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Exploring Classification of Topological Priors With
Machine Learning for Feature Extraction

Samuel Leventhal ', Attila Gyulassy

Abstract— In many scientific endeavors, increasingly abstract
representations of data allow for new interpretive methodologies
and conceptualization of phenomena. For example, moving from
raw imaged pixels to segmented and reconstructed objects allows
researchers new insights and means to direct their studies toward
relevant areas. Thus, the development of new and improved meth-
ods for segmentation remains an active area of research. With
advances in machine learning and neural networks, scientists have
been focused on employing deep neural networks such as U-Net
to obtain pixel-level segmentations, namely, defining associations
between pixels and corresponding/referent objects and gathering
those objects afterward. Topological analysis, such as the use of the
Morse-Smale complex to encode regions of uniform gradient flow
behavior, offers an alternative approach: first, create geometric
priors, and then apply machine learning to classify. This approach
is empirically motivated since phenomena of interest often appear
as subsets of topological priors in many applications. Using topolog-
ical elements not only reduces the learning space but also introduces
the ability to use learnable geometries and connectivity to aid the
classification of the segmentation target. In this article, we describe
an approach to creating learnable topological elements, explore the
application of ML techniques to classification tasks in a number
of areas, and demonstrate this approach as a viable alternative to
pixel-level classification, with similar accuracy, improved execution
time, and requiring marginal training data.

Index Terms—Computational topology, feature detection, graph
learning, graph neural networks, machine learning, Morse-Smale
complex, scientific visualization, segmentation, topological data
analysis.

I. INTRODUCTION

ANY fields of study involve the analysis of complex
M images, which must be segmented to extract semanti-
cally meaningful objects for further investigation. Manual seg-
mentation of images by domain experts is a time-consuming,
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labor-intensive, dexterity-requiring process. As a result, devel-
oping means of deferring the burden of segmentation through
automated or semiautomated algorithmic simplification is og
great importance. Motivated by abundant examples of the ro-
bustness and capability that machine learning (ML) models of-
fer, computer-aided segmentation approaches have steadily been
converging toward such models. A major obstacle in applying
state-of-the-art ML approaches to scientific data is that often
the data generated is first of its kind: no pre-existing trained
ML model is applicable, the objects represent a newly observed
phenomenon, or the influence of image generation parameters
such as sample staining or acquisition technology makes the
image data different from prior applications. As aresult, to adapt
to variations in data acquisition or simply apply learning models
to data across disciplines, a new model must be trained and
often with specific nuances or considerable assumptions about
the data in mind [33], [42]. Moreover, the need for obtaining or
generating good ground truth segmentations remains a signifi-
cant roadblock, further compounding the difficulty of training
robust learning models for segmentation.

An alternative solution for the segmentation task to ML has
been the computation of mathematically defined objects, for
instance, using scalar-field topology. In this setting, objects
of interest are expressed algorithmically through topological
abstractions such as elements of merge/contour trees or in
Morse/Morse-Smale complexes (MSC) [35], [45]. Determin-
istic algorithms in this context are then applied to images to
compute data structures that encode the geometric embedding of
and connectivity between objects, called fopological elements,
within these topological abstractions. Scientific investigations
often study collections of instances of phenomena in images,
called semantic objects, burning cells from large-scale turbulent
combustion [11], ocean eddies [30], neuron segmentation [39],
ligaments in structural foams [47], and atomic structures [8].
We refer to the topological elements corresponding to semantic
objects as the semantic targets for the segmentation task. Com-
puted topological abstractions then offer a geometric encoding
of objects which enables higher level measurement and reason-
ing that answer scientific questions, such as bubble growth in
turbulent mixing [35], the relationship between curvature and
failure of foam struts [47], or estimating flow through porous
materials [61].

Topological approaches successfully extract semantic objects
in many applications, but a significant shortcoming has been
bridging the gap between the theoretical description of objects
and how they appear in real-world data. For instance, the neurons
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that constitute a brain wiring diagram can be modeled by the
topology and embedding of the bright ridge-like features of the
image. However, well-documented imaging artifacts that arise
from uneven expression of fluorescence proteins and noise [55],
attenuation [38], refraction and absorption [50], and many other
sources, make straightforward computational identification of
neurons difficult. Nevertheless, using topological elements as
a scaffold for labeling accelerates user-guided segmentation
compared to manual segmentation [39]. In this context, adding
rapid inference could further reduce the burden of labeling — a
gain that could be realized across domains and labeling tools.
Combining topological data analysis (TDA) and machine
learning has already begun to demonstrate benefits in tasks
related to classification and segmentation. Banerjee et al. showed
that adding rasterized images of the MSC to a modified U-Net
improved pixel classification tasks to segment neurons [5],
[53]. However, pixel-level training labels must still be provided,
and the final object segmentation must still be computed as a
postprocess step. In contrast, we show that geometric objects
themselves, as derived from topology, offer a high-quality rep-
resentation for machine learning in that we can directly classify
topological priors with results competitive to state-of-the-art ap-
proaches and without the need for post hoc object segmentation.
We present an approach for representing objects composed in
images as a topologically informative graph data structure for
downstream machine learning tasks. We illustrate this approach
using an interactive tool we have developed that allows a user
to rapidly label topological priors for training various machine
learning models, which extend the user’s intended labeling onto
the remainder of topologically encoded objects. Training and
predicting in the topological domain performs as well as state-
of-the-art image segmentation techniques operating in the pixel
domain while requiring significantly less training time. More-
over, by remaining in the topological domain where the user
has provided their labeling, we obtain the needed segmentation
result directly rather than having to be constructed post hoc as
is, for instance, with skeletonization of the pixel segmentation.
In summary, the contributions offered here are as follows:
® We demonstrate how topological priors introduce a new
space to frame machine learning tasks, offering compet-
itive segmentation accuracy, in both advanced and basic
machine learning models, compared to standard or state-
of-the-art pixel-based models.
® We design a novel and easily generalized framework to
rephrase segmentation as a classification problem that
learns to identify a subset graph constructed from topo-
logical priors of the MSC computed over an image.
® We present a fast labeling tool to assign class labels to
components within the MSC, making manual ground truth
labeling of images easier for users.
® We devise a new method for comparing topological prior-
object-level predictions to pixel-level predictions and eval-
uate the performance of our approach across various
domains, including medical, neuroscience, and materials
science.
e We exhibit a generalized framework based on topologi-
cal priors to be used by machine learning models, either
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classically or in an interactive setting, with quick label-
ing, training, and predicted segmentations as compared to
contemporary, standard, or advanced pixel-based methods.

II. BACKGROUND AND RELATED WORK

We begin by describing both the mathematical underpinnings
and common computational tools for our topological data anal-
ysis. Then, we review work on image segmentation and discuss
how topological data analysis has started to be used in this
context.

A. Computational Topology

Topological abstractions have been applied across multiple
domains, such as segmentation of neurons [39], structural com-
ponents of interest in metallic foams [47], eddies in ocean
currents [30], bubble formation in mixing fluids [45], and
ignition kernels in combustion [35]. In each case, semantic
objects appear as elements (or collections thereof) of the data
structures encoding the topological abstraction. Here, we present
the relevant background to the Morse-Smale complex (MSC),
the topological abstraction whose elements we use to generate
“priors” objects for ML-assisted image segmentation.

The Morse-Smale Complex: A Morse function f : M — R
is a smooth function on a manifold with nondegenerate, dis-
tinct critical points. According to the Morse Lemma, in a local
neighborhood around a critical point b, f takes on a quadratic
nature and can be written as f(z) = f(b) £ 7 £ -+ + 22, with
d being the dimension of M. The number of subtracted x;
in this representation of f(z) around b gives the number of
“decreasing directions” from the critical point and is known as
its index. For instance, in two dimensions, minima, saddles, and
maxima are indices 0, 1, and 2, respectively. The gradient, V f
defines a vector field whose zeroes are critical points. Integral
lines are paths tangent to V f with lower and upper limits at
critical points of f. Each noncritical point in the domain M
belongs to a single integral line that has upper and lower limits
at critical points, called the destination, and origin, respectively.
The partition of the domain formed by continuous clusters of
integral lines sharing a common origin and destination defines
the MSC. Cells of this complex have a dimension equal to
the difference between the index of the destination and origin
critical points of their constituent integral lines. Fig. 1(a) and
(b) shows a scalar function and its corresponding MSC, and
the relationships between cells. The -skeleton of the complex
is formed by critical points, nodes, and the integral lines that
connect critical points, arcs, that differ in index by 1.

Discrete Morse Theory: Concepts from continuous functions
can be applied to a discrete pixel space following an approach
based on discrete Morse theory [18]. Instead of a continuous
manifold M, the discrete 2-D domain consists of a mesh K
whose cells are formed by vertices at pixels of the image along
with edges and quadrilaterals of a regular grid. A discrete
gradient field on K with critical cells, discrete gradient arrows,
and discrete V-paths replaces critical points, V f, and integral
lines, respectively. A discrete MSC that is structurally indistin-
guishable from a continuous MSC is obtained by tracing discrete
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Fig. 1. Morse-Smale complexes are defined for functions with continuous
gradients a-c). A smooth function a) can be partitioned based on the behavior
of integral lines b), with selected integral lines shown in white. This partition
forms a cell complex, where integral lines within each cell share acommon origin
and destination. The 0-dimensional cells are maxima (red), saddles (green), and
minima (dark blue)); the 1-dimensional cells are formed by ascending (orange)
and descending lines (light blue) from saddles (green); and 2-dimensional cells
are bounded by 0- and 1-cells b). Elements of this complex often form semantic
features of interest in a scientific domain, such as valley-like lines (¢). Real-world
functions often come from noisy sources and are available as samples on a
grid d). Discrete Morse-theory-based methods allow practical computation of
Morse-Smale complexes e), which encode both noise and discretization artifacts
that may be simplified to recover the coarse-scale behavior of the function f).
The valley-like structures may be extracted from this complex g), and converted
to a set of priors between non-degree-2 vertices denoted the valley graph /). The
priors graph (yellow), i), represents each prior as a vertex with edges between
incident priors.

V-paths, starting and ending at critical cells. In this study, we use
the open-source MSCEER library [22], implementing steepest-
descent [23], [51] and accurate-geometry [24] discrete gradient
construction algorithms, and discrete MSC computation.

Persistence plays a hierarchical role in the degree to which
the MSC encompasses a semantic object, where low persistence
can be attributed to a low granularity in the MSC and vice vera.
All ascending and descending arcs, however, are not necessarily
relevant. Often in imaged data, the semantic target consists
of higher intensity pixel values. As a result, descending paths
adjoining noncritical stationary points, or 1-saddles, to minima
can be considered not to cover the semantic target. For this
reason, we remove l-saddle points between critical maxima
and minima along with the adjoining path. Preserving paths
between stationary 2-saddles ascending to maximum critical
points allows us to capture all edge and adjoining ridge-like
structures that are pertinent to the semantic target. MSCEER
also supports computing the MSC at a user-specified persistence
simplification threshold [25].
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Topological Simplification: Topological abstractions come
equipped with well-understood techniques to order and simplify
their elements to obtain successively coarser representations.
For example, fopological persistence pairs a critical point that
creates a topological feature with the critical point that destroys
that feature during a filtration [16]. The time span in the filtration
in which the feature lives, i.e., the difference in function value
between the birth and death critical points, is called persis-
tence. Intuitively, small, local perturbations (low persistence
critical points) usually correspond to noise or artifacts in image
acquisition or from discretization. Many approaches exist for
achieving simpler topological abstractions: the image can be
locally perturbed (smoothed) such that the computed MSC will
be coarser [1], [58]; the critical cell pairs in the discrete gradient
field can be canceled through path reversal [18]; or the MSC can
be directly simplified by successively canceling nodes connected
by a single arc in the 1-skeleton [10], [16], [25]. Practically, this
last approach builds a multiscale data structure that allows inter-
active adjustment of the simplification threshold, which enables
a user to fine-tune the simplification level based on the data and
task at hand. Fig. 1(e) and (f) illustrates the use of simplification
to remove excess nodes and arcs from the 1-skeleton of the MSC.

Ridge/Valley Graph: In many applications, the 1-skeleton
of the simplified MSC places nodes/arcs in a manner that
covers the semantic objects of interest. However, its use as a
“scaffolding” for further analysis or semantic object extraction
might require modification of the structure. Integral lines for
continuous functions do not merge, but the limited resolution
available to discrete methods may merge V-paths, effectively
creating overlapping arc segments such as in Fig. 1(g). In many
applications, non-overlapping edges are desired, for example,
to enable a mapping from image pixels to unique components
in a more manageable graph structure. Mcdonald et al. [39]
introduced a refinement of the MSC 1-skeleton, called the ridge
graph, that collected the mesh cells constituting the 1-skeleton,
and created a new graph whose vertices were those cells
without exactly two adjacent neighbors, and whose edges were
the sequence of cells with exactly two adjacent neighboring
cells. This ridge graph could be further refined by creating
vertices for each critical cell of the 1-skeleton, splitting the
arc into two edges. Fig. 1(h) shows this transformation of the
1-skeleton into the ridge graph (without the optional critical cell
refinement). Note that ridge or valley graphs are constructed in
the same way, only taking as input either the saddle-maximum
or minimum-saddle arcs of the MSC 1-skeleton.

B. Image Segmentation

Despite the value of image segmentation to many sciences,
medical, and engineering disciplines, it remains a laborious and
time-intensive task [37], [43], [48]. The difficulties in image
segmentation result from the scope of the domain, the amount
of data needing to be segmented, and the reliance on field expert
experience to properly identify semantic objects. The need for
solutions to overcome these obstacles continues to grow as
new imaging techniques develop and the volume of image data
needing to be segmented increases.
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To address obstacles in image segmentation, contemporary
approaches have begun to incorporate machine learning into
the segmentation task. Such methods have shown promising
progress, such as with the use of U-Nets [53]. Traditional
pixel-based approaches require a representative set of manually
labeled ground truth data provided by field experts or an expe-
rienced eye. Manually segmented data is then used for typically
time-intensive training followed by inference on unseen image
data. The inferred pixel predictions then correlate to the class,
or probability of the respective pixel belonging to the semantic
object. Lastly, a geometric summary of the pixel predictions is
performed to glean the final segmentation.

Recent works have shown that informative gains can be
obtained in moving beyond per-pixel feature statistics by gener-
alizing to superpixels [2], [3]. By generalizing pixels into groups
with shared characteristics such as intensity and proximity,
superpixels introduce the opportunity to assign class labels and
derive feature statistics more intelligently. Konyushkova et al.
employ superpixels to extract novel feature statistics as well as
demonstrate the benefit of informing the learning process with
geometric priors for image segmentation by introducing a geo-
metric uncertainty measure that intelligently guides a user during
active learning [34]. Chen et al. have also recently shown that
shape-driven approaches improve the reliability and accuracy
of segmentation results. They accomplish this by employing a
deep shape Boltzmann machine as a generative model to extract
the architecture of shapes during training which, when used as
a shape prior term within an objective function, later minimized
by learning models, affords improved accuracy in tracking shape
deformations during variational segmentation [12], [17].

Topology for Digital Images: Segmentation tasks across im-
age domains, as a first step, often convert the native image
representation (e.g., RGB) to a single scalar value. For example,
object detection in digital imagery can be successfully done by
first converting multichannel image data to greyscale, applying
a Sobel filter, and computing watershed regions [4], [7], [52].
Similarly, to apply the topological framework, persistent homol-
ogy has been used to better understand root architecture from
images, identify cells in microscopy images, and much more [6],
[15], [56].

Computational Topology for Machine Learning: Several re-
cent works have used topological methods, specifically in the
task of segmentation. Banerjee et al. [5] applied the MSC
as an image-level prior to be used in a modified U-Net [53]
architecture. They found that the rasterized representation of the
simplified MSC concatenated into an encoder-decoder network
improved pixel-level classification in microscopy images. For
the segmentation task of reconstructing roads from satellite
images, recent work has eliminated the need for labeled data
by employing a topological approach with improved results
compared to other state-of-the-art approaches that were previ-
ously reliant on manually labeled training sets. They accomplish
this by generating training samples for a Convolutional Neural
Network (CNN) using a discrete-Morse graph reconstruction
algorithm to identify road network connectivity [13].

TDA has also been incorporated into neural network architec-
ture to train deep learning segmentation techniques to conform
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to higher topological accuracy. Hu et al. [28] improved a model’s
topological accuracy by updating the neural network during
training using an adapted loss meant to guide the model’s predic-
tions to more closely adhere to the 1-skeleton and 2-D cells of the
MSC. Through their adapted loss, they can more heavily penal-
ize the misclassification of pixels belonging to components, such
as polylines, of the MSC during training. Similar modifications
incorporating TDA into neural network architecture have shown
promise for autoencoders and GNNs [40], [65]. Our work, in
contrast to these methods, performs learning in the topological
domain over priors, separate from the image space.

III. TOPOLOGICAL PRIMITIVES FOR SEGMENTATION

In this section, we introduce a representation to employ
topological primitives for learning, called topological priors.
Empirical evidence has shown that the MSC, and hence the
ridge/valley graph, covers semantic objects. The vertices (junc-
tions) and edges (arc segments) of this representation provide an
opportunity to recast segmentation from determining which pix-
els belong to a semantic object, to which elements of the graph
do. Motivating our approach is that larger objects, compared to
pixels, may have richer feature sets, enabling ML approaches to
better discriminate between objects or backgrounds. Provided as
a high-quality geometric embedding, we also observe that the
ridge graph’s sparse summary of a semantic object’s structure re-
duces the image space to only the set of pixels that are associated
with geometries of the object as represented by topological pri-
ors - the sum of which are sparse with respect to the entire image.

We begin by describing our notion of topological priors
and their origin, followed by how topological priors may be
encoded into a learnable data structure, the priors graph. We
then provide an overview of our proposed workflow - starting
with a description of the feature image kernels used, followed by
an explanation of the interactive process presented here for the
construction of a robust MSC segmentation to be converted to a
priors graph augmented with rich feature statistics, geometric at-
tributes, and connectivity information. Finally, we demonstrate
how the interactive tool introduced in this work affords the priors
graph to be conducive for fast manual ground truth labeling.

A. Topological Priors

To move past the pixel-level learning process, we introduce
the notion of topological priors. Following computation and
simplification of the MSC, we obtain a more refined geometric
summary with granularity better suited to the semantic objects,
the ridge/valley graph. The edges of the ridge graph are real-
ized by polylines, and its vertices are junctions, and both are
embedded in the underlying manifold of the image domain.
We call these elements fopological priors, as they originate
from a topological decomposition, and they come equipped as a
geometric embedding with connectivity. As a result, topological
priors provide a group of relatable encoded geometric objects
within an image. Topological priors then present opportunities
for new metrics, similarity measures, relational concepts, and
options for feature statistics within a novel feature space. The
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Fig. 2. Illustration of proposed workflow using topological priors with ma-
chine learning to accelerate segmentation. Beginning at (a), feature images are
precomputed. Next, a topologically informative scalar field is provided by the
user. Using the scalar field image, in stage (b), the discrete gradient is computed
in order to construct a persistence hierarchy of the MSC. Beginning in stage
(c), the user interactively evaluates and selects a suitable persistence threshold
affording an MSC that sufficiently covers the semantic object. During this
cycle, the user can choose to provide a new scalar field image and begin the
workflow again at stage (b). For stage (d), the priors graph is computed along
with the aggregate statistics for the topological priors. In the next interactive
cycle, stage (e), the user labels a training segmentation by selecting topological
priors. The practitioner then trains the chosen learning model over the labeled
segmentation, performs inference on the remainder of unseen structures, and is
then able to choose to correct misclassifications made by the learning model
interactively. This corrected labeling can then be used as a more robust training
set for re-training a more informed classifier. Once the learning model/predicted
segmentation is sufficiently accurate, the user obtains the final segmentation in

().

specific encoding will likely depend on the application, and we
describe an instance of the encoding in Section IV.

In this paper, we focus on 1-cells of the Morse-Smale Com-
plex that correspond to polylines and their junctions as topo-
logical priors. This focus indeed best captures complex line
structure, which, as we have shown, is of interest in datasets
from several application domains. However, our representation
could be extended to 2- and 3-cells of the MSC as well in order
to model more complex shapes. We have added more detail on
how this could be done in Section III-B of the paper.

B. Priors Graph

In our segmentation tasks, we investigate use cases where the
priors themselves are classified as foreground/background. Our
approach is to frame the learning problem as a vertex classifica-
tion task in a graph, to leverage existing machine learning archi-
tectures. The priors graph represents each encoded topological
prior as a vertex with a high-dimensional feature vector, and
builds edges based on the adjacency of the topological priors
in the ridge/valley graph. An illustration of the priors graph
computed from the ridge graph can be seen in Fig. 1(i).

Extending the priors graph construction to other topological
primitives originating from the MSC mesh, such as faces or
voids, can also be done using the encoding approach shown here.
For example, a priors graph whose topological priors originate
from 2-cell faces (such as the interior of the region highlighted in
Fig. 3(b)), adjacent area features of an object sharing a boundary,
could be encoded as nodes in the priors graph by taking the
dual of the face graph, namely, encoding topological faces as
nodes, and assigning edges between topological prior nodes that
originate from 2-D cells sharing a boundary.

IV. A WORKFLOW FOR LEARNING AND COMPARISON

We describe an interactive learning workflow that uses topo-
logical priors for fast and accurate segmentation. Following the
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Fig. 3.

Interactive tool allowing for human segmentation by labeling topo-
logical priors, specifically arcs, as opposed to individual pixels. With the
shortest-path tool, a user is six clicks into labeling the foreground neurons (a).
Only three clicks are needed to draw a closed loop (b). Finding objects crossing
a free-form stroke allows rapid labeling (c).

pre-computation of a stack of scale-space image features to
enrich the image representation, a user precomputes the MSC
and uses an interactive visualization to select the largest simpli-
fication threshold where the 1-skeleton best covers the semantic
objects of interest. A ridge/valley graph is then computed, a
priors graph is built, and feature vectors are constructed for
each prior. Given the priors graph, a user then labels a training
region/ground truth. The labeled priors graph is then given to
learning models for training and inference. A user can choose to
repeat this process by correcting misclassifications to use as an
enlarged training set, for another round of training/predictions.
The workflow ends with a fully labeled image. We illustrate this
workflow in Fig. 2.

A. Image Augmentation and Preprocessing

Humans, when segmenting semantic objects, will leverage
their a priori knowledge of an object’s structure and the full
power of the visual system, which is hard-wired to detect scales,
edges, and patterns. To give the ML methods the best chance
of leveraging the same information, we augment the image with
derived features of the image intensity. Furthermore, topological
priors of one of these derived fields often cover the semantic
objects, not the image itself.

Feature Images: Pixel-Level Feature Statistics: An image X
is a 2-D tensor whose 4, j-th entry X;; represents the value,
(e.g., grayscale intensity) of pixel (¢, j) in that image. Images are
first normalized prior to feature extraction, in which additional
features for each pixel (7, ) are computed. We apply a series
of transformations to the image, each modeled as a function
f(X) that returns an image of the same size, and consider the
values f(X),; for various functions f as additional features for
pixel (7, 7). We create features of dimension d = 47 by using d
different choices of image transformation functions f. Our goal
here is not to perform exhaustive feature engineering but to pro-
vide samples from widely used techniques. Our transformations
include:

® Jdentity: The original image

® Gaussian blur: We convolve the image with a Gaussian

function with standard deviation o € {2,4, 8,16} as 4 fea-
tures. Gaussian blurring has been shown to be a represen-
tative smoothing kernel for capturing pixel neighborhood
information and minimizing fine scale structures while not
introducing unrelated structures in higher scales [36], [60].
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®  Maximum, minimum, median, and variance of pixel values
in a neighborhood: The maximum, minimum, median, and
variance of pixel values within a neighborhood of radius
r € {2,4,8,16} centered around each pixel contributing
16 features within our feature set.

o Difference of Gaussians: The pixel-wise difference of two
Gaussian blurred images as above, with respective neigh-
borhood sizes (r1,72) € {(4,2), (8,4), (16,8), (32,16)}
adding an additional 4 features.

e Sobel filter: The Sobel filter [31], [62] over the image
with a sliding kernel of dimensions 1 x 3 computing par-
tial derivatives based on pixel intensity that contributes 7
features along with an additional Sobel filtration of the
unblurred original image totaling 8.

® Gaussian Edge Detection: Intensities of local gradients
are computed over scales and kernel sizes for Gaussian
blurring ranging from 1 to 64 with a step size by powers
of two, contributing an additional 7 features.

® Hessian Eigenvalue Filter: For each kernel neighborhood
range o, € {1,2,4,8,16,32,64} eigenvalues of the Hes-
sian matrix (Hx, )@ j) = (;5;7?% are computed [62] over
the Gaussian blurred images X, and included in the feature
set contributing 7 feature attributes [19].

B. Interactive Computation of MSC

We describe a workflow that computes a simplified MSC,
the basis for later priors graph computation. Computation of the
MSC involves identifying a suitable scalar function whose topo-
logical features cover the desired semantic objects, computing a
hierarchical MSC, and identifying the appropriate threshold for
simplifying this structure.

1) User Selection of Scalar Field for Topology: In order to
ensure that the semantic object is entirely covered by topological
elements, it is necessary to first determine an adequate scalar
field image which, once derived, allows the computation of
the topological summary to account for all pertinent imaged
attributes. The aim of this functional filtration of the image,
or scalar function, is to create details of the basic structure
of the semantic object known to the practitioner - which may
require accounting for unwanted imaging artifacts. The work-
flow for choosing a derivation for a scalar field image for use
in topological methods has not been robustly addressed in prior
work; there is no “ground truth” method to identify the scalar
field that produces the priors with the desired connectivity and
geometric embedding. Therefore, the steps to derive a scalar
field image are chosen such that, empirically, the priors pro-
duced are sufficient for the examples in this study. For example,
high-amplitude speckle noise in images usually requires some
degree of smoothing. If boundaries are desired, an edge detector
with a user-selected kernel size may produce the desired priors.
In some cases, the priors may even be constructed over the
predicted class probability field produced by an initial ML
model.

As the methodologies, quality, and errors introduced when
obtaining data vary widely across domains, there is no sin-
gular encompassing functional filtration to highlight attributes
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of interest best as is intended when constructing the scalar
field image. However, there are often commonalities among
data samples within individual fields where segmentation is
of interest. Thus, a practitioner can likely easily recycle the
approach used to construct the informative scalar field found to
properly account for domain-specific noisy artifacts introduced
during data acquisition. Our approach is to allow a user to select
a scalar field image from the precomputed feature images. Once
selected, as shown in Fig. 2, the system computes the discrete
gradient and the MSC 1-skeleton, and builds a hierarchy. The
results are displayed in an interactive viewer.

2) Simplification Threshold Selection Cycle: Using the pre-
computed MSC hierarchy, the first interactive cycle shown in
Fig. 2 allows the user to select an MSC with sufficient granularity
to cover the semantic object by adjusting the persistence thresh-
old. The topological elements, at the finest scale, often encode
noise as well as the objects of interest. Persistence simplification
applied to the MSC allows for coarser representations. However,
in natural images, the level of simplification needed is not known
in advance. We allow the user to select a simplification threshold
interactively, leveraging the precomputed MSC hierarchy. The
user picks a threshold that computes the sparsest topological
structure that covers all semantic objects. If semantic objects
are missing, the user may select a different scalar function for
computing the MSC (Section IV-B1).

3) Priors Feature Vectors: Once a simplification threshold
has been identified, a ridge/valley graph and then a priors graph
are constructed. Topological priors allow new additions to fea-
ture sets: statistics aggregated over their geometric embeddings.
For each image feature outlined in Section IV-A, we compute the
median, minimum, maximum, standard deviation, and variance
among pixel intensities under the pixels covered by the geometry
of the topological prior. Therefore, if the original pixels then
have d-dimensional features, the priors are represented by a
5 x d-dimensional feature vector resulting in 235 features per
topological prior.

C. Interactive Labeling Cycle

We present an interactive workflow for fast and accurate
labeling, training, and inference with the use of topological
priors. For fast labeling of semantic objects, we introduce a tool
for the selection of topological priors. We provide background
on the learning models chosen for training and inference.

1) Interactive Labeling Cycle: Fast User Annotation of Topo-
logical Priors in 2D: We have developed an interactive tool to
facilitate and accelerate labeling of priors graphs. The tool is
a standalone application (built with C++/FLTK) for visualiza-
tion and interaction with the underlying image, scalar function,
topological priors, labelings, and predictions [57]. Several in-
teractions are supported for easy selection and “painting” fore-
ground/background labels, as highlighted for various datasets in
Fig. 3. The tool uses spatial acceleration structures to clamp the
user’s interaction to the nearest relevant topological element and
uses shortest path algorithms to facilitate drawing long paths,
branching trees, and closed loops. Flood fill and region selection
tools allow rapid labeling of homogeneous regions. Using this

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 01:51:11 UTC from IEEE Xplore. Restrictions apply.



LEVENTHAL et al.: EXPLORING CLASSIFICATION OF TOPOLOGICAL PRIORS WITH MACHINE LEARNING FOR FEATURE EXTRACTION

tool, it took between 2 and 10 minutes to generate each ground
truth labeling in this study.

Through the labeling tool, users can interactively set persis-
tence values for computing decidedly appropriate priors graphs
that robustly cover the semantic object- eliminating the need for
extensive manual segmentation and affording an easy means
to label geometries for training models tasked with learning
semantic segmentations.

This approach of labeling topological priors has already been
shown to accelerate the segmentation process in the neuro-
sciences [39]. We extend the benefit of fast labeling of topo-
logical priors to train downstream models to learn and identify
semantic structures quickly and accurately. Topological priors
labeled interactively in this way present the opportunity for
users, if desired, to correct the inferred segmentations of their
chosen learning models for re-training, allowing for more robust
learning models. This tool also allows users to expand the labeled
region by pulling prediction values in a region post inference and
correcting them with the selection tools.

2) Shallow and Deep Learning: Topological Priors for ML
Assisted Labeling: Shallow Learning: We apply arandom forest
to directly train over the priors graph in a supervised setting
with vertex feature vectors and manually assigned class labels
as described in Sections IV-A, IV-B3, and IV-CI. Predictions,
similarly, are made over the remaining unseen priors of the
priors graph as either belonging to the foreground or background
class. With the priors graph fully predicted, the collection of
priors represented by the foreground topological priors provides
the segmented objects. If a pixel representation is desired, the
pixels beneath foreground elements (priors) are painted onto a
flat background-valued image, with a user-selected radius.

Deep Learning: We use a conventional feedforward neural
network, or multi-layer perceptron (MLP), and an inductive
graph neural network, GraphSAGE [26], for node classification
of the priors graph.

Multilayer Perceptrons are canonical feed-forward neural
networks consisting of three fully connected layers of neu-
rons, each with a nonlinear activation function, trained using
backpropagation [54]. For our purposes, cross entropy loss
was used with activations being logistic functions defined as
o:(z, W)~ ﬁ =p € (0,1) for a given input z and
weight W where p € R of the final output can be taken as
a probabilistic value of belonging to a given class in a binary
setting. The loss function taking into account the logistic func-
tion becomes Lcg(z) = —y - o(z” - W) + log(1 + e7=" W)
for labels y.

Graph neural networks, which generalize deep neural net-
work operations such as convolutions to graph-structured data,
have risen in popularity for graph machine learning. In contrast
to hand-engineered feature construction or unsupervised vertex
embedding methods, graph neural networks may be trained with
task-specific objectives that produce multidimensional embed-
ding representations of vertices and a mapping of labels to
embeddings. During classification, inference is then performed
on unseen regions of the priors graph where node labels are
inferred from their embeddings.

3965

Starting with initial features for each vertex v, x,, graph
neural networks learn features for each vertex v by repeatedly
aggregating its own features and those of other nodes in a
receptive field N (v):

e = f (x0T sue N} r® =x, ()

Here f is a nonlinear function that is applied repeatedly in K
total rounds of feature aggregation, with learnable parameters
controlling the aggregation at each round. Most commonly, the
receptive field N (v) for each vertex v consists of its immediate
neighbors, although it is sometimes beneficial to aggregate
features from more distant nodes. This general formulation
includes methods such as graph convolutional networks [32],
GraphSAGE [26], and many others.

We use the popular GraphSAGE [26] architecture, which
implements f by concatenating each vertices feature repre-
sentation with the mean-pooled features of its neighbors and
passes the result through a feedforward layer. In the end, a
softmax classifier is applied to the final representation of v
(obtained from the last layer of the network, after the last round
of propagation) to predict the class label y,,. The weight matrix
‘W of this classifier along those at each layer may be learned
end to end by minimizing a cross entropy loss. We also employ
jumping knowledge [64]: during aggregation while learning
vertex representations, concatenating the feature representations
of earlier layers with the final layer’s output. Our graphs have
high heterophily, meaning that adjacent nodes often belong to
opposite classes, and jumping knowledge was shown to be a
useful design when applying GNNs to such graphs [66].

V. EVALUATION

In the evaluation of our approach, we pick data and associated
tasks for which a user desires to segment repetitive objects. We
study the resources needed and the performance of standard
machine learning algorithms framed around topological priors,
allowing us to understand better the effects of moving learning
and classification from millions of pixels to orders of magni-
tude fewer high-dimensional vectors. The performance of each
ML model is evaluated as a function of training set size. We
further identify which learning models support the fast labeling,
learning, and inferring interaction cycle needed by the example
ML-guided labeling workflow as shown in (e) of Fig. 2.

As the first method to directly predict on topological priors,
we devise a new approach for evaluating its performance when
compared to existing pixel-based methods. Since the goal of
a practitioner is often to identify geometric objects of interest,
e.g., line segments that make up a neuron, which carry both a
geometric embedding and connectivity information, we propose
an approach to bring pixel-level segmentation results to priors
objects. Furthermore, our “ground truth” is produced with a fast
labeling tool over priors objects, further justifying this decision.
Our primary metric, foreground F1 score, can be viewed as the
percentage of priors objects that are correctly labeled and acts as
arough proxy for how much manual correction would have to be
done after ML prediction to achieve the desired segmentation.

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 01:51:11 UTC from IEEE Xplore. Restrictions apply.



3966

Input Image iors Graph Labeling

Pixel Labeling

Pri
[

RF Priors

GNN MLP Priors

Segmentations

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

MLP‘Pier RF Pixel

v v v

Zoom Region
II. Training Regions

@ True Positive
False Positive

@ True Negative
False Negative

[9X1d |euondo

Fig. 4.

The priors graph is computed over the image and manually labeled to create a ground truth (a). Subregions to train (pink) the ML models are identified

so that the training region reasonably covers representative samples of the semantic object’s diverse structures. The topological approaches train and infer directly
over the priors graph (b). The pixel-level methods map the labeled priors graph to ground truth pixel labels by rasterizing the foreground priors graph labels with
thick lines (c) to then train and predict over pixels (d). Pixel predictions are averaged under each prior to obtain a priors segmentation (e), enabling performance
comparison. An optional pixel-level segmentation can be obtained from the priors approaches by rasterizing them (f).

Studies have found that high computational accuracy leads
to a reduction in human interaction to achieve a satisfactory
segmentation when comparing automated techniques across
application domains [41], [49]. What is more, it has also been
shown that reduced human interaction allows for a better user
experience [27]. Furthermore, approaches with a high computa-
tional accuracy that also enable user steering and editing demon-
strate higher overall accuracy and repeatability [41]. Although
the inverse correlation between high computational accuracy
and reduced human effort observed in recent works supports
our proposed workflow, a full user study is needed in future
work.

A. Pixel-Level Classification

To establish a performance baseline, we devise methods to
translate priors-level ground truth to pixel-level ground truth,
and pixel ML predictions to priors predictions. We describe
standard approaches to pixel segmentation.

Priors Graph to Pixel Ground Truth: A pixel ground truth
is constructed as a binary image by first labeling all pixels as
background, followed by painting all pixels under foreground
priors as foreground, as shown in Fig. 4(c). We then thicken the
ground truth segmentation beyond the initial one-pixel width of
priors: we perform a max radial filter, in which pixel neighbor-
hoods assume the maximal value within their local region, to
extend foreground labeling to neighboring pixels. The radius of
this filtration was chosen depending on the visible thickness (in
pixels) of semantic objects within the image under question. In

TABLE I
NUMBERED BY COLUMN: STATISTICS FOR EACH (1) DATASET, ASSOCIATED (2)
PIXEL DIMENSIONS OF THE IMAGE, (3,4) TOTAL VERTICES/EDGES IN THE
AFFILIATED PRIORS GRAPH, (5) TOTAL PIXELS IN ALL TOPOLOGICAL PRIORS
OF THE PRIORS GRAPH, AND (6) PERCENTAGE OF PIXELS CORRESPONDING TO
THE SEMANTIC OBJECT

Name Image Shape Vertices Edges Total Length % Foreground
Retinal 700 x 605 32,299 52,431 269,036 11.6%
Berghia 891 x896 5469 8,415 125,903 54.9%
Foam 828 x 846 6,268 10,058 142,895 69.9%
Neuron 1,737 x 1,785 31,723 49,475 425,441 15.5%
Diadem  1,170x 1,438 28,606 45,108 475,655 21.9%

the case of neurons, foam walls, and blood vessels, this radial
increase was by two pixels, whereas it was a radius of four for
the neuron cell membranes.

Shallow Learning: We train a random forest classifier [9] for
our shallow learning model. RF-Pixel approaches the task of
feature detection as a trainable segmentation problem, training
over a subset of the image using a manually labeled ground truth
pixel segmentation. We predict over the remainder of the image
during classification to generate the global segmentation. Once
inference has been performed on the remainder of the image
pixels, classes are then assigned back to priors, as explained at
the beginning of this section.

Deep Learning: We train two deep learning models to classify
pixels: U-Net and MLP-Pixel [53], [54]. The architecture of
MLP-Pixel is the same as that described in Section IV-C2,
differing only in the learning rate and the number of epochs
used for training as given in Table II. For both models, pixel

Authorized licensed use limited to: The University of Utah. Downloaded on October 13,2024 at 01:51:11 UTC from IEEE Xplore. Restrictions apply.



LEVENTHAL et al.: EXPLORING CLASSIFICATION OF TOPOLOGICAL PRIORS WITH MACHINE LEARNING FOR FEATURE EXTRACTION

TABLE II
HYPERPARAMETERS USED FOR EACH MODEL

Model Learning Rate  Weight Decay  Epochs  Layers/Depth  Estimators
U-Net le—3 0.0, 10 23 -
GNN 3e3 le”’ 10 4 -
MLP-Priors 2e73 0.0 10 3 -
MLP-Pixel le? le™3 64 3 -
RF-Priors - - - 10 50
RF-Pixel - - - 10 50

intensities are used to construct feature representations per pixel,
which informs the inference decision. An image is first tiled
into 64 x 64 rectangular subsets moving in half steps. Training
is done over a subset collection of these tiles, and inference is
done over all tiles. The image is then re-tiled with the inferred
tile set with a padding of 10 pixels removed from all tile borders
to eliminate edge artifacts in the composite prediction.

U-Nets are a well-established and notably robust neural net-
work architecture for image segmentation [53]. The canonical
U-Net architecture is comprised of two main components fol-
lowing an autoencoder paradigm. The first is a contractive path
that reduces the input image’s dimensionality at each layer.
The encoded representation of the image is then passed to a
decoder using upconvolutions and reduced channels to raise
the dimensionality of the encoded embedding. The final layer
uses 1 x 1 convolutional filters to map each component feature
vector to the desired number of classes [53]. A unique aspect
of the U-Nets architecture that improves its robustness is the
use of skip-connections, in which the embeddings produced
during encoding for any given layer k are later used again during
the upconvolutional decoding stage. Specifically, for a depth K
network, the embedding produced by layer [ is concatenated
with the decoding layer (K — [)'s input embedding, resulting
in the symmetrical architecture of the U-Net from which it
gets its name. The result of this concatenation affords U-Nets
their improved ability to learn segmentation information during
supervised training [53]. The reconstructed segmentation shares
the same dimensionality as that of the input image and, once
trained, serves as a pixel-level segmentation for a given input
image.

Predicted Pixel Probabilities to Topological Priors: To com-
pare priors- and pixel-based ML approaches, we translate pixel
results back to priors objects, and compute metrics over the set of
labeled priors. After pixel-level classification, each topological
prior averages the predicted pixel values covered by its prior’s
geometry. This average is taken to be the class probability of the
topological prior, as shown in Fig. 4(e).

B. Experimental Setup

We outline in Fig. 4 our experimental design for comparing
pixel-based methods against the prior-based workflow intro-
duced in this work.

Data: We give more detailed summary statistics and descrip-
tions of the datasets used for evaluation in Table I. Experi-
ments use images from different application domains, includ-
ing biomedicine, neuroscience, and materials science. For each
image, to optimize the ridge/valley graph and corresponding
topological priors so as best to cover the semantic object, a
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Fig.5. We provide a summary for each dataset of the training regions (orange)
used to achieve the accuracy results provided in Fig. 7 as well as an enlarged view
of the prior graph and pixel-level ground truths (pink). Highlighted in orange is
the subset used for training all models. Each original image highlights in pink
the region expanded for the visualization of results provided in Fig. 8.

functional operator, denoted the scalar function, is first applied
to the image. Performing this preprocessing step allows for a
topologically informative scalar field representation of the image
(see Section IV-B1), allowing for a more robust and expressive
MSC summary of the target semantic object. Training regions
for each image are grown centered in areas that illustrate the
diversity of canonical representatives of the semantic objects and
train over potentially confounding artifacts or morphologies.

Retinal: Tmaging and tracing of blood vessel arbors is used
to classify disease states of the eye [59]. Obtaining a wire
representation of the blood vessels is one of the first diagnostic
steps. Scalar field image: Laplacian of the image with kernel
size 2.0 to better capture faint blood vessels, as in Fig. 4.

Berghia: An electron microscope image is taken of a cross-
section across neurons of the Berghia sea slug, that has a roughly
10,000-neuron central nervous system. Membrane prediction
allows segmentation of individual neurons, which enables re-
searchers to easily investigate relations between genes, brain,
and behavior as well as study or modify entire neural cir-
cuits [63]. Identifying the boundaries of neurons is an open
challenge. Scalar field image: Membrane probability prediction
(using a previously trained U-Net) applied to a normalized edge
detection with a kernel of size 4.0. The resulting scalar field
allowed for topological priors that aligned with and covered
cell boundaries, filling gaps in existing predictions, as shown in
Fig. 5(a). The user’s (and ML) task is to classify priors as either
“cell boundary” or not.

Foam: A computed tomography (CT) image of closed-cell
foam is used to characterize the deformation of cell walls that
may result from its manufacturing process. The thin film poly-
mer boundaries are faint compared to the background CT noise.
Scalar field image: Maximum convolution with a rotating line
10px in length and a total of 16 directions to enhance linear
structures and smooth noise. The topological priors of this field
include both cell boundaries and noise, as shown in Fig. 5(b).

Diadem/Neuron: Viral expression fluorescent proteins and
tissue clarification techniques allow for imaging of neurons
and their projections. Understanding neurons and their con-
stituent dendritic and axonal subtrees is a central task in many
biomedical and neuroscience applications. In images from the
Diadem challenge [21] and macaque brain, neurons appear as
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ridge-like structures in a noisy background field (Fig. 5(c), and
(d) respectively). Scalar field image: Gaussian smoothed image
with a kernel size of 2.0 to generate topological priors, which
are classified as part of neurons or background.

Metrics: We compute the class F; score to measure the
performance of all models. Representing the harmonic mean
between precision and accuracy, the F; score can be expressed
asF; = 2(%‘%). To define precision and recall, we first
formalize some notation by denoting TN for true negatives, or
correct labeling of the background class; TP for true positives,
correctly labeling the foreground class; FP for false positives,
incorrectly labeling the background class as foreground; and
FN for false negatives, incorrectly labeling the foreground class
as background. With this notation, the precision and recall
are defined as precision = TPTfFP and recall = TP?FN. For each
model and inference run, we perform a parameter sweep for the
foreground/background probability threshold to maximize the
class F; score - which directly correlates to the Dice score and is
functionally equivalent to the mean IOU class score. Intuitively,
our choice for using this metric is that it translates to how much
work a user would have to perform to correct the segmentation.

Hyperparameters: We performed a parameter sweep of learn-
ing rates {1,2,3} x {le 2,1e 3, 1le~*} for all relevant models.
We found that each model converged after training for 10 epochs,
except MLP-Pixel. For this reason, to prevent bias in timing
measurements, we train all models for 10 epochs, excluding
MLP-Pixel, which required 64 epochs to converge and higher
weight decay to avoid overfitting. For the GNN, we use hidden
vertex embedding dimensions of 512 and 1024 with output
vertex embedding of 256, and aggregate neighbors’ embed-
dings by maximum pooling. We also add jumping knowledge
between aggregation layers of the GNN [64] to combat high
class heterophily (see Section IV-C2). For other parameters, we
stuck to default values used in official implementations, namely,
the ensemble random forest classifier from scikit-learn [46],
GraphSAGE’s supervised GNN for vertex classification [26]
and canonical UNet architecture [53]. Our MLP used a standard
architecture with three 32-dimensional layers and a sigmoid
activation function. Using standard settings likely represents the
procedure in the use cases we envision by domain specialists.
We report the best parameters in Table II.

Computing Environment: All experiments were run on a
laptop with 3 GB GeForce GTX 970 M with 1280 CUDA Cores
GPU and 3.5 GHz i17-6700HQ (2.6 up to 3.5 GHz — 6 MB Cache
—4 Cores — 8 Threads) processor running Ubuntu, Linux.

Training and Inference Procedure: For training, we chose
subregions that accurately capture the diversity of geometric
information and variability within each dataset, starting with size
64 x 64. We then grew the training boxes by approximately 10%
of the image until terminating once the percentage of training
exceeded more than 60% of the image.

For MLP-Pixel and U-Net, where fixed-sized images are
required, the input image was decomposed into 50% overlapping
tiles of size 64 x 64. Tiles intersecting the training region(s)
were used for training, the rest for inference. During training,
tiles were augmented to reduce overfitting and increase the size
of the training set. Augmentations used were random rotations

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

TABLE III
DATA ACQUISITION COMPUTATIONAL TIMES (SECS.) EXPLAINED BY COLUMN
FOR EACH (1) DATASET, AND ITS ASSOCIATED COMPUTATION FOR THE (2)
SCALAR FIELD FEATURE IMAGE TO IMPROVE THE MSCS COVERAGE OF THE
OBJECT BEING SEGMENTED, THE (3) MULTILEVEL MSC HIERARCHY BASED
ON PERSISTENCE, AND THE (4) FEATURE VECTORS ASSOCIATED WITH EACH
TOPOLOGICAL PRIOR

Dataset Feature Images  Hierarchical MSC  Prior Features
Retinal 16.39 3.605 6.11
Berghia 30.84 2.99 4.72
Foam 27.05 3.560 6.52
Neuron 100.17 9.34 7.23

1adem 64.09 8.83 14.71

up to 50 degrees, counterclockwise shearing up to 0.5 degrees,
random zoom in the range of [80%), 120%], width and height
shift by 20% of the image width and height, and point filling
after augmentation using reflection. A result image of the same
dimensions as the input was obtained by compositing the non-
overlapping centeral parts of predicted tiles. For RF-Pixel, tiling
was not necessary and the respective training region was used in
its entirety. Each pixel-level model, for feature statistics, uses the
image transformation functions discussed in Section IV-A and
performs training and inference over the image-feature tensor
with depth equal to the feature space. Pixel predictions are then
sampled to the priors graph for the final segmentation.

For the priors-based models, only topological priors entirely
within the training regions were considered for training. Follow-
ing training, inference was performed over the remainder of the
priors graph to assign probabilities to all priors as belonging
to the foreground target object class. Although this inferred
labeling of the priors graph is the primary segmentation result,
predictions assigned to each prior can be painted back onto its
constituent points in pixel space if desired.

C. Experimental Results

The main performance and timing results are shown in Fig. 6.
The class F; scores are arranged in two ways: as a function of
training set size and as a function of training time. For each
example, once sufficient training data (generated by manual
labeling) has been provided, U-Net achieves the highest scores
but at the cost of lengthy training time. A significant factor
in this high score/slow speed is likely the automatic image
augmentation we use to expand the available training data. Re-
markably, across datasets, priors-based approaches (RF-Priors,
MLP-Prior, and GNN) yield competitive scores, with orders of
magnitude less training time - including the minor computational
expense incurred from the required preprocessing to acquire the
components used in our proposed approach, such as the priors
graph, topological priors feature vectors, and the feature images.
In Table III, we can see the computational overhead required to
acquire these functional components in our proposed workflow
contributes little. Given the minor computational expenses re-
quired, we maintain that the advantages illustrated in Fig. 6 serve
to demonstrate the comparatively low time and effort expected
of a user to achieve competitively accurate segmentation results
compared to those observed in contemporary state-of-the-art ap-
proaches. From Fig. 6 we see that RF-Priors consistently lies on
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Fig. 6. Fj scores for all methods based on training region size (left plot
column) and the corresponding runtime to train (right plot column). Methods
shown are RF-Pixel (dark green), MLP-Pixel (brown), U-Net (blue), RF-Priors
(light green), MLP-Priors (amber), and GNN (red) over all datasets (plot rows).
We provide the highlighted “interactive’” and “offline” zones to delineate the time
expected of a user to steer and edit a model by (re-)labeling and (re-)training.
We see comparable or improved performance in priors methods performing
prior-level versus pixel-level predictions - particularly for small sizes of labeled
data, the benefit being less effort is required from an annotator. Meanwhile,
RF-Priors is the fastest method and reaches a highly competitive performance.
In contrast, the pixel-level U-Net requires a much longer training time to reach
higher F scores.

(or nearly on) the Pareto-frontier of accuracy and computational
time across all experiments; it achieves near-best performance
at a fraction of the run time of the highest performing method
(U-Net). Although RF-Pixel performed similarly in most cases,
for Berghia Membrane, it had low accuracy, whereas RF-Priors
maintained competitive accuracy. The demonstrated consistency
of RF-Priors supports its use as a generalist tool, to be applied
to data of unknown variety that may arise during scientific
investigations.
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Berghia

0.787 0.52

etinal

0.640 | 3.96 0.820 [207.77| 19 | 0.830 | 1.23 |0.761 | 7.09 | 0.800 | 31.23

Fastest Model's
Train Time

Highest Accuracy
Model Score

Second Highest
Accuracy

Percent Training
Subset Used

Fig. 7. Columns of F; scores and training times for each model for all
datasets. Training region sizes were chosen at sizes where all models plateau
in performance. Training regions for pixel and prior-based methods are given
as the percent of pixels and the percent of priors associated with the semantic
object used for training, respectively.

Meanwhile, when training data is smaller, priors-based ap-
proaches produce superior results. High accuracy given reduced
training set sizes is an ideal case in a practical setting, since it
means that a human annotator needs only to annotate a small part
of the image and have a machine learning model extrapolate the
segmentation of the rest of the image. As the right column of
Fig. 6 shows, when training time is an important factor, such as
in an interactive session, the shallow learning approaches (based
on random forest) provide the best results.

In Fig. 7, we provide a snapshot of performance for each
dataset where all performance curves first level off. We note that,
due to the difference in methodology, the exact subset used for
training between pixel- and priors-based approaches differs. The
percentages shown for pixel-level methods are computed as the
total labeled pixels associated with the object being segmented
within the training region with respect to the total number of
pixels labeled as belonging to the target object in its entirety.
For priors-level approaches, percentages are computed as the
total length of priors within the training region covering the
object with respect to the cumulative length of priors covering
the target object. As this table shows, priors-based approaches
yield competitive results with U-Nets, at a fraction of the
training time. As data acquisition techniques and field-specific
segmentation methods have been independently developed for
some time, contemporary segmentation techniques are often
highly curated to the domain-specific task [14], [20], [29], [44].
As a result, performing a thorough qualitative comparison of
the methodology we introduce to those methods refined for
domain-specific use is out of scope in this work. Rather, what
we aim to present is a fast and accurate approach suited to
generalize across domains, thereby offering an alternative for
practitioners who may otherwise be confined to more time- and
effort-intensive approaches. A visualization of the classification
of priors is provided in Fig. 8, corresponding to the models
trained in Fig. 7. For most datasets, the approaches correctly
classify salient, exemplary semantic objects, and mainly differ
where there is ambiguity in the images.

Although Neuron and Diadem are the same segmentation
task, identifying neurons in fluorescence microscopy images,
the F; scores of the models were dramatically different, likely
because neurons empirically look the same in the Diadem data,
whereas in Neuron they appear with vastly different intensities
and densities. Anecdotally, the ground truth segmentation used
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Berghia

Fig. 8. Segmentation results are shown for each model. The regions shown
correspond to the pink boxes in Fig. 5. The region(s) used for the training are
those reported in Fig. 7. The segmentations are colored according to the given
model’s prediction as true positive (red), false positive (yellow), true negative
(blue), and false negative (cyan).

for Neuron also was the most subjective, with less certainty
whether to label a prior as neuron or background. For many
datasets, RF-Priors shows only mild improvements over RF-
Pixel, indicating that the aggregation done along the pixels com-
prising a prior did not add discriminable information. However,
for Retinal and Berghia, the priors-based approaches produced
clear gains. We speculate that either the additional statistics
proved important or the coverage of the priors produced a better
training set, for instance, by excluding a priori pixels/subimages
that may act as confounders.

D. End-to-End Segmentation

Although a full user study to evaluate the speed-up obtained
through ML-assisted labeling is beyond the scope of this work,
we assess the performance of such a workflow using different
modalities. To be successful, labeling, training, and inference

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

must be fast, and the model prediction accurate to minimize
proofreading and correction. We estimate the fitness of each
model (both pixel- and priors-based) for an interactive labeling
workflow. The accuracy scores presented in Fig. 6 can be taken
as a proxy for the amount of time a user would need to correct
inference results using the labeling tool.

Table III augments the model performance (Fig. 7) with the
costs to compute feature images, (re-)compute the hierarchical
MSC, and build topological priors and their features. Within our
workflow, the necessary computational components contribute
little overhead as compared to the learning model used. There-
fore, future interactive labeling tools incorporating ML-based
suggestions could benefit from the high accuracy and fast train-
ing/prediction times of the RF-Priors. We highlight the clear
gains RF-Priors offers for fast, accurate active learning due to
its training and inference consistently falling within a reasonably
timed “interactive” zone, which we illustrate in Fig. 6. We
heuristically define this as the region in which there is a time
to accuracy trade-off where a practitioner can be reasonably
expected to train learning models actively.

VI. LIMITATIONS

Priors-based learning shows promise in improving automa-
tion in segmentation tasks, but the barrier to entry remains high.
Primarily, a user currently must hold an expectation of what de-
rived function from the input image will lead to topological pri-
ors that cover the semantic objects. The trial-and-error approach
in this work requires a user first to imagine which topological
abstraction to use, then deduce which derived scalar function
yields those, and then visualize and evaluate the computed MSC
while adjusting a persistence simplification slider. Even after
extensive exploration, the selected function and its priors graph
may omit or poorly represent certain semantic objects. New work
is needed to assist users in selecting derived functions of the
input images that generate semantically meaningful topological
priors.

VII. CONCLUSION

We have developed an efficient pipeline for image segmenta-
tion combining topological data analysis and machine learning.
An interactive tool allows users to quickly label a ground truth
segmentation within an image for training, and subsequently, we
demonstrate the use of machine learning techniques to complete
the segmentation of the image. We show that methods perform-
ing inference at the level of the topological priors, rather than
the pixel-level, achieve competitive task performance and excel
in low-labeling regimes requiring minimal human annotation
to succeed. Moreover, they are generally computationally faster
than their pixel counterparts.

By framing segmentation in the context of topological priors,
active learning becomes a straightforward extension; namely, a
user can select geometrically informative regions quickly, allow
training and inference, and, given the predicted result, quickly
identify and relabel regions of interest to better inform a model
before retraining.
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Using our workflow and the learning models observed to be
the fastest, we plan to build an interactive ML-assisted labeling
tool and perform a user study. An interactive tool will also
require we develop a more formal methodology for selecting
a scalar field and topological abstraction that provides the best
set of priors for the segmentation task. Similarly, further inves-
tigating the feature space made possible by topological priors,
such as statistics derived from the geometry and connectivity
of topological primitives, may lead to significant performance
improvements. Other research areas of interest to expand on the
work shown here will be to target other topological primitives in
order to incorporate other geometries such as 2-D cell faces and
3-D cell voids. Future work also arises due to an interesting
question raised from our experimental results in the case of
random forest, namely, what leads random forest to behave
differently when presented with pixels versus topological priors,
as is seen in the Berghia dataset where the pixel-based approach
leads random forest to perform poorly. Moreover, we plan to
extend graph machine learning models, namely GNNS, to inform
their representation learning geometrically.
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