
Special Issue Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 37(3-4) 260–271
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231167800
journals.sagepub.com/home/hpc

Orchestration of materials science
workflows for heterogeneous resources at
large scale

Naweiluo Zhou1, Giorgio Scorzelli2, Jakob Luettgau1, Rahul R Kancharla3, Joshua J Kane3,
Robert Wheeler4, Brendan P Croom5, Pania Newell2, Valerio Pascucci2 and
Michela Taufer1

Abstract
In the era of big data, materials science workflows need to handle large-scale data distribution, storage, and computation.
Any of these areas can become a performance bottleneck. We present a framework for analyzing internal material
structures (e.g., cracks) to mitigate these bottlenecks. We demonstrate the effectiveness of our framework for a workflow
performing synchrotron X-ray computed tomography reconstruction and segmentation of a silica-based structure. Our
framework provides a cloud-based, cutting-edge solution to challenges such as growing intermediate and output data and
heavy resource demands during image reconstruction and segmentation. Specifically, our framework efficiently manages
data storage, scaling up compute resources on the cloud. The multi-layer software structure of our framework includes
three layers. A top layer uses Jupyter notebooks and serves as the user interface. A middle layer uses Ansible for resource
deployment and managing the execution environment. A low layer is dedicated to resource management and provides
resource management and job scheduling on heterogeneous nodes (i.e., GPU and CPU). At the core of this layer,
Kubernetes supports resource management, and Dask enables large-scale job scheduling for heterogeneous resources.
The broader impact of our work is four-fold: through our framework, we hide the complexity of the cloud’s software stack
to the user who otherwise is required to have expertise in cloud technologies; we manage job scheduling efficiently and in a
scalable manner; we enable resource elasticity and workflow orchestration at a large scale; and we facilitate moving the
study of nonporous structures, which has wide applications in engineering and scientific fields, to the cloud. While we
demonstrate the capability of our framework for a specific materials science application, it can be adapted for other
applications and domains because of its modular, multi-layer architecture.

Keywords
Scientific workflow, orchestration, resource management, job scheduling, materials science, cloud computing

Motivation and proposed solution

Materials science has evolved to adopt sophisticated sci-
entific workflows to automate experiments and data anal-
ysis. Materials science workflows can express many
applications, often consisting of multiple tasks that require
resources beyond a single machine (Wu et al., 2015). A
workflow usually comprises several stages, executing a task
and taking input data from experimental tools or previous
steps. Materials science workflows can generate and stream
massive amounts of data in the order of terabytes or pe-
tabytes. Examples of these workflows include analyzing and
visualizing internal material structure by performing syn-
chrotron X-ray computed tomography reconstruction and
segmentation of silica. A personal computer or a small

dedicated cluster is no longer sufficient to perform the
reconstruction and segmentation operations on tomography
data. Public cloud platforms can effectively provide

1University of Tennessee Knoxville College of Engineering, Knoxville, TN,
USA
2University of Utah, Salt Lake, Utah, USA
3Idaho National Laboratory, Idaho Falls, USA
4MicroTesting Solutions LLC, Hilliard, OH, USA
5Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

Corresponding author:
Michela Taufer, EECS, University of Tennessee Knoxville College of
Engineering, 401 Min H. Kao Bldg. 1520 Middle Drive, Knoxville, TN
37996, USA.
Email: taufer@utk.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231167800
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-0031-6377
mailto:taufer@utk.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231167800&domain=pdf&date_stamp=2023-04-14

computing and storage resources, as users do not need to
deploy an entire infrastructure that brings additional costs
such as hardware purchase and maintenance (Cepuc et al.,
2020). Furthermore, cloud resources are provisioned based
on user demands with a pay-as-you-go model and can
quickly adapt program execution environments to user
needs. Still, efficiently deploying services on the cloud
requires technical expertise.

In this work, we break through the expertise barrier by
providing scientists in materials science with a framework
that enables a scalable, easy use of the cloud for their
studies. We leverage cutting-edge cloud technologies to
design and implement our framework. To this end, our
framework integrates a rich suite of software features
needed for managing the heterogeneous hardware infra-
structure (CPUs, GPUs, and storage) on the cloud and
orchestrating the tasks composing the multi-stage materials
science workflow, removing the need for a deep under-
standing of the cloud infrastructure or deploying workflow
management systems (Deelman et al., 2015; Jain et al.,
2015; Wilde et al., 2011). Furthermore, our framework
enables interactive, visual exploration of large materials
science data. Our framework comprises three layers: a top
user interface, a middle layer for resource deployment, and a
lower layer dedicated to resource management.

Using synchrotron X-ray computed tomography, we
deploy our framework to study in situ mechanical testing of
a nanoporous structure. Such study has various applications
in engineering and scientific domains (from fillers and
additives to adsorbents, catalysts, and recently therapeutic
agents and vaccines in nanomedicine). The workflow
studying the phenomena comprises six stages: downloading
images from X-ray tomography scans (6.0 GB per image);

performing image segmentation to remove noises; performing
image reconstruction to obtain a clear vision of the material
structure; converting the data into OpenVisus formats Petruzza
et al. (2020); streaming data to storage; and using the Open-
Visus streaming services for user analysis. Figure 1 shows an
example of the internal structure of a porous silica material at
two different stages. Figure 1(a) shows a single slice of the
materials in the Z-axis view in 2D rendering after recon-
struction. Figure 1(b) shows the enhanced contrast and removal
of artifacts after segmentation in 3D rendering.

We show how our framework provides a scalable so-
lution to the study of the internal structure of a porous silica
material in which an increase in data size requires storage
resource elasticity provided by the cloud technologies
building our framework. The contributions of this article are
as follows:

· We present our multi-layer framework that provides a
complete life cycle for a materials science workflow
from its environment provision to final stage data
analysis using cutting-edge cloud technologies.

· We use our framework to study the in situ mechanical
testing of a nanoporous structure; nonporous struc-
tures have wide applications in engineering and
scientific fields.

· We demonstrate the ability of our framework to
handle large amounts of data at a magnitude of 10
TBytes in a scalable manner using a public cloud
platform such as Chameleon (Keahey et al., 2020).

Although the framework capabilities are demonstrated
for a specific study in the materials science domain, it can
be easily adapted to support multi-stage, modular

Figure 1. A single slice of the materials in the Z-axis view after reconstruction in 2D rendering (a) and the image with enhanced contrast
and removal of artifacts after segmentation viewed in 3D rendering (b). Note that the images at both stages can be 3D rendered.

Zhou et al. 261

workflows in other domains (Singh et al., 2019). The modular
implementation of our framework allows domain scientists to
easily plug in their software modules as new workflow stages
and run their workflowwith the framework’s Jupyter notebook
interface.

Critical problem in materials science

Using synchrotron X-ray computed tomography, we le-
verage our framework to study a critical data and
computation-intensive problem in materials science: the
in situ mechanical testing of a nanoporous foam. Porous
silica-based materials have wide applications in engineering
and scientific domains, from fillers and additives to ad-
sorbents, catalysts, and recently therapeutic agents and
vaccines in nanomedicine (Lei et al., 2020). The internal
structure of porous silica-based materials can be re-
constructed from synchrotron X-ray tomography. Tomog-
raphy combines the projections of a sample slice at different
orientations taken by placing the slice between an X-ray
source and detector (Maire et al., 2001). Analysis of the
in situ tomography images can reveal the underlying
mechanisms that drive macroscopic mechanical perfor-
mance (Peukert et al., 2015), such as the collapse of pores,
cracking and buckling of ligaments, and enable the design
of higher-performing silica foams.

The tomography images obtained from X-ray scans
require image processing to perform synchrotron X-ray
computed tomography reconstruction and segmentation
of silica. Reconstruction and segmentation remove
blurriness, calculate the tomographic center of rotation,
and eliminate scanning artifacts. Figure 2 illustrates the
complete experiment process represented in a scientific
workflow. The method comprises six stages performed on
a sequence of images: downloading the images of X-ray
tomography (Stage 1); performing the image recon-
struction to obtain a clear vision of the materials struc-
tures (Stage 2); performing the image segmentation to
remove background noise, enhance contrast, and reduce
image size (Stage 3); converting the data into a network-
friendly multi-level format (Stage 4); streaming data to
users (Stage 5); and visualizing and analyzing data with a
Jupyter notebook (Stage 6) (Randles et al., 2017). Spe-
cifically, each X-ray tomography image is approximately
6.0 GB; the images are downloaded in HDF5 file Group
(2000–2010). The stages of performing image recon-
struction and segmentation (i.e., Stages 2 and 3) are time-
consuming, requiring massive computing resources. In-
termediate stages (i.e., Stages 2, 3, and 4) yield a large
amount of intermediate data reaching at least 30 times the
input image size. Figure 2 shows examples of interme-
diate images after the segmentation and reconstruction

Figure 2. The six stages of a materials science workflow for in situ mechanical testing of a nanoporous structure using synchrotron X-
ray computed tomography. Numbered circles identify the six stages. Examples of intermediate images from the reconstruction and
segmentation stages are on the figure’s left.

262 The International Journal of High Performance Computing Applications 37(3-4)

stages (images on the left). Preserving the intermediate
data generated by each stage facilitates scientists to track
data provenance (Wang et al., 2015), enabling the re-
usability of workflow building blocks and the repro-
ducibility and trustworthiness of the results (Taufer et al.,
2021a,b); Stodden et al., 2016).

Conceptual design of our framework

We need a software solution that works on cloud platforms
to address the challenges of materials science workflows.
Our software solution combines workflow management and
resource provisioning with the concurrent execution of the
workflow stages using the task parallelism paradigm. Data
is streamed with the support of orchestration services from
the object storage to the user interface in an interoperable,
portable, and general manner.

Software solution and hardware infrastructures. Our software
solution is a multi-layer framework composed of three
layers: a top user interface, a middle layer for resource
deployment, and a lower layer dedicated to resource
management. Figure 3 illustrates the multi-layer organi-
zation of our framework.

Jupyter is a free, open-source, interactive tool that
researchers can use to combine software code, compu-
tational output, explanatory text, and multimedia re-
sources in a single document. A Jupyter notebook
interface serves as the top layer and facilitates the domain
scientist’s interaction with the workflows, the interpre-
tation of its execution, and the explainability of its results.
We developed ad hoc notebooks that leverage the

OpenVisus Software Development Kit (SDK) (Pascucci
et al., 2012) to:

· visualize framework outputs (i.e., 2D and 3D
images);

· perform fast visualization of massive data; and
· run visualization services agnostic from the under-

neath hardware.

The middle layer uses the declarative markup language
YAML to configure, describe, and run all the workflow
stages modular and adaptable, making new stages easily
identifiable and pluggable into the original workflow. For
the setup, we run our configuration scripts on the Ansible
(Sammons, 2016) platform, an IT automation system that
handles configuration management, application deploy-
ment, cloud provisioning, ad hoc task execution, and
Infrastructure-As-Code (IaC) through a suite of Python
modules. For the material science part, we develop a
domain-specific and modern software stack that provides
services for high-level task definition; low-latency task
coordination and communications (our dependencies are
expressed as a parameterized Directed Acyclic Graph);
automatic failure handling; and automatic data caching,
central logging, observability tools.

The lower layer manages heterogeneous computing re-
sources (i.e., GPU and CPU nodes) and schedules different
jobs on these resources. The core of this layer uses Ku-
bernetes and Dask: Kubernetes (Hightower et al., 2017) is
an open-source system for automating deployment, scaling,
and management of containerized applications; and Dask
(Rocklin, 2015) is a flexible open-source Python library for
parallel computing, scaling Python code from multi-core
local machines to large distributed clusters or large-scale
distributed cloud platform. For this layer, we intentionally
architecture a hybrid resource management system (see
Figure 4) where Dask performs large-scale job scheduling
and resource management for GPU-intensive tasks, and
Kubernetes orchestrates long-running CPU-based services
such as the data-streaming services. We leverage three types
of gateways (also known as entry points or control nodes)
that provide indirect, monitored, and secured access:

· An Ansible Control Node orchestrates and performs
cluster-wide deployments;

· A Kubernetes Login Node dispatches the commands
to the Pods (i.e., atomic unit on the Kubernetes
platform); and

· A Jupyter Serve Node launches on-demand multi-
user Jupyter notebooks allowing interactive analysis.

The storage layer at the bottom of our software stack
includes temporary local file storage and remote object

Figure 3. The software layers of our framework on top of the
hardware infrastructure.

Zhou et al. 263

storage. The local file system is used to download locally
remote artifacts, such as the HDF5 files produced by the
acquisition devices, temporary store artifacts produced by
the reconstruction and segmentation algorithms, and sup-
port the artifacts conversion to Analysys-Ready Network
Optimized (ARCO) file formats (Abernathey et al., 2021).
Since most of the mentioned operations require random
file access and low latency, we need a small amount of
fast local storage in order of hundreds or thousands of
Input Output operations per second (IOPS). The remote
object storage, leveraging the S3 Application Pro-
gramming Interface (API), allows the permanent storage
of the results and their distribution and replication at the
national level. Our framework is designed from the
ground base to be compatible with any commercial or
educational object storage solution. We chose Wasabi
for this particular workflow, a vendor with a transparent
policy of zero-EGRESS fees (i.e., zero cost for moving
data outside) and zero API fees. Using Wasabi, we pay
for the pure storage costs without incurring high and
difficult-to-predict upload and download charges
(Penny, 2020).

Workflow management and resource provisioning. To auto-
mate the deployment of our software stack, our framework
solution uses Ansible (Sammons, 2016) that serves as an
orchestration tool by offering an easy way to perform
cluster-wide operations, such as configuration manage-
ment, application deployment, cloud provisioning, ad hoc
task execution, and multi-node orchestration. Ansible
deploys thereof via its playbook written in yaml that
describes the automation of jobs or tasks. yaml∗ (en-Kiki
et al., 2009) is a high-level human-readable language in

configuration files. Kubernetes also utilizes yaml scripts
to perform the deployments. Connections to nodes in
Ansible are via ssh, and nodes managed by Ansible are
grouped into an inventory file defined by users.

Ansible, our yaml scripts, and our Python scripts are
essential in workflow executions. Ansible performs cluster-
wide software deployments such as:

· Provisioning execution environments by installing
and switching the list of python libraries used at
different stages of the workflow;

Figure 4. Architecture of our framework. The number of nodes in the figure is only for illustration.

Figure 5. A snippet of the yaml script setting configurations for
the workflow. The preprocess includes two stages:
reconstruction (Line 17) and segmentation (Line 18). For
simplicity, only a part of the code is shown herein.

264 The International Journal of High Performance Computing Applications 37(3-4)

· Deploying the Dask and Kubernetes software
stacks.

Our yaml script defines all the configurations for our
workflow (Figure 5). The script has these key steps:

· Give the local location to store results as shown in
Line 2 of Figure 5, and the remote location on s3 to
archive all the data as shown in Line 4. The link in
Line 4 gives the bucket name of our object storage
(Factor et al., 2005) on s3.

· Set the environment variables such as the Dask
worker directory (Line 11). The environment settings
are applied for all the Dask nodes.

· Define the stages of our workflow that scientists
execute on the cloud. As an example, in our script
shown in Figure 5, scientists insert the names of
Stages 2, 3, and 4 representing the Python module
names. Note that Stages 2 and 3 in this script are
incorporated under one component Preprocess, as
both stages perform heavy computation. The stages
are scheduled to run on the Dask cluster. Convert
represents Stage 4 in Figure 2. In this way, scientists
only need to bring their Python modules that focus on
the scientific functionalities, and our framework
handles the rest (e.g., job scheduling or task paral-
lelization); and

· Specify the series of input files. Line 21 gives the
location of an input image filename.h5 on s3.

Our Python scripts pass the configurations defined in the
yaml script to the layers of our framework.

Task parallelization. To execute workflows effectively, we
introduce task parallelism in our framework. Figure 6
shows a simplified snapshot of the parallelization. The
unit of parallelism is a stage of the workflow as shown in
Figure 2; each unit is identified by the standard Python
decorator @task (Line 1, Line 4, and Line 7). The defined
tasks are formed into a pipeline (represented as a Prefect
Flow) scheduled to GPU nodes by Dask. We use Prefect†

as our workflow management system on top of Dask.

Dask handles scheduling and resource management of
tasks within a workflow. The Dask cluster consists of one
scheduler and many worker nodes. The first node defined
in the Ansible inventory is elected as the scheduler and
the rest act as workers. A defined task is executed in
parallel on all the worker nodes. Additionally, our
framework records logs of task status on each Dask
worker and passes them to the Dask scheduler during
execution. The logs can be disabled to reduce commu-
nication costs between nodes.

Streaming service orchestration. To support streaming ser-
vices on multiple platforms, the entire software stack of
our framework is encapsulated inside a Docker con-
tainer (Merkel, 2014), with the data being mounted
inside the containers. The software stack comprising the
three layers (Figure 3) is a collection of tools that are
well-tested and have been used for general purposes:
Kubernetes as a container orchestrator, Ansible as a
cluster-wide deployment tool, OpenVisus as a data vi-
sualization tool. Kubernetes schedules the Docker in-
stances and automatically relaunches them when
failures occur. The data is exposed externally via Ku-
bernetes services associated with a global IP address and
a port number. Multiple users can access the data via a
given link. Figure 7 illustrates how a user can access the
dataset id_1265 inside a Jupyter notebook. The
streaming service component in our architecture can be
decoupled from the framework and deployed on a more
permanent yet smaller cluster that can continuously
provide long-running streaming services within the
budget of small or median-size research laboratories or
institutes.

Local filesystem and remote object storage. To manage the
large volume of intermediate data, each computing node on
the Dask and Kubernetes clusters has local storage (i.e.,
local filesystem) attached. The cloud object store s3 is
accessible to all nodes on the compute cluster as illustrated
in Figure 4. Data accessing to s3 is much slower than the
local store. Hence s3 only serves as a complementary data
store. The local filesystem enables quick data access during
workflow execution. However, it has limited storage ca-
pacity and can only provide temporal storage. The hybrid

Figure 6. A snippet of stage operations with parallelized task
indicated by @task decorator. Some parts of the code are
omitted for simplicity.

Figure 7. A code snippet on how to fetch the streamed dataset in
a Jupyter notebook. The real IP address has been replaced by
xx.xx.xx.xx, and the port number, in this case, is 32,439.

Zhou et al. 265

data store allows our framework to handle a large volume of
data during workflow execution and also offers long-term
storage for data retrieval used by the Kubernetes streaming
services.

The input HDF5 files are downloaded from s3 as
shown on the left side of Figure 4 to the local disk. The
desired images to be streamed are also fetched from s3.
The intermediate data generated during execution on the
local filesystem is freed once backed up to s3, performed
in the background by multiple threads during
computation.

Interoperability, portability, and generalizability. To sustain
interoperable workflow executions, our software frame-
work includes a Jupyter notebook as a user interface.
Furthermore, the deployment layer provides portability,
enabling our framework’s application to run on different
cloud environments. Last, the various parts of our soft-
ware architecture are highly generalizable. The workflow
configurations are defined in a single file written in yaml
that users can easily customize without expertise in cloud
technologies for specific use cases. In addition, our
framework does not modify users’ Python modules (e.g.,
the module performing image reconstruction); instead,
we plug the module into our framework, which auto-
matically manages parallelization, job scheduling, and
resource management.

Performance evaluation and scalability

Materials scientists seek workflow execution speed-up and
efficient management of the massive amount of generated
data. We assess whether our framework meets these goals
for our materials science workflow. To this end, we show the
scalability of our framework by evaluating the performance
of the two most computation-intensive stages (i.e., recon-
struction and segmentation) with an increasing number of
GPU nodes. We present the increase in intermediate data
size at the end of each stage to demonstrate the importance
of storage resource elasticity.

We run our workflow on Chameleon Keahey et al.
(2020), a public cloud platform supported by the Na-
tional Science Foundation with sites at the University of
Chicago and the Texas Advanced Computing Center.
Chameleon is built on the OpenStack cloud software
platform. It provides researchers access to nodes of tradi-
tional KVM cloud architectures and reconfigurable bare-
metal nodes provisioned via OpenStack Ironic. Table 1
gives the Chameleon’s hardware specifications of the 16
GPU nodes and three CPU nodes that consist of the Dask
and Kubernetes clusters used for our testing, as shown in
Figure 4. Figure 8.a presents our scalability study regarding
the workflow’s total execution time (in hours). The figure
illustrates the average time of three executions with 2, 4, 8,
and 16 GPU nodes. We can observe how the execution time
is significantly shortened by 88.7% running with 16 nodes

Table 1. Hardware specifications of the cloud infrastructures used for scalability evaluation. The Dask and Kubernetes clusters used for
our experiments comprise three CPU and 16 GPU nodes.

CPU node Num. cores 24 Memory size 187.0 GB CPU vendor Intel Xeon Gold 6126, 2.60 GHz Local storage 441 GB
GPU node Num. GPU 1 Memory size 23.4 GB GPU vendor Quadro RTX 6000 Local storage 210 GB

Figure 8. Scalability study of the two computation-intensive stages (i.e., Stages 2 and 3) in terms of workflow’s total execution time
(in hours) (a) and download time per node (in seconds) (b) on Chameleon.

266 The International Journal of High Performance Computing Applications 37(3-4)

compared to the two nodes. Table 2 gives the measure-
ments’ variation and standard deviation, indicating that the
execution time is stable on Chameleon.

The inputs in Stage 1 are 16 HDF5 files, with each
having size of 6 GB. Computation is delayed until the files
are downloaded to the local disk at each GPU node. The
impact of file uploading to S3 is insignificant since it is
performed by background threads when computation oc-
curs. Figure 8(b) shows the average download time spent on
each GPU node. Our experiments have experienced a stable
network as given by the variance and standard deviation in
Table 3. However, the network speed can fluctuate de-
pending on cloud providers. For instance, the download
speed can become 10 times slower than the network’s peak
speed. Notice that running with two nodes, the variance, and
standard deviation are much higher than the rest. The ex-
periment is more likely to undergo network speed variation
on the cloud when its execution expands across several
days. Consequently, the overall execution time of the two
stages is significantly influenced. Nevertheless, compared
with the total execution time in our experiment, such cost is
still negligible. Table 3 gives the ratio of time cost in file
downloading concerning the total time, which is within 1%.

Table 4 gives the data generated stage by stage cumu-
latively. The volume of streamed images at the end stage
reaches approximately 10 times the input size. The ex-
periment in this section only evaluates processing time for a
small number of tomography of porous silica-based ma-
terials with around 100 GB, yet amounts to the size at a
magnitude of terabyte at the final stage.

Figure 9 visualizes a set of output images generated with
our framework and visualized with our Jupyter notebook

interface (the top layer of our framework). Specifically, the
figure shows silica-based nanopillar images generated
with synchrotron-based X-ray computed microtomography
during a compression test. The novelty aspect of this set of
images is the first-of-its-kind visualization of the spherical
silica nanoparticles (white to gray color) and void space
(black color) in this type of testing.

Aspects of novelty and future directions

Our work is part of a broader effort to port scientific ap-
plications to the cloud. We present here a suite of other
contributions, outlining for each what our framework in-
troduces the novelty aspects. We also define the future
direction to support the reusability, portability, and repro-
ducibility of results. Jain et al. (2015) present a dynamic
workflow system used in materials projects to calculate
elastic tensors describing the response of materials to ex-
ternal forces within their elastic limits. This workflow
system packs and schedules many small tasks for HPC
systems that are otherwise not suitable for HPC queuing
systems. Lingerfelt et al. (2016) presented a workflow
system BEAM targeted for analysis and modeling of ma-
terial characterization data on HPC systems. Aweb portal is
given to the user for submitting, monitoring the multi-stage
workflow execution, and visualizing the results. The al-
gorithms are adapted to utilize MPI to scale on HPC. Our
work provides a lightweight workflow system that enables
moving applications to the cloud. The parallel tasks and the
big data storage requirements benefit from the cloud Iaas
(Manvi and Krishna Shyam, 2014) (Infrastructure As A
Service) model at an economical cost.

Table 2. The variance and standard deviation of three workflow executions on a different number of GPU nodes. Unit: hour.

Number of nodes 2 GPU nodes 4 GPU nodes 8 GPU nodes 16 GPU nodes

Variance 0.65 0.04 0.08 0.0
Stand deviation 0.81 0.21 0.29 0.06

Table 3. The variance and standard deviation of the time spent downloading the HDF5 files on each node of three execution and its
ratio concerning total time. Unit: second.

Number of nodes 2 GPU nodes 4 GPU nodes 8 GPU nodes 16 GPU nodes

Variance 775.5 2.7 8.8 38.4
Stand deviation 27.8 1.7 3.0 6.2

Table 4. Increase dataset size, stage by stage, when processing 16 input images.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Accumulative size (GB) 96.7 939.9 1003.9 1022.3 1022.3 1022.3

Zhou et al. 267

Taghizadeh-Popp et al. (2020) describe a data-driven
platform SciServer developed for astronomy. One key
feature of this platform is to perform data filtering, analysis,
and visualization close to data in the SQL database. The
concept of bringing analysis close to data is fundamental in
the era of big data, which is also one of the issues addressed
in our architecture, where the inputs are fetched from remote
storage to where computation occurs. Differently, our
workflow system does not require a central database. In-
stead, a cloud object storage is used for long-term backup,
and the current desired datasets are downloaded to the
Kubernetes cluster providing data-streaming and visuali-
zation services.

Abernathey et al. (2021) prototype an architecture named
Pangeo that is composed of a cloud object storage and
compute cluster. The external cloud storage is dedicated to
the easy retrieval of large-volume datasets. Kubernetes
provision the compute cluster, and Dask enables compu-
tation parallelism. Differently, our architecture provides an

additional deployment layer on top of Dask and Kubernetes,
which provisions native environments specified by users for
their workflows rather than pulling existing container im-
ages, which can be inflexible.

There is a growing need for developing persistent sci-
entific workflows to seamlessly connect and integrate
software stacks and data services across cloud platforms
supported by virtualization and data provenance (Bhatia
et al., 2021). Containerization of scientific workflow en-
ables reusability, portability, and reproducibility of results
(Olaya et al., 2023) and ease of system maintenance efforts
(Dusia et al., 2015); McDaniel et al., 2015); Monsalve et al.,
2015); Herbein et al., 2016). Future directions point to the
need for automatic containerization of complete working
environments that include software dependencies (e.g.,
Python programs/modules) at all stages and the compo-
nents of the Dask cluster, which are currently running
natively in our workflow to maximize performance.
Containerized Dask components can be deployed to the

Figure 9. Selected output of our framework, generated with the Jupyter notebook interface. The figure shows a first-of-its-kind
visualization of the spherical silica nanoparticles (white to gray color) and void space (black color) in silica-based nanopillar images
generated with synchrotron-based X-ray computed microtomography during a compression test).

268 The International Journal of High Performance Computing Applications 37(3-4)

corresponding GPU nodes through Ansible, automatically
generating and scheduling the containers to connected
nodes.

Conclusion

The software framework presented herein solves multi-
stage workflows in scientific domains. The framework
enables automatic workflow scheduling, scalable data
management at runtime, and interactive data visualization.
Domain scientists can easily plug in their Python modules as
the workflow stages and run the workflows with a Jupyter
notebook. In addition, this framework also offers a de-
ployment layer to set up the software stacks on cloud plat-
forms and provisions dependencies for programs according
to their needs. We described a complex materials science
workflow in the context of in situ mechanical testing of a
nanoporous structure and explored the performance benefits
brought by our framework. We presented the technical in-
novations that can extend the materials science workflow into
a generalizable and scalable framework. Future work in-
cludes integrating our workflow into data commons, such as
the Materials Commons and Digital Rock, which will collect
the intermediate data enabling automatic indexing and
metadata generation for data searchability.

Acknowledgments

This research was supported by the National Science Foundation
(NSF) under grant numbers #1841758, #2028923, #2103845 and
#2138811; the Extreme Science and Engineering Discovery
Environment (XSEDE) under allocation TG-CIS210128; Chame-
leon Cloud under allocation CHI-210923; and IBM through a
Shared University Research Award. Author BPC was supported by
the JHU/APL Independent Research and Development Program.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the US National Science Foundation
(#1841758, #2028923, #2103845 and #2138811).

Data Availability

The framework software and the Jupyter Notebook are both open
access at https://github.com/nsdf-fabric/nsdf-materialscience.

ORCID iD

Michela Taufer  https://orcid.org/0000-0002-0031-6377

Note

*. yaml: yet another markup language.
†. https://www.prefect.io/.

References

Abernathey RP, Augspurger T, Banihirwe A, et al. (2021) Cloud-
native repositories for big scientific data. Computing in
Science and Engineering 23(2): 26–35.

Bhatia H, Di Natale F, Moon JY, et al. (2021) Generalizable
coordination of large multiscale workflows In: Proceedings of
the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), St. Louis,
MO, USA. 14-19 November 2021, 1–16, IEEE. DOI: 10.
1145/3458817.3476210.

Cepuc A, Botez R, Craciun O, et al. (2020) Implementation of a
continuous integration and deployment pipeline for con-
tainerized applications in amazon web services using jenkins,
ansible and kubernetes In: Proceedings of the 2020 19th
RoEduNet Conference: Networking in Education and Re-
search (RoEduNet), Bucharest, Romania. 11-12 December
2020, 1–6. IEEE

Deelman E, Vahi K, Juve G, et al. (2015) Pegasus, a workflow
management system for science automation. Future Gener-
ation Computer Systems 46: 17–35.

Dusia A, Yang Y and Taufer M (2015) Network quality of
service in docker containers. In: Proceedings of the 2015
IEEE International Conference on Cluster Computing.
Chicago, IL. 08-11 September 2015, 527–528. IEEE

en-Kiki O, Evans C and Ingerson B (2009) Yaml ain’t markup
language (yaml) version 1.1. Working Draft 2008.

Factor M, Meth K, Naor D, et al. (2005) Object storage: the future
building block for storage systems In: Proceedings of the
2005 IEEE International Symposium on Mass Storage Sys-
tems and Technology, Sardinia, Italy. 20-24 June 2005,
pp. 119–123. IEEE

Group H (2000-2010). Hierarchical data format version 5
http://www.hdfgroup.org/HDF5.

Herbein S, Dusia A, Landwehr A, et al. (2016) Resource man-
agement for running hpc applications in container clouds. In:
Kunkel J, Balaji P and Dongarra J (eds), High Performance
Computing. ISC High Performance 2016. Lecture Notes in
Computer Science, vol. 9697. Springer, Cham. https://doi.
org/10.1007/978-3-319-41321-1_14.

Hightower K, Burns B and Beda J (2017) Kubernetes: Up and
Running Dive into the Future of Infrastructure. Sebastopol,
CA, USA: O/’Reilly Media, Inc.

Jain A, Ong SP, Chen W, et al. (2015) FireWorks: a dynamic
workflow system designed for high-throughput applications.
Concurrency and Computation: Practice and Experience
27(17): 5037–5059

Keahey K, Anderson J, Zhen Z, et al. (2020) Lessons learned from
the chameleon testbed In: Proceedings of the 2020 USENIX

Zhou et al. 269

https://github.com/nsdf-fabric/nsdf-materialscience
https://orcid.org/0000-0002-0031-6377
https://orcid.org/0000-0002-0031-6377
https://doi.org/10.1145/3458817.3476210
https://doi.org/10.1145/3458817.3476210
http://www.hdfgroup.org/HDF5
https://doi.org/10.1007/978-3-319-41321-1_14
https://doi.org/10.1007/978-3-319-41321-1_14

Conference on Usenix Annual Technical Conference. USE-
NIX Association.

Lei Q, Guo J, Noureddine A, et al. (2020) Sol-gel-based advanced
porous silica materials for biomedical applications. Advanced
Functional Materials 30(41): 1909539.

Lingerfelt EJ, Belianinov A, Endeve E, et al. (2016) BEAM: A
computational workflow system for managing and modeling
material characterization data in hpc environments. Procedia
Computer Science 80: 2276–2280. https://doi.org/10.1016/j.
procs.2016.05.410.

Maire E, Buffière JY, Salvo L, et al. (2001) On the application of x-
ray microtomography in the field of materials science. Ad-
vanced Engineering Materials 3(8): 539–546.

Manvi SS and Krishna Shyam G (2014) Resource management for
infrastructure as a service (IaaS) in cloud computing: a survey.
Journal of Network and Computer Applications 41: 424–440.

McDaniel S, Herbein S and Taufer M (2015) A two-tiered ap-
proach to i/o quality of service in docker containers In:
Proceedings of the 2015 IEEE International Conference on
Cluster Computing, Chicago, IL. 08-11 September 2015,
490–491. IEEE

Merkel D (2014) Docker: lightweight linux containers for con-
sistent development and deployment. Linux J 2014(239).

Monsalve J, Landwehr A and Taufer M (2015) Dynamic CPU
resource allocation in containerized cloud environments. In:
2015 IEEE International Conference on Cluster Computing.
Chicago, IL. 08-11 September 2015, 535–536, IEEE.

Olaya P, Kennedy D, Llamas R, et al. (2023) Building trust in earth
science findings through data traceability and results ex-
plainability. IEEE Transactions on Parallel and Distributed
Systems 34(2): 704–717, IEEE.

Pascucci V, Scorzelli G, Summa B, et al. (2012) The ViSUS
Visualization Framework. In: Bethel EW, Childs H and
Hansen CD (eds), High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, Chapman and
Hall/CRC computational science series. Florida: CRC Press.

Penny D (2020) NASA: We Forgot the $30m Bandwidth Charges.
https://www.linkedin.com/pulse/oops-we-forgot-30m-
bandwidth-charges-david-penny/.

Petruzza S, Venkat A, Morrical N, et al. (2020) The OpenVisus
Framework for Extreme Data Management, Analysis and
Visualization. https://github.com/sci-visus/OpenVisus.

Peukert W, Segets D, Pflug L, et al. (2015) Unified design
strategies for particulate products Unified Design Strategies
for Particulate Products, 46, pp. 1–81.

Randles BM, Pasquetto IV, Golshan MS, et al. (2017) Using the
jupyter notebook as a tool for open science: an empirical
study In: Proceedings of the 2017 ACM/IEEE Joint Con-
ference on Digital Libraries. Toronto, ON, 19-23 June 2017,
1–2. JCDL

Rocklin M (2015) Dask: parallel computation with blocked al-
gorithms and task scheduling In: Proceedings of the 14th
Python in Science Conference (SCIPY), Los Angeles, C.
126–132.

Sammons G (2016) Exploring Ansible 2: Fast and Easy Guide.
CreateSpace Independent Publishing Platform. https://books.
google.com/books?id=vgQiMQAACAAJ.

Singh R, Graves JA, Anantharaj V, et al. (2019) Evaluating sci-
entific workflow engines for data and compute intensive
discoveries In: Proceedings of the 2019 IEEE International
Conference on Big Data (Big Data), Los Angeles, CA. 09-12
December 2019. 4553–4560. IEEE

Stodden V, McNutt M, Bailey DH, et al. (2016) Enhancing re-
producibility for computational methods. Science 354(6317):
1240–1241.

Taghizadeh-Popp M, Kim J, Lemson G, et al. (2020) SciServer: a
science platform for astronomy and beyond. Astronomy and
Computing 33: 100412.

Taufer M, Deelman E, da Silva RF, et al. (2021a) A roadmap to
robust science for high-throughput applications: the scien-
tists’ perspective In: Proceedings of the 2021 IEEE 17th
International Conference on eScience (eScience), Innsbruck,
Austria, 20-23 September 2021. 247–248.IEEE

Taufer M, Deelman E, Silva RF, et al. (2021b) A roadmap to robust
science for high-throughput applications: the developers’
perspective In: Proceedings of the 2021 IEEE International
Conference on Cluster Computing (CLUSTER), Portland,
OR, 07-10 September 2021. 807–808.IEEE

Wang J, Crawl D, Purawat S, et al. (2015) Big data provenance:
challenges, state of the art and opportunities In: Proceedings
of the 2015 IEEE International Conference on Big Data (Big
Data), Santa Clara, CA, 29 October 2015—01 November
2015, 2509–2516.IEEE

Wilde M, Hategan M, Wozniak JM, et al. (2011) Swift: a language
for distributed parallel scripting. Parallel Computing 37(9):
633–652.

Wu F, Wu Q and Tan Y (2015) Workflow Scheduling in Cloud: a
Survey. The Journal of Supercomputing 71(9): 3373–3418.

Naweiluo Zhou was a Postdoctoral Researcher at the
University of Tennessee Knoxville.

Giorgio Scorzelli is the Director of Software Development
at the Center For Extreme. Data Management Analysis And
Visualization and a Research Scientist at the Scientific
Computing Institute of the University of Utah. He earned
his Computer Science Master’s degree at the University of
Roma Tre (2000). He was an Adjunct Professor and Re-
search. Fellow at the University of Roma Tree (2001–2010).
He worked as a Computer Scientist for the Lawrence
Livermore National Laboratory (2002–2005). Scorzelli’s
research interests include big data analysis, real-time sci-
entific visualization, and multi-resolution and streaming
techniques. He authorizes over 40 peer-reviewed publica-
tions in international conferences and journals.

Jakob Luettgau is a Research Assistant Professor at the
University of Tennessee, Knoxville. He earned his Ph.D. in

270 The International Journal of High Performance Computing Applications 37(3-4)

https://doi.org/10.1016/j.procs.2016.05.410
https://doi.org/10.1016/j.procs.2016.05.410
https://www.linkedin.com/pulse/oops-we-forgot-30m-bandwidth-charges-david-penny/
https://www.linkedin.com/pulse/oops-we-forgot-30m-bandwidth-charges-david-penny/
https://github.com/sci-visus/OpenVisus
https://books.google.com/books?id=vgQiMQAACAAJ
https://books.google.com/books?id=vgQiMQAACAAJ

Computer Science in 2021 from the University of Hamburg
(Germany) after graduating with his BSc and MSc from the
same University in 2014 and 2016. From 2016 to 2019, he
worked with The Centre of Excellence in Simulation of
Weather and Climate in Europe (ESiWACE) at the German
Climate Computing Center (DKRZ). He visited Argonne
National Laboratory (ANL) as a Short-Term Scholar in
2018 and 2019 while holding a research position at DKRZ.
In 2020, he started work as an AI Consultant for Helmholtz
AI/DKRZ, advising researchers in the earth sciences
throughout Germany. His research interests include high-
performance storage, workflows leveraging hierarchical
storage systems, machine learning and performance engi-
neering, and instrumentation of parallel applications.

Rahul Reddy Kancharla is a Postdoctoral Research Asso-
ciate at the Idaho National Laboratory, Idaho Falls, Idaho.
He obtained his Bachelor of Technology (2015) in Com-
puter Engineering from the Jawaharlal Nehru Technological
University. He earned his Masters from the University of
Wyoming College of Engineering and Physical Sciences
(2017) and his Ph.D. from Boise State University (2021)

Joshua J. Kane is a staff scientist at Idaho National Lab-
oratory with research interests in a wide range of carbon
materials. His background is in Chemical Engineering and
Materials Science. He obtained his Bachelor’s (2009) in
Chemical Engineering from the University of Idaho. He
earned his Masters and Ph.D. (2013) from Boise State
University in Materials Science and Engineering.

Brendan P. Croom is a senior materials scientist at JHU/
APLwith diverse expertise in metal additive manufacturing,
process monitoring, materials qualification, X-ray com-
puted tomography and non-destructive evaluation. Previ-
ously, as an NRC postdoctoral researcher at AFRL and a
graduate student at the University of Virginia, he developed
novel methods to additively manufacture and evaluate the
performance of structural composites for extreme envi-
ronments. He is especially interested in machine learning
methods to accelerate materials development, NDE, and
build processing-structure-property-performance relation-
ships for emerging materials systems. Robert Wheeler is the
Chief Executive Manager of MicroTesting Solutions LLC,
where he also directs the development of small-scale testing
methods and instrumentation. At MTSL, he develops
technologies for conducting in situ mechanical, thermal, and
electrical studies within the SEM, FIB, and TEM. He ob-
tained his Ph.D. from the University of Illinois at Urbana-
Champaign. He held a postdoctoral position as a site
electron microscopist for the NSF Center for High-
Temperature Superconductivity at Argonne National

Laboratory. He had a research scientist position at The Ohio
State University before joining UES, Inc., where he con-
currently acts as an on-sight scientist for the Air Force
Research Laboratory.

Pania Newell is an Assistant Professor in the Department of
Mechanical Engineering and holds an adjunct position at the
School of Computing and the Department of Civil Engi-
neering at the University of Utah. She obtained her M.S. and
Ph.D. from the University of NewMexico and University of
Colorado-Boulder. Her research interest lies at the interface
of material sciences and mechanics. In particular, she is
interested in multi-scale, multi-physics phenomena in het-
erogeneous porous materials through developing theoreti-
cal, computational, and experimental frameworks combined
with data sciences.

Valerio Pascucci is the founding Director of the Center for
Extreme Data Management Analysis and Visualization
(CEDMAV) at the University of Utah. Pascucci is a Faculty
of the Scientific Computing and Imaging Institute, a Pro-
fessor of the School of Computing, University of Utah, and
a DOE Laboratory Fellow, of the Pacific Northwest Na-
tional Laboratory. Previously, Pascucci was a Group Leader
and Project Leader in the Center for Applied Scientific
Computing at the Lawrence Livermore National Laboratory
and an Adjunct Professor of Computer Science at the
University of California Davis. Pascucci earned a Ph.D. in
computer science at Purdue University (2000) and a EE
Laurea (Master) at the University “La Sapienza” in Roma,
Italy (1993).

Michela Taufer is the Dongarra Professor in High-
Performance Computing in the Department of Electrical
Engineering and Computer Science at the University of
Tennessee Knoxville (UTK). She earned her undergraduate
degree in Computer Engineering from the University of
Padova (Italy) and her doctoral degree in Computer Science
from the Swiss Federal Institute of Technology or ETH
(Switzerland). From 2003 to 2004, she was a La Jolla In-
terfaces in Science Training Program (LJIS) Postdoctoral
Fellow at the University of California San Diego (UCSD)
and The Scripps Research Institute (TSRI), where she
worked on interdisciplinary projects in computer systems
and computational chemistry. Taufer’s research interests in
high-performance computing include scientific applica-
tions, scheduling, reproducibility challenges, and big data
analytics. She has nearly 100 publications and delivered 80
talks at various conferences and research institutes. She is a
professional member of the IEEE and a Distinguished
Scientist of the ACM.

Zhou et al. 271

	Orchestration of materials science workflows for heterogeneous resources at large scale
	Motivation and proposed solution
	Critical problem in materials science
	Conceptual design of our framework
	Software solution and hardware infrastructures
	Workflow management and resource provisioning
	Task parallelization
	Streaming service orchestration
	Local filesystem and remote object storage
	Interoperability, portability, and generalizability

	Performance evaluation and scalability
	Aspects of novelty and future directions
	Conclusion
	Acknowledgments
	Declaration of conflicting interests
	Funding
	Data Availability
	ORCID iD
	Note
	References

