) for mod-
erately small values of t ; see the left-hand side panel of Figure 4. Additional figures in
Section S3 of the Supplementary Material [7] show that this relative advantage grows even
larger as n increases.

The Monte Carlo adjustment applied in this paper and implemented in the accompany-
ing software package involves an additional modification to the expression in (15), whose
discussion has been postponed until now to simplify the explanation. In practice, hm,δ̂(t) is
defined as in (15) only for t ≤ 1/2; then, for t > 1/2, the function is extended it as a tangent
straight line because there would be little point in tightening the CDF envelope above 1/2, as
that region involves p-values unlikely to be rejected anyway. The advantage of this approach
is that it decreases the boundary crossing probability of the empirical CDF for all t > 1/2
compared to the asymptotic solution, allowing a slightly more liberal adjustment for the more
interesting p-values below 1/2; see Figure S4 in Section S3 of the Supplementary Material
[7].

3.6. Power analyses of conformal p-value adjustments. As marginal p-values are smaller
than calibration-conditional p-values, the latter tend to involve some loss of power, while the
former are not always valid, depending on the multiple testing procedure utilized. In this sec-
tion, we would like to study the power gap between the marginal and calibration-conditional
approaches within settings in which both types of conformal p-values lead to valid tests. How-
ever, traditional power analyses require stronger modeling assumptions (i.e., the distributions
of inliers and outliers) and the specification of additional algorithmic details (i.e., the form of
the conformity score functions) compared to the framework followed in this paper; in fact,
conformal p-values are extremely flexible and can be applied in fully nonparametric settings
with any conformity score function. We overcome this hurdle by analyzing the effective level
of a test applied to calibration-conditional p-values as a proxy for a power analysis. More pre-
cisely, a test at level α applied to calibration-conditional p-values is generally equivalent to an
analogous test at level α′ applied to marginal p-values, for some α′ < α. Comparing α to α′

gives a measure of the loss in power incurred by calibration-conditional p-values that is spe-
cific to a particular testing procedure, but requires no assumptions about either the machine
learning model utilized to compute conformity scores or the inlier and outlier distributions.
Thus, α′ is studied below for different testing procedures.

3.6.1. Testing a single hypothesis. Suppose a marginal conformal p-value û(marg)(X2n+1)

for a single test point X2n+1 is available, and we wish to test whether X2n+1 is an outlier. The
level-α test based on the marginal p-value rejects when û(marg)(X2n+1) ≤ α. We will compare
this to a test based on a calibration-conditional p-value. That is, we take the marginal p-value
and adjust it with a generic piecewise constant function h : [0,1] → [0,1] in the form of (10).
Then we reject the null if h ◦ û(marg) ≤ α, or, equivalently, if

û(marg) ≤ i∗(α;h)/(n + 1),

where i∗(α;h) = max{i ∈ {1, . . . , n} : bi ≤ α} and b1, . . . , bn indicate the step positions
defining h in (10). As û(marg) is uniformly distributed, i∗(α;h)/(n + 1) is the effective level
of the analogous marginal test.
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With the asymptotic adjustment ha, the threshold for the calibration-conditional test can
be calculated by solving a quadratic equation, and the solution in the large-n limit is

i∗(α;ha)

n + 1
= O

(
α

1 + c2
n(δ)/n

)
= α

[
1 − O

( log logn

n

)]
,

because

i∗
(
α;ha) =

⌊c2
n(δ)n + 2n2α − cn(δ)n

√
c2
n(δ) + 4nα − 4nα2

2[c2
n(δ) + n]

⌋
.

In words, the cost in power of the asymptotic p-value adjustment from Section 3.4 can be
understood by noting that the significance threshold α is effectively decreased by a factor
of order (log logn)/n. Similarly, the effective α-level with the DKWM adjustment hd, given
by (12), is α − O(1/

√
n). By contrast, for the Simes adjustment, we can show the effective

α-level is strictly below α when k = 2ζn3 for some ζ > 0. In fact, using the concavity of the
mapping a(x) = log(1 − 1/x), Jensen’s inequality implies

(16) bs
i = 1 − δ1/ke

1
k

∑n
(=n−k+1 a( (

i−1 ) ≥ 1 − ea( n−k/2+1/2
i−1 ) = i − 1

n − k/2 + 1/2
.

As a result,

(17)
i∗(a;hs)

n + 1
≤ α(1 − ζ/2) + o(1).

In this sense, the asymptotic and DKWM adjustment are nearly as efficient as the marginal
test for a single hypothesis, though the former is more powerful, while the Simes adjustment
is asymptotically inefficient.

Analogous threshold calculations for the Monte Carlo adjustments in the same setting
cannot be performed analytically because i∗(α;hm,δ̂) does not have a simple expression for
the sequences b corresponding to those functions h. However, these analyses are easy to carry
out numerically. Figure 5(a) summarizes these power analyses by comparing the effective
significance levels obtained with the alternative adjustment functions, as a function of n.
The results show the Monte Carlo adjustment behaves very similar to the efficient asymptotic
solution in the limit of large n, but it can be even more powerful when the sample size is small
thanks to the shape of its CDF envelope, which reduces the inflation of smaller p-values. The
Simes adjustment behaves similar to the Monte Carlo one when the sample size is small, but

FIG. 5. Power analysis of different adjustments for marginal conformal p-values under 3 alternative settings.
The effective level resulting from the p-value adjustment for a test at nominal level α = 0.05 (dashed horizontal
line) is plotted as a function of the number of calibration samples, assuming the number of test points m grows as√

n. (a) Testing a single hypothesis. (b) FWER control with a single strong signal (here the values for DKWM are
all equal to 0). (c) Testing a global null with Fisher’s combination test.
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it is not efficient in the large-n limit. In that case, the effective significance level for testing a
single hypothesis does not converge at all to the nominal level α in the large-n limit. Finally,
the DKWM adjustment is extremely conservative unless n is very large.

3.6.2. Needle in a haystack. Consider a multiple testing problem in which there are m
possible outliers to be tested: the first test point, X2n+1, is an outlier (a false null hypothesis),
while the remaining m − 1 points, X2n+2, . . . ,X2n+m, are inliers (true nulls). The goal is
to identify the outlier, controlling the familywise error rate below α. To further simplify the
problem, imagine the signal strength for the true outlier is so high that the marginal conformal
p-value for this point takes its minimal value with probability one:

û
(marg)
2n+1 = 1

n + 1
.

Then we reject the null if the adjusted p-value for the outlier is below the Bonferroni level:

h ◦ û
(marg)
2n+1 ≤ α

m
.(18)

In the case of the asymptotic adjustment function, the rejection event can be written as
{
ha ◦ û

(marg)
2n+1 ≤ α

m

}
⇐⇒

{
û

(marg)
2n+1 + 1

n(n + 1)
+ cn(δ)

√
n − 1
n
√

n
≤ α

m

}
.

Thus, the calibration-conditional test at level α is equivalent to the marginal test at level
(α + *α)/m, where

*α = −m

n

( 1
n + 1

+ cn(δ)

√
n − 1

n

)
= −m

n

√
2 log logn

(
1 + o(1)

)
.

Here, the calibration-conditional and marginal tests only differ by a
√

log logn factor.
In the case of the Simes adjustment with k = n/2, the rejection event is

{
hs ◦ û

(marg)
2n+1 ≤ α

m

}
⇐⇒

{
û

(marg)
2n+1 + 2 log(1/δ)

n

(
1 + o(1)

) − 1
n + 1

≤ α

m

}
,

which implies the equivalent level for the test is (α + *α)/m, with

*α = −m

n

(
2 log(1/δ) − 1 + o(1)

)
.

Similarly, for the DKWM adjustment, it is easy to see that

*α = − m√
n

(√
log(2/δ)

2
+ o(1)

)
.

Therefore, in the large-n limit, the Simes adjustment is even more powerful than the
asymptotic correction for this problem because it does not involve the slightly suboptimal√

log logn factor. Unsurprisingly, the additive inflation by the DKWM adjustment results in
a much larger power loss. Although the Monte Carlo method is not as amenable to analyti-
cal calculations, it is easy to verify numerically that its power is almost the same as that of
the asymptotic correction in this setting; see Figure 5(b). Interestingly, the numerical power
analysis in Figure 5(b) shows the asymptotic adjustment tends to be more powerful than the
Simes adjustment for this problem, although it is slightly less powerful in the large-n limit.
In fact,

√
log logn < (2 log(1/δ) − 1) unless n is extremely large or δ is extremely small.

Note that m is proportional to
√

n in Figure 5, which explains why the effective level with
the DKWM adjustment remains stuck at zero as n grows.
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3.6.3. Fisher’s combination test of the global null. Consider a multiple testing problem
in which there are m test data points X2n+1, . . . ,X2n+m and none of them are outliers. The
goal is to test the global null by applying Fisher’s combination test to conformal p-values
modified by an adjustment function h, for different choices of the latter. Intuitively, the ef-
fective α-level of this test will depend on the expected value of Fisher’s combination statistic
under the null—a smaller EH0[− log(h ◦ û(marg))] yields a more conservative test. There-
fore, we begin by deriving this quantity analytically for the asymptotic, DKWM and Simes
adjustments; see Section S2 of the Supplementary Material [7] for further details.

THEOREM 3.4 (Expected value of Fisher’s combination statistic with conformal p-values).
Fix any δ > 0 and ζ > 0, and let n → ∞. Then, under the global null hypothesis:

(a) EH0[− log(ha ◦ û(marg))] = 1 − (π/2)cn(δ)/
√

n + O((logn)(log logn)/n).
(b) EH0[− log(hd ◦ û(marg))] = 1 − bn(δ) log(e/bn(δ)) + O(logn/n), where bn(δ) is de-

fined as bn(δ) = √
log(2/δ)/(2n).

(c) If k = 2ζn3, EH0[− log(hs ◦ û(marg))] ≤ 1 − ζ − (1 − ζ ) log(1 − ζ ) + O(logn/n).

All three adjustments above yield conservative tests because, in the limit of large n,
EH0[

∑m
i=1 −2 log(h◦ û(marg)(X2n+i ))] < 2m. The gap is O(m

√
log logn/

√
n) for the asymp-

totic adjustment (the most efficient one in this case), O(m logn/
√

n) for the DKWM adjust-
ment, and O(m) for the Simes adjustment (the least efficient one in this case). In Section S2
of the Supplementary Material [7], we compute the effective α-level for each adjustment
under different regimes. As those derivations are lengthy, we summarize the results below:

• For the asymptotic adjustment, the effective α is α(1 + o(1)) if m = o(n/ log logn), and
O(1/ logc n) for some constant c when m = γn for some γ ∈ (0,1).

• For the DKWM adjustment, the effective α is α(1 + o(1)) if m = o(n/ log2 n), and
exp{−O(log2 n)} when m = γn for some γ ∈ (0,1).

• For Simes, the effective α is exp{−O(min{m,n}/ logn)} if m/ logn → ∞.

In Figure 5(c), we compare the effective α-levels computed numerically with m = √
n,

including also the theoretically intractable Monte Carlo adjustment. These results confirm
the Simes method becomes extremely conservative for large n, as its effective level tends
to 0 instead of α. By contrast, the Monte Carlo adjustment yields approximately the same
effective significance threshold as the asymptotic method.

Finally, it is interesting to compare these power analyses for calibration-conditional p-
values with the exact adjustment of Fisher’s combination test from Theorem 2.2. If m = γn

for some γ ∈ (0,1), it follows from (5) that Fisher’s combination test applied to marginal
conformal p-values is valid at level α, conditional on the calibration data, if its nominal
significance level is lowered by a factor that depends on δ—the proportion of calibration
data sets for which the test is allowed to be invalid—but remains constant with respect to n.
By contrast, applying Fisher’s combination test to calibration-conditional p-values results in
an effective level α that at best decreases as 1/polylog(n), for the asymptotic adjustment.
Therefore, calibration-conditional p-values are not always optimal with Fisher’s combination
test, at least not compared to the ad-hoc correction of the latter presented in Theorem 2.2, if
m = γn, but they have the advantage of flexibility. In fact, calibration-conditional p-values
can be utilized by any multiple testing algorithm, including, for example, the BH procedure.

3.6.4. Testing multiple hypotheses by the BH procedure. Consider a multiple testing
problem in which there are m test data points X2n+1, . . . ,X2n+m and the goal is to detect
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outliers with FDR control. If the BH procedure is applied to the adjusted p-values, all hy-
potheses with h ◦ û(marg)(X2n+i ) ≤ αR(α;h)/m are rejected, where

R(α;h) = max
{
r ∈ {0,1, . . . ,m} : #

{
i : h ◦ û(marg)(X2n+i ) ≤ rα

m

}
≥ r

}
.

As a benchmark, we consider the number of rejections obtained with the marginal p-values:

Rmarg(α) = max
{
r ∈ {0,1, . . . ,m} : #

{
i : û(marg)(X2n+i ) ≤ rα

m

}
≥ r

}
.

In the case of the asymptotic adjustment,

(19)
ha(i/(n + 1))

i/(n + 1)
≤ n + 1

n

{
1 + cn(δ)

√
n − i

ni

}
.

This quantity is decreasing in i, implying that

max
i

ha(i/(n + 1))

i/(n + 1)
≤ n + 1

n

{
1 + cn(δ)

√
n − 1

n

}
=

√
2 log logn + o(1).

Therefore, all hypotheses rejected by the BH procedure applied to marginal p-values at a
lower level α/(

√
2 log logn + o(1)) are also rejected by the BH procedure applied to ad-

justed p-values, implying the effective FDR level for ha is at least α/(
√

2 log logn+ o(1)). If√
2 log logn << logm, this is more powerful than the Benjamini–Yekutieli procedure [11],

whose effective FDR level is α/(logm + O(1)). Further, the ratio given by (19) is 1 + o(1)
if i/ log logn → ∞, implying that, in the limit of Rmarg(α)/ log logn → ∞, all marginal re-
jections are also rejected by the BH procedure applied to adjusted p-values with the target
FDR level α(1 + o(1)). In summary, the cost of the asymptotic adjustment never exceeds√

2 log logn + o(1), and it is negligible if the number of rejections made by the marginal BH
procedure grows faster than log logn.

In the case of the DKWM adjustment, the maximal ratio between the adjusted and marginal
p-values is O(

√
n), though it becomes 1 + o(1) when i/

√
n → 0. Thus, unless the marginal

BH procedure can reject many more than
√

n hypotheses, the power cost of the DKWM
adjustment will be much higher than that of the asymptotic adjustment.

In the case of the Simes adjustment, we can show that, if k = 2ζn3 for some ζ ∈ (0,1), the
ratio between the adjusted and marginal p-values is bounded by a constant that depends on δ
and ζ . Analogous to (16), the concavity of a(x) implies

bs
i ≤ 1 − δ1/ke

1
2 (a( n

i−1 )+a( n−k+1
i−1 )) = 1 − δ1/k

√(
1 − i − 1

n

)(
1 − i − 1

n − k + 1

)
.

Since k = 2ζn3,
√

(1 − (i − 1)/n)(1 − (i − 1)/(n − k + 1)) = 1 − (2 − ζ )i/(2n(1 − ζ )) +
o(1/n), and δ1/k = e− log(1/δ)/k = 1 − log(1/δ)/(ζn) + o(1/n); above, all o(1/n) terms are
uniform over i. Then

bs
i ≤ log(1/δ)

ζn
+ 2 − ζ

2(1 − ζ )

i

n
+ o

(1
n

)
,

and for any i,

hs(i/(n + 1))

i/(n + 1)
≤ log(1/δ)

ζ
+ 2 − ζ

2(1 − ζ )
+ o

(1
n

)
.

Thus, the power cost of the Simes adjustment does not grow with n, which is more appealing
compared to the asymptotic adjustment in the worst case. However, (17) indicates the cost is
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never negligible even if Rmarg(α) is large, consistent with the behavior of the Simes adjust-
ment observed in Section 3.6.1 for the case of a single hypothesis tested without multiplicity
corrections. Thus, the asymptotic adjustment (and the substantially similar Monte Carlo ap-
proach) can be expected to be more powerful in practical applications involving FDR control,
as long as a reasonably large number of discoveries is expected.

4. Extensions beyond conformal p-values.

4.1. Simultaneous confidence bounds for the false positive rate. Some practitioners may
be accustomed to thinking about outlier detection in terms of FPR—the probability of in-
correctly reporting as outlier any true inlier—rather than p-values. In particular, they may
wonder what the FPR can be if they report X2n+1 as likely to be an outlier whenever the
classification score ŝ(X2n+1) (computed by some black-box outlier detection algorithm) is
below a threshold t , as a function of t , so that they may choose a posteriori which value
of t to adopt. This question is closely related to the problem of constructing CCV p-values,
so our method provides an answer. In fact, the next result shows Theorem 3.2 also yields a
simultaneous upper confidence bound for the CDF.

PROPOSITION 4.1 (Simultaneous confidence bounds for the FPR). Let F denote the true
CDF of some distribution from which n i.i.d. samples, Z1, . . . ,Zn, are drawn, and denote by
F̂n the corresponding empirical CDF. With the same notation as in Theorem 3.2,

(20) P
[
F(z) ≤ h

(
F̂n(z)

)
,∀z ∈ R

] ≥ 1 − δ.

Applying Proposition 4.1 to the CDF of the scores ŝ computed by any one-class classifi-
cation algorithm provides a uniform upper confidence bound for its FPR, namely FPR(t) :=
P[ŝ(X2n+1) ≤ t], as a function of the detection threshold t . In other words, this guarantees
that reporting as outliers an observation with black-box score equal to z is likely (with proba-
bility at least 1 − δ) to result in a FPR no greater than h(F̂n(z)), where F̂n(z) is the empirical
CDF of the analogous scores computed on a calibration data set of size n. Figure 6 shows a
practical example of this upper bound based on the empirical distribution of scores evaluated
on 1000 calibration points, with δ = 0.1 and k = n/2 (the exact details of this example are
the same as those of the numerical experiments presented later in Section 5.2). For instance,
this plot informs us that reporting as outliers future samples with scores below −0.5 is likely
to result in an FPR below 0.025.

FIG. 6. FPR calibration curves obtained with different adjustment methods for an isolation forest one-class
classifier on simulated data, as a function of the reporting threshold for the classification scores. Each upper
bound (solid) is guaranteed to lie above the true FPR curve (dotted) with probability 90%. The dashed curve
corresponds to the empirical FPR. The panel on the right zooms in on small values (likely outliers).
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Note that the construction of a uniform confidence band for an unknown CDF is a widely
studied problem. For example, the DKWM inequality [21, 54] implies the bound in (20) with
h(z) = min{z + √

log(2/δ)/2n,1}. However, the DKWM bound is tightest at z = 1/2 and
loose near 0, which would limit the power to detect outliers. Therefore, it is preferable for
our purposes to have a function h(z) that is as close as possible to the identity for small values
of z, as discussed earlier in Section 3.3.

4.2. Simultaneously-valid prediction sets. Lastly, CCV p-values can be easily re-
purposed to strengthen the marginal guarantees generally obtainable for conformal predic-
tions. In particular, for each α ∈ (0,1), one can define a predictive set

(21) Ĉα := {
x : û(ccv)(x) > α

}
.

These sets are simultaneously valid for all α, conditional on the calibration data. That is,

(22) P
[
P

[
X2n+1 ∈ Ĉα | D] ≥ 1 − α for all α ∈ (0,1)

] ≥ 1 − δ.

In other words, if we use CCV p-values to construct prediction sets, the probability that
a new test observation falls within Ĉα is at least 1 − α, simultaneously for all α ∈ (0,1)
with high probability over the random calibration data in D. This is stronger than the usual
conformal guarantee, as the latter holds marginally over D and only for a single prespeci-
fied α.

5. Numerical experiments.

5.1. Setup. The following experiments are designed to simulate a world in which our
methods are independently applied by J practitioners. Each practitioner j ∈ [J ] has an in-
dependent data set Dj (to train and calibrate the method), and L test sets Dtest

j,l (to compute
p-values and evaluate performance), each corresponding to different possible future scenar-
ios l ∈ [L]. The data sets contain 2n observations each (|Dj | = 2n), and the test sets contain
ntest observations each (|Dtest

j,l | = ntest). Imagine that, from the practitioner’s point of view,
Dj is fixed but the test set is random, so that Dtest

j,l represents the test set for practitioner j
under future scenario l. Then, as discussed in Section 1.2, practitioner j is most interested
in the FDR (or in other measures of type-I errors) conditional on Dj , that is, in the random
variable

cFDR(Dj ) := E
[
FDP

(
Dtest;Dj

) | Dj
]
,

where FDP(Dtest;Dj ) is the proportion of inliers among the test points reported as outliers,
based on the procedure calibrated on Dj . This motivates the definition of the following per-
formance measures. For any j ∈ [J ], we compute

ĉFDR(Dj ) := 1
L

L∑

l=1

FDP
(
Dtest

j,l ;Dj
)
,

ĉPower(Dj ) := 1
L

L∑

l=1

Power
(
Dtest

j,l ;Dj
)
,

(23)

where Power(Dtest
j,l ;Dj ) is the proportion of outliers in Dtest

j,l detected by practitioner j .
Our experiments will demonstrate simultaneous calibration leads to sufficiently small

ĉFDR(Dj ) for the desired fraction of practitioners, while the traditional pointwise calibra-
tion only leads to small values of the marginal FDR, namely m̂FDR := 1

J

∑J
j=1 ĉFDR(Dj ).
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5.2. Outlier detection on simulated data.

5.2.1. Data description. We begin to investigate the empirical performance of differ-
ent calibration methods on synthetic data. The data are generated by sampling each data
point Xi ∈ R50 from a multivariate Gaussian mixture model P a

X , such that Xi = √
aVi + Wi ,

for some constant a ≥ 1 and appropriate random vectors Vi,Wi ∈ R50. Here, Vi has inde-
pendent standard Gaussian components, and each coordinate of Wi is independent and uni-
formly distributed on a discrete set W ⊆ R50 with cardinality |W| = 50. The vectors in W
are sampled independently from the uniform distribution on [−3,3]50, before the beginning
of our experiments, and then held constant thereafter. (Therefore, each coordinate of Wi is
uniformly distributed on [−3,3], but it is not the case that the different Wi ’s are indepen-
dent and identically distributed on [−3,3]50; instead, the fixed-set W makes this a mixture
model.)

The data sets Dj are sampled from P a
X with a = 1 and n = 1000. The total 2n observations

in each Dj are further divided into ntrain = 1000 observations used to fit a one-class SVM
classifier scoring function ŝ (implemented in the Python package scikit-learn [59]),
and ncal = 1000 observations used to calibrate the conformal p-values, as in (1), leading to
a valid p-value û(Xn+1) ∈ [0,1] for any new data point Xn+1. The total number of data
sets is J = 100, each of which is associated with L = 100 test sets. A random subset of
the observations in each test set Dtest

j,l is sampled from P a
X with a = 1, while the others are

outliers, in the sense that they are sampled from P a
X with a > 1, as specified below.

5.2.2. Individual outlier detection. First, we focus on a data generating model under
which 90% of the ntest = 1000 observations in Dtest

j,l are sampled from P a
X with a = 1,

and we seek the remaining 10% of outliers. For this purpose, we calibrate a conformal p-
value for all observations in Dtest

j,l , and then we apply the BH procedure at some nominal
FDR level α to account for the multiple comparisons, with and without Storey’s correction
based on the estimated null proportion. In the following, we apply our conditional calibra-
tion method with the parameters δ = 0.1 and k = ncal/2 (see below for comments about the
choice of k).

Figure 7 shows the distribution of ĉFDR(Ds) and ĉPower(Ds), corresponding to α = 0.1,
for different values of the signal strength a (recall that a = 1 corresponds to no signal), when
the BH procedure is utilized to account for the multiple comparisons. The results confirm the
calibration-conditional p-values control the conditional FDR for at least 90% of practition-
ers, while the marginal p-values do not. In fact, marginal p-values only control the conditional

FIG. 7. Performance of different methods for calibrating conformal p-values in a simulated outlier detection
problem, as a function of the signal strength. The box plots visualize the distribution of FDR and power, as defined
in (23), conditional on 100 independent data sets. The solid curves indicate the 90th quantile of the conditional
FDR distribution. The nominal FDR 0.1, and the conditional method is applied with δ = 0.1.
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FDR if the number of samples in the calibration data set is very large; see Figure S5 in Sec-
tion S4 of the Supplementary Material [7]. Among the three conditional calibration alterna-
tives considered here, the Monte Carlo and Simes methods yield slightly higher power than
the asymptotic approximation. All methods control the marginal FDR, as predicted by our
theoretical results. Figure S7 presents the results obtained by applying Storeys’ correction to
the BH procedure, while Figure S8 summarizes additional experiments in which the condi-
tional calibration is applied with δ = 0.25. Finally, Figure S9 visualizes the effect of different
values of the k on the conditional p-values calibrated with the Simes method, showing that
k = ncal/2 works relatively well, although the performance does not appear to be extremely
sensitive to this choice.

5.2.3. Batch outlier detection. We now consider the global testing problem of detecting
whether a batch of new observations contains any outliers. We follow the same approach as
before, but the ntest = 1000 observations in each test set are now subdivided into 100 batches
of size 10. The 10 calibrated p-values in each batch are combined with Fisher’s method to
test the batch-specific global null. Then the BH procedure with Storey’s correction is applied
to control the FDR over all batches. By design, 90% of the batches contain no outliers (i.e.,
all samples are drawn from P a

X with a = 1), while 50% of the samples in the remaining
batches are outliers (i.e., they are drawn from P a

X with a = 1.75). Of course, batched testing
is less informative than the precise identification of outliers, but the advantage now is that
we can achieve higher power. Figure 8 shows that, even though this problem is relatively
easy (the power is almost 1), marginal p-values may lead to a conditional FDR that is higher
than expected for many researchers. By contrast, simultaneous calibration is conservative for
the vast majority of them, without much power loss. Among the conditional adjustments,
the Monte Carlo method and the asymptotic approximation yield higher power in this set-
ting.

Next, we study the effect of the batch size, under the global null hypothesis (i.e., when
there are no outliers in the test set). As before, the p-values in each batch are combined
with Fisher’s method and the global null is rejected if the resulting p-value is smaller than
0.1. The experiment is repeated for 100 independent data sets and 1000 test sets. Fig-
ure 9 shows that marginal p-values do not lead to valid inferences, especially if the batch
size is large. By contrast, the tests based on calibration-conditional p-values always remain
valid.

Finally, Figure S11 compares the performances of alternative global testing methods for
combining the p-values in each batch, in the same experiments as in Figure 8. The combina-
tions considered are the harmonic mean with equal weights [93], Simes’ [69] and Stouffer’s

FIG. 8. Performance of different methods for calibrating conformal p-values in a simulated outlier batch detec-
tion problem, as a function of the nominal FDR level. The excess FDR is defined as the difference between the
empirical FDR and the nominal FDR. Other details are as in Figure 7.
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FIG. 9. Familywise error rate (FWER) in a simulated outlier batch detection problem under the global null
hypothesis, using different calibration methods for the conformal p-values. The results are shown as a function of
the batch size. The global null is rejected if the Fisher’s combined p-value is below 0.1, which means the nominal
FWER is 10% (horizontal dashed line).

[73] p-values. The harmonic mean and Simes’ p-values yield no discoveries, as those meth-
ods are designed to have power if the signals are few and strong (e.g., a single outlier per
batch), while each nonnull batch here contains several outliers and marginal conformal p-
values must be above 1/(n+1). Fisher’s p-values appear to be more powerful than Stouffer’s
in these experiments, even if the former are simultaneously adjusted with our Monte Carlo
method and the latter are not. Unlike Fisher’s combination test, not all global testing methods
may become invalid on average when applied to positively dependent p-values. For exam-
ple, the harmonic mean [93] and Simes’s p-values are robust to positive dependencies [67],
and Stouffer’s combination p-value can also be modified to account for known dependencies
[74]. Yet our p-value adjustments remain useful even with those combination tests because
they enable valid inferences conditional on the calibration data; see Figure S11.

5.3. Outlier detection on real data.

5.3.1. Data description. We turn to study the performance of the calibration schemes
from Section 5.2 on several benchmark data sets for outlier detection, summarized in Table 1.
The conditional p-values are calibrated with δ = 0.1 using the Monte Carlo method, which is
valid in finite samples and have demonstrated in the previous sections to be more powerful
than the alternatives. We utilize an isolation forest [51] machine-learning algorithms ŝ as
the base method for detecting anomalies, available in the Python sklearn package. We
rely on the default hyperparameters, except for the “contamination” parameter, which we
set equal to 0.1. Additional experiments based on one-class SVM and Local Outlier Factor
(LOF) algorithms are presented in Section S4 of the Supplementary Material (Tables S2–
S3).

5.3.2. Individual outlier detection. Here, we follow the setup of Section 5.2.2. The dif-
ference is that we need to construct multiple training, calibration, and test sets by ran-
domly splitting the ninlier inlier examples into three disjoint subsets of size ntrain, ncal and

TABLE 1
Summary of the data sets for outlier detection utilized in our applications

ALOI Cover Credit card KDDCup99 Mammography Digits Shuttle
[14, 97] [98] [99] [14, 100] [101] [102] [103]

Features d 27 10 30 40 6 16 9
Inliers ninliers 283,301 286,048 284,315 47,913 10,923 6714 45,586
Outliers noutliers 1508 2747 492 200 260 156 3511
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FIG. 10. Outlier detection performance on credit card fraud data. The Benjamini–Hochberg procedure with
Storey’s correction is applied to conformal p-values, based on an isolation forest model and calibrated with
different methods. The results are shown as a function of the nominal FDR level. Other details are as in Figure 7.

ntest, respectively. In total, ninlier/2 data points are used for training and calibration, that is,
ntrain + ncal = ninlier/2 with ncal = min{2000, ntrain/2}, while outlier examples are only in-
cluded in the test sets. For each training/calibration data subset, we sample 100 test sets of
size ntest = min{2000, ntrain/3}, each containing 90% of randomly chosen inliers, and 10%
of outliers. In contrast to the experiments of Section 5.2.2 in which the data were effec-
tively infinitely abundant, here we have some overlap between the samples in different test
sets.

Figure 10 compares the performance of marginal and simultaneously calibrated p-values
on the credit card data [99], as a function of the nominal FDR level. Here, the BH procedure
is applied with Storey’s correction. The Monte Carlo simultaneous calibration leads to FDR
control for at least 90% of simulated practitioners, as expected. Consistent conclusion can be
drawn from Table 2, which reports on all other data sets. Additional results corresponding to
different outlier detection algorithms (one-class SVM and LOF) can be found in Table S1,
Section S4.2. In all cases, we adopt the sklearn default parameters. Finally, Table S2 sum-
marizes the performance of different calibration and detection methods across all data sets
when the BH procedure is applied without Storey’s correction.

5.3.3. Batch outlier detection. We now focus on global testing for outlier batch detec-
tion, similarly to Section 5.2.3. The data are divided into training, calibration and test sets
according to the same scheme as in Section 5.3.2, but the size of the test sets is now 1000,
following as closely as possible the experimental protocol of Section 5.2.3.

TABLE 2
Outlier detection performance using alternative methods for calibrating conformal p-values. The FDR and

power are defined conditional on the training and calibration data, as in Section 5.1. The nominal marginal FDR
level is 0.2. Empirical FDR values above 0.2 are in orange; those one standard deviation above it are in red



172 S. BATES ET AL.

FIG. 11. Outlier batch detection performance on credit card fraud data. Conformal p-values are computed
based on an isolation forest model and calibrated using different methods. Other details are as in Figure 8.

Figure 11 compares the performance of the different calibration methods as a function of
the nominal FDR level. The p-values in each batch are combined with Fisher’s method, and
the BH procedure is applied with Storey’s correction. Again, simultaneous calibration turns
out to be needed for conditional FDR control in at least 90% of the applications, although it
involves some power loss. Both calibration methods control the marginal FDR.

Table 3 summarizes the performance of the two alternative calibration methods on all
data sets. Here, the nominal FDR level is 0.1 and the BH procedure is applied with the
Storey correction. Again, the results show that the Monte Carlo method controls the con-
ditional FDR 90% of the time, although at some cost in power, while the marginal cali-
bration method does not. See Table S3 in Section S4.2 of the Supplementary Material for
additional results that, in addition to the isolation forest, include also the one-class SVM
and LOF algorithms for outlier detection. Finally, Table S4 summarizes performance of the
different methods on all data sets when the BH procedure is applied without the Storey cor-
rection.

6. Discussion. This paper has studied the multiple testing problem for outlier detection
using conformal p-values. Conformal p-values provide a natural approach to outlier detection
(when clean training data are available) with the advantage of being able to leverage any
black-box machine-learning tool, producing fully nonparametric inferences that are provably
valid in finite samples and require no modeling beyond the i.i.d. assumption. Of course, a
possible limitation (or perhaps strength, depending on the viewpoint) of conformal inference
is that its agnosticism prevents very confident statements, as conformal p-values can never be
smaller than 1/(n + 1), where n is the number of clean data points available for calibration.

TABLE 3
Outlier batch detection performance on different data sets, using alternative methods for calibrating conformal

p-values. The nominal FDR level is 0.1. Other details are as in Table 2
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Therefore, this solution may not be as powerful as likelihood-based approaches, especially if
the signals are strong but sparse. However, it does seem preferable if clean data are available
but accurate models are not.

Whenever the conformal framework is appropriate for a particular outlier detection ap-
plication, the problem of multiple testing considered in this paper is likely to be relevant, as
possible outliers are often to be detected among many possible inlier test points, and reporting
an excess of false discoveries would be undesirable. Our work brings attention to the delicacy
of such task, showing that the mutual dependence of conformal p-values breaks certain meth-
ods (e.g., Fisher’s combination test) and makes the validity of others (e.g., the BH procedure)
not obvious. In particular, we find our PRDS result interesting because this property is well
known as a theoretical assumption for FDR control, but it is typically difficult to verify in
practical applications [11, 19].

Our methodological contribution is a technique based on high-probability bounds to com-
pute calibration-conditional conformal p-values that are mutually independent and can thus
be directly trusted in any multiple testing procedure. Our bounds are stronger than those
in the previous conformal inference literature because they are simultaneous in nature and,
consequently, they can also be useful for practitioners to tune a posteriori the significance
threshold for machine-learning statistics above which to report their discoveries. Unsurpris-
ingly, our simulations demonstrate that calibration-conditional inferences are less powerful
on average than marginal conformal inferences; therefore, the additional comfort of their
stronger guarantees should be weighted against the potential loss of some interesting find-
ings. Nonetheless, we prefer to leave such considerations to practitioners on a case-by-case
basis, as our objective here was simply to explain the theoretical properties and general rela-
tive advantages of different statistical methods.

Finally, this work opens new directions for future research. For example, focusing on split-
conformal p-values, we did not study other hold-out approaches, such as the jackknife+
[4] or bootstrap sampling [38], that may practically yield higher power, although they are
also more computationally expensive. A separate line of research may focus on relaxing
the i.i.d. assumption to improve power in a multiple testing setting with structured outliers
[49]. In fact, our theory only requires the calibration and test inliers to be exchangeable and
mutually independent, while the outliers in the test data may have dependencies with one
another. Further, we mentioned but did not explore a connection between our multiple out-
lier testing problem (especially regarding our results on Fisher’s combination method) and
classical two-sample testing. Finally, our high-probability bounds may be useful beyond the
calibration of conformal p-values; for instance, we already discussed a straightforward ex-
tension to obtain simultaneously valid prediction sets, but other possible applications may
involve predictive distributions [85] and functionals thereof [94], or the comparison of dif-
ferent machine-learning algorithms in terms of estimated generalization error [8, 33], for
example.

Software availability. A Python software package implementing the methods described
in this paper is available in the Supplementary Material and online at https://github.com/
msesia/conditional-conformal-pvalues.git. This package also includes usage examples and
notebooks to reproduce our numerical experiments.
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