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Abstract: We propose the Volume Conjecture for the relative Reshetikhin–Turaev in-
variants of a closed oriented 3-manifold with a colored framed link inside it whose
asymptotic behavior is related to the volume and the Chern–Simons invariant of the hy-
perbolic cone metric on the manifold with singular locus the link and cone angles deter-
mined by the coloring.We prove the conjecture in the case that the ambient 3-manifold is
obtained by doing an integral surgery along some components of a fundamental shadow
link and the complement of the link in the ambient manifold is homeomorphic to the
fundamental shadow link complement, for sufficiently small cone angles. Together with
Costantino and Thurston’s result that all compact oriented 3-manifolds with toroidal or
empty boundary can be obtained by doing an integral surgery along some components
of a suitable fundamental shadow link, this provides a possible approach of solving
Chen–Yang’s Volume Conjecture for the Reshetikhin–Turaev invariants of closed ori-
ented hyperbolic 3-manifolds. We also introduce a family of topological operations (the
change-of-pair operations) that connect all pairs of a closed oriented 3-manifold and a
framed link inside it that have homeomorphic complements, which correspond to doing
the partial discrete Fourier transforms to the corresponding relative Reshetikhin–Turaev
invariants. As an application, we find a Poisson Summation Formula for the discrete
Fourier transforms.

1. Introduction

We propose the Volume Conjecture for the relative Reshetikhin–Turaev invariants of
a closed oriented 3-manifold with a colored framed link inside it whose asymptotic
behavior is related to the volume and the Chern–Simons invariant of the hyperbolic
cone metric on the manifold with singular locus the link and cone angles determined
by the coloring. See Conjecture 1.1, and Sects. 2.1 and 2.2 for a review of the relative
Reshetikhin–Turaev invariants and the hyperbolic cone manifolds.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-022-04613-5&domain=pdf
http://orcid.org/0000-0002-5422-4590


1020 K. H. Wong, T. Yang

We prove the conjecture in the case that the ambient 3-manifold is obtained by doing
an integral surgery along some components of a fundamental shadow link and the com-
plement of the link in the ambient manifold is homeomorphic to the fundamental shadow
link complement, for sufficiently small cone angles. See Theorem 1.2, and Sect. 2.4 for
a review of the fundamental shadow links. A result of Costantino and Thurston [10]
shows that all compact oriented 3-manifolds with toroidal or empty boundary can be
obtained by doing an integral surgery along some components of a suitable fundamental
shadow link. On the other hand, it is expected that hyperbolic cone metrics interpolate
the complete cusped hyperbolic metric on the 3-manifold with toroidal boundary and
the smooth hyperbolic metric on the Dehn-filled 3-manifold, corresponding to the colors
running from r−1

2 to 0 or r −2.Therefore, if one can push the cone angles in Theorem 1.2
from sufficiently small all the way up to 2π, then one proves the Volume Conjecture for
the Reshetikhin–Turaev invariants of closed oriented hyperbolic 3-manifolds proposed
by Chen and the second author [6].

This thus suggests a possible approach of solving Chen–Yang’s Volume Conjecture.
In [40], we proveConjecture 1.1 for all pairs (M, K ) such that M\K is homeomorphic to
the figure-8 knot complement in S3 with all possible cone angles, showing the plausibility
of this new approach.

We also introduce a family of the change-of-pair operations (see Sect. 1.2) that con-
nect all pairs of a closed oriented 3-manifold and a framed link inside it that have
homeomorphic complements, which correspond to doing the partial discrete Fourier
transforms (see Sect. 1.3) to the corresponding relative Reshetikhin–Turaev invariants.
As an application, we find a Poisson Summation formula for the discrete Fourier trans-
forms (see Formula (1.1)).

1.1. Volume Conjecture for the relative Reshetikhin–Turaev invariants.

Conjecture 1.1. Let M be a closed oriented 3-manifold and let L be a framed hyper-
bolic link in M with n components. For an odd integer r � 3, let m = (m1, . . . , mn)

and let RTr (M, L , m) be the r-th relative Reshetikhin–Turaev invariant of M with

L colored by m and evaluated at the root of unity q = e
2π

√−1
r . For a sequence

m(r) = (m(r)
1 , . . . , m(r)

n ), let

θk =
∣
∣
∣
∣
2π − lim

r→∞
4πm(r)

k

r

∣
∣
∣
∣
,

and let θ = (θ1, . . . , θn). If MLθ
is a hyperbolic cone manifold consisting of M and a

hyperbolic cone metric on M with singular locus L and cone angles θ, then

lim
r→∞

4π

r
logRTr (M, L , m(r)) = Vol(MLθ

) +
√−1CS(MLθ

) mod
√−1π2

Z,

where r varies over all positive odd integers.

Wenote that if M = S3, thenConjecture 1.1 coversKashaev’sVolumeConjecture for
the colored Jones polynomials of hyperbolic links [12,18,26,27] and its generalization

[29], at the root of unity q = e
2π

√−1
r . See also [16] and [8, Section 4.2] for a discussion

of the values at the root q = e
π

√−1
r . If the framed link L = ∅ or the coloring m = 0 or
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Fig. 1. M is obtained from S3 by the surgery along L ′, and L = L1 ∪ L2. (I, J ) = ({1}, {2}). M∗ is obtained
from M by doing the surgery along L1, hence is obtained from S3 by doing the surgery along L ′ ∪ L1; and
L∗ = L∗

1 ∪ L2

r − 2, then Conjecture 1.1 covers Chen–Yang’s VolumeConjecture for the Reshetikhin–
Turaev invariants of closed oriented hyperbolic 3-manifolds.

The main result of this paper is the following Theorem 1.2 (see also Theorem 3.1 for
a more precise statement), where the change-of-pair operation is described in the next
section.

Theorem 1.2. Conjecture 1.1 is true for all pairs (M, L) obtained by doing a change-
of-pair operation from the pair (Mc, LFSL) with sufficiently small cone angles, where
Mc = #c+1(S2 × S1) and LFSL is a fundamental shadow link in Mc.

As a consequence of Theorem 1.2, we prove the Generalized Volume Conjecture
[16,29] for the colored Jones polynomials of the universal families of links respectively
considered by Purcell [33], van der Veen [38] and Kumar [20]. See Proposition 6.2 and
Theorems 6.3 and 6.5 for more details.

1.2. The change-of-pair operations. Let M be a closed oriented 3-manifold and let L
be a framed link in M. In this section, we introduce a topological operation that changes
the pair (M, L)without changing the complement M \L , and show that these operations
connect all such pairs that have homeomorphic complements.

Suppose L = L1 ∪ · · · ∪ Ln . For each component Li : [0, 1] × S1 → M of L , we
call Li ({0} × S1) ⊂ M the core curve of Li and Li ({1} × S1) ⊂ M the parallel copy.
Let (I, J ) be a partition of {1, . . . , n}, L I = ∪i∈I Li and L J = ∪ j∈J L j . For each i ∈ I,
let L∗

i be the framed knot in M \ L whose core curve is isotopic to the meridian of the
tubular neighborhood of Li , and let L∗

I = ∪i∈I L∗
i . Let M∗ be the closed 3-manifold

obtained from M by doing the surgery along L I and let L∗ be the framed link obtained
from L by replacing L I by L∗

I , ie., M∗ = ML I and L∗ = L∗
I ∪ L J . The change-of-pair

operation T(L I ;L∗
I )
is defined by sending (M, L) to (M∗, L∗). See Fig. 1.

By the way it is chosen, the core curve of each L∗
i is isotopic to a curve on the tubular

neighborhood of Li that intersects the parallel copy of Li once, hence in M∗ the core
curve of each L∗

i is isotopic to the core of the filled in solid torus of the surgery along
Li . As a consequence, we have

Proposition 1.3. If (M∗, L∗) is obtained form (M, L) by doing a change-of-pair oper-
ation, then M∗ \ L∗ is homeomorphic to M \ L .
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Fig. 2. For the computation of RTr (M, L , (m1, m2)) on the left, L ′ is cabled by the Kirby coloring �r and
L1 and L2 are respectively cabled by the Chebyshev polynomials em1 and em2 . For RTr (M∗, L∗, (n1, m2))

on the right, L ′ and L1 are cabled by �r , L∗
1 is cabled by en1 and L2 is cabled by em2 . The framings are

omitted in the Figure

Conversely, if (M∗, L∗) is a pair such that M∗ \ L∗ is homeomorphic to M \ L , then
M∗ is obtained from M by doing a rational Dehn-surgery along some components L I of
L . By e.g. [34, p. 273], M∗ can be obtained from M by doing an integral surgery along a
framed link L ′ obtained from L I by iteratively linking in framed unknots, corresponding
to doing a sequence of the change-of-pair operations. As a consequence, we have

Proposition 1.4. Every two pairs (M, L) and (M∗, L∗) such that M\L is homeomorphic
to M∗ \ L∗ are related by a sequence of the change-of-pair operations.

1.3. Relationship with discrete Fourier transform. In the computation of the relative
Reshetikhin–Turaev invariants, the change-of-pair operation corresponds to replacing
the coloring mI on L I by the Kirby colorings �r and cabling L∗

I by the Cheby-
shev polynomials corresponding to the new coloring nI , sending RTr (M, L , m) to
RTr (M∗, L∗, (nI , mJ )), where mJ is the coloring on L J . See Sect. 2.1 for a review of
the relative Reshetikhin–Turaev invariants and Fig. 2 for an example.

These operations pictorially represent the discrete Fourier transforms. See [1] for the
original definition and [2] for an exposition in the language of skein theory. They were
also shown to be a particular case of a general construction for modular tensor categories
(see [22, Section 1] and references therein). To bemore precise, let Ir = {1, 2, . . . , r −2}
and μr =

√
2 sin π

r√
r

in the SU (2) theory and at q = e
π

√−1
r , and let Ir = {0, 2, . . . , r − 3}

and μr = 2 sin 2π
r√

r
in the SO(3) theory and at q = e

2π
√−1
r . Let

f : Inr → C

be a complex valued function on Inr for some positive integer n. Let (I, J ) be a partition
of {1, . . . , n} and let nI = (ni )i∈I be a |I |-tuple of elements of Ir . Then the nI -th partial
discrete Fourier coefficient of f is the function

f̂ (nI ) : IJ
r → C

defined for all mJ in IJ
r by

f̂ (nI )(mJ ) = μ|I |
r

∑

mI

∏

i∈I

H(mi , ni ) f (mI , mJ ),
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where the sum is over all |I |-tuples mI = (mi )i∈I of elements of Ir , and

H(m, n) = (−1)m+n q(m+1)(n+1) − q−(m+1)(n+1)

q − q−1 .

Since the coefficients H(mi , ni ) above are exactly the coefficients of the following
skein-theoretical computation

the relative Reshetikhin–Turaev invariants RTr (M∗, L∗, (nI , mJ )) of the pair (M∗, L∗)
obtained from (M, L) by a change-of-pair operation T(L I ;L∗

I )
is up to scalar the value

at mJ of the nI -th partial discrete Fourier coefficient of the function RTr (M, L , _ ) :
Inr → C. The scalar is a power of q depending on the framings of L∗

I .

It is proved in [4,12] that Turaev–Viro invariant of the complement M \ L can be
computed by the relative Reshetikhin–Turaev invariants of the pair (M, L).

Proposition 1.5 ([4,12]).

TVr (M \ L) = c
∑

m

∣
∣RTr (M, L , m)

∣
∣
2
,

where the sum is over all multi-elements m of Ir , and the constant c equals 1 in the
SU (2) theory and equals 2rankH2(M\L ,Z2) in the SO(3) theory.

By Proposition 1.3, if (M∗, L∗) and (M, L) differ by a change-of-pair operation,
then M \ L and M∗ \ L∗ are homeomorphic to each other . As a consequence, we have

Proposition 1.6.
∑

m

∣
∣RTr (M, L , m)

∣
∣
2 =

∑

n

∣
∣RTr (M∗, L∗, n)

∣
∣
2
,

where the sums are over all multi-elements m and n of Ir .

Propositions 1.3, 1.4, 1.5 and 1.6 together provide infinitely many different ways to
compute the Turaev–Viro invariants of M \ L , all of which are up to scalar related by a
sequence of partial discrete Fourier transforms. It is hopeful that among these different
expressions, some are suitable for the purpose of solving the Volume Conjecture for the
Turaev–Viro invariants [6].

Finally, as a special case, let f = RTr (M, L , _ ) : Inr → C for a pair (M, L), and
suppose that I = {1, . . . , n} and all the framings of L∗

I are zero and (M∗, L∗) is obtained
from (M, L) by T(L I ,L∗

I )
.ThenRTr (M∗, L∗, n) = f̂ (n) is then-th (full) discrete Fourier

coefficient of f. As a consequence of Proposition 1.6, we have
∑

m

| f (m)|2 =
∑

n

| f̂ (n)|2, (1.1)

where m and n are over all multi-elements of Ir . This could be considered as a Poisson
Summation Formula for the discrete Fourier transforms. (See also [2] for an asymptotic
version of the Poisson Summation Formula in the setting of Yokota invariants for colored
planar graphs.)
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1.4. Outline of the proof of Theorem 1.2. We follow the guideline of Ohtsuki’s method.
In Proposition 3.5, we compute the relative Reshetikhin–Turaev invariants of (M, L)

writing them as a sum of values of a holomorphic function fr at integer points. The
function fr comes from Faddeev’s quantum dilogarithm function. Using Poisson Sum-
mation Formula, we in Proposition 3.7 write the invariants as a sum of the Fourier
coefficients of fr computed in Propositions 3.6. In Proposition 5.2 we show that the crit-
ical value of the functions in the leading Fourier coefficients has real part the volume and
imaginary part the Chern–Simons invariant. The key observation there is a relationship
between the asymptotics of quantum 6 j-symbols and the Neumann–Zagier potential
function (Proposition 4.1), which is of interest in its own right. Then we estimate the
leading Fourier coefficients in Sect. 5.3 using the Saddle PointMethod (Proposition 5.1).
Finally, we estimate the non-leading Fourier coefficients and the error term respectively
in Sects. 5.4 and 5.5 showing that they are neglectable, and prove Theorem 3.1, which
is a refined version of Theorem 1.2, in Sect. 5.6.

2. Preliminaries

2.1. Relative Reshetikhin–Turaev invariants. In this article we will follow the skein
theoretical approach of the relative Reshetikhin–Turaev invariants [5,21] and focus on

the SO(3)-theory and the values at the root of unity q = e
2π

√−1
r for odd integers r � 3.

To be more precise, we will follow the normalization of the invariants as described in
[21].

A framed link in an oriented 3-manifold M is a smooth embedding L of a disjoint
union of finitely many thickened circles S1 × [0, ε], for some ε > 0, into M. The
Kauffman bracket skein module Kr (M) of M is the C-module generated by the isotopic
classes of framed links in M modulo the follow two relations:

(1) Kauffman Bracket Skein Relation:

(2) Framing Relation:

There is a canonical isomorphism

〈 〉 : Kr (S
3) → C

defined by sending the empty link to 1. The image 〈L〉 of the framed link L is called the
Kauffman bracket of L .

Let Kr (A×[0, 1]) be theKauffman bracket skeinmodule of the product of an annulus
A with a closed interval. For any link diagram D in R

2 with k ordered components and
b1, . . . , bk ∈ Kr (A × [0, 1]), let

〈b1, . . . , bk〉D

be the complex number obtained by cabling b1, . . . , bk along the components of D
considered as a element of Kr (S3) then taking the Kauffman bracket 〈 〉.

OnKr (A×[0, 1]) there is a commutative multiplication induced by the juxtaposition
of annuli, making it a C-algebra; and as a C-algebra Kr (A × [0, 1]) ∼= C[z], where z is
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the core curve of A. For an integer n � 0, let en(z) be the n-th Chebyshev polynomial
defined recursively by e0(z) = 1, e1(z) = z and en(z) = zen−1(z) − en−2(z). Let
Ir = {0, 2, . . . , r −3} be the set of even integers in between 0 and r −2. Then the Kirby
coloring �r ∈ Kr (A × [0, 1]) is defined by

�r = μr

∑

n∈Ir
[n + 1]en,

where

μr = 2 sin 2π
r√

r

and [n] is the quantum integer defined by

[n] = e
2nπ

√−1
r − e− 2nπ

√−1
r

e
2π

√−1
r − e− 2π

√−1
r

.

Let M be a closed oriented 3-manifold and let L be a framed link in M with n
components. Suppose M is obtained from S3 by doing a surgery along a framed link
L ′, D(L ′) is a standard diagram of L ′ (ie, the blackboard framing of D(L ′) coincides
with the framing of L ′). Then L adds extra components to D(L ′) forming a linking
diagram D(L ∪ L ′) with D(L) and D(L ′) linking in possibly a complicated way. Let
U+ be the diagram of the unknot with framing 1, σ (L ′) be the signature of the linking
matrix of L ′ and m = (m1, . . . , mn) be a multi-elements of Ir . Then the r -th relative
Reshetikhin–Turaev invariant of M with L colored by m is defined as

RTr (M, L , m) = μr 〈em1 , . . . , emn ,�r , . . . , �r 〉D(L∪L ′)〈�r 〉−σ(L ′)
U+

. (2.1)

Note that if L = ∅ or m1 = · · · = mn = 0, then RTr (M, L , m) = RTr (M),

the r -th Reshetikhin–Turaev invariant of M; and if M = S3, then RTr (M, L , m) =
μr Jm,L

(

e
4π

√−1
r

)

, the value of the m-th unnormalized colored Jones polynomial of L at

t = e
4π

√−1
r .

2.2. Hyperbolic cone manifolds. According to [7], a 3-dimensional hyperbolic cone-
manifold is a 3-manifold M,which can be triangulated so that the link of each simplex is
piecewise linear homeomorphic to a standard sphere and M is equipped with a complete
path metric such that the restriction of the metric to each simplex is isometric to a
hyperbolic geodesic simplex. The singular locus L of a cone-manifold M consists of
the points with no neighborhood isometric to a ball in a Riemannian manifold. It follows
that

(1) L is a link in M such that each component is a closed geodesic.
(2) At each point of L there is a cone angle θ which is the sum of dihedral angles of

3-simplices containing the point.
(3) The restriction of themetric on M \L is a smooth hyperbolicmetric, but is incomplete

if L �= ∅.
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Hodgson–Kerckhoff [17] proved that hyperbolic cone metrics on M with singular
locus L are locally parametrized by the cone angles provided all the cone angles are less
than or equal to 2π, and Kojima [19] proved that hyperbolic cone manifolds (M, L) are
globally rigid provided all the cone angles are less than or equal to π. It is expected to
be globally rigid if all the cone angles are less than or equal to 2π.

Given a 3-manifold N with boundary a union of tori T1, . . . , Tn, a choice of generators
(ui , vi ) for each π1(Ti ) and pairs of relatively prime integers (pi , qi ), one can do the
(

p1
q1

, . . . ,
pn
qn

)-Dehn filling on N by attaching a solid torus to each Ti so that pi ui + qivi

bounds a disk. If H(ui ) and H(vi ) are respectively the logarithmic holonomy for ui and
vi , then a solution to

piH(ui ) + qiH(vi ) = √−1θi (2.2)

near the complete structure gives a cone-manifold structure on the resulting manifold
M with the cone angle θi along the core curve Li of the solid torus attached to Ti ; it is
a smooth structure if θ1 = · · · = θn = 2π.

In this setting, the Chern–Simons invariant for a hyperbolic cone manifold (M, L)

can be defined by using the Neumann–Zagier potential function [30]. To do this, we
need a framing on each component, namely, a choice of a curve γi on Ti that is isotopic
to the core curve Li of the solid torus attached to Ti . We choose the orientation of γi so
that (pi ui + qivi ) · γi = 1. Then we consider the following function

�(H(u1), . . . ,H(un))√−1
−

n
∑

i=1

H(ui )H(vi )

4
√−1

+
n

∑

i=1

θiH(γi )

4
,

where� is the Neumann–Zagier potential function (see [30]) defined on the deformation
space of hyperbolic structures on M \ L parametrized by the holonomy of the meridians
{H(ui )}, characterized by

⎧

⎪⎪⎨

⎪⎪⎩

∂�(H(u1),...,H(un))
∂H(ui )

= H(vi )
2 ,

�(0, . . . , 0) = √−1

(

Vol(M \ L) +
√−1CS(M \ L)

)

mod π2
Z,

(2.3)

where M \ L is with the complete hyperbolic metric. Another important feature of � is
that it is even in each of its variables H(ui ).

Following the argument in [30, Sections 4 & 5], one can prove that if the cone angles
of components of L are θ1, . . . , θn, then

Vol(MLθ
) = Re

(
�(H(u1), . . . ,H(un))√−1

−
n

∑

i=1

H(ui )H(vi )

4
√−1

+
n

∑

i=1

θiH(γi )

4

)

. (2.4)

Indeed, in this case, one can replace the 2π in Equations (33) (34) and (35) of [30] by θi ,

and as a consequence can replace the π
2 in Equations (45), (46) and (48) by θi

4 , proving
the result.

In [42], Yoshida proved that when θ1 = · · · = θn = 2π,
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Vol(M) +
√−1CS(M) = �(H(u1), . . . ,H(un))√−1

−
n

∑

i=1

H(ui )H(vi )

4
√−1

+
n

∑

i=1

θiH(γi )

4
mod

√−1π2
Z.

Therefore, we can make the following

Definition 2.1. The Chern–Simons invariant of a hyperbolic cone manifold MLθ
with a

choice of the framing (γ1, . . . , γn) is defined as

CS(MLθ
) = Im

(
�(H(u1), . . . ,H(un))√−1

−
n

∑

i=1

H(ui )H(vi )

4
√−1

+
n

∑

i=1

θiH(γi )

4

)

mod π2
Z.

Then together with (2.4), we have

Vol(MLθ
) +

√−1CS(MLθ
) = �(H(u1), . . . ,H(un))√−1

−
n

∑

i=1

H(ui )H(vi )

4
√−1

+
n

∑

i=1

θiH(γi )

4
mod

√−1π2
Z. (2.5)

Remark 2.2. It is an interesting question to find a direct geometric definition of the
Chern–Simons invariants for hyperbolic cone manifolds.

2.3. Quantum 6 j -symbols. A triple (m1, m2, m3) of even integers in {0, 2, . . . , r − 3}
is r -admissible if

(1) mi + m j − mk � 0 for {i, j, k} = {1, 2, 3}, and
(2) m1 + m2 + m3 � 2(r − 2).

For an r -admissible triple (m1, m2, m3), define


(m1, m2, m3) =
√

[m1+m2−m3
2 ]![m2+m3−m1

2 ]![m3+m1−m2
2 ]!

[m1+m2+m3
2 + 1]!

with the convention that
√

x = √|x |√−1 when the real number x is negative, and recall
that the quantum factorial is defined as

[n]! =
n
∏

k=1

[k]

with the convention that [0]! = 1.
A 6-tuple (m1, . . . , m6) is r -admissible if the triples (m1, m2, m3), (m1, m5, m6),

(m2, m4, m6) and (m3, m4, m5) are r -admissible
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Definition 2.3. The quantum 6 j -symbol of an r -admissible 6-tuple (m1, . . . , m6) is
∣
∣
∣
∣

m1 m2 m3

m4 m5 m6

∣
∣
∣
∣
= √−1

−∑6
i=1 mi


(m1, m2, m3)
(m1, m5, m6)
(m2, m4, m6)
(m3, m4, m5)

min{Q1,Q2,Q3}∑

k=max{T1,T2,T3,T4}

(−1)k[k + 1]!
[k − T1]![k − T2]![k − T3]![k − T4]![Q1 − k]![Q2 − k]![Q3 − k]! ,

where T1 = m1+m2+m3
2 , T2 = m1+m5+m6

2 , T3 = m2+m4+m6
2 and T4 = m3+m4+m5

2 , Q1 =
m1+m2+m4+m5

2 , Q2 = m1+m3+m4+m6
2 and Q3 = m2+m3+m5+m6

2 .

Here we recall a classical result of Costantino [8] which was originally stated at the

root of unity q = e
π

√−1
r . At the root of unity q = e

2π
√−1
r , see [4, Appendix] for a

detailed proof.

Theorem 2.4 ([8]). Let {(m(r)
1 , . . . , m(r)

6 )} be a sequence of r-admissible 6-tuples, and
let

θi =
∣
∣
∣π − lim

r→∞
2πm(r)

i

r

∣
∣
∣.

If θ1, . . . , θ6 are the dihedral angles of a truncated hyperideal tetrahedron 
, then as r
varies over all the odd integers

lim
r→∞

2π

r
log

∣
∣
∣
∣

m(r)
1 m(r)

2 m(r)
3

m(r)
4 m(r)

5 m(r)
6

∣
∣
∣
∣
q=e

2π
√−1
r

= V ol(
).

Closely related, a triple (α1, α2, α3) ∈ [0, 2π ]3 is admissible if

(1) αi + α j − αk � 0 for {i, j, k} = {1, 2, 3}, and
(2) αi + α j + αk � 4π.

A 6-tuple (α1, . . . , α6) ∈ [0, 2π ]6 is admissible if the triples (α1, α2, α3), (α1, α5, α6),

(α2, α4, α6) and (α3, α4, α5) are admissible.

2.4. Fundamental shadow links. In this section we recall the construction and basic
properties of the fundamental shadow links. The building blocks for the fundamental
shadow links are truncated tetrahedra as in the left of Fig. 3. If we take c building
blocks 
1, . . . ,
c and glue them together along the triangles of truncation, we obtain a
(possibly non-orientable) handlebody of genus c+1with a link in its boundary consisting
of the edges of the building blocks, such as in the right of Fig. 3. By taking the orientable
double (the orientable double covering with the boundary quotient out by the deck
involution) of this handlebody, we obtain a link LFSL inside Mc = #c+1(S2 × S1).

We call a link obtained this way a fundamental shadow link, and its complement in
Mc a fundamental shadow link complement. Alternatively, to construct a fundamental
shadow link complement, we can also take the double of each tetrahedron first along
the hexagonal faces and then glue the resulting pieces together along homeomorphisms
between the 3-puncture spheres coming from the double of the triangles of truncation.

The fundamental importance of the family of the fundamental shadow links is the
following.
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Fig. 3. The handlebody on the right is obtained from the truncated tetrahedron on the left by identifying the
triangles on the top and the bottom by a horizontal reflection and the triangles on the left and the right by a
vertical reflection

Fig. 4. .

Theorem 2.5 ([10]). Any compact oriented 3-manifold with toroidal or empty boundary
can be obtained from a suitable fundamental shadow link complement by doing an
integral Dehn-filling to some of the boundary components.

A hyperbolic cone metric on Mc with singular locus LFSL and with sufficiently
small cone angles θ1, . . . , θn can be constructed as follows. For each s ∈ {1, . . . , c}, let
es1 , . . . , es6 be the edges of the building block 
s, and let θs j be the cone angle of the

component of L containing es j . If θi ’s are sufficiently small, then
{ θs1

2 , . . . ,
θs6
2

}

form
the set of dihedral angles of a truncated hyperideal tetrahedron, by abuse of notation
still denoted by 
s . Then the hyperbolic cone manifold Mc with singular locus LFSL
and cone angles θ1, . . . , θn is obtained by glueing 
s’s together along isometries of the
triangles of truncation, and taking the double. In this metric, the logarithmic holonomy
of the meridian ui of the tubular neighborhood N (Li ) of Li satisfies

H(ui ) = √−1θi . (2.6)

A preferred longitude vi on the boundary of N (Li ) can be chosen as follows. Recall that
a fundamental shadow link is obtained from the double of a set of truncated tetrahedra
(along the hexagonal faces) glued together by orientation preserving homeomorphisms
between the trice-punctured spheres coming from the double of the triangles of trunca-
tion, and recall also that the mapping class group of trice-punctured sphere is generated
by mutations, which could be represented by the four 3-braids in Fig. 4. For each mu-
tation, we assign an integer ±1 to each component of the braid as in Fig. 4; and for a
composition of a sequence of mutations, we assign the sum of the ±1 assigned by the
mutations to each component of the 3-braid.

In thisway, eachorientationpreservinghomeomorphismsbetween the trice-punctured
spheres assigns three integers to three of the components of LFSL, one for each. For each
i ∈ {1, . . . , n}, let ιi be the sum of all the integers on Li assigned by the homeomor-
phisms between the trice-punctured spheres. Then we can choose a preferred longitude
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vi such that ui · vi = 1 and the logarithmic holomony satisfies

H(vi ) = −li +
ιi
√−1θi

2
, (2.7)

where li is the length of the closed geodesic Li . In this way, a framing on Li gives
an integer pi in the way that the parallel copy of Li on N (Li ) is isotopic to the curve
representing pi ui + vi .

Proposition 2.6 ([8,9]). If LFSL = L1∪· · ·∪Ln ⊂ Mc is a framed fundamental shadow
link with framing pi on Li , and m = (m1, . . . , mn) is a coloring of its components with
even integers in {0, 2, . . . , r − 3}, then

RTr(Mc, LFSL, m) =
(
2 sin 2π

r√
r

)−c n
∏

i=1

(−1)
ιi mi
2 q(pi+

ιi
2 )

mi (mi +2)
2

c
∏

s=1

∣
∣
∣
∣

ms1 ms2 ms3
ms4 ms5 ms6

∣
∣
∣
∣
,

where ms1 , . . . , ms6 are the colors of the edges of the building block 
s inherited from
the color m on LFSL.

Next, we talk about the volume and the Chern–Simons invariant of Mc \ LFSL at the
complete hyperbolic structure. In the complete hyperbolic metric, since Mc \ LFSL is
the union of 2c regular ideal octahedra, we have

Vol(Mc \ LFSL) = 2cv8, (2.8)

where v8 is the volume of the regular ideal octahedron.
For the Chern–Simons invariant, in the case that the truncated tetrahedra
1, . . . ,
c

are glued together along the triangles of truncation via orientation reversing maps, Mc \
LFSL is the ordinary double of the orientable handlebody, which admits an orientation
reversing self-homeomorphism. Hence by [25, Corollary 2.5],

CS(Mc \ LFSL) = 0 mod π2
Z

at the complete hyperbolic structure. In the general case, a fundamental shadow link
complement Mc \ LFSL can be obtained from one from the previous case by doing
a sequence of mutations along the thrice-punctured spheres coming from the double
of the triangles of truncation. Therefore, by [24, Theorem 2.4] that a mutation along
an incompressible trice-punctured sphere in a hyperbolic three manifold changes the
Chern–Simons invariant by π2

2 , we have

CS(Mc \ LFSL) =
( n
∑

i=1

ιi

2

)

π2 mod π2
Z. (2.9)

Together with Theorem 2.4 and the construction of the hyperbolic cone structure, we
see that Conjecture 1.1 is true for (Mc, LFSL). This was first proved by Costantino in

[8] at the root of unity q = e
π

√−1
r .
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2.5. Dilogarithm and quantum dilogarithm functions. Let log : C \ (−∞, 0] → C be
the standard logarithm function defined by

log z = log |z| + √−1 arg z

with −π < arg z < π.

The dilogarithm function Li2 : C \ (1,∞) → C is defined by

Li2(z) = −
∫ z

0

log(1 − u)

u
du

where the integral is along any path in C \ (1,∞) connecting 0 and z, which is holo-
morphic in C \ [1,∞) and continuous in C \ (1,∞).

The dilogarithm function satisfies the follow properties (see eg. Zagier [43]).

(1)

Li2
(1

z

)

= −Li2(z) − π2

6
− 1

2

(

log(−z)
)2

. (2.10)

(2) In the unit disk
{

z ∈ C
∣
∣ |z| < 1

}

,

Li2(z) =
∞
∑

n=1

zn

n2 . (2.11)

(3) On the unit circle
{

z = e2
√−1θ

∣
∣ 0 � θ � π

}

,

Li2(e
2
√−1θ ) = π2

6
+ θ(θ − π) + 2

√−1
(θ). (2.12)

Here 
 : R → R is the Lobachevsky function defined by


(θ) = −
∫ θ

0
log |2 sin t |dt,

which is an odd function of period π. See eg. Thurston’s notes [36, Chapter 7].
The following variant of Faddeev’s quantum dilogarithm functions [13,14] will play

a key role in the proof of the main result. Let r � 3 be an odd integer. Then the following
contour integral

ϕr (z) = 4π
√−1

r

∫

�

e(2z−π)x

4x sinh(πx) sinh( 2πx
r )

dx (2.13)

defines a holomorphic function on the domain
{

z ∈ C

∣
∣
∣ − π

r
< Rez < π +

π

r

}

,

where the contour is

� = ( − ∞,−ε
] ∪ {

z ∈ C
∣
∣|z| = ε, Imz > 0

} ∪ [

ε,∞)

,

for some ε ∈ (0, 1). Note that the integrand has poles at n
√−1, n ∈ Z, and the choice

of � is to avoid the pole at 0.
The function ϕr (z) satisfies the following fundamental properties, whose proof can

be found in [39, Section 2.3].
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Lemma 2.7. (1) For z ∈ C with 0 < Rez < π,

1 − e2
√−1z = e

r
4π

√−1

(

ϕr

(

z− π
r

)

−ϕr

(

z+ π
r

))

. (2.14)

(2) For z ∈ C with −π
r < Rez < π

r ,

1 + er
√−1z = e

r
4π

√−1

(

ϕr (z)−ϕr

(

z+π
))

. (2.15)

Using (2.14) and (2.15), for z ∈ C with π + 2(n−1)π
r < Rez < π + 2nπ

r , we can
define ϕr (z) inductively by the relation

n
∏

k=1

(

1 − e2
√−1

(

z− (2k−1)π
r

))

= e
r

4π
√−1

(

ϕr

(

z− 2nπ
r

)

−ϕr (z)

)

, (2.16)

extending ϕr (z) to a meromorphic function on C. The poles of ϕr (z) have the form
(a + 1)π + bπ

r or −aπ − bπ
r for all nonnegative integer a and positive odd integer b.

Let q = e
2π

√−1
r , and let

(q)n =
n
∏

k=1

(1 − q2k).

Lemma 2.8. (1) For 0 � n � r − 2,

(q)n = e
r

4π
√−1

(

ϕr

(
π
r

)

−ϕr

(
2πn

r + π
r

))

. (2.17)

(2) For r−1
2 � n � r − 2,

(q)n = 2e
r

4π
√−1

(

ϕr

(
π
r

)

−ϕr

(
2πn

r + π
r −π

))

. (2.18)

We consider (2.18) because there are poles in (π, 2π), and to avoid the poles we
move the variables to (0, π) by subtracting π.

If we let

{n} = qn − q−n

and let

{n}! =
n
∏

k=1

{k} and {0}! = 0,

then

{n}! = (−1)nq− n(n+1)
2 (q)n .

As a consequence of Lemma 2.8, we have



Relative Reshetikhin–Turaev Invariants 1033

Lemma 2.9. (1) For 0 � n � r − 2,

{n}! = e
r

4π
√−1

(

−2π
(
2πn

r

)

+
(
2π
r

)2
(n2+n)+ϕr

(
π
r

)

−ϕr

(
2πn

r + π
r

))

. (2.19)

(2) For r−1
2 � n � r − 2,

{n}! = 2e
r

4π
√−1

(

−2π
(
2πn

r

)

+
(
2π
r

)2
(n2+n)+ϕr

(
π
r

)

−ϕr

(
2πn

r + π
r −π

))

. (2.20)

The function ϕr (z) and the dilogarithm function are closely related as follows.

Lemma 2.10. (1) For every z with 0 < Rez < π,

ϕr (z) = Li2(e
2
√−1z) +

2π2e2
√−1z

3(1 − e2
√−1z)

1

r2
+ O

( 1

r4

)

. (2.21)

(2) For every z with 0 < Rez < π,

ϕ′
r (z) = −2

√−1 log(1 − e2
√−1z) + O

( 1

r2

)

. (2.22)

(3) [32, Formula (8)(9)]

ϕr

(π

r

)

= Li2(1) +
2π

√−1

r
log

( r

2

)

− π2

r
+ O

( 1

r2

)

.

3. Computation of the Relative Reshetikhin–Turaev Invariants

The goal of this section is to compute the relative Reshetikhin–Turaev invariants of
(M, L). In Proposition 3.5, we write the invariants as a sum of values of a fixed holo-
morphic function at the integer points. The holomorphic function comes from Faddeev’s
quantum dilogarithm function. Using the Poisson Summation Formula, we in Proposi-
tion 3.7 write the invariants as a sum of the Fourier coefficients of the holomorphic
function, which is computed in Propositions 3.6.

Let LFSL = L1 ∪ · · · ∪ Ln be a fundamental shadow link in Mc = #c+1(S2 × S1),

and let L ′ ⊂ S3 be the disjoint union of c + 1 unknots with the 0-framings by doing
surgery along which we get Mc. Let (I, J ) be a partition of {1, . . . , n}, and let (M, L)

be the pair obtained from (Mc, LFSL) by doing a change-of-pair operation T(L I ;L∗
I )
as

introduced in Sect. 1.2, ie., M = (Mc)L I and L = L∗
I ∪ L J , where L∗

I = ∪i∈I L∗
i and

L∗
i is the framed unknot in Mc \ LFSL with the core curve isotopic to the meridian of the

tubular neighborhood of Li . Let nI be a coloring of L∗
I and let mJ be a coloring of L J .

Then Theorem 1.2 can be rephrased as follows.

Theorem 3.1. For i ∈ I, let

θi =
∣
∣
∣2π − lim

r→∞
4πni

r

∣
∣
∣;

and for j ∈ J, let

θ j =
∣
∣
∣2π − lim

r→∞
4πm j

r

∣
∣
∣.
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Let θ = (θ1, . . . , θn) and let MLθ
be the hyperbolic cone manifold consisting of M and

a hyperbolic cone metric on M with singular locus L and cone angles θ . Then there
exists an ε > 0 such that if all the cone angles θk are less than ε, then as r varies over
all the odd integers

lim
r→∞

4π

r
logRTr (M, L , (nI , mJ )) = Vol(MLθ

) +
√−1CS(MLθ

) mod
√−1π2

Z.

The goal of the rest of this paper is to prove Theorem 3.1.
Suppose L∗

i has the framing qi and Li has the framing pi for each i ∈ I, and L j has
the framing p j for each j ∈ J. Then the r -th relative Reshetikin–Turaev invariant of M
with L colored by (nI , mJ ) can be computed as

RTr (M, L , (nI , mJ ))

=
(
2 sin 2π

r√
r

)|I |−c

e−σ(L ′∪L I )
(

− 3
r − r+1

4

)√−1π

∏

i∈I

q
qi ni (ni +2)

2
∏

j∈J

(−1)
ι j m j
2 q

(

p j+
ι j
2

)m j (m j +2)
2

(
∑

mI

∏

i∈I

(−1)
ιi mi
2 q

(

pi+
ιi
2

)
mi (mi +2)

2 [(mi + 1)(ni + 1)]
c
∏

s=1

∣
∣
∣
∣

ms1 ms2 ms3
ms4 ms5 ms6

∣
∣
∣
∣

)

,

(3.1)

where the sum is over all multi-even integers mI = (mi )i∈I in {0, 2, . . . , r − 3}, and
ms1, . . . , ms6 are the colors of the edges of the building block 
s inherited from the
colors on LFSL.

In the rest of this section,we aim towrite RTr (M, L , (nI ; mJ )) into a sumof integrals
using the Poisson Summation Formula. This requires writing the invariant into the sum
of the values of a fixed holomorphic function. To this end,we look at the a single quantum
6 j-symbol first.

Definition 3.2. An r -admissible 6-tuple (m1, . . . , m6) is of the hyperideal type if for
{i, j, k} = {1, 2, 3}, {1, 5, 6}, {2, 4, 6} and {3, 4, 5},
(1) 0 � mi + m j − mk < r − 2, and
(2) r − 2 � mi + m j + mk � 2(r − 2).

Definition 3.3. A6-tuple (α1, . . . , α6) ∈ [0, 2π ]6 is of thehyperideal type if for {i, j, k} =
{1, 2, 3}, {1, 5, 6}, {2, 4, 6} and {3, 4, 5},
(1) 0 � αi + α j − αk � 2π, and
(2) 2π � αi + α j + αk � 4π.

We notice that the six numbers |α1 −π |, . . . , |α6 −π | are the dihedral angles of an ideal
or a hyperideal tetrahedron if and only if (α1, . . . , α6) is of the hyperideal type.

As a consequence of Lemma 2.9 we have

Proposition 3.4. The quantum 6 j -symbol at the root of unity q = e
2π

√−1
r can be com-

puted as

∣
∣
∣
∣

m1 m2 m3
m4 m5 m6

∣
∣
∣
∣
= {1}

2

min{Q1,Q2,Q3,r−2}
∑

k=max{T1,T2,T3,T4}
e

r
4π

√−1
Ur

(
2πm1

r ,...,
2πm6

r , 2πk
r

)

,
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where Ur is defined as follows. If (m1, . . . , m6) is of the hyperideal type, then

Ur (α1, . . . , α6, ξ) = π2 −
(2π

r

)2
+
1

2

4
∑

i=1

3
∑

j=1

(η j − τi )
2 − 1

2

4
∑

i=1

(

τi +
2π

r
− π

)2

+
(

ξ +
2π

r
− π

)2 −
4

∑

i=1

(ξ − τi )
2 −

3
∑

j=1

(η j − ξ)2

− 2ϕr

(π

r

)

− 1

2

4
∑

i=1

3
∑

j=1

ϕr

(

η j − τi +
π

r

)

+
1

2

4
∑

i=1

ϕr

(

τi − π +
3π

r

)

− ϕr

(

ξ − π +
3π

r

)

+
4

∑

i=1

ϕr

(

ξ − τi +
π

r

)

+
3

∑

j=1

ϕr

(

η j − ξ +
π

r

)

,

(3.2)

where τ1 = α1+α2+α3
2 , τ2 = α1+α5+α6

2 , τ3 = α2+α4+α6
2 and τ4 = α3+α4+α5

2 , η1 =
α1+α2+α4+α5

2 , η2 = α1+α3+α4+α6
2 and η3 = α2+α3+α5+α6

2 . If (m1, . . . , m6) is not of the
hyperideal type, then Ur will be changed according to Lemma 2.9.

As a consequence, we have

Proposition 3.5.

RTr (M, L , (nI , mJ )) = κr

∑

mI ,k

(∑

εI

gεI
r (mI , k)

)

,

where

κr = 2|I |−2c

{1}|I |−c

(
sin 2π

r√
r

)|I |−c

e
(

−σ(L ′∪L I )(− 3
r − r+1

4 )− r
4 (
∑

i∈I qi+
∑n

i=1 pi+2|I |)
)√−1π

,

εI = (εi )i∈I ∈ {1,−1}|I | runs over all multi-signs, mI = (mi )i∈I runs over all
multi-even integers in {0, 2, . . . , r − 3} so that for each s ∈ {1, . . . , c} the triples
(ms1 , ms2 , ms3), (ms1, ms5 , ms6), (ms2 , ms4 , ms6) and (ms3 , ms4 , ms5) are r-admissible,
and k = (k1, . . . , kc) runs over all multi-integers with each ks lying in betweenmax{Tsi }
and min{Qs j , r − 2}, with

gεI
r (mI , k) = e

2π
√−1
r

(
∑

i∈I qi ni+
∑n

i=1

(

pi+
ιi
2

)

mi+
∑

i∈I εi (mi+ni+1)

)

+ r
4π

√−1
WεI

r (
2πmI

r , 2πk
r )

where 2πmI
r =

(
2πmi

r

)

i∈I
, 2πk

r =
(
2πk1

r , . . . , 2πkc
r

)

, and

WεI
r (α I , ξ) = −

∑

i∈I

qi (βi − π)2 −
∑

j∈J

p j (α j − π)2

−
∑

i∈I

pi (αi − π)2 −
∑

i∈I

2εi (αi − π)(βi − π)

−
n

∑

i=1

ιi

2
(αi − π)2 +

c
∑

s=1

Ur (αs1 , . . . , αs6 , ξs) +
( n
∑

i=1

ιi

2

)

π2

with βi = 2πni
r for i ∈ I and α j = 2πm j

r for j ∈ J.
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Proof. For even integers m and n, we have

q
n(n+2)

2 =
(

e
π

√−1
4

)−r
q

1
2

(

n− r
2

)2
+n

,

(−1)
n
2 q

n(n+2)
4 =

(

e
π

√−1
8

)−r
q

1
4

(

n− r
2

)2
+ n
2 = e

r
4π

√−1

(
π2
2

)

q
1
4

(

n− r
2

)2
+ n
2 ,

q(m+1)(n+1) =
(

e
π

√−1
2

)−r
q
(

m− r
2

)(

n− r
2

)

+m+n+1
,

and

q−(m+1)(n+1) = −
(

e
π

√−1
2

)−r
q−

(

m− r
2

)(

n− r
2

)

−m−n−1
.

As a consequence, we have

[(mi + 1)(ni + 1)] = 1

q − q−1

(

q(mi+1)(ni+1) − q−(mi+1)(ni+1)
)

= (e
π

√−1
2 )−r

q − q−1

(

q
(

(mi − r
2 )(ni − r

2 )+mi+ni+1
)

+ q−
(

(mi − r
2 )(ni − r

2 )+mi+ni+1
))

= e− rπ
√−1
2

{1}
∑

εi ∈{−1,1}
qεi

(

(mi − r
2 )(ni − r

2 )+mi+ni+1
)

= e− rπ
√−1
2

{1}
∑

εi ∈{−1,1}
e
εi

2
√−1π(ai +bi +1)

r + r
4π

√−1

(

−2εi

( 2πai
r −π

)( 2πbi
r −π

))

,

and hence
∏

i∈I

[(mi + 1)(ni + 1)]

= e− rπ
√−1
2 |I |

{1}|I |
∑

εI ∈{−1,1}|I |
e
∑

i∈I εi
2
√−1π(mi +ni +1)

r + r
4π

√−1

∑

i∈I

(

−2εi

(
2πmi

r −π
)(

2πni
r −π

))

= e− rπ
√−1
2 |I |

{1}|I |
∑

εI ∈{−1,1}|I |
e
∑

i∈I εi
√−1(αi+βi+

2π
r )+ r

4π
√−1

∑

i∈I

(

−2εi (αi −π)(βi −π)
)

.

Then the result follows from (3.1) and Proposition 3.4. ��
We notice that the summation in Proposition 3.5 is finite, and to use the Poisson

Summation Formula, we need an infinite sum over integral points. To this end, we
consider the following regions and a bump function over them.

Let βi = 2πni
r for i ∈ I, αi = 2πmi

r for i = 1, . . . , n, ξs = 2πks
r for s = 1, . . . , c,

τsi = 2πTsi
r for i = 1, . . . , 4, and ηs j = 2π Qs j

r for j = 1, 2, 3. For a fixed (α j ) j∈J , let

DA =
{

(α I , ξ) ∈ R
|I |+c

∣
∣
∣ (αs1 , . . . , αs6) is admissible, max{τsi } � ξs � min{ηs j , 2π},

s = 1, . . . , c
}

.
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and let

DH =
{

(α I , ξ) ∈ DA

∣
∣
∣ (αs1 , . . . , αs6) is of the hyperideal type, s = 1, . . . , c

}

.

For a sufficiently small δ > 0, let

Dδ
H =

{

(α I , ξ) ∈ DH

∣
∣
∣ d((α I , ξ), ∂DH) > δ

}

,

where d is the Euclidean distance on R
n . Let ψ : R

|I |+c → R be the C∞-smooth bump
function supported on (DH,Dδ

H), ie,
⎧

⎪⎨

⎪⎩

ψ(α I , ξ) = 1, (α I , ξ) ∈ Dδ
H

0 < ψ(α I , ξ) < 1, (α I , ξ) ∈ DH \ Dδ
H

ψ(α I , ξ) = 0, (α I , ξ) /∈ DH,

and let

f εI
r (mI , k) = ψ

(2πmI

r
,
2πk

r

)

gεI
r (mI , k).

In Proposition 3.5, mI runs over multi-even integers. On the other hand, to use the
Poisson Summation Formula, we need a sum over all multi-integers. For this purpose,
we for each i ∈ I let mi = 2m′

i and let m′
I = (m′

i )i∈I . Then by Proposition 3.5,

RTr (M, L , (nI , mJ )) = κr

∑

(m′
I ,k)∈Z|I |+c

( ∑

εI ∈{1,−1}|I |
f εI
r

(

2m′
I , k

))

+ error term.

Let

fr =
∑

εI ∈{1,−1}|I |
f εI
r .

Then

RTr (M, L , (nI , mJ )) = κr

∑

(m′
I ,k)∈Z|I |+c

fr
(

2m′
I , k

)

+ error term.

Since fr is C∞-smooth and equals zero out of DH, it is in the Schwartz space on
R

|I |+c. Then by the Poisson Summation Formula (see e.g. [35, Theorem 3.1]),
∑

(m′
I ,k)∈Z|I |+c

fr
(

2m′
I , k

) =
∑

(aI ,b)∈Z|I |+c

f̂r (aI , b),

where aI = (ai )i∈I ∈ Z
I , b = (b1, . . . , bc) ∈ Z

c and f̂r (aI , b) is the (aI , b)-th Fourier
coefficient of fr defined by

f̂r (aI , b) =
∫

R|I |+c
fr
(

2m′
I , k

)

e
∑

i∈I 2π
√−1ai m′

i+
∑c

s=1 2π
√−1bs ks dm′

I dk,

where dm′
I dk = ∏

i∈I dm′
i

∏c
s=1 dks .

By a change of variable, and by changing 2m′
i back to mi , the Fourier coefficients

can be computed as
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Proposition 3.6.

f̂r (aI , b) =
∑

εI ∈{1,−1}|I |
̂f εI

r (aI , b)

with

̂f εI
r (aI , b) = r |I |+c

22|I |+c · π |I |+c

∫

DH

ψ(α I , ξ)e
(∑

i∈I qi βi+
∑n

i=1

(

pi+
ιi
2

)

αi+
∑

i∈I εi (αi+βi+
2π
r )

)√−1

· e
r

4π
√−1

(

WεI
r (α I ,ξ )−∑

i∈I 2πai αi −∑c
s=1 4πbsξs

)

dα I dξ ,

where dα I dξ = ∏

i∈I dαi
∏c

s=1 dξs, and WεI
r (α I , ξ) is as defined in Proposition 3.5.

Proposition 3.7.

RTr (M, L , (nI , mJ )) = κr

∑

(aI ,b)∈Z|I |+c

f̂r (aI , b) + error term.

Wewill estimate the leading Fourier coefficients, the non-leading Fourier coefficients
and the error term respectively in Sections 5.3, 5.4 and 5.5, and prove Theorem 3.1 in
Sect. 5.6.

4. Relationship with the Neumann–Zagier Potential Function

The goal of this section is to show the relationship between WεI
r and the Neumann–

Zagier potential function [30] of the fundamental shadow link complement Mc \ LFSL.

To this end, we need to first look at the function U coming from a single 6 j-symbol,
and to recall its relationship with the volume of a truncated hyperideal tetrahedron.

By Lemma 2.10, WεI
r is approximated by the holomorphic function WεI defined

below, which will play an important role later. (The approximation will be specified in
the proof of Proposition 5.5.) The function WεI is defined by

WεI (α I , ξ) = −
∑

i∈I

qi (βi − π)2 −
∑

j∈J

p j (α j − π)2

−
∑

i∈I

pi (αi − π)2 −
∑

i∈I

2εi (αi − π)(βi − π)

−
n

∑

i=1

ιi

2
(αi − π)2 +

c
∑

s=1

U (αs1 , . . . , αs6 , ξs) +
( n
∑

i=1

ιi

2

)

π2
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with U defined by

U (α1, . . . , α6, ξ) = π2 +
1

2

4
∑

i=1

3
∑

j=1

(η j − τi )
2 − 1

2

4
∑

i=1

(τi − π)2

+ (ξ − π)2 −
4

∑

i=1

(ξ − τi )
2 −

3
∑

j=1

(η j − ξ)2

− 2Li2(1) − 1

2

4
∑

i=1

3
∑

j=1

Li2
(

e2i(η j −τi )
)

+
1

2

4
∑

i=1

Li2
(

e2i(τi −π)
)

− Li2
(

e2i(ξ−π)
)

+
4

∑

i=1

Li2
(

e2i(ξ−τi )
)

+
3

∑

j=1

Li2
(

e2i(η j −ξ)
)

.

(4.1)

We note that U defines a holomorphic function on the region

BH,C = {

(α, ξ) ∈ C
7 | Re(α) is of the hyperideal type,

max{Re(τi )} � Re(ξ) � min{Re(η j ), 2π}}

where α = (α1, . . . , α6) and Re(α) = (Re(α1), . . . ,Re(α6)); and WεI is continuous
on

DH,C = {

(α I , ξ) ∈ C
|I |+c

∣
∣ (Re(α I ),Re(ξ)) ∈ DH

}

and for any δ > 0 is analytic on

Dδ
H,C = {

(α I , ξ) ∈ C
|I |+c

∣
∣ (Re(α I ),Re(ξ)) ∈ Dδ

H

}

,

where Re(α I ) = (Re(αi ))i∈I and Re(ξ) = (Re(ξ1), . . . ,Re(ξc)).

Let

BH = BH,C ∩ R
7.

Then by (2.12), for (α1, . . . , α6, ξ) ∈ BH,

U (α1, . . . , α6, ξ) = 2π2 + 2
√−1V (α1, . . . , α6, ξ) (4.2)

for V : BH → R defined by

V (α1, . . . , α6, ξ) = δ(α1, α2, α3) + δ(α1, α5, α6) + δ(α2, α4, α6) + δ(α3, α4, α5)

− 
(ξ) +
4

∑

i=1


(ξ − τi ) +
3

∑

j=1


(η j − ξ),
(4.3)

where δ is defined by

δ(x, y, z) = −1

2


( x + y − z

2

)

− 1

2


( y + z − x

2

)

− 1

2


( z + x − y

2

)

+
1

2


( x + y + z

2

)

.
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A result of Costantino [8] shows that for each α = (α1, . . . , α6) of the hyperideal
type, there exists a unique ξ(α) so that (α, ξ(α)) ∈ BH and

∂V (α, ξ)

∂ξ

∣
∣
∣
ξ=ξ(α)

= 0. (4.4)

Indeed, he proves that for each α, V is strictly concave down in ξ with derivatives ±∞
at the boundary points of the interval of ξ, hence there is a unique critical point ξ(α)

at which V achieves the absolute maximum. Moreover, by using the Murakami–Yano
formula [28,37] he shows that

V (α, ξ(α)) = Vol(
|α−π |), (4.5)

the volume of the ideal or the truncated hyperideal tetrahedron with dihedral angles
|α1 − π |, . . . , |α6 − π |. Let l1, . . . , l6 be the lengths of the edges of 
|α−π |, and let
ui = 2

√−1|αi − π | for i ∈ {1, . . . , 6}. Then by the Schläfi formula, we have

∂U (α, ξ(α))

∂ui
= − li

2
. (4.6)

For α = (α1, . . . , α6) ∈ C
6 such that (Re(α1), . . . ,Re(α6)) is of the hyperideal type,

we let ξ(α) be such that

∂U (α, ξ)

∂ξ

∣
∣
∣
ξ=ξ(α)

= 0. (4.7)

Following the idea of [29], see also [3], it is proved that e−2
√−1ξ(α) satisfies a concrete

quadratic equation. Therefore, for each such α, there is at most one ξ(α) such that
(α, ξ(α)) ∈ BH,C. At this point, we do not know whether (α, ξ(α)) ∈ BH,C for all such
α, but in the next section we will show that it is the case if all Re(α1), . . . ,Re(α6) are
sufficiently close to π.

For s ∈ {1, . . . , c}, let αs = (αs1 , . . . , αs6). We define the following function

U(α I ,α J ) = −
n

∑

i=1

ιi

2
(αi − π)2 +

c
∑

s=1

U (αs, ξ(αs)) +
( n
∑

i

ιi

2

)

π2

for all α I such that (αs, ξ(αs)) ∈ BH,C for all s ∈ {1, . . . , c}.
The next proposition shows that with an appropriate choice of the meridians and

longitudes, the value of U coincides with the value of the Neumann–Zagier potential
function [30] defined on a neighborhood of the complete structure in the deformation
space of Mc \ LFSL.

Proposition 4.1. For each component Ti of the boundary of Mc \ LFSL, choose the basis
(ui , vi ) of π1(Ti ) as in (2.6) and (2.7), and let � be the Neumann–Zagier potential
function characterized by

⎧

⎨

⎩

∂�(H(u1),...,H(un))
∂H(ui )

= H(vi )
2 ,

�(0, . . . , 0) = √−1

(

Vol(Mc \ LFSL) +
√−1CS(Mc \ LFSL)

)

mod π2
Z,

(4.8)

where Mc \ LFSL is with the complete hyperbolic metric. If H(ui ) = ±2
√−1(αi − π)

for each i ∈ {1, . . . , n}, then

U(α I ,α J ) = 2cπ2 + �(H(u1), . . . ,H(un)).
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Proof. We assume that H(ui ) = 2
√−1(αi −π), and the case H(ui ) = −2

√−1(αi −π)

follows from the fact that � is even in its variables.
From the construction of LFSL in Sect. 2.4, the component Li = ∪es j , where es j is

the j-th edge of the building block 
s for s coming from a subset S of {1, . . . , c} and j
coming from a subset of {1, . . . , 6} depending on s. Let li be the lengths of Li and let
ls j be the length of es j for each s j . Then by (2.6), (2.7) and (4.6), we have

∂U(α I ,α J )

∂H(ui )
=

∑

s∈S

∂U (αs, ξ(αs))

∂H(ui )
+

ιiH(ui )

4

=
∑

s j

− ls j

2
+

ιi
√−1θi

4
= − li

2
+

ιi
√−1θi

4
= H(vi )

2
.

(4.9)

This means ∂U
∂H(ui )

and ∂�
∂H(ui )

coincide for purely imaginary variables for each i ∈ I.

Then by Lemma 4.2 below, ∂U
∂H(ui )

and ∂�
∂H(ui )

coincide, verifying the first equality of
(4.8).

For the second equality of (4.8), we have

U(π, . . . , π) = 2cπ2 + 2cv8
√−1 +

( n
∑

i=1

ιi

2

)

π2,

where v8 is the volume of the regular ideal octahedron. Then by (2.8) and (2.9), we have

U(π, . . . , π) = 2cπ2 + �(0, . . . , 0) mod π2
Z.

��
Lemma 4.2. Suppose D is a domain of C

n and F1 and F2 are two holomorphic functions
on D. If F1 and F2 coincide on D ∩ (

√−1R)n, then F1 and F2 coincide on D.

Proof. We use induction on n. If n = 1, then the result follows from the Identity The-
orem of a single variable analytic function. Now suppose the result is true for n � k.

For each fixed (z2, . . . , zk) ∈ (
√−1R)k−1, by the assumption of the lemma, we have

F1(z1, z2, . . . , zk) = F2(z1, z2, . . . , zk) for any purely imaginary z1. Then by the sin-
gle variable case F1(z1, z2, . . . , zk) = F2(z1, z2, . . . , zk) for any complex z1. This
equality can also be understood as for any fixed complex z1, F1(z1, z2, . . . , zk) =
F2(z1, z2, . . . , zk) for all purely imaginary (z2, . . . , zk). Then by the induction hypoth-
esis, we have F1(z1, z2, . . . , zk) = F2(z1, z2, . . . , zk) for all (z2, . . . , zk). ��

5. Asymptotics

The goal of this section is to prove Theorem 3.1. The main tool we use is Proposition
5.1, which is a generalization of the standard Saddle Point Approximation [31]. For the
readers’ convenience, we include a proof of Proposition 5.1 in Appendix A.

Proposition 5.1. Let Dz be a region in C
n and let Da be a region in R

k . Let f (z, a)

and g(z, a) be complex valued functions on Dz × Da which are holomorphic in z and
smooth in a. For each positive integer r, let fr (z, a) be a complex valued function on
Dz × Da holomorphic in z and smooth in a. For a fixed a ∈ Da, let f a, ga and f a

r
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be the holomorphic functions on Dz defined by f a(z) = f (z, a), ga(z) = g(z, a) and
f a
r (z) = fr (z, a). Suppose {ar } is a convergent sequence in Da with limr ar = a0, f ar

r
is of the form

f ar
r (z) = f ar (z) +

υr (z, ar )

r2
,

{Sr } is a sequence of embedded real n-dimensional closed disks in Dz sharing the same
boundary and converging to an embedded n-dimensional disk S0, and cr is a point on
Sr such that {cr } is convergent in Dz with limr cr = c0. If for each r

(1) cr is a critical point of f ar in Dz,

(2) Re f ar (cr ) > Re f ar (z) for all z ∈ Sr \ {cr },
(3) the domain {z ∈ Dz | Re f ar (z) < Re f ar (cr )} deformation retracts to Sr \ {cr },
(4) |gar (cr )| is bounded from below by a positive constant independent of r,
(5) |υr (z, ar )| is bounded from above by a constant independent of r on Dz, and
(6) the Hessian matrix Hess( f a0) of f a0 at c0 is non-singular,

then
∫

Sr

gar (z)er f ar
r (z)dz =

(2π

r

) n
2 gar (cr )√− det Hess( f ar )(cr )

er f ar (cr )
(

1 + O
(1

r

))

.

In the rest of this paper, we assume that θ1, . . . , θn are sufficiently close to 0, or
equivalently, {βi }i∈I and {α j } j∈J are sufficiently close to π. In the special case that
βi = α j = π for all i ∈ I and j ∈ J, by solving equation (4.4) for (α1, . . . , α6) =
(π, . . . , π), we have ξ(π, . . . , π) = 7π

4 . For δ > 0, we denote by Dδ,C the L1 δ-
neighborhood of

(

π, . . . , π, 7π
4 , . . . , 7π

4

)

in C
|I |+c, that is

Dδ,C =
{

(α I , ξ) ∈ C
|I |+c

∣
∣
∣ dL1

(

(α I , ξ),
(

π, . . . , π,
7π

4
, . . . ,

7π

4

))

< δ
}

,

where dL1 is the real L1-norm on C
n defined by

dL1(x, y) = max
i∈{1,...,n}{|Re(xi ) − Re(yi )|, |Im(xi ) − Im(yi )|},

where x = (x1, . . . , xn) and y = (y1, . . . , yn). We will also consider the region

Dδ = Dδ,C ∩ R
|I |+c.

5.1. Critical points and critical values of WεI . Suppose {βi }i∈I and {α j } j∈J are suf-
ficiently close to π. For i ∈ I, let θi = 2|βi − π |, and let μi = 1 if βi � π and let
μi = −1 if βi � π so that μiθi = 2(βi − π).

Proposition 5.2. For each i ∈ I, let H(ui ) be the logarithmic holonomy of ui of the
hyperbolic cone manifold MLθ

and let

α∗
i = π +

εiμi
√−1

2
H(ui ). (5.1)
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For s ∈ {1, . . . , c}, let ξ∗
s = ξ(α∗

s1 , . . . , α
∗
s6) be as defined in (4.7). Then WεI has a

critical point

zεI =
((

α∗
i

)

i∈I ,
(

ξ∗
s

)c
s=1

)

in Dδ,C with critical value

2cπ2 +
√−1

(

Vol(MLθ
) +

√−1CS(MLθ
)
)

.

Proof. For s ∈ {1, . . . , c}, let αs = (αs1 , . . . , αs6) and let α∗
s = (α∗

s1 , . . . , α
∗
s6).

If all θi ’s are sufficiently close to 0, then the cone metric is sufficiently close to the
complete metric. As a consequence, H(ui ) is sufficiently close to 0 for each i, and hence
αi is sufficiently close to π. Then by the continuity of ξ(αs), zεI ∈ Dδ,C for sufficiently
small θ1, . . . , θn .

First, for each s ∈ {1, . . . , c}, we have
∂WεI

∂ξs

∣
∣
∣
zεI

= ∂U (α∗
s , ξs)

∂ξs

∣
∣
∣
ξ∗

s

= 0. (5.2)

Then by the Chain Rule, for each s ∈ {1, . . . , c} and i ∈ I,

∂U (αs, ξ(αs))

∂αi

∣
∣
∣
α∗

s

= ∂U (αs, ξs)

∂αi

∣
∣
∣
(α∗

s ,ξ∗
s )

+
∂U (αs, ξs)

∂ξs

∣
∣
∣
(α∗

s ,ξ∗
s )

· ∂ξ(αs)

∂αi

∣
∣
∣
α∗

s

= ∂U (αs, ξs)

∂αi

∣
∣
∣
(α∗

s ,ξ∗
s )

,

hence

∂
(∑c

s=1 U (αs, ξs)
)

∂αi

∣
∣
∣
zεI

= ∂U
∂αi

∣
∣
∣
α∗

I

= −εiμi
√−1H(vi ),

where α∗
I = (α∗

i )i∈I and the last equation comes from (4.9) and (5.1). As a consequence,
for each i ∈ I, we have

∂WεI

∂αi

∣
∣
∣
zεI

= − 2pi (α
∗
i − π) − 2εi (βi − π) +

∂U
∂αi

∣
∣
∣
α∗

I

= − εiμi
√−1

(

piH(ui ) − √−1θi + H(vi )
)

= 0,

(5.3)

where the last equality comes from the (pi , 1)-Dehn filling equation (2.2) with the cone
angle θi . Equations (5.2) and (5.3) show that zεI is a critical point of WεI .

To compute the critical value, by Proposition 4.1, we first have

U(α∗
I ,α J ) = 2cπ2 + �(H(u1), . . . ,H(un)). (5.4)

For each i ∈ I, let γi = −ui + qi (pi ui + vi ) so that it is the curve on the boundary
of a tubular neighborhood of L∗

i that is isotopic to L∗
i given by the framing qi of L∗

i
and with the orientation so that (pi ui + vi ) · γi = 1. Then we have θi = 2μi (βi − π),

H(ui ) = −2εiμi
√−1(α∗

i − π),

H(vi ) =√−1θi − piH(ui ) = 2μi
√−1(βi − π) + 2piεiμi

√−1(α∗
i − π)
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and

H(γi ) = − H(ui ) + qi (piH(ui ) + H(vi )) = 2εiμi
√−1(α∗

i − π) + 2qiμi
√−1(βi − π).

As a consequence, we have

−
∑

i∈I

H(ui )H(vi )

4
+
∑

i∈I

√−1θiH(γi )

4

= −
∑

i∈I

qi (βi − π)2 −
∑

i∈I

pi (α
∗
i − π)2 −

∑

i∈I

2εi (α
∗
i − π)(βi − π).

(5.5)

For each j ∈ J, let γ j = p j u j +v j so that it is the curve on the boundary of a tubular
neighborhood of L j that is isotopic to L j given by the framing p j of L j and with the
orientation so that u j · γ j = 1. Then we have θ j = 2|α j − π |, H(u j ) = 2

√−1|α j − π |
and H(γ j ) = p jH(u j ) + H(v j ). As a consequence, we have

−
∑

j∈J

H(u j )H(v j )

4
+
∑

j∈J

√−1θ jH(γ j )

4

= −
∑

j∈J

H(u j )H(v j )

4
+
∑

j∈J

H(u j )
(

p jH(u j ) + H(v j )
)

4

=
∑

j∈J

p jH(u j )
2

4
=

∑

j∈J

−p j (α j − π)2. (5.6)

Putting (5.4), (5.5), (5.6) and (2.5) together, we have

WεI (zεI )

= U(α I ,α J ) −
∑

i∈I

qi (βi − π)2 −
∑

i∈I

pi (α
∗
i − π)2

−
∑

j∈ j

p j (α j − π)2 −
∑

i∈I

2εi (α
∗
i − π)(βi − π)

= 2cπ2 + �(H(u1), . . . ,H(un)) −
n

∑

i=1

H(ui )H(vi )

4
+

n
∑

i=1

√−1θiH(γi )

4

= 2cπ2 +
√−1

(

Vol(MLθ
) +

√−1CS(MLθ
)
)

.

��

5.2. Convexity of WεI .

Proposition 5.3. There exists a δ0 > 0 such that if all {α j } j∈J are in (π − δ0, π + δ0),

then for any εI , ImWεI (α I , ξ) is strictly concave down in {Re(αi )}i∈I and {Re(ξs)}c
s=1,

and is strictly concave up in {Im(αi )}i∈I and {Im(ξs)}c
s=1 on Dδ0,C.
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Proof. We first consider the special case {αi }i∈I and {ξs}c
s=1 are real. In this case,

ImWεI (α I , ξ) =
c

∑

s=1

2V (αs1 , . . . , αs6 , ξs)

with V defined in (4.3).
At

(

π, . . . , π, 7π
4

)

, we have ∂2V
∂α2

si
= −2 for si ∈ I ∩ {s1, . . . , s6}, ∂2V

∂αsi αs j
= −1

for si �= s j in I ∩ {s1, . . . , s6}, ∂2V
∂αsi ξs

= 2 for si ∈ I ∩ {s1, . . . , s6} and ∂2V
∂ξ2s

= −8.

Then a direct computation shows that, at
(

π, . . . , π, 7π
4

)

, the Hessian matrix of V in
{Re(αi )}i∈I∩{s1,...,s6} and Re(ξs) is negative definite. As a consequence, the Hessian ma-
trix of ImWεI in {Re(αi )}i∈I and {Re(ξs)}c

s=1 is negative definite at
(

π, . . . , π, 7π
4 , . . . ,

7π
4

)

.

Then by the continuity, there exists a sufficiently small δ0 > 0 such that for all {α j } j∈J
in (π − δ0, π + δ0) and (α I , ξ) ∈ Dδ0,C, the Hessian matrix of ImWεI with respect to
{Re(αi )}i∈I and {Re(ξs)}c

s=1 is still negative definite, implying that ImWεI is strictly
concave down in {Re(αi )}i∈I and {Re(ξs)}c

s=1 on Dδ0,C. Since WεI is holomorphic,
ImWεI is strictly concave up in {Im(αi )}i∈I and {Im(ξs)}c

s=1 on Dδ0,C. ��
Proposition 5.4. If all {α j } j∈J are in (π −δ0, π +δ0), then the Hessian matrixHessWεI

of WεI with respect to {αi }i∈I and {ξs}c
s=1 is non-singular on Dδ0,C.

Proof. By Proposition 5.3, the real part of the HessWεI is negative definite. Then by
[23, Lemma], it is nonsingular. ��

5.3. Asymptotics of the leading Fourier coefficients.

Proposition 5.5. Suppose {βi }i∈I and {α j } j∈J are in (π − ε, π + ε) for a sufficiently
small ε > 0. For εI ∈ {1,−1}|I |, let zεI be the critical point of WεI described in
Proposition 5.2. Then

̂f εI
r (0, . . . , 0) = CεI (zεI )

√

− det Hess
(WεI (zεI )

4π
√−1

)
e

r
4π

(

Vol(MLθ
)+

√−1CS(MLθ
)
)(

1 + O
(1

r

))

where each CεI (zεI ) depends continuously on {βi }i∈I and {α j } j∈J ; and when βi =
α j = π,

CεI (zεI ) = (−1)
∑

i∈I qi+
∑n

i=1

(

pi+
ιi
2

)

+c r
|I |−c
2

2
3|I |+c

2 π
|I |+c
2

.

For the proof of Proposition 5.5, we need the following lemma.

Lemma 5.6. For each εI ∈ {1,−1}|I | and any fixed {α j } j∈J ,

max
DH

ImWεI � ImWεI
(

π, . . . , π,
7π

4
, . . . ,

7π

4

)

= 2cv8

where v8 is the volume of the regular ideal octahedron, and the equality holds if and
only if α1 = · · · = αn = π and ξ1 = · · · = ξc = 7π

4 .
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Proof. On DH, we have

ImWεI (α I , ξ) =
c

∑

s=1

2V (αs1 , . . . , αs6 , ξs)

for V defined in (4.3). Then the result is a consequence of the result of Costantino [8]
and the Murakami–Yano formula [29] (see Ushijima [37] for the case of hyperideal
tetrahedra). Indeed, by [8], for a fixed α = (α1, . . . , α6) of the hyperideal type, the func-
tion f (ξ) defined by f (ξ) = V (α, ξ) is strictly concave down and the unique maximum
point ξ(α) exists and lies in (max{τi },min{η j , 2π}), ie, (α, ξ(α)) ∈ BH. Then by [37],
V (α, ξ(α)) = Vol(
|α−π |), the volume of the truncated hyperideal tetrahedron 
|α−π |
with dihedral angles |α1 − π |, . . . , |α6 − π |. Since ξ(π, . . . , π) = 7π

4 and the regular
ideal cctahedron 
(0,...,0) has the maximum volume among all the truncated hyperideal
tetrahedra, V

(

π, . . . , π, 7π
4

) = v8 = Vol(
(0,...,0)) � Vol(
|α−π |) = V (α, ξ(α)) �
V (α, ξ) for any (α, ξ) ∈ BH.

For the equality part, suppose (α I , ξ) �= (

π, . . . , π, 7π
4 , . . . , 7π

4

)

. If (αs1 , . . . , αs6) �=
(π, . . . , π) for some s ∈ {1, . . . , c}, then ImWεI (α I , ξ) � 2Vol(
|α−π |)+2(c−1)v8 <

2cv8. If α I = (π, . . . , π) but ξs �= 7π
4 for some s ∈ {1, . . . , c}, then the strict concavity

of f (ξ) implies that ImWεI (π, . . . , π, ξ) < ImWεI
(

π, . . . , π, 7π
4 , . . . , 7π

4

) = 2cv8. ��
Proof of Proposition 5.5. Let δ0 > 0 be as in Proposition 5.3. ByProposition 5.3, Propo-
sition 5.6 and the compactness of DH \ Dδ0 ,

2cv8 > max
DH\Dδ0

ImWεI .

By Proposition 5.2 and continuity, if {βi }i∈I and {α j } j∈J are sufficiently close to π,

then the critical point zεI ofWεI as in Proposition 5.2 lies in Dδ0,C, and ImWεI (zεI ) =
Vol(MLθ

) is sufficiently close to 2cv8 so that

ImWεI (zεI ) > max
DH\Dδ0

ImWεI .

Therefore, we only need to estimate the integral on Dδ0 . By analyticity, the integral
remains unchanged if we deform the domain of integral from Dδ0 to a different surface
that shares the same boundary with Dδ0 .Nowwe define such a new surface SεI as drawn
in Fig. 5, over which the integral is easier to estimate. I.e., SεI = SεI

top ∪ SεI
side in Dδ0,C,

where

SεI
top = {(α I , ξ) ∈ Dδ0,C | (Im(α I ), Im(ξ)) = Im(zεI )}

and

SεI
side = {(α I , ξ) + t

√−1Im(zεI ) | (α I , ξ) ∈ ∂Dδ0 , t ∈ [0, 1]}.
By Proposition 5.3, ImWεI is concave down on SεI

top. Since zεI is the critical points
of ImWεI , it is the only absolute maximum on SεI

top.

On the side SεI
side, for each (α I , ξ) ∈ ∂Dδ0 , we consider the function

gεI
(α I ,ξ )

(t) = ImWεI
(

(α I , ξ) + t
√−1Im(zεI )

)
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Fig. 5. The deformed surface SεI , where S
εI
top is the “top” of the rectangular cylinder colored in blue, S

εI
side is

the “side” of the rectangular cylinder colored in green, and Dδ0 is the “bottom” of the rectangular cylinder

on [0, 1]. By Proposition 5.3, gεI
(α I ,ξ )

(t) is concave up for any (α I , ξ) ∈ ∂Dδ0 . As a

consequence, gεI
(α I ,ξ )

(t) � max{gεI
(α I ,ξ )

(0), gεI
(α I ,ξ )

(1)}. Now by the previous two steps,
since (α I , ξ) ∈ ∂Dδ0 ,

gεI
(α I ,ξ )

(0) = ImWεI (α I , ξ) < ImWεI (zεI );

and since (α I , ξ) +
√−1Im(zεI ) ∈ SεI

top,

gεI
(α I ,ξ )

(1) = ImWεI
(

(α I , ξ) +
√−1Im(zεI )) < ImWεI (zεI

)

.

As a consequence,

ImWεI (zεI ) > max
S

εI
side

ImWεI .

Therefore, zεI is the unique maximum point of ImWεI on SεI ∪ (

DH \ Dδ0

)

, and
WεI has critical value 2cπ2 +

√−1
(

Vol(MLθ
) +

√−1CS(MLθ
)
)

at zεI .

By Proposition 5.4, det HessWεI (zεI ) �= 0.
Next, we prove that the domain

{

(α I , ξ) ∈ Dδ0,C

∣
∣ ImWεI (α I , ξ) < ImWεI (zεI )

}

deformation retracts to SεI
top \ {zεI }. To see this, for each x ∈ Dδ0 , let

Px = {

(α I , ξ) ∈ Dδ0,C

∣
∣ Re(α I , ξ) = x

}

and

Bx = {

(α I , ξ) ∈ Px
∣
∣ ImWεI (α I , ξ) < ImWεI (zεI )

}

.

Then by Proposition 5.3 that ImWεI is concave up in Im(α I , ξ), BRe(zεI ) = ∅, and Bx
is a non-empty convex subset of Px for x �= Re(zεI ); and by the fact that zεI is the
unique maximum point of ImWεI on SεI , x +

√−1Im(zεI ) ∈ Bz for x �= Re(zεI ). As
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a consequence, Bx deformation retracts to x +
√−1Im(zεI ) which induces the desired

deformation retraction of
{

(α I , ξ) ∈ Dδ0,C

∣
∣ ImWεI (α I , ξ) < ImWεI (zεI )

}

to SεI
top \

{zεI }.
Finally, we estimate the difference betweenWεI

r andWεI . By Lemma 2.10, (3), we
have

ϕr

(π

r

)

= Li2(1) +
2π

√−1

r
log

( r

2

)

− π2

r
+ O

( 1

r2

)

;
and for z with 0 < Rez < π we have

ϕr

(

z +
kπ

r

)

= ϕr (z) + ϕ′
r (z)

kπ

r
+ O

( 1

r2

)

.

Then by Lemma 2.10, in
{

(α I , ξ) ∈ Dδ0,C

∣
∣ |Im(αi )| < L for i ∈ I, |Im(ξs)| <

L for s ∈ {1, . . . , c}} for some L > 0,

WεI
r (α I , ξ) = WεI (α I , ξ) − 4cπ

√−1

r
log

( r

2

)

+
4π

√−1κ(α I , ξ)

r
+

νr (α I , ξ)

r2
,

with

κ(α I , ξ)

=
c

∑

s=1

(1

2

4
∑

i=1

√−1τsi − √−1ξs − √−1π −
√−1π

2

+
1

4

4
∑

i=1

3
∑

j=1

log
(

1 − e2
√−1(ηs j −τsi )

) − 3

4

4
∑

i=1

log
(

1 − e2
√−1(τsi −π)

)

+
3

2
log

(

1 − e2
√−1(ξs−π)

) − 1

2

4
∑

i=1

log
(

1 − e2
√−1(ξs−τsi )

)

− 1

2

3
∑

j=1

log
(

1 − e2
√−1(ηs j −ξs )

));

and by the compactness of Dδ0,C, |νr (α I , ξ)| is bounded from above by a constant
independent of r. Then

e

(
∑

i∈I qi βi+
∑n

i=1

(

pi+
ιi
2

)

αi+
∑

i∈I εi (αi+βi+
2π
r )
)√−1+ r

4π
√−1

WεI
r (α I ,ξ )

=
( r

2

)−c
e
(
∑

i∈I qi βi+
∑n

i=1

(

pi+
ιi
2

)

αi+
∑

i∈I εi (αi+βi )
)√−1+κ(α I ,ξ )

· e
r

4π
√−1

(

WεI (α I ,ξ )+
νr (α I ,ξ)−∑

i∈I εi 8π
2

r2

)

.

Now we apply Proposition 5.1 to conclude the result. Let Dz be the region
{

(α I , ξ) ∈ Dδ0,C

∣
∣ |Im(αi )| < L for i ∈ I, |Im(ξs)| < L for s ∈ {1, . . . , c}}

for some L > 0. Let ar = ((βi )i∈I , (α j ) j∈J ) (recall that βi = 2πni
r and α j = 2πm j

r de-

pends on r ), f ar (α I , ξ) = WεI (α I ,ξ )

4π
√−1

, gar (α I , ξ) = ψ(α I , ξ)e(
∑

i∈I qi βi
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+
∑n

i=1

(

pi +
ιi
2

)

αi +
∑

i∈I εi (αi + βi ))
√−1 + κ(α I , ξ), f ar

r (α I , ξ) = WεI
r (α I ,ξ )

4π
√−1

− c
r

log
( r
2

)

, υr (α I , ξ) = νr (α I , ξ) − ∑

i∈I εi8π2, Sr = SεI and zεI is the critical point of
f ar in Dz. Then all the conditions of Proposition 5.1 are satisfied with and the result
follows.

When βi = α j = π, a direct computation shows that

CεI (zεI ) = r |I |+c

22|I |+cπ |I |+c

(2π

r

) |I |+c
2

( r

2

)−c
g
(

π, . . . , π,
7π

4
, . . . ,

7π

4

)

= (−1)
∑

i∈I qi+
∑n

i=1

(

pi+
ιi
2

)

+c r
|I |−c
2

2
3|I |+c

2 π
|I |+c
2

.

��
Corollary 5.7. If ε > 0 is sufficiently small and all {βi }i∈I and {α j } j∈J are in (π −
ε, π + ε), then

∑

εI ∈{1,−1}|I |

CεI (zεI )
√

− det Hess
(WεI (zεI )

4π
√−1

)
�= 0.

Proof. If βi = α j = π for all i ∈ I and j ∈ J, then all zεI = (

π, . . . , π, 7π
4 , . . . , 7π

4

)

and allWεI are the same functions. As a consequence, all the CεI (zεI )’s and all Hessian

determinants det Hess
(WεI (zεI )

4π
√−1

)

’s are the same at this point, imply that the sum is not

equal to zero. Then by continuity, if ε is small enough, then the sum remains none zero.��
Remark 5.8. In [41], we proved that all CεI (zεI )’s and all det Hess

(WεI (zεI )

4π
√−1

)

’s are

always the same for any given {βi }i∈I and {α j } j∈J , and related them to the adjoint
twisted Reidemeister torsion of MLθ

.

5.4. Estimate of the other Fourier coefficients.

Proposition 5.9. Suppose {βi }i∈I and {α j } j∈J are in (π − ε, π + ε) for a sufficiently
small ε > 0. If (aI , b) �= (0, . . . , 0), then

∣
∣
∣
̂f εI

r (aI , b)

∣
∣
∣ < O

(

e
r
4π

(

Vol(MLθ
)−ε′))

for some ε′ > 0.

Proof. Recall that if βi = α j = π for all i ∈ I and j ∈ J, then the total derivative

DWεI
(

π, . . . , π,
7π

4
, . . . ,

7π

4

)

= (0, . . . , 0).

Hence by continuity, all the partial derivatives near this critical point are sufficiently
small. To be precise, there exists a δ1 > 0 and an ε > 0 such that if {βi }i∈I and
{α j } j∈J are in (π − ε, π + ε), then for all (α I , ξ) ∈ Dδ1,C and for any unit vector
u = ((ui )i∈I , (ws)

c
s=1) ∈ R

|I |+c, the directional derivatives

|DuImWεI (α I , ξ)| =
∣
∣
∣

∑

i∈I

ui
∂ImWεI

∂Im(αi )
+

c
∑

s=1

ws
∂ImWεI

∂Im(ξs)

∣
∣
∣ <

2π − ε′′

2
√
2|I | + 2c
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for some ε′′ > 0.
On DH, we have

Im
(

WεI (α I , ξ) −
∑

i∈I

2πaiαi −
c

∑

s=1

4πbsξs

)

= ImWεI (α I , ξ).

Then by Lemma 5.3, Proposition 5.6 and the compactness of DH \ Dδ1 ,

2cv8 > max
DH\Dδ1

Im
(

WεI (α I , ξ) −
∑

i∈I

2πaiαi −
c

∑

s=1

4πbsξs

)

+ ε′′′

for some ε′′′ > 0. By Proposition 5.2 and continuity, if {βi }i∈I and {α j } j∈J are suffi-
ciently close to π, then the critical point zεI of WεI as in Proposition 5.2 lies in Dδ1,C,

and ImWεI (zεI ) = Vol(MLθ
) is sufficiently close to 2cv8 so that

ImWεI (zεI ) > max
DH\Dδ1

Im
(

WεI (α I , ξ) −
∑

i∈I

2πaiαi −
c

∑

s=1

4πbsξs

)

+ ε′′′. (5.7)

Therefore, we only need to estimate the integral on Dδ1 . Again, by analyticity, the
integral remains unchanged if we deform Dδ1 to a different surface sharing the same
boundary, over which the integral is easier to estimate.

If (aI , b) �= (0, . . . , 0), then there is at least one of {ai }i∈I or {bs}c
s=1 that is nonzero.

Without loss of generality, assume that a1 �= 0.
If a1 > 0, then consider the surface S+ = S+

top ∪ S+
side in Dδ1,C where

S+
top = {(α I , ξ) ∈ Dδ1,C | (Im(α I ), Im(ξ)) = (δ1, 0, . . . , 0)}

and

S+
side = {(α I , ξ) + (t

√−1δ1, 0, . . . , 0) | (α I , ξ) ∈ ∂Dδ1, t ∈ [0, 1]}.
On the top, for any (α I , ξ) ∈ S+

top, by the Mean Value Theorem,

∣
∣ImWεI (zεI ) − ImWεI (α I , ξ)

∣
∣ = ∣

∣DuImWεI (z)
∣
∣ · ∥∥zεI − (α I , ξ)

∥
∥

<
2π − ε′′

2
√
2|I | + 2c

· 2√2|I | + 2cδ1

= 2πδ1 − ε′′δ1,

where z is some point on the line segment connecting zεI and (α I , ξ), u = zεI −(α I ,ξ )

‖zεI −(α I ,ξ )‖
and 2

√
2|I | + 2cδ1 is the diameter of Dδ1,C. Then

Im
(

WεI (α I , ξ) −
∑

i∈I

2πaiαi −
c

∑

s=1

4πbsξs

)

= ImWεI (α I , ξ) − 2πa1δ1

< ImWεI (zεI ) + 2πδ1 − ε′′δ1 − 2πδ1

= ImWεI (zεI ) − ε′′δ1.
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On the side, for any point (α I , ξ) + (t
√−1δ1, 0, . . . , 0) ∈ S+

side, by the Mean Value
Theorem again, we have

∣
∣ImWεI

(

(α I , ξ) + (t
√−1δ1, 0, . . . , 0)

) − ImWεI (α I , ξ)
∣
∣ <

2π − ε′′

2
√
2|I | + 2c

tδ1.

Then

ImWεI
(

(α I , ξ) + (t
√−1δ1, 0, . . . , 0)

) − 2πa1tδ1 < ImWεI (α I , ξ)

+
2π − ε′′

2
√
2|I | + 2c

tδ1 − 2π tδ1

< ImWεI (α I , ξ)

< ImWεI (zεI ) − ε′′′,

where the last inequality comes from that (α I , ξ) ∈ ∂Dδ1 ⊂ DH \ Dδ1 and (5.7).
Now let ε′ = min{ε′′δ1, ε′′′}, then on S+ ∪ (

DH \ Dδ1

)

,

Im
(

WεI (α I , ξ) −
∑

i∈I

2πaiαi −
c

∑

s=1

4πbsξs

)

< ImWεI (zεI ) − ε′,

and the result follows.
If a1 < 0, then we consider the surface S− = S−

top ∪ S−
side in Dδ1,C where

S−
top = {(α I , ξ) ∈ Dδ1,C | (Im(α I ), Im(ξ)) = (−δ1, 0, . . . , 0)}

and

S−
side = {(α I , ξ) − (t

√−1δ1, 0, . . . , 0) | (α I , ξ) ∈ ∂Dδ1 , t ∈ [0, 1]}.
Then the same estimate as in the previous case proves that on S− ∪ (

DH \ Dδ1

)

,

Im
(

WεI (α I , ξ) −
∑

i∈I

2πaiαi −
c

∑

s=1

4πbsξs

)

< ImWεI (zεI ) − ε′,

from which the result follows. ��

5.5. Estimate of the error term. The goal of this section is to estimate the error term in
Proposition 3.7.

Proposition 5.10. Suppose {α j } j∈J are in (π − ε, π + ε) for a sufficiently small ε > 0.

Then the error term in Proposition 3.7 is less than O
(

e
r
4π (Vol(MLθ

)−ε′)) for some ε′ > 0.

For the proof we need the following estimate, which first appeared in [15, Proposition

8.2] for q = e
π

√−1
r , and for the root q = e

2π
√−1
r in [11, Proposition 4.1].

Lemma 5.11. For any integer 0 < n < r and at q = e
2π

√−1
r ,

log |{n}!| = − r

2π



(
2nπ

r

)

+ O (log(r)) .
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Proof of Proposition 5.10. For a fixed α J = (α j ) j∈J , let

Mα J = max
{ c
∑

s=1

2V (αs1 , . . . , αs6 , ξs)

∣
∣
∣ (α I , ξ) ∈ ∂DH ∪ (

DA \ DH
)}

where V is as defined in (4.3). Then by [4, Sections 3 & 4],

Mα J < 2cv8;
and by continuity, if ε is sufficiently small, then Vol(MLθ

) is sufficiently close to 2cv8,
which is the volume of the fundamental shadow link complement in the complete hy-
perbolic metric where all the cone angles are zero. Therefore, if ε is sufficiently small,
then

Mα J < Vol(MLθ
)

for all {βi }i∈I and {α j } j∈J in (π − ε, π + ε).

Now by Lemma 5.11 and the continuity, for ε′ = Vol(MLθ
)−Mα J

2 , we can choose a

sufficiently small δ > 0 so that if
( 2πmI

r , 2πk
r

)

/∈ Dδ
H, then

∣
∣
∣gεI

r (mI , k)

∣
∣
∣ < O

(

e
r
4π (Mα J +ε′)

)

= O
(

e
r
4π (Vol(MLθ

)−ε′)
)

.

Let ψ be the bump function supported on (DH,Dδ
H). Then the error term in Proposition

3.7 is less than O
(

e
r
4π (Vol(MLθ

)−ε′)). ��

5.6. Proof of Theorem 3.1.

Proof of Theorem 3.1. Let ε > 0 be sufficiently small so that the conditions of Propo-
sitions 5.5, 5.9 and 5.10 and of Corollary 5.7 are satisfied, and suppose {βi }i∈I and
{α j } j∈J are all in (π − ε, π + ε). By Propositions 3.6, 3.7, 5.5, 5.9 and 5.10, we have

RTr (M, L , (nI , mJ ))

= κr

( ∑

εI ∈{1,−1}|I |
̂f εI

r (0, . . . , 0)
)(

1 + O
(

e
r
2π (−ε′))

)

= κr

(
∑

εI ∈{1,−1}|I |

CεI (zεI )
√

− det Hess
(WεI (zεI )

4π
√−1

)

)

e
r

4π
√−1

(

2cπ2+
√−1

(

Vol(MLθ
)+

√−1CS(MLθ
)
))

(

1 + O
(1

r

))

.

By Proposition 3.5, we have

lim
r→∞

4π

r
log κr =

(

σ(L ′ ∩ L I ) −
∑

i∈I

qi −
n

∑

i=1

pi − 2|I |
)√−1π2;
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Fig. 6. .

and by Corollary 5.7, we have

∑

εI ∈{1,−1}|I |

CεI (zεI )
√

− det Hess
(WεI (zεI )

4π
√−1

)
�= 0,

and hence

lim
r→∞

4π

r
log

( ∑

εI ∈{1,−1}|I |

CεI (zεI )
√

− det Hess
(WεI (zεI )

4π
√−1

)

)

= 0.

Therefore,

lim
r→∞

4π

r
log RTr (M, L , (nI , mJ ))

=
(

σ(L ′ ∩ L I ) −
∑

i∈I

qi −
n

∑

i=1

pi − 2|I |
)√−1π2 − 2c

√−1π2

+ Vol(MLθ
) +

√−1CS(MLθ
)

= Vol(MLθ
) +

√−1CS(MLθ
) mod

√−1π2
Z,

which completes the proof. ��

6. Some Concrete Examples

The goal of this section is to show that several important families of links have com-
plements homeomorphic to fundamental shadow link complements Mc \ LFSL, and are
obtained from (Mc, LFSL) by doing a change-of-pair operation, including the twisted
octahedral fully augmented links considered by Purcell [33] and van der Veen [38], and
the family U considered by Kumar [20, Theorem 4.1]. As a consequence, Conjecture
1.1, the Volume Conjecture for the Turaev–Viro invariants [6] and the Generalized Vol-
ume Conjecture [16,29] hold, and the answer to [12, Question 1.7] is positive, for these
families of examples. See Theorems 6.1, 6.3 and 6.5. It is worth mentioning that both
the family of the twisted octahedral fully augmented links and the family U are universal
families in the sense that every link in S3 is a sublink of a member of these families.

We first look at the twisted octahedral fully augmented links. Following the construc-
tion in [38], we start with a trivalent graph T that is homomorphic to the 1-skeleton of a
Euclidean tetrahedron as shown on the left of Fig. 6, and apply a sequence of the triangle
move as show on the right of Fig. 6 to get a trivalent graph G.

Then we color some edges of G by red in a way that each vertex is adjacent to exactly
one red edge. Such a coloring of the red edges always exists because for the initial graph
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Fig. 7. .

Fig. 8. .

Fig. 9. .

T we can color any pair of the opposite edges by red, and then for each triangle move,
we color the new edge opposite to the red edge in the old graph by red. See Fig. 7.

For each choice of the red edges of G, we can construct a link in S3 as follows. As
shown in Fig. 8, we first circulate each red edge by a trivial loop (the belt).

Then we replace each red edge by a pair of arcs parallel to it and connect the ends of
the two arcs respectively to the edges of G that are originally adjacent to the red edge.
Finally, we do a certain number of (possibly half) twists to each pair of parallel arcs.
In this way, we get a twisted octahedral fully augmented link in S3. See Fig. 9 for a
concrete example starting from the trivalent graph T .

The twisted octahedral fully augmented links were also described in [33] using the
dual nerve of the graph. Namely, we start with the graph T and consider its dual nerve,
which is a graph T ∗ homeomorphic to T with triangular faces. After doing a sequence
of the central subdivisions of the faces, we get a graph G∗ with triangular faces. Then
we choose a collection of red edges such that each triangular face contains exactly one
red edge. Finally we consider the dual graph G of G∗ and color the dual edge of the red
edges of G∗ by red, and change the red as shown in Fig. 8. In this way, we obtain a link
in S3. Since the triangle move is dual to the central subdivision (see Fig. 10), the links
constructed in this way are exactly the twisted octahedral fully augmented links.

In [38], van der Veen proved that the complement of a twisted octahedral fully aug-
mented link is homeomorphic to some fundamental shadow link complement. Together
with the result of [4], we have
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Fig. 10. .

Fig. 11. In a truncated polyhedron, we only consider the intersection of two faces as an edge, and do not
consider the intersection of a face and a triangle of truncation as an edge

Theorem 6.1. ([4,38]) Suppose L is a framed twisted octahedral fully augmented link
in S3. Then as r varies over all odd integers,

lim
r→∞

2π

r
log TVr (S3 \ L) = Vol(S3 \ L).

The main observation of this section is the following Proposition 6.2, which is a
refinement of the result of [38].

Proposition 6.2. Let L be a framed twisted octahedral fully augmented link. Then
(S3, L) is obtained from (Mc, LFSL) by doing a change-of-pair operation, where Mc =
#c+1S2 × S1 for some positive integer c and LFSL ⊂ Mc is a fundamental shadow link.
As a consequence of Proposition 1.3, S3 \ L is homeomorphic to Mc \ LFSL.

Proof. Suppose L = L1 ∪ · · · ∪ Ln . Let I be the subset of {1, . . . , n} such that {Li }i∈I
are the belt components of L , and let L I = ∪i∈I Li . Let J = {1, . . . , n} \ I, and let
L J = ∪ j∈J L j . Recall that each Li corresponds to an red edge of the graph G which
splits into two parallel arcs with a number of twits. Later we will prove the result in two
steps. In Step 1 we consider the case that there is no twist or only a half-twists for each
i ∈ I. In Step 2 we consider the general case.

We first observe that L J lies in a tubular neighborhood of the 1-skeleton of a truncated
polyhedron PG in S3 obtained by gluing truncated tetrahedra together along the triangles
of truncation. Indeed, we can regard the initial trivalent graph T as the set of edges of
a truncated tetrahedron (see Fig. 11), and regard a triangular move as attaching another
truncated tetrahedron along the triangle of truncation (see Fig. 12).

In this way, we obtain a truncated polyhedron PG in R
3 ⊂ S3, and the edges of the

graph G correspond to the edges of PG . As shown in Fig. 13, the two parallel arcs from
splitting the red edge can be drawn in a tubular neighborhood of the red arc.

See Fig. 14 for a concrete example.
Step 1. Suppose in the construction of L there is no twist or only a half twist for

each pair of arcs from splitting the red edges. For each i ∈ I, we let L ′
i be Li with the

0-framing which is possibly different from the original framing of Li , and let L∗
i be
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Fig. 12. .

Fig. 13. .

Fig. 14. .

Fig. 15. .

the framed trivial loop around Li with the 0-framing. Let L ′
I = ∪i∈I L ′

i . We first claim
that by doing the change-of-pair operation T (L ′

I ; L∗
I ) to the pair (S3, L) we get the pair

(M|I |, LFSL), where M|I | = #|I |(S2 × S1) and LFSL is a fundamental shadow link in
M|I |. See Fig. 15.

Indeed, let NI = ∪i∈I N (Li ) be the union of the tubular neighborhoods of the belts
{Li }i∈I . Then S3 \ NI is a handlebody H|I | of genus |I |, L∗

I ∪ L J is a link in H|I |,
and doing 0-surgeries along {Li }i∈I is the same as taking the double of H|I |, which is
homeomorphic to M|I |. On the other hand, the handlebody H|I | can also be considered
as obtained from the polyhedron PG by gluing the two triangles of truncation at the end
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Fig. 16. .

Fig. 17. .

of each red edge via the orientation reversing affine homeomorphism identifying the two
end points of the red edge.

If there is no twist for all pairs of arcs from splitting the red edges, then the link
L∗

I ∪ L J corresponds to the link LFSL consisting of the union of the edges of PG . From
the construction in Sect. 2.4, LFSL in the double of H|I | is a fundamental shadow link
in M|I |. See Fig. 16 for a concrete example.

If there is a half twist on the pair of arcs from splitting red edge ei circulated by
Li , for some i ∈ I, then we glue the two triangles of truncation at the end of ei via
the orientation preserving affine homeomorphism identifying the two end points ei .

In this way, we obtain a non-orientable handlebody H ′|I | whose orientable double is
homeomorphic to M|I |, and the link L∗

I ∪ L J corresponds to the link LFSL consisting
of the union of the edges of PG , which is a fundamental shadow link in M|I |.

For each i ∈ I,we let L∗∗
i be the framed trivial loop around L∗

i with the same framing
as that of Li . Then we claim that (S3, L) can be obtained from (M|I |, LFSL) by doing
the change-of-pair operation T (L∗

I , L∗∗
I ), proving the result in Case 1. See Fig. 17.

This could be seen by the following the second Kirby Moves (handle slides) which
do not change the pair. For each i ∈ I, we first slide L∗∗

i over L ′
i as in Fig. 18 to get a

framed trivial loop isotopic to Li .

Suppose L j and L j ′ (with j possibly the same as j ′) are the components of L
circulated by Li . Then we slide L j and L j ′ over L∗

i as in Fig. 19 so that L ′
i ∪ L∗

i is a
Hopf link with 0-framings unlinked with the rest of L . Doing these operations for each
i ∈ I, we get the original link L in the 3-manifold obtained from S3 by doing a surgery
along the disjoint union of |I | Hopf links with 0-framings, which is still S3.

Step 2. Suppose in the construction of L , the pair of arcs from splitting the red edge
circulated by Li is twisted pi times or pi and a half times. Let (M|I |, LFSL) be the
fundamental shadow link constructed in Step 1. For each i ∈ I, let L∗

i
′ be L∗

i with the
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Fig. 18. .

Fig. 19. .

Fig. 20. .

(−pi )-framing, and let L∗
I
′ = ∪i∈I L∗

i
′. Still let L∗∗

i be the framed trivial loop around
L∗

i with the same framing as that of Li . We claim that (S3, L) can be obtained from
(M|I |, LFSL) by doing the change-of-pair operation T (L∗

I
′, L∗∗

I ), proving the result in
Case 2.

Similar to Case 1, we first slide L∗∗
i over L ′

i as in Fig. 20 to get a framed trivial loop
isotopic to Li .

By e.g. [34, p. 273], since L∗
i
′ is a trivial loop around L ′

i and

1

pi
= 0 − 1

−pi
,

doing the surgery along the union of L ′
i and L∗

i
′ respectively with framings 0 and (−pi )

is equivalent to doing a 1
pi
-surgery along a loop isotopic to Li , which is the same as

doing pi full twists along the strip circulated by Li . See Fig. 21. This completes the
proof. ��

By Theorem 3.1, Propositions 6.2 and the relationship between the Resherikhin–
Turaev invarints and the colored Jones polynomials that

RTr (S3, L , m) = μr Jm,L(q2),
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Fig. 21. .

we have

Theorem 6.3. Suppose L is a framed twisted octahedral fully augmented with n com-
ponents. For a sequence m(r) = (m(r)

1 , . . . , m(r)
n ) of colorings of L , let

θk =
∣
∣
∣2π − lim

r→∞
4πm(r)

k

r

∣
∣
∣,

and let θ = (θ1, . . . , θn). If all the θi ’s are sufficiently small, then

lim
r→∞

4π

r
log JL ,m(r)

(

e
4π i

r
) = Vol(S3

Lθ
) +

√−1CS(S3
Lθ

) mod
√−1π2

Z,

where r varies over all odd integers.

Next, we consider the universal family U of links in S3 considered by Kumar [20]
whose complements are homeomorphic to some fundamental shadow link complements.
Together with the result of [4], he proved that Chen–Yang’s Volume Conjecture for the
Turaev–Viro invariants is true for the complements of these families of links. The way he
found the fundamental shadow links is essentially by doing a change-of-pair operation
along the belt components of the links. Then by the same argument in Step 1 of the proof
of Proposition 6.2, we have

Proposition 6.4. Let L be a framed link in U of [20]. Then (S3, L) is obtained from
(Mc, LFSL) by doing a change-of-pair operation.

As a consequence of Theorem 3.1 and Proposition 6.4, we have

Theorem 6.5. Suppose L is a framed link of n components which is a member of U of
[20]. For a sequence m(r) = (m(r)

1 , . . . , m(r)
n ) of colorings of L , let

θk =
∣
∣
∣2π − lim

r→∞
4πm(r)

k

r

∣
∣
∣,

and let θ = (θ1, . . . , θn). If all the θi ’s are sufficiently small, then

lim
r→∞

4π

r
log JL ,m(r)

(

e
4π i

r
) = Vol(S3

Lθ
) +

√−1CS(S3
Lθ

) mod
√−1π2

Z,

where r varies over all odd integers.
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Remark 6.6. The proof of Proposition 6.2 essentially provides an algorithm of construct-
ing a fundamental shadow link from a given twisted octahedral fully augmented link or
a given element of U . In [38], van der Veen for each link L in S3 provided an algorithm
of constructing a twisted octahedral fully augmented link L ′ such that S3 \ L is obtained
from S3 \ L ′ by 1

0 -filling suitable boundary components. In [20], Kumar for each link
L in S3 considered as the closure of a braid provided an algorithm of constructing a
link L ′ in U such that S3 \ L is obtained from S3 \ L ′ by 1

0 -filling suitable boundary
components. Therefore, together with Propositions 6.2 and 6.4, we for each L in S3

have two algorithms of constructing a fundamental shadow link LFSL in Mc such that
S3 \ L is obtained from Mc \ LFSL by filling suitable boundary components. It is an
interesting question to know whether the universal families of the twisted octahedral
fully augmented links and U are actually the same family.
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A. A Proof of Proposition 5.1

The goal of this appendix is to prove Proposition 5.1.We need the following twoLemmas
whose proofs are included at the end of the appendix.

Lemma A.1. For any ε > 0, there exists a δ > 0 such that

(1)
∫ ε

−ε

e−r z2dz =
√

π

r
+ O(e−δr ),

and
(2)

∫ ε

−ε

z2e−r z2dz = 1

2

√

π

r3
+ O(e−δr ).

Lemma A.2. Let Dz be a region in C
n containing the origin 0 and let ga a family of

complex valued functions on Dz smoothly parametrized by a in a region Da of R
k . Then

there exist families of functions ha
1, . . . , ha

n, and ka
1 , . . . , ka

n such that

(1) all of ha
i ’s and ka

i ’s are smoothly parametrized by a in Da,

(2) for each a ∈ Da, ha
i has variables zi+1, . . . , zn and is holomorphic in them,
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(3) for each a ∈ Da, ka
i has variables zi , . . . , zn and is holomorphic in them, and

(4)

ga(z1, . . . , zn) = ga(0) +
n

∑

i=1

ha
i (zi+1, . . . , zn)zi +

n
∑

i=1

ka
i (zi , . . . , zn)z2i .

Lemma A.3. (Complex Morse Lemma) Let Dz be a region in C
n, let Da be a region

in R
k, and let f : Dz × Da → C be a complex valued function that is holomorphic

in z ∈ Dz and smooth in a ∈ Da. For a ∈ Da, let f a : Dz → C be the function
defined by f a(z) = f (z, a). Suppose for each a ∈ Da, f a has a non-degenerate critical
point ca which smoothly depends on a. Then for each a0 ∈ Da, there exists an open
set V ⊂ C

n containing 0, an open set A ⊂ Da containing a0, and a smooth function
ψ : V × A → Dz such that, if we denote ψa(Z) = ψ(Z, a), then for each a ∈ Da,

z = ψa(Z) is a holomorphic change of variable on V such that

ψa(0) = ca,

f a(ψa(Z)) = f a(ca) − Z2
1 − · · · − Z2

n,

and

det
(

D(ψa)(0)
)

= 2
n
2√− det Hess( f a)(ca)

.

Proof of Proposition 5.1. We write z = (z1, . . . , zn) ∈ C
n, Z = (Z1, . . . , Zn) ∈ C

n,

W = (W1, . . . , Wn) ∈ C
n, dz = dz1 . . . dzn and 0 = (0, . . . , 0) ∈ C

n .

We first consider the special case cr = 0, Sr = [−ε, ε]n ⊂ R
n ⊂ C

n, and

f ar (z) = −
n

∑

i=1

z2i

for each r. In this case, let

σ ar
r (z) = υr (z, ar )

∫ 1

0
e

υr (z,ar )
r sds.

Then we can write

e
υr (z,ar )

r = 1 +
σ

ar
r (z)

r
,

and

gar (z)er f ar
r (z) = gar (z)er f ar (z) +

1

r
gar (z)σ ar

r (z)er f ar (z). (A.1)

Since |υr (z, ar )| < M for some M > 0 independent of r,

|σ ar
r (z)| < M

∫ 1

0
e

M
r sds = M

(
e

M
r − 1

M
r

)

< 2M.
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Since {ar } is convergent and g is smooth in a, if M is big enough, then |gar (z)| < M
for all z ∈ Sr = [−ε, ε]n for r large enough. By Lemma A.1 (1), we have

∣
∣
∣

∫

Sr

1

r
gar (z)σ ar

r (z)er f ar (z)dz
∣
∣
∣ <

2M2

r

∫

Sr

er f ar (z)dz

= 2M2

r

(π

r

) n
2
+ O(e−δr ) = O

( 1√
rn+2

)

.

(A.2)

By Lemma A.2, we have

gar (z1, . . . , zn) = gar (0) +
n

∑

i=1

har
i (zi+1, . . . , zn)zi +

n
∑

i=1

kar
i (zi , . . . , zn)z2i

for some holomorphic functions {har
i } and {kar

i }, i ∈ {1, . . . , n}. Then by Lemma A.1
(1), we have

∫

Sr

gar (0)er f ar (z)dz = gar (0)
(π

r

) n
2
+ O

(1

r

)

. (A.3)

Since each zi e−r z2i is odd, we have
∫ ε

−ε

zi e
−r z2i dzi = 0.

As a consequence, for each i, we have
∫

[−ε,ε]n
har

i (zi+1, . . . , zn)zi e
r f ar (z)dz

=
∫

[−ε,ε]n−1
har

i (zi+1, . . . , zn)e−r
∑

j �=i z2j
∏

j �=i

dz j ·
∫ ε

−ε

zi e
−r z2i dzi = 0.

(A.4)

Since {ar } is convergent and ka
i is smooth in a, if M is big enough, then for r large

enough, |kar
i (z)| < M for all z ∈ Sr , i ∈ {1, . . . , n}. By Lemma A.1 we have for each

i ∈ {1, . . . , n}
∣
∣
∣

∫

Sr

kar
i (z)z2i er f ar (z)dz

∣
∣
∣ < M

( ∫ ε

−ε

z2i e−r z2i dzi

)∏

j �=i

( ∫ ε

−ε

e−r z2j dz j

)

= O
( 1√

rn+2

)

. (A.5)

Putting (A.3), (A.4) and (A.5) together, we have the result for this special case.
For the general case, by assumption (6) of Proposition 5.1, for a sufficiently close to a0,
f a has a unique non-degenerate critical point ca in a sufficiently small neighborhood of
c0. Then we can apply LemmaA.3 to the function f and a0. Let V, A andψ respectively
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Fig. 22. .

be the two open sets and the change of variable function as described in Lemma A.3.
For r sufficiently large, let

Ur = ψar
( n
∏

i=1

{

Zi ∈ C
∣
∣ − ε < Re(Zi ) < ε,−ε < Im(Zi ) < ε

})

for some sufficiently small ε > 0. Let Vol(Sr \ Ur ) be the Euclidean volume of Sr \ Ur .

By the compactness of Sr \ Ur and by assumptions (2), (4) and (5) of Proposition 5.1,
there exist constants M > 0 and δ > 0 independent of r such that |gar (z)| < M,

Vol(Sr \ Ur ) < M and

Re f ar
r (z) < Re f ar (cr ) − δ (A.6)

on Sr \ U for r large enough. Then
∣
∣
∣

∫

Sr \U
gar (z)er f ar

r (z)dz
∣
∣
∣ < M2

(

er(Re f ar (z)(cr )−δ)
)

= O
(

er(Re f ar (z)(cr )−δ)
)

. (A.7)

In Fig. 22 below, the shaded region is where Re(−∑n
i=1 Z2

i ) < 0. For each ar , in

(ψar )−1(Ur ) there is a homotopy Hr from (ψar )−1(Sr ∩ Ur ) to [−ε, ε]n ⊂ R
n defined

by “pushing everything down” to the real part. This is where we use condition (3).
Let S′

r = Hr (∂(ψar )−1(Sr ∩ Ur ) × [0, 1]). Then (ψar )−1(Sr ∩ Ur ) is homotopic to
S′

r ∪ [−ε, ε]n .

Then by analyticity,
∫

Sr ∩U
gar (z)er f ar

r (z)dz

=
∫

(ψar )−1(Sr ∩U )

gar (ψar (Z)) det D(ψar (Z))er f ar
r (ψar (Z))dZ



1064 K. H. Wong, T. Yang

=
∫

S′
r

gar (ψar (Z)) det D(ψar (Z))er f ar
r (ψar (Z))dZ

+
∫

[−ε,ε]n
gar (ψ(Z)) det D(ψar (Z))er f ar

r (ψar (Z))dZ. (A.8)

Since ψar (S′) ⊂ Sr \ Ur , by (A.6)
∫

S′
r

gar (ψar (Z)) det D(ψar (Z))er f ar
r (ψar (Z))dZ

=
∫

ψar (S′
r )

gar (z)er f ar
r (z)dz = O

(

er(Re f ar (cr )−δ)
)

; (A.9)

and by the special case
∫

[−ε,ε]n
gar (ψar (Z)) det D(ψar (Z))er f ar

r (ψar (Z))dZ

= er f ar (cr )

∫

[−ε,ε]n
gar (ψar (Z)) det D(ψar (Z))er

(

−∑n
i=1 Z2

i +
υr (z,ar )

r2

)

dZ

= er f ar (cr )gar (ψar (0)) det D(ψar (0))
(π

r

) n
2
(

1 + O
(1

r

))

=
(2π

r

) n
2 gar (cr )√− det Hess( f ar )(cr )

er f ar (cr )
(

1 + O
(1

r

))

.

Together with (A.7), (A.8) and (A.9), we have the result. ��
Proof of Lemma A.1. For (1), we have

∫ ε

−ε

e−r z2dz =
∫ ∞

−∞
e−r z2dz −

∫ −ε

−∞
e−r z2dz −

∫ ∞

ε

e−r z2dz,

where the first term
∫ ∞

−∞
e−r z2dz =

√

π

r

is a Gaussian integral, and the other two terms

∫ −ε

−∞
e−r z2dz =

∫ ∞

ε

e−r z2dz �
∫ ∞

ε

e−rεzdz = e−rε2

rε
= O(e−δr ).

For (2), by integration by parts, we have
∫ ε

−ε

e−r z2dz = ze−r z2
∣
∣
∣

ε

−ε
+ 2r

∫ ε

−ε

z2e−r z2dz,

hence by (1)
∫ ε

−ε

z2e−r z2dz = 1

2r

( ∫ ε

−ε

e−r z2dz − 2εe−rε2
)

= 1

2

√

π

r3
+ O(e−δr ).

��
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Proof of Lemma A.2. We use induction on n. For n = 1, if z1 �= 0, then we can write

ga(z1) = ga(0) +
dga

dz1
(0)z1 +

(ga(z1) − ga(0) − dga

dz1
(0)z1

z21

)

z21,

and let

ha
1 = ga(0)

and

ka
1(z1) = ga(z1) − ga(0) − dga

dz1
(0)z1

z21
.

By computing the Laurent expansion of ka
1(z1), one sees z1 = 0 is a removable singu-

larity, and ka
1(z1) extends as a holomorphic function. From the formulas, we also see

that ha
1 and ka

1 smoothly depend on a. This proves the case n = 1.
Now assume that the result holds when n = l. For n = l + 1, if z1 �= 0, then we have

ga(z1, . . . , zl+1) = gz(0, z2, . . . , zl+1) +
∂ga

∂z1
(0, z2, . . . , zl+1)z1

+

( ga(z1, . . . , zl+1) − ga(0, z2, . . . , zl+1) − ∂ga

∂z1
(0, z2, . . . , zl+1)z1

z21

)

z21,

and let

ha
1(z2, . . . , zl+1) = ∂ga

∂z1
(0, z2, . . . , zl+1)

and

ka
1(z1, . . . , zl+1) = ga(z1, . . . , zl+1) − ga(0, z2, . . . , zl+1) − ∂ga

∂z1
(0, z2, . . . , zl+1)z1

z21
.

By computing the Laurent expansion again, one can see that ka
1 holomorphically ex-

tends to z1 = 0; and from the formulas, ha
1 and ka

1 smoothly depend on a. Since
ga(0, z2, . . . , zl+1) has l variables, by the induction assumption,

ga(0, z2, . . . , zl+1) = ga(0) +
l+1
∑

i=2

ha
i (zi+1, . . . , zl+1)zi +

l+1
∑

i=2

ka
i (zi , . . . , zl+1)z

2
i

for holomorphic functions {ha
i } and {ka

i } smoothly depending on a. As a consequence,
we have

ga(z1, z2, . . . , zl+1) = ga(0) +
l+1
∑

i=1

ha
i (zi+1, . . . , zl+1)zi +

l+1
∑

i=1

ka
i (zi , . . . , zl+1)z

2
i .

This completes the proof. ��
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Proof of Lemma A.3. By doing the linear transformation (z, a) �→ (z + ca, a), we may
assume that ca = 0 for all a ∈ Da. Then by the Taylor Theorem, for each a ∈ Da and
z ∈ Dz, we can write

f a(z) = f a(0) +
n

∑

i=1

zi b
a
i (z)

for some holomorphic functions ba
i , i = 1, . . . , n. Since 0 is a critical point of f a, we

have

ba
i (0) = ∂

∂zi
f a(0) = 0.

As a result, by Taylor theorem again, we can write

f a(z) = f a(0) +
n

∑

i=1

zi b
a
i (z) = f a(0) +

n
∑

i, j=1

zi z j h
a
i j (z)

for some holomorphic functions ha
i j , i, j = 1, . . . , n. Since

n
∑

i, j=1

zi z j h
a
i j (z) =

n
∑

i, j=1

zi z j

(ha
i j (z) + ha

j i (z)

2

)

,

we may assume that ha
i j is symmetric in i and j. Since 0 is a non-degenerate critical

point of f a, and

∂2

∂zi z j
f a(0) = 2ha

i j (0),

we have det(ha
i j (0)) �= 0.

Next, suppose for somem with 0 � m � n, there exist an open set Vm ⊂ C
n containing

0, an open set Am ⊂ Da containing a0, and a smooth function ψm : Vm × Am → C
n

such that, if we denote ψa
m(Z) = ψm(Z, a), then ψa

m gives a holomorphic change of
variable with

f a(ψa
m(Z)) = f a(0) − Z2

1 − · · · − Z2
m−1 +

n
∑

i, j=m

Zi Z j Ha
m,i j (Z),

where Ha
m,i j (Z) is holomorphic in Z and symmetric in i and j. Based on this, we are

going to find an open set Vm+1 ofCn containing 0, an open set Am+1 ⊂ Am containing a0,
and a smooth function ψm+1 : Vm+1 × Am+1 → C

n such that, if we denote ψa
m+1(Z) =

ψm+1(Z, a), then ψa
m+1 gives a holomorphic change of variable with

f a(ψa
m+1(Z)) = f a(0) − Z2

1 − · · · − Z2
m +

n
∑

i, j=m+1

Zi Z j Ha
m+1,i j (Z)

for some holomorphic functions Ha
m+1,i j (Z) that are symmetric in i and j.
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To do so, we by the Chain Rule have

∂2 f a

∂ Zi Z j
(ψa

m(0)) = (Dψa
m(0))T

( ∂2 f a

∂zi z j
(0)

)

(Dψa
m(0)),

where Dψa
m(0) is the Jacobian matrix of ψa

m at 0. Thus, we have

2m−1 det(2Ha
m,i j (0)) = det

( ∂2 f a

∂ Zi Z j
(ψa

m(0))
)

�= 0,

implying that (Ha
m,i j (0)) is a (n − m + 1) × (n − m + 1) non-singular matrix. Therefore,

there exists k � m such that Ha
m,km(0) �= 0. Reordering the variables if necessary, we

may assume that Ha
m,mm(0) �= 0. By continuity of Ha

m,mm(Z) in Z and a, there exists
an open set V ′

m ⊂ Vm containing 0 and an open set A′
m ⊂ Am containing a0 such that

Ha
m,mm(0) �= 0 for all (Z, a) ∈ V ′

m × A′
m . Then we can let

H̃a
m,i j (Z) = Ha

m,i j (Z)

Ha
m,mm(Z)

and have

f a(ψa
m(Z)) = f a(0) − Z2

1 − · · · − Z2
m−1 +

n
∑

i, j=m

Zi Z j Ha
m,i j (Z)

= f a(0) − Z2
1 − · · · − Z2

m−1 + Ha
m,mm(Z)

n
∑

i, j=m

Zi Z j H̃a
m,i j (Z)

= f a(0) − Z2
1 − · · · − Z2

m−1 + Ha
m,mm(Z)

(

Zm +
n

∑

j=m+1

Z j H̃a
m,mj (Z)

)2

− Ha
m,mm(Z)

[( n
∑

j=m+1

Z j H̃a
m,mj (Z)

)2
+

n
∑

i, j=m+1

Zi Z j H̃a
m,i j (Z)

]

.

Define W = W(Z) by

Wl = Zl

for l �= m, and

Wm =
√

−Ha
m,mm(Z)

(

Zm +
n

∑

j=m+1

Z j H̃a
m,mj (Z)

)

.

We note that

∂Wl

∂ Zk
(0) = δl,k

for l �= m, and

∂Wm

∂ Zk
(0) = √−Ha

mm(0)
(

δm,k +
n

∑

j=m+1

δ j,k H̃a
m,mj (0)

)

.
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Then the Jacobian matrix DW (0) is an upper triangular matrix with the (m, m)-th entry
√−Ha

m,mm(0) �= 0 and all the other diagonal entries 1, hence det DW (0) �= 0.
Now consider the map G : V ′

m × A′
m → C

n × R
k defined by

G(Z, a) = (W(Z), a).

Then the Jacobian matrix DG(0, a0) is of the form

DG(0, a0) =
(

DW (0) ∗
0 Ik

)

,

where Ik is the k × k identity matrix. Moreover, det(DG(0, a0)) = det(DW (0)) �= 0.
Thus, by the Inverse Function Theorem, there exists an open set V ′′

m ⊂ V ′
m and an open

subset with compact closure Am+1 ⊂ A′
m containing a0 such that G : V ′′

m × Am+1 →
C

n × Am is a diffeomorphism to its image. By slightly shrinking Am+1 if necessary,
G(V ′′

m × Am+1) contains an open subset of the form Vm+1 × Am+1. For each a ∈ Am+1,

let ψa
m+1 = ψa

m ◦ W−1 : Vm+1 → Dz. Then we have

f a(ψa
m+1(W)) = f a(0) − W 2

1 − · · · − W 2
m +

n
∑

i, j=m+1

Wi W j Ha
m+1,i j (W)

for some holomorphic functions Ha
m+1,i j (Z) that are symmetric in i and j.

Inductively doing the above procedure onm, and lettingV = Vn, A = An andψa = ψa
n ,

we prove the result. Moreover, by the Chain Rule, we have

Hess( f a ◦ ψa)(0)) = (Dψa(0))T
(

Hess( f a)(0)
)

(Dψa(0)).

Since Hess( f a ◦ ψa)(0) is equal to the negative of the n × n identity matrix, by taking
the determinant on both sides, we get

det
(

D(ψa)(0)
)

= 2
n
2√− det Hess( f a)(0)

.

��
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