Commun. Math. Phys. 400, 1019-1070 (2023) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04613-5 M ath emat i c al

Physics
®

Check for
updates

Relative Reshetikhin—-Turaev Invariants, Hyperbolic Cone
Metrics and Discrete Fourier Transforms I

Ka Ho Wong, Tian Yang

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA.
E-mail: daydreamkaho @tamu.edu; tianyang @ math.tamu.edu

Received: 8 October 2020 / Accepted: 8 December 2022
Published online: 24 December 2022 — © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2022

Abstract: We propose the Volume Conjecture for the relative Reshetikhin—Turaev in-
variants of a closed oriented 3-manifold with a colored framed link inside it whose
asymptotic behavior is related to the volume and the Chern—Simons invariant of the hy-
perbolic cone metric on the manifold with singular locus the link and cone angles deter-
mined by the coloring. We prove the conjecture in the case that the ambient 3-manifold is
obtained by doing an integral surgery along some components of a fundamental shadow
link and the complement of the link in the ambient manifold is homeomorphic to the
fundamental shadow link complement, for sufficiently small cone angles. Together with
Costantino and Thurston’s result that all compact oriented 3-manifolds with toroidal or
empty boundary can be obtained by doing an integral surgery along some components
of a suitable fundamental shadow link, this provides a possible approach of solving
Chen—Yang’s Volume Conjecture for the Reshetikhin—Turaev invariants of closed ori-
ented hyperbolic 3-manifolds. We also introduce a family of topological operations (the
change-of-pair operations) that connect all pairs of a closed oriented 3-manifold and a
framed link inside it that have homeomorphic complements, which correspond to doing
the partial discrete Fourier transforms to the corresponding relative Reshetikhin—Turaev
invariants. As an application, we find a Poisson Summation Formula for the discrete
Fourier transforms.

1. Introduction

We propose the Volume Conjecture for the relative Reshetikhin—Turaev invariants of
a closed oriented 3-manifold with a colored framed link inside it whose asymptotic
behavior is related to the volume and the Chern—Simons invariant of the hyperbolic
cone metric on the manifold with singular locus the link and cone angles determined
by the coloring. See Conjecture 1.1, and Sects. 2.1 and 2.2 for a review of the relative
Reshetikhin—Turaev invariants and the hyperbolic cone manifolds.
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We prove the conjecture in the case that the ambient 3-manifold is obtained by doing
an integral surgery along some components of a fundamental shadow link and the com-
plement of the link in the ambient manifold is homeomorphic to the fundamental shadow
link complement, for sufficiently small cone angles. See Theorem 1.2, and Sect. 2.4 for
a review of the fundamental shadow links. A result of Costantino and Thurston [10]
shows that all compact oriented 3-manifolds with toroidal or empty boundary can be
obtained by doing an integral surgery along some components of a suitable fundamental
shadow link. On the other hand, it is expected that hyperbolic cone metrics interpolate
the complete cusped hyperbolic metric on the 3-manifold with toroidal boundary and
the smooth hyperbolic metric on the Dehn-filled 3-manifold, corresponding to the colors
running from % to 0 or r — 2. Therefore, if one can push the cone angles in Theorem 1.2
from sufficiently small all the way up to 27, then one proves the Volume Conjecture for
the Reshetikhin—Turaev invariants of closed oriented hyperbolic 3-manifolds proposed
by Chen and the second author [6].

This thus suggests a possible approach of solving Chen—Yang’s Volume Conjecture.
In [40], we prove Conjecture 1.1 for all pairs (M, K) such that M\ K is homeomorphic to
the figure-8 knot complement in 3 with all possible cone angles, showing the plausibility
of this new approach.

We also introduce a family of the change-of-pair operations (see Sect. 1.2) that con-
nect all pairs of a closed oriented 3-manifold and a framed link inside it that have
homeomorphic complements, which correspond to doing the partial discrete Fourier
transforms (see Sect. 1.3) to the corresponding relative Reshetikhin—Turaev invariants.
As an application, we find a Poisson Summation formula for the discrete Fourier trans-
forms (see Formula (1.1)).

1.1. Volume Conjecture for the relative Reshetikhin—Turaev invariants.

Conjecture 1.1. Let M be a closed oriented 3-manifold and let L be a framed hyper-
bolic link in M with n components. For an odd integer r > 3, let m = (my, ..., my)

and let RT,(M, L, m) be the r-th relative Reshetikhin—Turaev invariant of M with
7 /—1
L colored by m and evaluated at the root of unity q = e2 . For a sequence

m") = (m(r) ,m,(f)), let

(r)
dwmy;

Oy = |27 — lim ,
r—00 r

andlet @ = (01, ...,6,). If My, is a hyperbolic cone manifold consisting of M and a
hyperbolic cone metric on M with singular locus L and cone angles 0, then

4
lim — log RT,(M, L.m")) = Vol(My,) + V—1CS(My,)  mod v—1n*Z,
r—0o0 r

where r varies over all positive odd integers.
We note thatif M = §3, then Conjecture 1.1 covers Kashaev’s Volume Conjecture for
the colored Jones polynomials of hyperbolic links [12,18,26,27] and its generalization
pLvESY
[29], at the root of unity ¢ = e~ . See also [16] and [8, Section 4.2] for a discussion

/=1
of the values at the root g = ¢~ . If the framed link L = ¢ or the coloring m = 0 or
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M, L) M', L)

Fig. 1. M is obtained from s3 by the surgery along L', and L = L1 U Ly. (I, J) = ({1}, {2}). M* is obtained
from M by doing the surgery along L1, hence is obtained from 53 by doing the surgery along L’ U L1; and
L*=LYULy

1

r — 2, then Conjecture 1.1 covers Chen—Yang’s Volume Conjecture for the Reshetikhin—
Turaev invariants of closed oriented hyperbolic 3-manifolds.

The main result of this paper is the following Theorem 1.2 (see also Theorem 3.1 for
a more precise statement), where the change-of-pair operation is described in the next
section.

Theorem 1.2. Conjecture 1.1 is true for all pairs (M, L) obtained by doing a change-
of-pair operation from the pair (M., Lrsy) with sufficiently small cone angles, where
M. = #C“(S2 x SV and Ly is a fundamental shadow link in M.

As a consequence of Theorem 1.2, we prove the Generalized Volume Conjecture
[16,29] for the colored Jones polynomials of the universal families of links respectively
considered by Purcell [33], van der Veen [38] and Kumar [20]. See Proposition 6.2 and
Theorems 6.3 and 6.5 for more details.

1.2. The change-of-pair operations. Let M be a closed oriented 3-manifold and let L
be a framed link in M. In this section, we introduce a topological operation that changes
the pair (M, L) without changing the complement M \ L, and show that these operations
connect all such pairs that have homeomorphic complements.

Suppose L = L U ---U L,. For each component L; : [0, 1] x S Mof L, we
call L; ({0} x S') € M the core curve of L; and L; ({1} x S') C M the parallel copy.
Let (1, J) beapartitionof {1, ...,n}, Ly =U;jesL;and L; = Ujc L;. Foreachi € I,
let L} be the framed knot in M \ L whose core curve is isotopic to the meridian of the
tubular neighborhood of L;, and let L} = U;¢/L}. Let M™ be the closed 3-manifold
obtained from M by doing the surgery along L; and let L* be the framed link obtained
from L by replacing L; by L7, ie., M* = My, and L* = L} U L. The change-of-pair
operation Ty, 1) is defined by sending (M, L) to (M*, L*). See Fig. 1.

By the way it is chosen, the core curve of each L} is isotopic to a curve on the tubular
neighborhood of L; that intersects the parallel copy of L; once, hence in M* the core
curve of each L7 is isotopic to the core of the filled in solid torus of the surgery along
L;. As a consequence, we have

Proposition 1.3. If (M™*, L*) is obtained form (M, L) by doing a change-of-pair oper-
ation, then M* \ L* is homeomorphic to M \ L.
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RT;(M,L, (m;,m,)) RT;(M"L"(n;,m,))

Fig. 2. For the computation of RT, (M, L, (m, m3)) on the left, L’ is cabled by the Kirby coloring Q, and
Ly and L are respectively cabled by the Chebyshev polynomials e, and ey, . For RT(M*, L*, (n1,m3))
on the right, L’ and L are cabled by Q, L’lk is cabled by e, and L; is cabled by ey, . The framings are
omitted in the Figure

Conversely, if (M*, L*) is a pair such that M* \ L* is homeomorphic to M \ L, then
M* is obtained from M by doing a rational Dehn-surgery along some components L; of
L.Bye.g.[34,p.273], M* can be obtained from M by doing an integral surgery along a
framed link L’ obtained from L by iteratively linking in framed unknots, corresponding
to doing a sequence of the change-of-pair operations. As a consequence, we have

Proposition 1.4. Everytwopairs (M, L) and (M*, L*) such that M\ L is homeomorphic
to M* \ L* are related by a sequence of the change-of-pair operations.

1.3. Relationship with discrete Fourier transform. In the computation of the relative
Reshetikhin—Turaev invariants, the change-of-pair operation corresponds to replacing
the coloring m; on L; by the Kirby colorings €2, and cabling L} by the Cheby-
shev polynomials corresponding to the new coloring n;, sending RT,(M, L, m) to
RT,(M*, L*, (n;, my)), where my is the coloring on L ;. See Sect. 2.1 for a review of
the relative Reshetikhin—Turaev invariants and Fig. 2 for an example.

These operations pictorially represent the discrete Fourier transforms. See [1] for the
original definition and [2] for an exposition in the language of skein theory. They were
also shown to be a particular case of a general construction for modular tensor categories

(see [22, Section 1] and references therein). To be more precise, letI, = {1,2,...,r —2}
inZ . /=1
and u, = ﬁj; ~ in the SU(2) theory andatg = e ], andletl, ={0,2,...,r —3}
in 2% /=1
and u, = 2“% in the SO (3) theory and at g = e2 G 1. Let
f:—=>C
be a complex valued function on I'' for some positive integer n. Let (1, J) be a partition
of {1,...,n}andletn; = (n;);er be a |I|-tuple of elements of I,.. Then the n;-th partial

discrete Fourier coefficient of f is the function
f(n,) : IrJ — C
defined for all my in I/ by
Fopmy) ="y THm, n) fmy my),

m; jel
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where the sum is over all |7|-tuples m; = (m;);<c; of elements of I,., and

(m+1)(n+1) _  —(m+1)(n+1)

q
q—q7!
Since the coefficients H(m;, n;) above are exactly the coefficients of the following
skein-theoretical computation

() menf)

mGIr

H(m, n) = (—1y"*4

the relative Reshetikhin—Turaev invariants RT, (M*, L*, (n;, my)) of the pair (M*, L*)
obtained from (M, L) by a change-of-pair operation (. LY is up to scalar the value
at my of the n;-th partial discrete Fourier coefficient of the function RT, (M, L, _) :
I — C. The scalar is a power of g depending on the framings of L}.

It is proved in [4,12] that Turaev—Viro invariant of the complement M \ L can be
computed by the relative Reshetikhin—Turaev invariants of the pair (M, L).

Proposition 1.5 ([4,12]).
2

TV,(M\ L) = cZ IRT, (M, L, m)

where the sum is over all multi-elements m of 1, and the constant ¢ equals 1 in the
SU(2) theory and equals 27"kH2(M\L.22) iy the S O (3) theory.

By Proposition 1.3, if (M*, L*) and (M, L) differ by a change-of-pair operation,
then M \ L and M* \ L* are homeomorphic to each other . As a consequence, we have

Proposition 1.6.

STRT, (M, Lom)[* = |RT, (M*, L*, m)

m n

2
)

where the sums are over all multi-elements m and n of 1,..

Propositions 1.3, 1.4, 1.5 and 1.6 together provide infinitely many different ways to
compute the Turaev—Viro invariants of M \ L, all of which are up to scalar related by a
sequence of partial discrete Fourier transforms. It is hopeful that among these different
expressions, some are suitable for the purpose of solving the Volume Conjecture for the
Turaev—Viro invariants [6].

Finally, as a special case, let f = RT,(M,L,_) : I — C for a pair (M, L), and
suppose that I = {1, ..., n} and all the framings of L7 are zero and (M*, L*) is obtained
from (M, L) by TiL,.Lh)- ThenRT,(M*, L*, n) = f(n) is the n-th (full) discrete Fourier
coefficient of f. As a consequence of Proposition 1.6, we have

Dol =Y fmP, (1.1)

where m and n are over all multi-elements of I,. This could be considered as a Poisson
Summation Formula for the discrete Fourier transforms. (See also [2] for an asymptotic
version of the Poisson Summation Formula in the setting of Yokota invariants for colored
planar graphs.)
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1.4. Outline of the proof of Theorem 1.2. We follow the guideline of Ohtsuki’s method.
In Proposition 3.5, we compute the relative Reshetikhin—Turaev invariants of (M, L)
writing them as a sum of values of a holomorphic function f, at integer points. The
function f, comes from Faddeev’s quantum dilogarithm function. Using Poisson Sum-
mation Formula, we in Proposition 3.7 write the invariants as a sum of the Fourier
coefficients of f, computed in Propositions 3.6. In Proposition 5.2 we show that the crit-
ical value of the functions in the leading Fourier coefficients has real part the volume and
imaginary part the Chern—Simons invariant. The key observation there is a relationship
between the asymptotics of quantum 6j-symbols and the Neumann—Zagier potential
function (Proposition 4.1), which is of interest in its own right. Then we estimate the
leading Fourier coefficients in Sect. 5.3 using the Saddle Point Method (Proposition 5.1).
Finally, we estimate the non-leading Fourier coefficients and the error term respectively
in Sects. 5.4 and 5.5 showing that they are neglectable, and prove Theorem 3.1, which
is a refined version of Theorem 1.2, in Sect. 5.6.

2. Preliminaries

2.1. Relative Reshetikhin—Turaev invariants. In this article we will follow the skein
theoretical approach of the relative Reshetikhin—Turaev invariants [5,21] and focus on
27/—1

the SO (3)-theory and the values at the root of unity ¢ = ¢~ for odd integers r > 3.
To be more precise, we will follow the normalization of the invariants as described in
[21].

A framed link in an oriented 3-manifold M is a smooth embedding L of a disjoint
union of finitely many thickened circles St x [0, €], for some € > O, into M. The
Kauffman bracket skein module K, (M) of M is the C-module generated by the isotopic
classes of framed links in M modulo the follow two relations:

(1) Kauffman Bracket Skein Relation:

X=e20 0+ (2D

(2) Framing Relation:
2w /—1 2my/—1
LUQ:(—e r —e )L

There is a canonical isomorphism

(): K. (8% - C

defined by sending the empty link to 1. The image (L) of the framed link L is called the
Kauffman bracket of L.

Let K, (A x [0, 1]) be the Kauffman bracket skein module of the product of an annulus
A with a closed interval. For any link diagram D in R? with k ordered components and
by, ..., br € K (A x [0, 1]), let

(bl, ...,bk)D

be the complex number obtained by cabling by, ..., by along the components of D
considered as a element of K,(S?) then taking the Kauffman bracket ( ).

On K, (A x [0, 1]) there is a commutative multiplication induced by the juxtaposition
of annuli, making it a C-algebra; and as a C-algebra K, (A x [0, 1]) = C[z], where z is
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the core curve of A. For an integer n > 0, let ¢, (z) be the n-th Chebyshev polynomial
defined recursively by eg(z) = 1, e1(z) = z and ¢,(2) = ze,—1(z) — en—2(2). Let
I, ={0,2,...,r —3} be the set of even integers in between 0 and » — 2. Then the Kirby
coloring 2, € K, (A x [0, 1]) is defined by

Q= Z[n +1]ep,

nel,
where
2 sin 27”
Hr=—7
and [n] is the quantum integer defined by
2nw/—1 _2nmy/—1
et —e 7
nl=—=%"
e —e

Let M be a closed oriented 3-manifold and let L be a framed link in M with n
components. Suppose M is obtained from S by doing a surgery along a framed link
L', D(L') is a standard diagram of L’ (ie, the blackboard framing of D(L’) coincides
with the framing of L’). Then L adds extra components to D(L’) forming a linking
diagram D(L U L) with D(L) and D(L’) linking in possibly a complicated way. Let
U, be the diagram of the unknot with framing 1, o (L’) be the signature of the linking
matrix of L’ and m = (my, ..., m,) be a multi-elements of I,. Then the r-th relative
Reshetikhin—Turaev invariant of M with L colored by m is defined as

RT, (M, L.m) = ftr(emy -+ €mys - Q)paorny (275 @)

Note that if L = §dorm; = --- = m, = 0, then RT,(M, L, m) = RT,(M),
the r-th Reshetikhin—Turaev invariant of M; and if M = S3, then RT, (M,L,m) =

V=1 . .
Wrlm, L (e e ), the value of the m-th unnormalized colored Jones polynomial of L at

47/=1
t=e r .

2.2. Hyperbolic cone manifolds. According to [7], a 3-dimensional hyperbolic cone-
manifold is a 3-manifold M, which can be triangulated so that the link of each simplex is
piecewise linear homeomorphic to a standard sphere and M is equipped with a complete
path metric such that the restriction of the metric to each simplex is isometric to a
hyperbolic geodesic simplex. The singular locus L of a cone-manifold M consists of
the points with no neighborhood isometric to a ball in a Riemannian manifold. It follows
that

(1) Lisalink in M such that each component is a closed geodesic.

(2) At each point of L there is a cone angle 6 which is the sum of dihedral angles of
3-simplices containing the point.

(3) Therestriction of the metric on M \ L is a smooth hyperbolic metric, but is incomplete
if L # 0.
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Hodgson—Kerckhoff [17] proved that hyperbolic cone metrics on M with singular
locus L are locally parametrized by the cone angles provided all the cone angles are less
than or equal to 277, and Kojima [19] proved that hyperbolic cone manifolds (M, L) are
globally rigid provided all the cone angles are less than or equal to 7. It is expected to
be globally rigid if all the cone angles are less than or equal to 2.

Given a 3-manifold N with boundary aunion oftori 71, . . ., 7,,, achoice of generators
(ui, v;) for each m(7;) and pairs of relatively prime integers (p;, ¢g;), one can do the
(%, A %)-Dehn filling on N by attaching a solid torus to each 7; so that p;u; + g;v;
bounds a disk. If H(u;) and H(v;) are respectively the logarithmic holonomy for #; and
v;, then a solution to

piH@;) +qiH(v) = V=16, 2.2

near the complete structure gives a cone-manifold structure on the resulting manifold
M with the cone angle 6; along the core curve L; of the solid torus attached to T;; it is
a smooth structure if 6 = --- =6, = 2m.

In this setting, the Chern—Simons invariant for a hyperbolic cone manifold (M, L)
can be defined by using the Neumann—Zagier potential function [30]. To do this, we
need a framing on each component, namely, a choice of a curve y; on 7; that is isotopic
to the core curve L; of the solid torus attached to 7;. We choose the orientation of y; so
that (p;ju; + qiv;) - yi = 1. Then we consider the following function

PHu1), ..., Hu,)) H(MZ)H(UI (%H(Vz

where & is the Neumann—Zagier potential function (see [30]) defined on the deformation
space of hyperbolic structures on M \ L parametrized by the holonomy of the meridians
{H(u;)}, characterized by

oM@y, .Huy)) _ H(Zvi)

(2.3)
@(0,...,0) = \/—_1<V01(M \ L) ++/—1CS(M \ L)) mod 727,

where M \ L is with the complete hyperbolic metric. Another important feature of @ is
that it is even in each of its variables H(u;).

Following the argument in [30, Sections 4 & 5], one can prove that if the cone angles
of components of L are 6y, ..., 6,, then

Vol(My,) :RG(CD(H(M),---,H(M)) ZH(M )H(vz ZQH(% > (2.4)

V=1 i=1

Indeed, in this case, one can replace the 27 in Equations (33) (34) and (35) of [30] by 6;,
and as a consequence can replace the % in Equations (45), (46) and (48) by %, proving
the result.

In [42], Yoshida proved that when ) = - -- = 6,, = 2,
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O(H(uy), ..., Huy) = Hu)Hv;)
Vol(M) + v/—1CS(M) = -y —=
=1 ; 4./—1
+ Z _0,'H4(y,-) mod /—1727Z.

i=1
Therefore, we can make the following

Definition 2.1. The Chern—Simons invariant of a hyperbolic cone manifold M, with a
choice of the framing (yy, ..., y,) is defined as

mod 727,

CS(ML,,)=Im<¢(H(ul)""’H(u")) ZH(u HH(v;) ZQH(% )

V-l i=1

Then together with (2.4), we have

®Hw1), ..., Hun)) <~ Hwi)H(;)
Vol(My,) + /= TCS(Mp,) = _ 3 Bl Hw)
’ ’ = ; Va1
Y H4(y" ) mod vZix?Z. 2.5)

i=1

Remark 2.2. Tt is an interesting question to find a direct geometric definition of the
Chern—Simons invariants for hyperbolic cone manifolds.

2.3. Quantum 6j-symbols. A triple (m1, my, m3) of even integers in {0, 2, ..., r — 3}
is r-admissible if

(1) mi +mj; —my = Ofor {i, j, k} = {1,2, 3}, and
2) mi+my+m3 <2(0r —2).

For an r-admissible triple (m1, my, m3), define

mi+my—m3yyrmatm3—mj yyym3tmy—mz
N [ g )
(mls map, m3) — [m1+rr£2+m3 + 1]|

with the convention that /x = /[x[+/—1 when the real number x is negative, and recall
that the quantum factorial is defined as

[n1! = [ [tk1

k=1

with the convention that [0]! = 1.
A 6-tuple (my, ..., mg) is r-admissible if the triples (m1, my, m3), (my, ms, me),
(mo, myg, mg) and (m3, mq, ms) are r-admissible
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Definition 2.3. The quantum 6 j-symbol of an r-admissible 6-tuple (my, ..., mg) is
Z56
PN STTRE A Gy ma, m3) Ay ms, mg)A(ma, ma, me) A(m3, ms, ms)
mq ms me
min{Q1, 02,03}

(—=DF[k + 17!
) [k — 1)k — ]!k — T3]![k — T4]![Q1 — k]![Q2 — k][ Q3 — k]!

k=max{T,T2,T3,T4

T, T +ms+ T T +ma+

Where | = m1+m2+m3’ h = mj+ms mﬁ’ 3 = m2+n;4+m6 and y = m3 1’24 m5’ Q1 _
+mo+ma+ +m3+ms+

mi m22m4 m5’ Q2 m1+m3+2—m4+m6 and Q3 mp m32m5 m6.

Here we recall a classical result of Costantino [8] which was originally stated at the
root of unity ¢ = emrﬁl. At the root of unity ¢ = ezmrg, see [4, Appendix] for a

detailed proof.

Theorem 2.4 ([8]). Let {(mY), e mg))} be a sequence of r-admissible 6-tuples, and

let
2em"”
0 = |7 — lim |
r—00 r
If01, ..., 06 are the dihedral angles of a truncated hyperideal tetrahedron A, then asr
varies over all the odd integers
(ry () (r)
. T mi;’ m, m
= ] MMy N3 —
A 08| ) 0 e Vol(&).

Closely related, a triple (o1, a2, a3) € [0, 2713 is admissible if

() aj +aj —ay = O0for {i, j, k} = {1, 2, 3}, and
(2) a; +aj +ap < 4m.

A 6-tuple (aq, ..., ap) € [0, 271]6 is admissible if the triples (o1, a2, a3), (a1, o5, 06),
(ap, a4, ag) and (o3, a4, as) are admissible.

2.4. Fundamental shadow links. In this section we recall the construction and basic
properties of the fundamental shadow links. The building blocks for the fundamental
shadow links are truncated tetrahedra as in the left of Fig. 3. If we take c building
blocks Ay, ..., A, and glue them together along the triangles of truncation, we obtain a
(possibly non-orientable) handlebody of genus c+1 with alink in its boundary consisting
of the edges of the building blocks, such as in the right of Fig. 3. By taking the orientable
double (the orientable double covering with the boundary quotient out by the deck
involution) of this handlebody, we obtain a link Lpsp inside M, = #C“(S2 x S 1).
We call a link obtained this way a fundamental shadow link, and its complement in
M, a fundamental shadow link complement. Alternatively, to construct a fundamental
shadow link complement, we can also take the double of each tetrahedron first along
the hexagonal faces and then glue the resulting pieces together along homeomorphisms
between the 3-puncture spheres coming from the double of the triangles of truncation.

The fundamental importance of the family of the fundamental shadow links is the
following.
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S

Fig. 3. The handlebody on the right is obtained from the truncated tetrahedron on the left by identifying the
triangles on the top and the bottom by a horizontal reflection and the triangles on the left and the right by a
vertical reflection

Fig. 4. .

Theorem 2.5 ([10]). Any compact oriented 3-manifold with toroidal or empty boundary
can be obtained from a suitable fundamental shadow link complement by doing an
integral Dehn-filling to some of the boundary components.

A hyperbolic cone metric on M, with singular locus Lgsy, and with sufficiently

small cone angles 01, .. ., 6, can be constructed as follows. Foreach s € {1, ..., c}, let
€5, - .., ess be the edges of the building block Ay, and let GS_/ be the cone angle of the
component of L containing e; - If 6;’s are sufficiently small, then { 6‘%, R 9%} form

the set of dihedral angles of a truncated hyperideal tetrahedron, by abuse of notation
still denoted by Ag. Then the hyperbolic cone manifold M, with singular locus Lgsr,
and cone angles 61, . .., 6, is obtained by glueing A;’s together along isometries of the
triangles of truncation, and taking the double. In this metric, the logarithmic holonomy
of the meridian u; of the tubular neighborhood N (L;) of L; satisfies

H(u;) = v/—16;. (2.6)

A preferred longitude v; on the boundary of N (L;) can be chosen as follows. Recall that
a fundamental shadow link is obtained from the double of a set of truncated tetrahedra
(along the hexagonal faces) glued together by orientation preserving homeomorphisms
between the trice-punctured spheres coming from the double of the triangles of trunca-
tion, and recall also that the mapping class group of trice-punctured sphere is generated
by mutations, which could be represented by the four 3-braids in Fig. 4. For each mu-
tation, we assign an integer £1 to each component of the braid as in Fig. 4; and for a
composition of a sequence of mutations, we assign the sum of the £1 assigned by the
mutations to each component of the 3-braid.

In this way, each orientation preserving homeomorphisms between the trice-punctured
spheres assigns three integers to three of the components of Lgsy , one for each. For each
i € {l,...,n}, let; be the sum of all the integers on L; assigned by the homeomor-
phisms between the trice-punctured spheres. Then we can choose a preferred longitude
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v; such that u; - v; = 1 and the logarithmic holomony satisfies

N Liv/=16;

H(v;) = —1; 5

2.7)

where /; is the length of the closed geodesic L;. In this way, a framing on L; gives
an integer p; in the way that the parallel copy of L; on N(L;) is isotopic to the curve
representing p;u; + vj.

Proposition 2.6 ([8,9]). If Lrsy, = L1U---UL, C M, is a framed fundamental shadow
link with framing p; on L;, and m = (my, ..., my) is a coloring of its components with
even integers in {0,2,...,r — 3}, then

2Si1’1277r . ymi ( ,+i)mi(mi+2) ¢
RT:(M¢, LFsr, m) = ( 7 ) 1_[(—1) 7 gt 1_[
r i=1 s=1

msl mSZ ms3
Mgy Mgg Mg

’

where my,, ..., mg, are the colors of the edges of the building block A inherited from
the color m on Lgsy .

Next, we talk about the volume and the Chern—Simons invariant of M, \ Lgsy at the
complete hyperbolic structure. In the complete hyperbolic metric, since M, \ Lgsr is
the union of 2¢ regular ideal octahedra, we have

Vol(M, \ LgsL) = 2cus, (2.8)

where vg is the volume of the regular ideal octahedron.

For the Chern—Simons invariant, in the case that the truncated tetrahedra Ay, ..., A,
are glued together along the triangles of truncation via orientation reversing maps, M. \
Lgsy, is the ordinary double of the orientable handlebody, which admits an orientation
reversing self-homeomorphism. Hence by [25, Corollary 2.5],

CS(M;\ Lgst) =0  mod 7°Z

at the complete hyperbolic structure. In the general case, a fundamental shadow link
complement M. \ Lgsp can be obtained from one from the previous case by doing
a sequence of mutations along the thrice-punctured spheres coming from the double
of the triangles of truncation. Therefore, by [24, Theorem 2.4] that a mutation along
an incompressible trice-punctured sphere in a hyperbolic three manifold changes the

. . . 2
Chern—Simons invariant by -, we have

n

CS(M, \ Lgsy) = (Z %)nz mod 727Z. 2.9)

i=1

Together with Theorem 2.4 and the construction of the hyperbolic cone structure, we

see that Conjecture 1.1 is true for (M., Lysy). This was first proved by Costantino in
. 7/—1
[8] at the root of unity g = e r
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2.5. Dilogarithm and quantum dilogarithm functions. Letlog : C\ (—oo0, 0] — C be
the standard logarithm function defined by
logz =log|z| ++—1largz

with —7 < argz < .
The dilogarithm function Lis : C \ (1, co) — C is defined by

Lis(z) = — /OZ @du

where the integral is along any path in C \ (1, co) connecting 0 and z, which is holo-
morphic in C \ [1, 0o) and continuous in C \ (1, 00).
The dilogarithm function satisfies the follow properties (see eg. Zagier [43]).

)]

/1 , % 1 2
LlZ(Z) = ~Lix(d) — = — 5 (log(-2)" (2.10)
(2) In the unit disk {z € C||z| < 1},
o0 Zn
Lir(z) = Z = (2.11)
n=1
(3) On the unit circle {z = 2V-10 | 0<9 <L 71},
2
Lir@@V=10) = 190 — m) + 24/=1A (). (2.12)

6
Here A : R — R is the Lobachevsky function defined by

6
A@) = —/ log |2 sint|dt,
0

which is an odd function of period 7. See eg. Thurston’s notes [36, Chapter 7].

The following variant of Faddeev’s quantum dilogarithm functions [13,14] will play
a key role in the proof of the main result. Let » > 3 be an odd integer. Then the following
contour integral

4 /-1 / e
r Q

. ——— dx (2.13)
4x sinh(rrx) sinh(<*)

or(2) =

defines a holomorphic function on the domain
T T
{ze(C‘ - — <Rez<7r+—},
r r
where the contour is
Q= (—oo,—e]U{zeC“zl =e,Imz > 0} U[e, 00),

for some € € (0, 1). Note that the integrand has poles at na/—1, n € Z, and the choice
of € is to avoid the pole at 0.

The function ¢, (z) satisfies the following fundamental properties, whose proof can
be found in [39, Section 2.3].
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Lemma 2.7.(1) For z € C with0 < Rez < 7,

| _ YTz _ eﬁ(“” (7)o (“%)), (2.14)

(2) For z € Cwith =% <Rez < T

1+eV7Ie = eﬁ(w’(”_“’” (”")). (2.15)

Using (2.14) and (2.15), for z € C with 7 + 2¥= 1)” < Rez < 7w+ 2"—”, we can
define ¢, (z) inductively by the relation

2nm

ﬁ (1- ezﬁ(“@)) - eﬁ< (=2)-00) (2.16)

k=1

extending <p, (z) to a meromorphic function on C. The poles of ¢,(z) have the form
(a+Dm+2Z or —am — b Z for all nonnegative integer a and positive odd integer b.

HF
Letg =e¢ r ,and let

(@ =[] —g*
k=1

Lemma 2.8.(/) ForO <n <r —2,

= e (o ()0 (32e7)) o)

(2)For%§n§r—2,

_r__ T _o (2ER4Z o
(@n = 2e4”ﬁ(w’(’) o (3 )>. (2.18)

We consider (2.18) because there are poles in (7, 27), and to avoid the poles we
move the variables to (0, 7 ) by subtracting 7.

If we let
{n}=q"—q™"
and let
n
(n)! = l_[{k} and {0}l =0,
k=1
then

{n}! = (—

As a consequence of Lemma 2.8, we have
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Lemma 2.9.(7) ForO <n <r — 2,
ot = o (N e () (2e7)
(2) For 5 <n<r -2,
oy = 2 (2R W () (i)

The function ¢, (z) and the dilogarithm function are closely related as follows.

Lemma 2.10.(7) For every z with 0 < Rez < m,

.. 2m2eVTl
N 2/—1z - -
¢r(z) = Lis(e )+—3(] — +0(r4). 2.21)
(2) For every z with 0 < Rez < m,
1
01(2) = =2v/Tlog(1 — V"1 + 0(3). (2.22)
r

(3) [32, Formula (8)(9)]

r

= (5)- T o()

or() =Liah) +

3. Computation of the Relative Reshetikhin—Turaev Invariants

The goal of this section is to compute the relative Reshetikhin—Turaev invariants of
(M, L). In Proposition 3.5, we write the invariants as a sum of values of a fixed holo-
morphic function at the integer points. The holomorphic function comes from Faddeev’s
quantum dilogarithm function. Using the Poisson Summation Formula, we in Proposi-
tion 3.7 write the invariants as a sum of the Fourier coefficients of the holomorphic
function, which is computed in Propositions 3.6.

Let Lgs;, = L1 U ---U L, be a fundamental shadow link in M, = #chl(S2 X Sl),
and let L' C S be the disjoint union of ¢ + 1 unknots with the O-framings by doing
surgery along which we get M.. Let (I, J) be a partition of {1, ..., n}, and let (M, L)
be the pair obtained from (M, Lrs.) by doing a change-of-pair operation T(z. %) as
introduced in Sect. 1.2, ie., M = (M), and L = L7 U L, where L} = U;¢;L} and
L7 is the framed unknot in M.\ Lgsy with the core curve isotopic to the meridian of the
tubular neighborhood of L;. Let n; be a coloring of L7 and let m; be a coloring of L.
Then Theorem 1.2 can be rephrased as follows.

Theorem 3.1. Fori € I, let

. 4mn;
0; = |27 — lim L
r—00 r

and for j € J, let

. 47ij
0; = ‘27{ — lim ’
r—oo r
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Let@ = (61, ...,6,) and let M1, be the hyperbolic cone manifold consisting of M and
a hyperbolic cone metric on M with singular locus L and cone angles 0. Then there
exists an € > O such that if all the cone angles 0y are less than €, then as r varies over
all the odd integers

4
lim ~Z l0gRT,(M, L, (nj, m)) = Vol(Mz,) + V=1CS(M,)  mod v/~ Tx’Z.
r— r

The goal of the rest of this paper is to prove Theorem 3.1.

Suppose L} has the framing g; and L; has the framing p; for each i € I, and L has
the framing p; for each j € J. Then the r-th relative Reshetikin—Turaev invariant of M
with L colored by (n;, my) can be computed as

RT.(M, L, (n;, my))
_ (251n )lll Cefa(L’UL1)(*%*%)«/jln

Jr
qin; (nj+2) ("z+2) l m;j (m +2)
[Ta™ 5 =" gl )=
iel jeJ
ym; ( i )m (m;+2) mS] mSQ mS3
( P | (G [mi + 1) (n; ey m mer| )
m; jel
(3.1)
where the sum is over all multi-even integers m; = (m;);ey in {0,2,...,r — 3}, and
mg,, ..., Mg are the colors of the edges of the building block Ay inherited from the

colors on Lgsy..

In the rest of this section, we aim to write RT, (M, L, (n;; my)) into a sum of integrals
using the Poisson Summation Formula. This requires writing the invariant into the sum
of the values of a fixed holomorphic function. To this end, we look at the a single quantum
6j-symbol first.

Definition 3.2. An r-admissible 6-tuple (m1, ..., mg) is of the hyperideal type if for
{i, j, k} ={1,2,3}, {1,5,6}, {2, 4, 6} and {3, 4, 5},

MO mi+mj —my <r—2,and
Qr—2<mi+mj+m <2(r —2).

Definition 3.3. A 6-tuple («1, ..., ag) € [0, 271%is of the hyperideal typeiffor{i, j, k} =
{1,2,3}, {1, 5,6}, {2,4, 6} and {3, 4, 5},

MO0<La+aj —oap <2m, and
Q)2 <o +aj +oy < 4.

We notice that the six numbers |o; — |, ..., |ag — 7| are the dihedral angles of an ideal
or a hyperideal tetrahedron if and only if («1, ..., «g) is of the hyperideal type.
As a consequence of Lemma 2.9 we have
2m4/—1
Proposition 3.4. The quantum 6 j-symbol at the root of unity g = e~ + can be com-
puted as

(n min{Q,02,03,r—2}

‘ml my m3| Ur(ﬂ M@)

3

mg ms me

k=max{T,T>,T3,T4}
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where U, is defined as follows. If (m1, ..., mg) is of the hyperideal type, then

4 2 2

Ur(alv-"7a67€):7[2_( ) ZZ(T]J_T[ _7Z<Ti+T_ﬂ)
1_11_ i=1

i=1

e+ 2 —a) Z(S—n - Z(n,» &)’
j=1

4 3

_2¢)r( )—%ZZ%( -7 g)+%2¢r<fi—”+37n)

i=1j=1 i=1

“wls=re F) s Tals—sT)e Tuln-5+3)

i=1

(3.2)
where 11 = w 7 = w’ 73 = a2+0124+a6 and ty = a3+oz4+oz5’ n =
oc1+a2+ot4+a5 LM = aitestaatas g n = ozz+ot342-oc5+a6 If (i, ..., me) is not Of the

hyperldeal type then U, will be changed according to Lemma 2.9.
As a consequence, we have

Proposition 3.5.
RT, (M, L,y mp) =k, 3 (D gf(my k),

ml,k

where

Ky =

3

I]-2 =
2172 fsin 3 o WULD 28D 4 (T ai+ X0y piv2lID) V=T
=\ vr

e = (€)ier € {1, —1}‘” runs over all multi-signs, m; = (m;)jc; runs over all
multi-even integers in {0,2,...,r — 3} so that for each s € {1,...,c} the triples
(Mg, Mgy, Mgy), (Mgy, Mg, M), (Myy, My, M) and (Mg, My, , M) are r-admissible,
andk = (ky, ..., ko) runs over all multi-integers with each kg lying in between max{Ty, }
and min{Qsj, r — 2}, with

271«/ ( ) €7 2ﬂm1 27zk
ier gini+yi—; (pi+E )mi+Y";c; €i(mi+ni+1) |+ W, ( )
o (my, k) = e e D 1( ) Yier P

where 27Tm1 _ <2nm,-> ’ 21k _ <2nk1 o 2nkc>7 and
r iEI r r r

Wel@, ) =Y qi(Bi —m)> = Y pjlej — )

iel jedJ
=Y pilei =) = 2ei(e — 1) (Bi — )
iel iel

n

_Ztt (o —JT)2+ZUr(aY1’""asﬁ’é‘v)-i-(Z%)nz

i=1 i=1

with B; = 2""’ fori €l andaj = ﬂrmj forjelJ.
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Proof. For even integers m and n, we have
n(n+2) =1\~ l(n71)2+n
q 2 = (e 4 ) q2 2
2 2 2
n(n+2) av/=I\N =" 1(,_r\,n —r__(Z2) 1(,_r) 4n
(—1)%qT = (e 8 ) q4(” 2) 7 = e4nﬁ( 2 )q4(” 2) *2

(m+1)(n+1) _ (e ”F)fr

ES)
—
3
|
(SR
~
—_
=
|
Sl
~—
+
3
T
S
F
—_

q

and

g~ _(e”“éjl>7rq—(m—%)(n—%)—m—n—l.
As a consequence, we have

1 ) ) —(m: .
[ni + i+ D] = —— (gD — g ""'”)‘”’*”)

LAVETR
_(e? )1 (q((m,»—%)(ni—%)+m,-+ni+l)+q—((mi—%)(ni—%)+mi+m+l))

q—
_ray/—1
_c Z qGi((mi—%)("i—%)+mi+ni+l)
t € e{—1,1}
_ e,% Z ee" 2\/?1n(;4i+bi+1)+4nh<72€i(271ra,- 771)(2711;1- 771))
) eref{—1,1}
and hence
[ Jtomi + i + 1]
iel
_’fo/j —la(m;+n;+ r Tm; i
= —6 ! eZiEI €i 2L (rl ' I)+47n/—71 Lier (7261'(2 r 77[)(2)" 77[))
i
eref{—1,1311
] >
_e T VT 2 s ey (<26 ea—m)(B—m)
{111
eref{—1,1}111
Then the result follows from (3.1) and Proposition 3.4. O

We notice that the summation in Proposition 3.5 is finite, and to use the Poisson
Summation Formula, we need an infinite sum over integral points. To this end, we
consider the following regions and a bump function over them.

Let 8; = 2”/” fori € I, oj = @feri =1,...,n& = @fers =1,...,c,
27‘[7}[ . 27TQSJ' .

T, = —+ fori =1,...,4, and Ns; = — for j = 1,2, 3. For a fixed (@) jes, let

Dp = {(ou, &) e Rl (Qsy s - - ., Ogq) 18 admissible, max{ry} < & < min{nsj, 2},

s=1,...,c}.
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and let
Dy = {(a,, £) € Dp ‘ (@, - .., as,) is of the hyperideal type, s = 1, ..., c}.
For a sufficiently small § > 0, let
Djy = {(@1.§) € Du | d((@r. ). 3Dw) > 8},

where d is the Euclidean distance on R”. Let ¢ : RI/*¢ — R be the C*°-smooth bump
function supported on (Dy, Df{), ie,

Vnd =1 (@ eby
0<y(ar,é) <1, (e, &) €Dy \D
Y(as, ) =0, (o, §) ¢ Dy,
and let

2mrm; 2wk

£y = v (T =2 ) (LK),

In Proposition 3.5, m; runs over multi-even integers. On the other hand, to use the
Poisson Summation Formula, we need a sum over all multi-integers. For this purpose,
we for each i € I let m; = 2m/ and let m}, = (m});c;. Then by Proposition 3.5,

RT(M. L. pmp)) =k, 3 (> /(2m]. k) +error term.
(m) K)ezZl+e  erefl,—1}11l
Let
fr= Z frq'
ere{l, -1}l
Then
RT,(M,L,(ay,mp) =, ) fr(2m} k) +error term.

(m) k)ezH I+

Since f; is C°°-smooth and equals zero out of Dy, it is in the Schwartz space on
RI/I*¢_ Then by the Poisson Summation Formula (see e.g. [35, Theorem 3.1]),

Yoo smemik) = > @b,

(m) k)ezl!+ YR AL

wherea; = (a;)ie; € Z1, b= (b1, ..., b.) € Z€ and f:(al, b) is the (a;, b)-th Fourier
coefficient of f, defined by

fr@r.b) = /R o Fr (o K)eier 27V Zlaimi+ 3y 20/ =Thiks gyt g
where dm)dk = [];c; dm! [];_, dks.

By a change of variable, and by changing 2m back to m;, the Fourier coefficients
can be computed as
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Proposition 3.6.

Fanb = Y fTanb

erefl,—1}1l

with

A1+e

?reT(aI, b) = /D V(ay, !s-)e(Ziel qi Bi+D i (Pi+%)01i+zi€/ Ei(ai+5i+27”))~/j]
H

22l+c . |+

i W @1 8= 2maiei =Y, 4bik)

doydg,

where dajdé = [, do; [ 15—, d&, and Wil (aeg, ) is as defined in Proposition 3.5.

Proposition 3.7.

RT, (M, L, (n;,my)) =k, Z F-(ar, b) + error term.
(a,,b)eZ‘”“’

We will estimate the leading Fourier coefficients, the non-leading Fourier coefficients
and the error term respectively in Sections 5.3, 5.4 and 5.5, and prove Theorem 3.1 in
Sect. 5.6.

4. Relationship with the Neumann-Zagier Potential Function

The goal of this section is to show the relationship between W’ and the Neumann—
Zagier potential function [30] of the fundamental shadow link complement M, \ Lgsy .
To this end, we need to first look at the function U coming from a single 6 j-symbol,
and to recall its relationship with the volume of a truncated hyperideal tetrahedron.

By Lemma 2.10, W, is approximated by the holomorphic function W€ defined
below, which will play an important role later. (The approximation will be specified in
the proof of Proposition 5.5.) The function W¢ is defined by

W@y, 8) =~ Y qi(fi —m)* =Y pjle; —m)?

iel jeJ
=Y pilei —7)* =Y 2l — ) (B — )
iel iel

n

_Z%((xi_T[)2+ZU(O[‘Y1’""O{S69€S)+( %)7’[2

i=1 s=1 i=1
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with U defined by

Ul ... a6 8) =77+~ ZZ(n,—n) ——Z(n—ﬂ)z

11]1

+(E—m) - Z(&—n)z Z(n, £)?

= j=1

1 : 1 .
—2Lir(1) — > Z ZLiz(eZI(')j*Ti)) + 3 ;Liz(eb(rﬁn))
1=

i=1 j—l

3
_le 21(5 71) Zle 21(5 7) +2Li2(e2i(”-/_§)).

4.1)
We note that U defines a holomorphic function on the region
Buc = {(oc, &) e c’ | Re(e) is of the hyperideal type,
max{Re(7;)} < Re(§) < min{Re(n;), 27}}
where & = («q, ..., ag) and Re(a) = (Re(wy), ..., Re(ag)); and W is continuous
on
Dic = {(es.§) € C"* | (Re(as). Re(§)) € Du}
and for any § > 0 is analytic on
D¢ = {(er. §) € C'* | (Re(ers), Re(§)) € Dy},
where Re(a;) = (Re(w;))ier and Re(€§) = (Re(&)), ..., Re(&)).
Let
By = Buc NR’.
Then by (2.12), for («y, ..., as, &) € Bg,
Ulal, ... a6, &) =21% +24/=1V (a1, ..., a6, &) (4.2)
for V : By — R defined by
Vial, ..., a6, &) =6(a1, a2, @3) +6(a1, a5, ag) + (o2, aa, ag) + §(a3, otg, a5)
(4.3)

4 3
—AE+Y AE—-T)+Y Al —

i=1 j=1

where § is defined by

1 +y—1z 1 +7— 1 +x — 1 fy+z
0= () R ) ()
2 2 2 2 2 2 2 2
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A result of Costantino [8] shows that for each « = («, ..., o) of the hyperideal
type, there exists a unique & () so that (e¢, £(e)) € By and
IV,
V(e §) - (4.4)
& le=t@

Indeed, he proves that for each a, V is strictly concave down in & with derivatives 00
at the boundary points of the interval of &, hence there is a unique critical point & (a)
at which V achieves the absolute maximum. Moreover, by using the Murakami—Yano
formula [28,37] he shows that

Ve, §(et)) = Vol(Ajg—r)), 4.5
the volume of the ideal or the truncated hyperideal tetrahedron with dihedral angles
loey — 7|, ..., lag — m|. Let [y, ..., g be the lengths of the edges of Ajq_y|, and let

uj =2+/—1|a; — | fori € {1, ..., 6}. Then by the Schlifi formula, we have

iU (e, l;
(@ @) L (4.6)
ou; 2
Fora = (a1, ..., as) € COsuchthat (Re(ay), ..., Re(ag)) is of the hyperideal type,
we let £(ar) be such that

U (e, §)

= 4.7
& le=t(w @7

Following the idea of [29], see also [3], it is proved that e~ 2V=IE@) gatisfies a concrete
quadratic equation. Therefore, for each such «, there is at most one &(a) such that
(o, £(0r)) € By, c. At this point, we do not know whether («, £ (o)) € By, for all such
o, but in the next section we will show that it is the case if all Re(«), ..., Re(ag) are
sufficiently close to 7.

Fors e {1,...,c}, letay = (@, . .., a5 ). We define the following function

n n

Uoep,oeg) = — Z %(C(i - 7'[)2 + ZU(OL% &(ay)) + (Z %)7-[2
s=1

i=1 i
for all a; such that (ets, §(ots)) € By,c foralls € {1,...,c}.

The next proposition shows that with an appropriate choice of the meridians and
longitudes, the value of U coincides with the value of the Neumann—Zagier potential
function [30] defined on a neighborhood of the complete structure in the deformation
space of M, \ LgsL.

Proposition 4.1. For each component T; of the boundary of M.\ LFsy, choose the basis
(ui, vi) of m(T;) as in (2.6) and (2.7), and let ® be the Neumann—Zagier potential
function characterized by

0PMH®@y),....Huy)) _ H)
9H(u;) =2

®0,...,0) = \/—_1<V01(MC \ Lrsp) +~/—1CS(M, \ LFSL)) mod 7,
(4.8)

where M. \ Lrsy, is with the complete hyperbolic metric. If Hu;) = £2/—1(o; — 1)
foreachi € {1, ..., n}, then

Ulas, ay) = 2em> + DH(uy), ..., Huy)).
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Proof. We assume that H(u;) = 2+/—1(o; — 1), and the case H(u;) = —2+/—1(a; — 1)
follows from the fact that ® is even in its variables.

From the construction of Lggy. in Sect. 2.4, the component L; = Ue; ‘s where ¢; i is
the j-th edge of the building block Ay for s coming from a subset S of {1, ..., c}and j
coming from a subset of {1, ..., 6} depending on s. Let /; be the lengths of L; and let
ls_/. be the length of es; for each s;. Then by (2.6), (2.7) and (4.6), we have

MUy, oty) Z U (ees, &(ets)) N (i H(u;)
© OH(u;) OH (u;) 4
ls; uiv/—16; i /=16,  H(w)

= + =
2 4 2 4 2

4.9)

This means 81‘{% ; and 8H(u ; coincide for purely imaginary variables for each i € I.

Then by Lemma 4.2 below. and
(4.8).

For the second equality of (4.8), we have

, rz(/;’_) aH(u ) coincide, verifying the first equality of

n
U(,...,m) = 2em? +2cvg/ —1 + (Z %)nz,

i=1
where vg is the volume of the regular ideal octahedron. Then by (2.8) and (2.9), we have
UG, ...,m) =2+ ®(0,...,0) modr’Z.
O

Lemma 4.2. Suppose D is a domain of C" and F\ and F; are two holomorphic functions
on D. If F| and F> coincide on D N (/—1R)", then F| and F, coincide on D.

Proof. We use induction on n. If n = 1, then the result follows from the Identity The-
orem of a single variable analytic function. Now suppose the result is true for n < k.
For each fixed (z2, ..., zx) € (v/—IR)*"!, by the assumption of the lemma, we have
Fi(z1,22,...,2k) = F2(21, 22, - - ., 2k) for any purely imaginary z;. Then by the sin-
gle variable case Fi(z1,z22,...,2k) = Fa2(z1,22,...,2%) for any complex z;. This
equality can also be understood as for any fixed complex zy, Fi(z1,22,-..,2k) =
F>(z1, 22, - .., zx) for all purely imaginary (z2, .. ., zx). Then by the induction hypoth-
esis, we have Fi(z1, 22, ...,2x) = Fo(z1, 22, ..., zx) forall (zo, ..., zk). O

5. Asymptotics

The goal of this section is to prove Theorem 3.1. The main tool we use is Proposition
5.1, which is a generalization of the standard Saddle Point Approximation [31]. For the
readers’ convenience, we include a proof of Proposition 5.1 in Appendix A.

Proposition 5.1. Let D, be a region in C" and let Dy be a region in R*. Let f(z, a)
and g(z, a) be complex valued functions on Dy X Dy which are holomorphic in z and
smooth in a. For each positive integer r, let f.(z,a) be a complex valued function on
D, x Dy holomorphic in z and smooth in a. For a fixed a € Dy, let f?, ¢g* and f?
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be the holomorphic functions on Dy defined by f2(z) = f(z, a), g*(z) = g(z, a) and
f2(z) = fr(z, a). Suppose {a,} is a convergent sequence in Dy withlim, a, = ag, fr
is of the form

r(z a)

@)=+ ——5—,

{S,} is a sequence of embedded real n-dimensional closed disks in Dy, sharing the same
boundary and converging to an embedded n-dimensional disk Sy, and ¢, is a point on
S, such that {c,} is convergent in D, with lim, ¢, = ¢q. If for each r

(1) ¢, is a critical point of f* in D,,

(2) Ref? (¢,) > Ref¥ (z) forallz € S, \ {c,},

(3) the domain {z € Dy | Re f? (z) < Re f? (¢, )} deformation retracts to S, \ {c¢},
(4) 1g® (c,)| is bounded from below by a positive constant independent of r,

(5) |vy(z, a,)| is bounded from above by a constant independent of r on Dy, and
(6) the Hessian matrix Hess(f2°) of f2 at ¢ is non-singular,

then

/ & @)™ Dz — (2_”)§ g™ (cr) T <°r>(1 + 0(1)).
3 r / /—detHess(f®)(c,) r

In the rest of this paper, we assume that 61, ..., 6, are sufficiently close to 0, or
equivalently, {B;}ies and {o};c; are sufficiently close to 7. In the special case that
Bi =aj =mforalli € I and j € J, by solving equation (4.4) for (a1, ..., as) =
(m,...,m), we have &(m, ..., ) = 7Tﬂ' For § > 0, we denote by Ds ¢ the L' s-

neighborhood of (r, ..., , 77”, o 77”) in C1*¢_ that is

dL1<(ot1,§), (n,...,n,7—n,...,7—n>) <8},

Dsc = | §) e C -

where d; 1 is the real L'-norm on C" defined by

dpi(x,y) = jmax {IRe(x;) — Re(y;)], Im(x;) — Im(y;)[},

,,,,,

where X = (x1,...,x,) andy = (y1, ..., y,). We will also consider the region

Ds =Ds.c N R/ e,

5.1. Critical points and critical values of W€'. Suppose {B;}ic; and {a} e, are suf-
ficiently close to w. Fori € I, let6; = 2|8; — m|, and let u; = 1 if B; > 7 and let
= —1if B; < 7 sothat u;0; = 2(B; — ).

Proposition 5.2. For each i € I, let H(u;) be the logarithmic holonomy of u; of the
hyperbolic cone manifold My, and let

i/ =T
of =+ %H(m. (5.1)
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Fors € {l,...,c}, let & = &(a5,, ..., o) be as defined in (4.7). Then W€ has a
critical point

R (COCH Y

in Ds ¢ with critical value
2en? + /=1 (Vol(ML,,) + «/—1CS(ML0)>.

Proof. Fors € {1,...,c}, letay = (a5, ..., ) and let e = (o, ..., o5 ).

If all ;s are sufficiently close to 0, then the cone metric is sufficiently close to the
complete metric. As a consequence, H(u;) is sufficiently close to O for each i, and hence
«; is sufficiently close to . Then by the continuity of £ (e ), 2/ € Ds ¢ for sufficiently
small 61, ..., 6,.

First, foreach s € {1, ..., ¢}, we have

oWe! oU (a,

ECUICHS D Ry (52)
a‘i:s ¢l 8& &
Then by the Chain Rule, foreach s € {1,...,c}andi € I,
U (a5, 8(05)) | dU(ay, &) . U (e, &) 98 (as)
D at daj (@£ &5 (@& doy lag
U (ey. &)
doj ez’
hence
(Y ¢, Ulay, & ou
(Yo Ul £) =—| , = —€un~v—1H(),
o Al o lak

where oc’; = (a;“) i1 and the last equation comes from (4.9) and (5.1). As a consequence,
for each i € I, we have

4%
30[i

ou
=—2pi(0] —7) =26 (Bi — )+ —|
o o

= — e/~ 1 piHG) = V=16 + H(wp) ) =0,

z€1

(5.3)

where the last equality comes from the (p;, 1)-Dehn filling equation (2.2) with the cone
angle 6;. Equations (5.2) and (5.3) show that z¢/ is a critical point of W¢/.
To compute the critical value, by Proposition 4.1, we first have

Uk, ay) = 2cm? + DH(uy), ..., H(uy)). (5.4)

Foreachi € I, let y; = —u; + q;(piu; + v;) so that it is the curve on the boundary
of a tubular neighborhood of L that is isotopic to L* given by the framing ¢; of L*
and with the orientation so that (p;u; + v;) - 3 = 1. Then we have 6; = 2u; (8; — 7),
H(ui) = —2¢ipui/—1(af — 1),

H(v;) =v/—16; — piH(u;) = 2uiv/=1(B; — 1) + 2 pi€ipiv/— ()} — )
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and
H(y;) = — H(u;) + qi (piH(u) + H(v)) = 2¢; v/~ L) — 1) + 2qi i/ = 1(Bi — 7).

As a consequence, we have

H(ui)H(v;) V=16:H(yi)
g g
iel iel
==Y aBi—m)’ =Y pilef —m)* =) 2€i(af —7)(Bi — 7).
iel iel iel

(5.5)

Foreach j € J, lety; = p;u;+v; so thatitis the curve on the boundary of a tubular
neighborhood of L that is isotopic to L; given by the framing p; of L; and with the
orientation so that uj - y; = 1. Then we have 6; = 2|a; — 7|, H(u;) = 2\/—_1|a.,~ — 7|
and H(y;) = p;jH(u;) + H(v;). As a consequence, we have

¥ H@)HE)) 3 V=10;H(y;)
4 4

jeJ jeJ
_ Z H(u;)H(v;) . Z H(u;)(pjH(u;) +H(v)))
jelJ 4 jeJ 4
piH(u;)?
=Z%=Z—p,-(aj—n)2. (5.6)
jeJ jeJ

Putting (5.4), (5.5), (5.6) and (2.5) together, we have

WEL(z€1)
=Uas, ) =Y qi(Bi—m)° =Y pile — )
iel iel
- Zl’j(“j —m)* — ZZG(OQ* —m)(Bi — )
JEJ iel

=2cn? + ®H(uy), ...,

H H(v; 0; H(y;
H(u,)) — Z (u; ) (vi) Z \/_ (i)
i=1 i=1

= 2cn? + «/—_1<V01(ML0) + «/—_ICS(ML,,)).

5.2. Convexity of W€!.

Proposition 5.3. There exists a 8o > 0 such that if all {Ol]}]ej are in (mr — 8y,  +8p),
then for any €7, ImW¢€! (ag, ) is strictly concave down in {Re(o;)}ic and {Re(EY)}Y 1>
and is strictly concave up in {Im(a;)};e; and {Im(&;)};_, on Dy, c.
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Proof. We first consider the special case {;};ie; and {&}_, are real. In this case,
c
ImW (eer, ) = ) 2V (e, ..., g, &)
s=1

with V defined in (4.3).

2 2
At (m,..., 7, 77”), we have ga—; = —2fors; € I N{sy,...,se}, MBA’—ZAJ = —1

. a2 a2
fors; # s;in I N {sy,...,s6}, a‘leV& =2fors; € I N{sy,...,s6} and % = 8.
Then a direct computation shows that, at (n, LT, 77”) the Hessian matrix of V in
{Re(wi)}ierngss,....ss) and Re(&,) is negative definite. As a consequence, the Hessian ma-
trix of ImW*’ in {Re(a;)};es and {Re(&,)};_, is negative definite at (71, e, T, 7T”, R

T

! Then by the continuity, there exists a sufficiently small §o > O such thatforall {ct;} e
in (m — 8o, w + 8o) and (ay, &) € Ds,.c, the Hessian matrix of Im)V¢ with respect to
{Re(a;)}ier and {Re(éy)}5_, is still negative definite, implying that ImW*' is strictly
concave down in {Re(w;)}ics and {Re(EQ}?zl on Ds, c. Since W€ is holomorphic,
ImW*! is strictly concave up in {Im(a;)};c; and {Im(&)}S_, on Ds, c. O

Proposition 5.4. Ifall {oj} jc are in (m — 8y, w+80), then the Hessian matrix HessVW¢!
of W€ with respect to {a;}ic; and {&5}S_, is non-singular on Ds; c.

Proof. By Proposition 5.3, the real part of the HessWW¢/ is negative definite. Then by
[23, Lemma], it is nonsingular. |

5.3. Asymptotics of the leading Fourier coefficients.

Proposition 5.5. Suppose {Bi}icr and {aj}jes are in (w — €, w + €) for a sufficiently
small € > 0. For ¢; € {1, —1}‘”, let z¢! be the critical point of W€ described in
Proposition 5.2. Then

— € €
<T0.....0) = C(z) eﬁ(vOl(ML(,)h/—lcaML,,))(1 + 0(1))
_ W< (z1) r
\/ detHess( 4nﬁ)

where each C¢(z°") depends continuously on {B;}icr and {«}es; and when p; =
aj = T,

[I|—c
roz

3+c¢  |[I]+c *
I )

C(z7) = (—])Ziel qit) i (p,-+%)+c

For the proof of Proposition 5.5, we need the following lemma.

Lemma 5.6. For each €; € {1, —1}/"] and any fixed {0} jey,

. . I I
max ImW*/ glmW’<n,...,n,—,...,—) = 2cuvg
Dy 4 4

where vg is the volume of the regular ideal octahedron, and the equality holds if and

onlyifoq:-~-:an:nand$1:~-~:$C:7T”.
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Proof. On Dy, we have
c
MW (ay, §) = ) 2V (@, - g, &)

for V defined in (4.3). Then the result is a consequence of the result of Costantino [8]
and the Murakami—Yano formula [29] (see Ushijima [37] for the case of hyperideal
tetrahedra). Indeed, by [8], for a fixed @ = («1, .. ., o) of the hyperideal type, the func-
tion f (&) defined by f(§) = V(«, &) is strictly concave down and the unique maximum
point & (er) exists and lies in (max{z;}, min{n;, 27}), ie, (a, §(a)) € Bu. Then by [37],
V(a, &(a)) = Vol(A|q—z|), the volume of the truncated hyperideal tetrahedron Ag—n|
with dihedral angles |o; — 7|, ..., |@g — |. Since &(m, ..., w) = 4 and the regular
ideal cctahedron A (g, o) has the maximum volume among all the truncated hyperideal
tetrahedra, V(rr, .., T, 77”) = vg = Vol(A(o,....0) = Vol(Ajg—x)) = V(e,E()) >

V (e, &) for any (&, §) € By.

For the equality part, suppose (a7, &) # ( , T, 77” 4 ) If (g, ..o atgg) #
(m,...,m)forsomes € {1,...,c}, thenImWf’ (ou,‘;‘) 2V01(A‘u 7,;|)+2(C—1)Ug <
2cvg. Ifey = (o, ..., ) but ES #* 7} forsome s € {1, ..., c}, then the strict concavity
of f(&) implies that ImW¢/ (m, ..., m, &) < ImW*! (n, e, TT, 77”, el 77”) = 2cvg. O

Proof of Proposition 5.5. Let§y > 0be asin Proposition 5.3. By Proposition 5.3, Propo-
sition 5.6 and the compactness of Dy \ Ds,,

2cvg > max ImW€.
Du\Ds

By Proposition 5.2 and continuity, if {8;};c; and {e;} e, are sufficiently close to 7,
then the critical point z/ of W€/ as in Proposition 5.2 lies in Dy, ¢, and ImW*! (z°7) =
Vol(Mp,) is sufficiently close to 2cvg so that

ImW* (z') > max ImW< .
D D‘SO

Therefore, we only need to estimate the integral on Ds,. By analyticity, the integral
remains unchanged if we deform the domain of integral from Dj, to a different surface
that shares the same boundary with Dj,. Now we define such a new surface S/ as drawn

inhFig. 5, over which the integral is easier to estimate. L.e., S¢ = Sfo’p U S;’de in D, c,
where

Stop = {(@1, &) € Dy, ¢ | (Im(ej), Im(§)) = Im(z/)}
and

Se = {(ar, &) +1/=1Im(@z) | (a1, §) € 3Ds,, 1 € [0, 11},

By Proposition 5.3, ImW¢! is concave down on S

. o . .
top- Since z/ is the critical points

of ImW*!, it is the only absolute maximum on S/

top*
On the side S;’de, for each (a7, &) € dD;,, we consider the function

8(ay &) = ImW (@7, &) + 1/~ 1Im(z))
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side

| S«

Z—Re

Fig. 5. The deformed surface S€/, where Sfolp is the “top” of the rectangular cylinder colored in blue, S;lde is

the “side” of the rectangular cylinder colored in green, and Dy, is the “bottom” of the rectangular cylinder

on [0, 1]. By Proposition 5.3, gal 6)(1) is concave up for any (a7, ) € 0Ds,. As a
consequence, gal’g)(t) < max{gal,g)(O), gfé,,z;‘)(l)}- Now by the previous two steps,
since (aj, §) € 0Ds,,

8lare)(©) = IMW (@y, &) < ImW (2);

and since (a7, &) + ~/—1Im(z!) € S/

top?
g;;hg)(n =ImW ((as, &) + V/—1Im(z")) < ImW* (z).
As a consequence,

ImW* (z¢7) > max ImW*'.
€

side

Therefore, z¢! is the unique maximum point of ImWW¢/ on S¢/ U (DH \ Dgo), and
WeI has critical value 2¢? + /—1(Vol(Mp,) + ~/—1CS(My,)) at z¢!.

By Proposition 5.4, det HessW*¢! (z¢!) # 0.

Next, we prove that the domain

{(@, &) € Dgy ¢ | ImW (g, &) < ImW (2)}

deformation retracts to Si,

\ {z¢/}. To see this, for each x € Dy, let
Py = {(as, &) € Ds, c | Re(er, &) = x}
and
By = {(’xl, E) € P | ImWGI(OH, E) < ImWel(ZEI)}.

Then by Proposition 5.3 that ImWW¢/ is concave up in Im(a;, §), Brezery = ¥, and By
is a non-empty convex subset of Py for x # Re(z®/); and by the fact that z¢/ is the
unique maximum point of ImW¢ on S, x + /—1Im(z’) € B, for x # Re(z"). As
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a consequence, By deformation retracts to x + +/— 1Im(z¢/) which induces the desired
deformation retraction of {(oc 1.§) € Dsy.c | ImW¢ (g, &) < ImW*! (z¢! )} to Stop \
{z°}.

Finally, we estimate the difference between Wy and W€ . By Lemma 2.10, (3), we
have

(1) =i B () < o)

r

and for z with 0 < Rez < 7 we have
km , kmw 1
<Pr(z + —) =¢ () +¢.(2)—+ 0(—2).
r r r

Then by Lemma 2.10, in {(oe;,g) € Ds,.c | Im(e;)| < Lfori € I,|Im(&)| <
Lfors ef{l,...,c}} forsome L > 0,

4cn\/—_110g<r> + 471\/—_11((051,&') + vr(a178)7
r

WE ey, €) = W (s, €) — :

r r
with
ko, &)

c 4
S ) D E A s P
s=1 i=1

4 3 4
15 S-S
i=1

i=1 j=1

3
+ E lOg ( 2\/7(& 7T) Z ]Og eZ«/j(S,-—rsi))

3
_ % 3 log (1 — V710 —sa));
i=1

and by the compactness of D, ¢, |v-(er, §)| is bounded from above by a constant
independent of r. Then

A ier aibv iy (pi+h )it Ticy it 2OV =T ot Wi (@1.8)

— < ) (Zze[ q:ﬂ:+2, ( )%"’Z,e[ € (aj+p;) )«/jﬂ((ﬂl/,&)
2

vr(er E) =Y icr € 872
(W e e i
e4rr ( .

Now we apply Proposition 5.1 to conclude the result. Let D, be the region
{(ot,,&) € Dg,.c | Im(e;)| < L fori € I, |Im(&)| < L fors € {1,...,c}}

for some L > 0. Leta, = ((Bi)ier, (a))jes) (recall that B; = 27’% and o = 2mm; de-

pends on ), fY(as &) = VIUD v ) = yle, §einh
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. €1
#2000 (pi+ §)ai + Liep (e + BOIW=T +xc(er ), f7 (@, §) = DL — ¢
log (%), vr(oer, &) = vp(oe, &) — D iy €;872, S, = S and z¢/ is the critical point of
f? in D,. Then all the conditions of Proposition 5.1 are satisfied with and the result
follows.
When B; = a; = m, a direct computation shows that

[1|+c 2 I|+c —c 7 7
i e () T 5 b )
'z )_22|I|+cn|1|+c . 5) slm
|I|—c
— (_1)Z[e1 qity i ([7i+l7i)+f r:
3+c  |I|+c
272 7 2
O
Corollary 5.7. If € > 0 is sufficiently small and all {B;}ic; and {o;}jcy are in (m —
Jti
€, +¢€), then
C€I (7€1
)3 AL
_pin W< (z1)
ere{l,—1} \/ detHess( pranT )
Proof. 1f i = aj = m foralli € I and j € J, then all ¢/ = (n,...,n,%’,...,%ﬂ)
and all W€ are the same functions. As a consequence, all the C¢/ (z)’s and all Hessian

determinants det Hess(ﬁl—f;))’s are the same at this point, imply that the sum is not

equal to zero. Then by continuity, if € is small enough, then the sum remains none zero. O

Remark 5.8. In [41], we proved that all C/(z/)’s and all det Hess(%)’s are

always the same for any given {B;};c; and {«;};cs, and related them to the adjoint
twisted Reidemeister torsion of My,.

5.4. Estimate of the other Fourier coefficients.

Proposition 5.9. Suppose {B;}ici and {a}jcy are in (m — €, + €) for a sufficiently
smalle > 0. If (a;,b) # (0, ...,0), then

frel (ag, b)‘ < 0<eﬁ(Vol(ML9)_€/))

for some € > 0.
Proof. Recall thatif B; = aj = m foralli € I and j € J, then the total derivative

T T
Dwel(n,...,n,—,...,—) =(,...,0).
1 2 ( )
Hence by continuity, all the partial derivatives near this critical point are sufficiently
small. To be precise, there exists a §; > 0 and an € > 0 such that if {8;};c; and
{aj}jes are in (m — €, + €), then for all (a7, &) € Ds, ¢ and for any unit vector

u = ((uj)ier, (wy)i_,) € RI71*¢ | the directional derivatives

AMWE S AImW 2 —¢”
D Iqu o, — ‘ U, —— + w <
| Dy (ar, )l ,EZI " oIm (o) ; ¥ 9Im(&y) 22|11 +2c
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for some €” > 0.
On Dy, we have

Im(Wﬂ (@r.§) = 2raje; - Xcz4nbs&) — ImW (ay, £).

iel s=1

Then by Lemma 5.3, Proposition 5.6 and the compactness of Dy \ Ds,,

C
2 I (W€1 , _ 2 v 4 b )+ "
cug >Dg1\a]1§§] m (o, &) Z Ta; o ; bk ) +€

iel

for some €”” > 0. By Proposition 5.2 and continuity, if {8;}ic; and {«} ;e are suffi-
ciently close to 7, then the critical point z¢/ of W€ as in Proposition 5.2 lies in Dy, ¢,
and ImW*/ (z°7) = Vol(M,) is sufficiently close to 2cvg so that

c
I I (2! I oy, &) — 2raja; — 4mh " (5.7
V@) = max tm (W @1 §) = 3 2waia ; mhy)+€”. (57)

iel

Therefore, we only need to estimate the integral on Ds,. Again, by analyticity, the
integral remains unchanged if we deform Ds, to a different surface sharing the same
boundary, over which the integral is easier to estimate.

If (a;, b) # (0, ..., 0), then there is at least one of {a; };c; or {bs}§=1 that is nonzero.
Without loss of generality, assume that a; # 0.

If a; > 0, then consider the surface St = S

wop Y St

cide in Ds, ¢ where

Siop = (@1, 8) € Dy, ¢ | Im(ay), Im(§)) = (81,0,...,0)}

and

Stie = {(ar, &) + (tv/—181,0,...,0) | (as, &) € dDs,, ¢ € [0, 1]}.
On the top, for any («y, &) € St+0p, by the Mean Value Theorem,

[ImW (2) — ImW (o, )| = | DuImW (2)| - ||z — (@1, §) |

2m —€”
< 2211+ 268

22+ 2¢
227'[51 — E”(Sl,
where 7 is some point on the line segment connecting z¢/ and (a7, §), u = %

and 24/2|1] + 2¢$y is the diameter of D, c. Then

C
Im(Wf' (@r.6) = Y 2rajo; — Z4nbse§s) —ImW (as, &) — 2ma1 8
iel s=1
<ImW* (z61) + 278 — €81 — 278y
=ImW* (z) — €”85;.
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On the side, for any point (e¢f, &) + (t4/—181,0,...,0) € Ss’fide, by the Mean Value
Theorem again, we have

MW (@), &) + (1v/=181,0, ..., 0)) — ImW* (@, &)| < 25%;31.
Then
ImW*! ((al, £) + (1v/—181,0, ..., 0)) —2mait8; <ImW (ay, &)
Nl ST WY
2211 +2¢

<ImW*(ay, &)
<ImW*¢ (z¢1) — €,

where the last inequality comes from that (a7, §) € 0Ds, C Dy \ D5, and (5.7).
Now let €’ = min{e”5;, €}, then on S* U (Dy \ D, ),

Im(Wf' (@r.§) = Y 2raia; — 2}4;119@) < ImWS (z51) — €,
=

iel

and the result follows.

If a; < 0, then we consider the surface S~ = St_op U Sgde

St;p = {(al? E) € D51,(C | (Im(al)v Im(g)) = (_613 0’ DR O)}

in Ds, ¢ where

and
Sgige = (ay, §) — (tv/—161,0,...,0) | (a7, §) € dDg,, t € [0, 1]}.

Then the same estimate as in the previous case proves that on S~ U (DH \ Dal),

Im(Wﬂ (@r.§) = 3 2raia; — szz%gs) < ImW (2€1) — ¢,

iel s=1

from which the result follows. m|

5.5. Estimate of the error term. The goal of this section is to estimate the error term in
Proposition 3.7.

Proposition 5.10. Suppose {a} jcy are in (7w — €, 7w +€) for a sufficiently small € > 0.

(VOI(MLG)_G,))for some €' > 0.

Then the error term in Proposition 3.7 is less than O (eﬁ
For the proof we need the following estimate, which first appeared in [15, Proposition

8.2] forg = eﬂF, and for the root g = ean in [11, Proposition 4.1].

2ny/=1
Lemma 5.11. For any integer O <n <randatq =e r

r 2nm
log [{n}!| = _EA (T) + O (log(r)) .
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Proof of Proposition 5.10. For a fixed ey = () ey, let

My, = max{ZZV(asl,...,a%,Es) (@7, &) € 9Dy U (DA\DH)}

s=1
where V is as defined in (4.3). Then by [4, Sections 3 & 4],
My, < 2cvg;

and by continuity, if € is sufficiently small, then Vol(M_,) is sufficiently close to 2cvg,
which is the volume of the fundamental shadow link complement in the complete hy-
perbolic metric where all the cone angles are zero. Therefore, if € is sufficiently small,
then

My, < Vol(My,)

forall {B;}ics and {ctj} ey in (m — €, +€).
L Vol(Mp,)—Mq
Now by Lemma 5.11 and the continuity, for ¢’ = % we can choose a

sufficiently small § > 0 so that if (znrﬂ 2’;—") ¢ DY, then

g (ml,k)‘ < O(eﬁ(M“J“/)) = O(eﬁ(VOI(MLO)_E/))

Let ¢ be the bump function supported on (Dy, Df{). Then the error term in Proposition
3.7 is less than O (e VI(Mzg)=<)) O

5.6. Proof of Theorem 3.1.

Proof of Theorem 3.1. Let € > 0 be sufficiently small so that the conditions of Propo-
sitions 5.5, 5.9 and 5.10 and of Corollary 5.7 are satisfied, and suppose {B;};c; and
{aj}jes are allin (r — €, w + €). By Propositions 3.6, 3.7, 5.5, 5.9 and 5.10, we have

RT,(M, L, (n;, my))

—o( Y FT0.0)(1+0@EC)

erell,—1

Ce (2°)
> )
_nin Wer @)
erefl,—1} \/ detHess( 4nﬁ>

eﬁ <2cn2+ﬁ(Vol(ML0)+ﬁCS(ML6))) (l . 0( 1 ))

By Proposition 3.5, we have

n
lim 47”10g;c, = (a(L/ NLy - ai-Y pi— 2|1|)J—_1n2;
i=1

r—00 A
iel
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Fig. 6. .
and by Corollary 5.7, we have
Cel(z°1
)3 (z) .
erefl, -1l \/— det Hess<—)2};:>§))
and hence
4 Cel (761
LES P> )0
e ere{l,—1}11 det H WEI (z€1)
[E —de ess( pryant )
Therefore,

4
lim —~ logRT, (M, L, (n;, m,))
r—>o00 r

= (a(L’ NLjp) — Zqi — ip,- — 2|I|)\/—_17'[2 —2c/=17?

iel i=1
+Vol(My,) + v/—1CS(Mp,)
= Vol(Mp,) + V/—1CS(Mz,)  mod v/—17%Z,

which completes the proof. O

6. Some Concrete Examples

The goal of this section is to show that several important families of links have com-
plements homeomorphic to fundamental shadow link complements M. \ Lgst,, and are
obtained from (M., Lpsp.) by doing a change-of-pair operation, including the twisted
octahedral fully augmented links considered by Purcell [33] and van der Veen [38], and
the family I/ considered by Kumar [20, Theorem 4.1]. As a consequence, Conjecture
1.1, the Volume Conjecture for the Turaev—Viro invariants [6] and the Generalized Vol-
ume Conjecture [16,29] hold, and the answer to [12, Question 1.7] is positive, for these
families of examples. See Theorems 6.1, 6.3 and 6.5. It is worth mentioning that both
the family of the twisted octahedral fully augmented links and the family I/ are universal
families in the sense that every link in S> is a sublink of a member of these families.

We first look at the twisted octahedral fully augmented links. Following the construc-
tion in [38], we start with a trivalent graph 7 that is homomorphic to the 1-skeleton of a
Euclidean tetrahedron as shown on the left of Fig. 6, and apply a sequence of the triangle
move as show on the right of Fig. 6 to get a trivalent graph G.

Then we color some edges of G by red in a way that each vertex is adjacent to exactly
one red edge. Such a coloring of the red edges always exists because for the initial graph
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A .

[-3-%-X%
P )k AN

T we can color any pair of the opposite edges by red, and then for each triangle move,
we color the new edge opposite to the red edge in the old graph by red. See Fig. 7.

For each choice of the red edges of G, we can construct a link in S3 as follows. As
shown in Fig. 8, we first circulate each red edge by a trivial loop (the belt).

Then we replace each red edge by a pair of arcs parallel to it and connect the ends of
the two arcs respectively to the edges of G that are originally adjacent to the red edge.
Finally, we do a certain number of (possibly half) twists to each pair of parallel arcs.
In this way, we get a twisted octahedral fully augmented link in S3. See Fig. 9 for a
concrete example starting from the trivalent graph 7.

The twisted octahedral fully augmented links were also described in [33] using the
dual nerve of the graph. Namely, we start with the graph 7" and consider its dual nerve,
which is a graph 7* homeomorphic to 7 with triangular faces. After doing a sequence
of the central subdivisions of the faces, we get a graph G* with triangular faces. Then
we choose a collection of red edges such that each triangular face contains exactly one
red edge. Finally we consider the dual graph G of G* and color the dual edge of the red
edges of G* by red, and change the red as shown in Fig. 8. In this way, we obtain a link
in S3. Since the triangle move is dual to the central subdivision (see Fig. 10), the links
constructed in this way are exactly the twisted octahedral fully augmented links.

In [38], van der Veen proved that the complement of a twisted octahedral fully aug-
mented link is homeomorphic to some fundamental shadow link complement. Together
with the result of [4], we have
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)\ /L\
G
Fig. 10. .

Fig. 11. In a truncated polyhedron, we only consider the intersection of two faces as an edge, and do not
consider the intersection of a face and a triangle of truncation as an edge

Theorem 6.1. ([4,38]) Suppose L is a framed twisted octahedral fully augmented link
in 3. Then as r varies over all odd integers,

2 3 3
lim — log TV, (S”\ L) = Vol(§” \ L).
r—oo

The main observation of this section is the following Proposition 6.2, which is a
refinement of the result of [38].

Proposition 6.2. Let L be a framed twisted octahedral fully augmented link. Then
(S3, L) is obtained from (M., Lrsy) by doing a change-of-pair operation, where M, =
#4152 x S! for some positive integer ¢ and Lrs; C M, is a fundamental shadow link.
As a consequence of Proposition 1.3, $3\ L is homeomorphic to M, \ Lrs;.

Proof. Suppose L = L{U---UL,.Let [ be the subset of {1, ..., n}suchthat {L;};es
are the belt components of L, and let L; = U;¢;L;. Let J = {1,...,n}\ I, and let
Lj = UjeyL;. Recall that each L; corresponds to an red edge of the graph G which
splits into two parallel arcs with a number of twits. Later we will prove the result in two
steps. In Step 1 we consider the case that there is no twist or only a half-twists for each
i € I.In Step 2 we consider the general case.

We first observe that L ; lies in a tubular neighborhood of the 1-skeleton of a truncated
polyhedron P in S* obtained by gluing truncated tetrahedra together along the triangles
of truncation. Indeed, we can regard the initial trivalent graph T as the set of edges of
a truncated tetrahedron (see Fig. 11), and regard a triangular move as attaching another
truncated tetrahedron along the triangle of truncation (see Fig. 12).

In this way, we obtain a truncated polyhedron Pg in R3 C S3, and the edges of the
graph G correspond to the edges of Pg. As shown in Fig. 13, the two parallel arcs from
splitting the red edge can be drawn in a tubular neighborhood of the red arc.

See Fig. 14 for a concrete example.

Step 1. Suppose in the construction of L there is no twist or only a half twist for
each pair of arcs from splitting the red edges. For each i € I, we let L’ be L; with the
0-framing which is possibly different from the original framing of L;, and let L} be
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Fig. 12. .
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the framed trivial loop around L; with the O-framing. Let L’I = Ujer L;. We first claim
that by doing the change-of-pair operation T'(L’; L7) to the pair (S3, L) we get the pair
(M1, LgsL), where M|;| = #'”(S2 X Sl) and Lggy, is a fundamental shadow link in
M,;,. See Fig. 15.

Indeed, let Ny = U;c; N(L;) be the union of the tubular neighborhoods of the belts
{Li}icer. Then s3 \ Ny is a handlebody H|;| of genus |I], L7 U Ly is alink in H,
and doing O-surgeries along {L;};c; is the same as taking the double of H|;|, which is
homeomorphic to M);j. On the other hand, the handlebody H);| can also be considered
as obtained from the polyhedron Pg by gluing the two triangles of truncation at the end
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of each red edge via the orientation reversing affine homeomorphism identifying the two
end points of the red edge.

If there is no twist for all pairs of arcs from splitting the red edges, then the link
Lf U L corresponds to the link Lrsy, consisting of the union of the edges of Pg. From
the construction in Sect. 2.4, Lggy, in the double of H);| is a fundamental shadow link
in M|;. See Fig. 16 for a concrete example.

If there is a half twist on the pair of arcs from splitting red edge e¢; circulated by
L;, for some i € I, then we glue the two triangles of truncation at the end of ¢; via
the orientation preserving affine homeomorphism identifying the two end points e;.
In this way, we obtain a non-orientable handlebody HI’I| whose orientable double is
homeomorphic to M), and the link L’I‘ U L corresponds to the link Lggy consisting
of the union of the edges of P, which is a fundamental shadow link in M|;.

Foreachi € I, welet L}* be the framed trivial loop around L} with the same framing

as that of L;. Then we claim that (S3, L) can be obtained from (M,;|, Lgsr) by doing
the change-of-pair operation T'(L7}, L"), proving the result in Case 1. See Fig. 17.

This could be seen by the following the second Kirby Moves (handle slides) which
do not change the pair. For each i € I, we first slide L}* over L/ as in Fig. 18 to get a
framed trivial loop isotopic to L;.

Suppose L; and L (with j possibly the same as j’) are the components of L
circulated by L;. Then we slide L; and L j» over L} as in Fig. 19 so that L; U LY is a
Hopf link with O-framings unlinked with the rest of L. Doing these operations for each
i € I, we get the original link L in the 3-manifold obtained from S by doing a surgery
along the disjoint union of |7| Hopf links with O-framings, which is still $.

Step 2. Suppose in the construction of L, the pair of arcs from splitting the red edge
circulated by L; is twisted p; times or p; and a half times. Let (M);|, Lgsp.) be the
fundamental shadow link constructed in Step 1. For each i € I, let L?" be L} with the
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(—pi)-framing, and let L}’ = U;e; L. Still let L** be the framed trivial loop around
L? with the same framing as that of L;. We claim that (S3, L) can be obtained from
(M), Lrst) by doing the change-of-pair operation T'(L%’, L**), proving the result in
Case 2.

Similar to Case 1, we first slide L* over L] as in Fig. 20 to get a framed trivial loop
isotopic to L;.

By e.g. [34, p. 273], since Ll’.‘/ is a trivial loop around L] and

1 1

—=0- —,
pbi —Di
doing the surgery along the union of L} and L;.” respectively with framings 0 and (—p;)
is equivalent to doing a ﬁ—surgery along a loop isotopic to L;, which is the same as

doing p; full twists along the strip circulated by L;. See Fig. 21. This completes the
proof. O

By Theorem 3.1, Propositions 6.2 and the relationship between the Resherikhin—
Turaev invarints and the colored Jones polynomials that

RT,(S%, L, m) = 14,Jm 1.(¢?),



Relative Reshetikhin—Turaev Invariants 1059

0

L @Q‘ L L Q'j’) %i ; p, twists
s

| I I
L. L L.
L 1 i L Li L
Fig. 21. .
we have

Theorem 6.3. Suppose L is a framed twisted octahedral fully augmented with n com-

ponents. For a sequence m") = (m(lr), ey m,(f)) of colorings of L, let

(r)
dm,

6r = [2m — lim ,
r—00 r

and let @ = (61, ..., 6,). If all the 0; s are sufficiently small, then

4 i
lim —logJ; mo(eF) = Vol(S3,) +V=1CS(S},)  mod /=1,

r—-o0 r
where r varies over all odd integers.

Next, we consider the universal family ¢/ of links in $3 considered by Kumar [20]
whose complements are homeomorphic to some fundamental shadow link complements.
Together with the result of [4], he proved that Chen—Yang’s Volume Conjecture for the
Turaev—Viro invariants is true for the complements of these families of links. The way he
found the fundamental shadow links is essentially by doing a change-of-pair operation
along the belt components of the links. Then by the same argument in Step 1 of the proof
of Proposition 6.2, we have

Proposition 6.4. Let L be a framed link in U of [20]. Then (S°, L) is obtained from
(M., Lrsy) by doing a change-of-pair operation.

As a consequence of Theorem 3.1 and Proposition 6.4, we have

Theorem 6.5. Suppose L is a framed link of n components which is a member of U of
[20]. For a sequence m®") = (m(lr), e, mﬁ,r)) of colorings of L, let

471m(r)
O, = ‘271 — lim k|
r—00 r

and let @ = (61, ..., 6,). If all the 0; s are sufficiently small, then

4 i
lim —logJ; mo (e ) = Vol(S3,) + V=1CS(S},)  mod v/=1x’Z,

r—-o0 r

where r varies over all odd integers.
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Remark 6.6. The proof of Proposition 6.2 essentially provides an algorithm of construct-
ing a fundamental shadow link from a given twisted octahedral fully augmented link or
a given element of /. In [38], van der Veen for each link L in §3 provided an algorithm
of constructing a twisted octahedral fully augmented link L’ such that S3\ L is obtained
from $3 \ L' by (l)—ﬁlling suitable boundary components. In [20], Kumar for each link
L in §3 considered as the closure of a braid provided an algorithm of constructing a
link L’ in ¢/ such that S3 \ L is obtained from $3 \ L’ by %-ﬁlling suitable boundary
components. Therefore, together with Propositions 6.2 and 6.4, we for each L in §3
have two algorithms of constructing a fundamental shadow link Lgsp, in M. such that
§3\ L is obtained from M. \ Lgsy. by filling suitable boundary components. It is an
interesting question to know whether the universal families of the twisted octahedral
fully augmented links and / are actually the same family.
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A. A Proof of Proposition 5.1

The goal of this appendix is to prove Proposition 5.1. We need the following two Lemmas
whose proofs are included at the end of the appendix.

Lemma A.1. For any € > 0, there exists a § > 0 such that

(1)
/6 —rz? T —ér
e '“dz=,—+0("),
e V r

and

(2)

€
2_‘2 _1 T -8
ﬁezerzdz—z,/ﬁ+0(e ).

Lemma A.2. Let D, be a region in C" containing the origin 0 and let g* a family of
complex valued functions on D, smoothly parametrized by a in a region Dy of RX. Then
there exist families of functions h?, ..., h3, and k¥, ..., k3 such that

(1) all of h*’s and k?’s are smoothly parametrized by a in Da,
(2) for each a € Dy, h? has variables zj1, . .., zy and is holomorphic in them,
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(3) for each a € D,, k? has variables z;, . .., zy and is holomorphic in them, and

(4)

n n
&t z) = g0 + Y Gints o 2T+ Y KNG )T

i=1

Lemma A.3. (Complex Morse Lemma) Let D, be a region in C", let D, be a region
in R, and let f : Dy x Dy — C be a complex valued function that is holomorphic
inz € Dy and smooth in a € Dy. For a € D,, let f* : D; — C be the function
defined by f®(z) = f(z,a). Suppose for eacha € Dy, f? has a non-degenerate critical
point cq which smoothly depends on a. Then for each ag € D,, there exists an open
set V. C C" containing 0, an open set A C Dy containing ag, and a smooth function
¥ 1V x A — Dy such that, if we denote y*(Z) = (Z, a), then for each a € Dy,
z = Y2(Z) is a holomorphic change of variable on V such that

¥*(0) = ca,

FAYRZ) = f2(ca) — 23 — - — Z2,
and
25
/= detHess(f")(¢a)

Proof of Proposition 5.1. We write z = (z1,...,2,) € C",Z = (Z1,...,Z,) € C",
W=Wy,...,. W) eC", dz=dzy...dz,and0 = (0, ...,0) € C".
We first consider the special case ¢, = 0, S, = [—¢, €]" C R" C C", and

fr@ = Zz

det (DWH ) =

for each r. In this case, let

Ur(Z r)
o (z) = vr(z, a,)/ 25 s
Then we can write
vy (z,ar) U,?r (Z)
e r =1+ ,
r
and
ar e l r
gar (Z)erfr‘l (z) _ gar (Z)erfa @ 4 _gar (Z)Jra’ (Z)erfa (Z)' (A.1)
r

Since |v,(z, a,)| < M for some M > 0 independent of r,

1 M
F 1
|‘7rar(l)|<M/ e}\:,sds=M<e i ><2M.
0

7
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Since {a,} is convergent and g is smooth in a, if M is big enough, then |g? (z)] < M
forall z € S, = [—¢, €] for r large enough. By Lemma A.1 (1), we have

1 oy 2M2 o
‘ / _gar (Z)O'ra’ (Z)er/ (Z)dz‘ < / erf (z)dZ
s T s,

r
2M? (N s 1
=22 (E) v o) = o( ).
r ( r ) (e ) N /rn+2
(A2)
By Lemma A.2, we have
n n
gY@,y 2) =8 O + Y RV Cist, e )z YK i )T
i=1 i=1
for some holomorphic functions {h?’} and {kf’}, i €{l,...,n}. Then by Lemma A.l
(1), we have
ay TN 2 1
/ ¢ (0)e T Dz = g (0)(—) 2y 0(—). (A3)
S, r r
Since each zie”zt'z is odd, we have
€ 2
/ zie "3 dz; = 0.
—€
As a consequence, for each i, we have
/ h?r (Zi+1 P Zn)Zierfar (z)dz
[—e.e]”
2 €
Z/ B (Zists oy 2a)e 2% Hdzi / e Tdz; =0,
[Feer! J# —¢
(A.4)
Since {a,} is convergent and k? is smooth in a, if M is big enough, then for r large
enough, |k?’ (z)] < M forallz € S,,i € {1,...,n}. By Lemma A.1 we have for each
ief{l,...,n}

ar € _ € _ 2
‘/; k¥ (z)zie’” (Z)dz’ < M(/ e ’Zizdz,~> | | (f e rzfdz,-)
r —€

- J#i

— O(J:nﬂ)’ (A.5)

Putting (A.3), (A.4) and (A.5) together, we have the result for this special case.

For the general case, by assumption (6) of Proposition 5.1, for a sufficiently close to ag,
/? has a unique non-degenerate critical point ¢, in a sufficiently small neighborhood of
¢p. Then we can apply Lemma A.3 to the function f and ag. Let V, A and i respectively
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be the two open sets and the change of variable function as described in Lemma A.3.
For r sufficiently large, let

n
U, = waf(l_[ {Z,- eC | —e <Re(Z) <€, —e <Im(Z;) < e})
i=1
for some sufficiently small € > 0. Let Vol(S; \ U,) be the Euclidean volume of S, \ U,.
By the compactness of S, \ U, and by assumptions (2), (4) and (5) of Proposition 5.1,

there exist constants M > 0 and § > 0 independent of r such that [g? (z)] < M,
Vol(S, \ U;) < M and

Ref?(z) <Ref*(¢c,) — 6 (A.6)
on S, \ U for r large enough. Then

‘ / @) (Z)dz) - M2(er(Ref“’ <z><cr)76)) _ O(ermefar <z)(cr>78>>, (A7)
S\U

In Fig. 22 below, the shaded region is where Re(— ZL] Ziz) < 0. For each a,, in
(yar)~1(U,) there is a homotopy H, from (2 )~1(S, N U,) to [—e, €]* C R" defined
by “pushing everything down” to the real part. This is where we use condition (3).
Let S| = H,(a(war)*l(sr N U,) x [0, 1]). Then (2 )~1(S, N U,) is homotopic to
S.U[—e, €e]".

Then by analyticity,

/ g (2)e’ " Dz
SNU

= / g™ (Y™ (Z)) det D(y™ (Z))e' " V" @) g,
(yar)=1(s,NU)
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B / g (Y™ (Z)) det D(y* (Z))e™!” W Paz
s
+ / g% (Y (Z)) det D(y™ (Z))e' ™ V" @) g7, (A.8)
[—€.€]"
Since Y2 (') C S, \ Uy, by (A.6)
/ g (W™ () det DY (Z))e' ™ V" B gz,
N
= / ¢ (2)e' " Pz = O(er(Refar (c’)_8)>; (A9)
yar (S))
and by the special case

/ ¢¥ (Y™ (Z)) det D(y™ (Z))e' ™ W™ D) gy,
[*6,6]”

— er.far (c;) / gar (w.ar (Z) detD(t//af (Z))er(iz;;l Ziz+ur(r12yar))dz
[—e.e]?

— rf¥(er) yar o2y a, T 3 l

= /Mg (g 0) det Dy ) (T) (1+0(+))

2\ L ar(c,) (e, 1
(Tn>2 e deté;{esZ(far)(cr)e ™ )(1 * 0<;))

Together with (A.7), (A.8) and (A.9), we have the result. O

Proof of Lemma A.1. For (1), we have

€ 2 o 2 € 2 o0 2
/ e "Ydz =f e "Ydz —/ e "Ydz —/ e "Vdz,
—€ —0Q —0Q €
where the first term
e 2 |7
/ e—rZ dz — —
—00 r

is a Gaussian integral, and the other two terms

—€ 5 o 5 o e—r62 5
/ e ¥ dz :/ e "Tdz < / e "dz = =0 ).
oo . . re

For (2), by integration by parts, we have

€ €
2 _20€ 2
/ e "Vdz=ze " +2r/ e dz,
—e —€ —€

hence by (1)

€ 1 € 1
/ zze*’ZZdz = —(/ e*”2dz — 26[“2) = - /l +0(e7%).
e 2r \J_. 2V 3
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Proof of Lemma A.2. We use induction on n. For n = 1, if z; # 0, then we can write

dg? g%(z1) — g(0) — %-(0)z,
& 0)z; + e 22,
dz, 2

g%z =g*0) +

and let
1=2g"0)
and

. g(z1) — 82(0) — 4 (0)zy
1(Z1) = Z2 .
1

By computing the Laurent expansion of k%(z1), one sees z; = 0 is a removable singu-
larity, and k% (z;) extends as a holomorphic function. From the formulas, we also see
that 7% and k¥ smoothly depend on a. This proves the case n = 1.

Now assume that the result holds whenn = [. Forn = [ + 1, if z; # 0, then we have

0g?
ga(z1,...,11+1)=gz(0,zz,-.-,zz+1)+E(O,zz,...,zm)zl
a a ag*
8@z =870, 22, 7)) = 3 00220z,
+ 3 7,
Z1
and let
ag?
hi(za, .. z41) = —— (0,22, ..., Z141)
971
and
a — 030 _ %%
a gzt ziw) = 8%0, 22, - ziv1) — 55 (0022, -z 2
Kz, ze) = 5 .
2]

By computing the Laurent expansion again, one can see that k{ holomorphically ex-
tends to z; = 0; and from the formulas, 7§ and k§ smoothly depend on a. Since
£2(0, z2, . .., zi+1) has [ variables, by the induction assumption,

I+1 I+1

g0, z2, ..., z141) = g*(0) + Zh?(zm, e U F Zk?(zi, e ue)ZE
i=2 i=2

for holomorphic functions {A#} and {k?} smoothly depending on a. As a consequence,

we have

[+1 [+1

2
g8z 22, 2e) = 0O + Y hzists o 2+ Y K@i )2
i=1 i=1

This completes the proof. O
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Proof of Lemma A.3. By doing the linear transformation (z, a) — (z + ¢4, a), we may
assume that ¢, = 0 for all a € D,. Then by the Taylor Theorem, for each a € D, and
z € D,, we can write

@) =20+ ) zib ()

i=1

for some holomorphic functions b;‘.‘, i =1,...,n. Since 0 is a critical point of f2, we
have

3
b2(0) = a—z_fa(()) =0.

As a result, by Taylor theorem again, we can write

Fi@ = A0+ Y ubt@ = O+ Y zzih@

i=1 i,j=1

for some holomorphic functions h?j, i,j=1,...,n.Since
n n h? (z) + h3.(z)
Z ZiZjh?j(Z) = Z Zﬂj(%),
ij=1 i,j=I

we may assume that hf‘] is symmetric in i and j. Since 0 is a non-degenerate critical
point of f, and

2

0ziz;

£2(0) = 20%(0),

we have det(h?j(O)) # 0.

Next, suppose for some m with0 < m < n, there exist an open set V,,, C C" containing
0, an open set A,,, C D, containing ag, and a smooth function v, : V,, x A,, — C"
such that, if we denote 2 (Z) = Y, (Z, a), then 2 gives a holomorphic change of
variable with

n
PN = [AO) = Z] = = Zp_y+ Y ZiZjH} (D),
i,j=m
where H2 ..(Z) is holomorphic in Z and symmetric in i and j. Based on this, we are

m,ij
going to find an open set V,;,+1 of C" containing 0, anopen set A,,+] C A,, containing ag,
and a smooth function ¥,41 : Vius1 X Apmy1 — C" such that, if we denote ¥2 | (Z) =

Ym+1(Z, a), then 1//31 +1 gives a holomorphic change of variable with

FAYRL@) = fAO) = ZT = = Zp+ > ZiZjHA,, . (Z)

i,j=m+1

for some holomorphic functions H? (Z) that are symmetric in i and j.

+1,ij
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To do so, we by the Chain Rule have

aZfa
0Z;Z;

2 f

w0 = oyaon’ (31 52 0PV,

where D2 (0) is the Jacobian matrix of 2 at 0. Thus, we have

2 a
2! det(QH? . (()))_det(a !

m,ij

(U O00) #0.

implying that ( r‘;‘l (0))isa(n —m+1) x (n —m+ 1) non-singular matrix. Therefore,
there exists k > m such that Hr‘;‘l wm(0) # 0. Reordering the variables if necessary, we
may assume that H7, , , (0) # 0. By continuity of H m.mm (Z) in Z and a, there exists
an open set V, C V,, containing 0 and an open set A, C A,, containing ag such that

0) # 0 forall (Z,a) € V, x A/,. Then we can let

@
B ® =g @
and have
FAUR@) =f2O) = Z] — = Zp 1+ Y ZiZiH} (Z)
i,j=m
:fa(o)_Z%_"'_Zrzn—l mmm(Z) Z ZZ ml](Z)
i,j=m
=120 = Z = = ZE 4 H L (D)(Z + Z Z;H? m](Z)>
j=m+1
- Hrz,mm(z)[< Z Z mm/(Z)) Z ZiZ m 11(Z)]
j=m+1 i,j=m+1
Define W = W(Z) by
W, =

forl # m, and

Wy = /— mmm(Z)(Z + Z Z; mm,(Z))

j=m+1
‘We note that
W
—(0) =0k
forl # m, and
aw,
a7 ® =L, O (b + S 84, 0)

Jj=m+l
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Then the Jacobian matrix DW (0) is an upper triangular matrix with the (m, m)-th entry
v —Hp ,n(0) # 0 and all the other diagonal entries 1, hence det DW (0) # 0.

Now consider the map G : V/, x A/, — C" x R¥ defined by
G(Z.a) = (W(Z),a).
Then the Jacobian matrix DG (0, ag) is of the form

DGO, 80) = (DVg(O) Z) 7

where I is the k x k identity matrix. Moreover, det(DG (0, ag)) = det(DW (0)) # 0.
Thus, by the Inverse Function Theorem, there exists an open set V,, C V,, and an open
subset with compact closure A+ C A}, containing ag such that G : V! x A4 —
C" x A, is a diffeomorphism to its image. By slightly shrinking A,,;; if necessary,
G(V,) x A1) contains an open subset of the form V11 X Ayq1. Foreacha € Ay,
letyd,  =vjho W-!: V.1 = D,. Then we have

LAARa W) = f2O0) = WP — - = Wo+ > W;WHR,, (W)

i,j=m+1

for some holomorphic functions H? , . . (Z) that are symmetric in 7 and j.

Inductively doing the above procedure onm, andletting V. =V,,, A = A, and y* = 2,
we prove the result. Moreover, by the Chain Rule, we have

Hess(f* o ¥*)(0) = (DY) (Hess(f*) @) (DY (O).

Since Hess(f2 o ¥*)(0) is equal to the negative of the n x n identity matrix, by taking
the determinant on both sides, we get

det (D(y™)(0)) = 2k
et( W )) ~ /=detHess(f2)(0)
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