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Following neutron capture in a material, there will be prompt nuclear recoils in addition to the
gamma cascade. The nuclear recoils that are left behind in materials are generally below 1 keV
and therefore in the range of interest for dark matter experiments and CEνNS studies — both as
backgrounds and calibration opportunities. Here we obtain the spectrum of prompt nuclear recoils
following neutron capture for silicon.

I. INTRODUCTION

The residual nuclear recoils left after neutron capture
have been used before to probe the details of the slowing
down of atoms in material [1, 2]. However, the complica-
tions of the post-capture cascades and possible in-flight
decays make the expected energy of the residual nuclear
recoils (NRs) nontrival to calculate. The energy of resid-
ual NRs depends on the details of the capture cascade like
the levels visited and the lifetimes of levels. The work of
Firestone [3] in cataloging this information from exper-
iments in prompt neutron activation analysis (PGAA)
is a key to being able to make the detailed NR energy
deposition models for silicon.

Slowing-down models for the capture nuclei in their
matrix are also a key component of correctly doing the
modeling. We use the approximation that nuclei that are
slowing down do so with a constant acceleration and we
choose the acceleration to be in line with the Lindhard
model [4].

Direct dark matter search experiments are often
searching for low-energy NRs very near their detector
thresholds. The community has recently turned to neu-
tron capture [2, 5, 6] as a means to provide very low-
energy NRs near today’s best detector thresholds — be-
low around 100 eV in recoil energy. Similar efforts ex-
ist in the CEνNS community [7]. In both communities,
thermal neutron capture also exists as a potential back-
ground to the signal events [8]. These studies show that
a detailed understanding of the recoil spectrum resulting
from neutron capture is needed, and we provide that here
for silicon detectors.

II. POSTCAPTURE CASCADES

For thermal neutron captures, each nuclear deexcita-
tion releases approximately the neutron separation en-
ergy, Sn, for the capturing isotope. For intermediate
and heavy nuclei, the sequence of states that the residual
nucleus passes through can be complex and have many

∗ Corresponding author: kathryn.harris@ucdenver.edu
† Corresponding author: anthony.villano@ucdenver.edu

emitted gamma rays. This is the subject of long-standing
data collection and modeling efforts [3].

The classification of individual deexcitations coming
from the cascade has become standard and is useful for
relating the properties of the cascade to the nuclear struc-
ture. In addition, this classification aides in Monte Carlo
codes to generate specific cascade realizations. Generally,
a critical energy Ec is chosen below the neutron separa-
tion energy such that nuclear levels below are treated
individually with their appropriate properties and levels
between this energy and the neutron separation energy
are treated statistically. This breaks all released gamma
rays into several categories as displayed in Fig. 1: (a)
primary to continuum; (b) continuum to continuum; (c)
continuum to discrete; (d) primary to discrete; and (e)
discrete to discrete.

FIG. 1. (Color online) The typical classification for capture
cascade gamma rays. Horizontal lines are various energy de-
marcations with Sn representing the neutron separation en-
ergy, Eg representing the ground-state energy, and Ec repre-
senting the (arbitrary) cut off between discrete and continuum
states. Transitions are denoted by arrows and belong to one
of five categories: (a) primary gammas with a final state in
the continuum; (b) secondary gammas within the continuum;
(c) secondary gammas from a continuum state to a discrete
state; (d) primary gammas with a discrete final state; and (e)
secondary gammas between two discrete states.

In our treatment of silicon here we will take Ec ' Sn,
that is, we will treat all cascades as dicrete. This treat-
ment may be difficult to implement for heavy nuclei as
this approximation is most accurate for nuclei with low
masses. Thus far, however, we have successfully treated
27% of germanium cascades in this fashion and are con-
tinuing to test this treatment on the remaining 73%.

In PGAA measurements, it is easy to extract the
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prevalence of a specific gamma ray in the final state per
100 captures. We prefer the slightly different organiza-
tion of giving the probability of a given cascade path. The
key publication we use to sort out the cascade probabil-
ities is the paper of Raman [9]. Figure 2 shows the cas-
cade paths of the six most probable cascades for a natural
silicon composition. The cascades shown there account
for approximately 90% of the total cascades. Some of the
gamma rays appear in multiple cascades so it is clear that
the probability to find a specific gamma ray after capture
— as is often measured — is not quite the same informa-
tion as the cascade probabilities that we have compiled.

Sn

Eg

8473.6 keV

6380.6 keV

4934.4 keV

4840.3 keV

1273.4 keV

62.6% 10.7% 6.8% 4.0% 3.9% 2.1%

FIG. 2. (Color online) A diagram of the six most prevalent
cascades of natural silicon. All of the cascades start with
the capture of approximately thermal neutrons on the nucleus
28Si at the neutron separation energy of the final nuclear state,
29Si.

In our reorganization of this typical capture informa-
tion, we have extracted the specific cascades which ac-
count for 95.63% of the total captures. This information
is shown in Table I and is enough to construct an accurate
model of the NRs left behind by capturing thermal neu-
trons. Figure 3 visualizes the effect the missing cascades
have on the full spectrum of energy deposition. We have
also gathered in the table the half-lives of each interme-
diate level where data are available and have otherwise
used the Weisskopf estimates [10].

Level lifetimes are important for our modeling because
even in a dense (crystalline) matrix the intermediate-
state half-lives are typically short enough to allow for a
“decay in flight.” In other words, it is not a good approx-
imation to assume that the excited nucleus in each inter-
mediate level stops before the subsequent decay. This
has important implications for our kinematics calcula-
tions later. We select a specific cascade path to model
so we should technically be using a level lifetime cor-
rected for other branchings. The differences are small —

250 500 750 1000 1250 1500 1750 2000
Energy…Deposited…[eV]

50

100

150

200

250

300

350

400

450

C
ou

nt
s

0

Residuals…make…up
…4.18%…of…the…total.

FIG. 3. (Color online) A stacked histogram of energy deposits
simulated by nrCascadeSim v1.5.0 [11]. On the bottom in
blue (dark) are the cascades listed in Table I. Stacked on top
of them in orange (light) are the remaining cascades.

probably well below 10% — because most of our highly-
probable cascades involve the dominant decay branch.

Isotope Probability (%) Energy levels (keV) Half-lives (fs)
28Si 62.6 4934.39 0.84
28Si 10.7 6380.58, 4840.34 0.36, 3.5
28Si 6.8 1273.37 291.0
28Si 4.0 6380.58 0.36
28Si 3.9 4934.39, 1273.37 0.84, 291.0
28Si 2.1 · · · · · ·
29Si 1.5 6744.10 14
30Si 1.4 3532.9, 752.20 6.9, 530
29Si 1.2 7507.8, 2235.30 24, 215
29Si 0.4 8163.20 w(E1)[0.0019]
30Si 0.4 5281.4, 752.20 w(E1)[0.0069], 530
29Si 0.3 · · · · · ·
30Si 0.3 4382.4, 752.20 w(E1)[0.012], 530
30Si 0.03 · · · · · ·

TABLE I. A table displaying the probability of each cascade.
This table includes only the cascades used for our model. The
isotope listed is the isotope on which the neutron captures;
the energy levels and half-lives are therefore for an isotope of
silicon with one more neutron. A half-life entry in [brackets]
preceeded by w(E1) specifies that the half-life is unknown
and the Weisskopf estimate for an electric dipole transition
was used [10].

The possibility of “decay in flight” also makes a cal-
culation of the slowing-down of recoiling atoms germane
to our modeling. Here, we use a constant acceleration
to model this slowing down, consistent with the aver-
age stopping power derived by Lindhard [4]. Lindhard
used a generic Thomas-Fermi potential for all ions, and
the result was a stopping power (acceleration) S that de-
pended on energy for slow nuclei between about 100 eV
and 1 keV. We use the average of that curve between
those energies, S = 0.1.

To estimate a rough impact of the use of an aver-



3

age stopping power, we compared data generated by
nrCascadeSim v1.5.0 [11] with stopping powers of S =
0.05 and S = 0.15 and found the average difference to be
22%, with the 984 eV peak differing by 97%. The qual-
itative differences between the S = 0.05 and S = 0.15
stopping powers are minimal; the greater stopping power
results in larger peaks associated with full stops before
decay, but covers the same region with similar distribu-
tions for nonpeak events. While peaks are taller for the
greater stopping power, they are still noticeable in both
cases. This indicates that one very sensitive measure of
the average stopping power in our energy spectrum is the
ratio of the tallest peak to the flat region.

III. TWO-STEP CASCADES

For cascades which emit either one or two gamma rays
(one- or two-step cascades), we were able to analytically
construct the distribution of total NR energies. This dis-
tribution will be what is observed in a detector that expe-
riences a neutron capture when all the gamma rays leave
without energy deposit.

For one-step cascades, a single gamma is emitted back-
to-back with the NR. The gamma energy in this case is
approximately the neutron separation energy, Eγ ' Sn.
The NR energy, T , is given approximately by

T ' S2
n

2MA
. (1)

where MA is the mass of the recoiling nucleus.
The two-step cascades are considerably more complex

because of the possibility of decay in flight. We work
with a separation of the nuclear energy deposits into the
first and second steps like: Dt = D1 + D2. Dt is the
total deposited energy by the NRs. D1 and D2 are the
energies deposited before the intermediate decay and af-
ter the intermediate decay respectively. The two other

key variables we will use are the decay time, t, and the
center-of-mass angle for the decay, βcm. The energy de-
posits are deterministic functions of the decay times and
angles, both of which are in turn probabilistic random
variables.

The decay time represents how long it takes for the
(instantaneously generated) intermediate state to decay
to the ground state and is exponentially distributed with
the probability density function (PDF) in Eq. (2). The
cosine of βcm is assumed to be uniformly distributed over
(−1, 1) in the center-of-mass frame for the decay. The
possible correlation between gamma directions is mostly
erased by the interaction of the excited state with the
lattice. We estimate that around 8×10−4% of the time
there could be a cascade that emits two gammas nearly
simultaneously — in that case any correlation will remain
but has not been accounted for here,

f(t) =
ln 2

t1/2
exp

[
−t ln 2

t1/2

]
, (2)

The quantity D1 can be expressed as a simple function
of t, given that the recoiling nucleus slows down with a
constant (negative) acceleration, a,

D1(t) = T1 −
M∗A(v0 − at)2

2
, (3)

where T1 is the total kinetic energy the intermediate state
receives from the first gamma recoil, M∗A is the mass

of the intermediate state, and v0 = (2T1/M
∗
A)1/2 is the

initial velocity.

Modeling the process with a fixed acceleration gives a
unique stopping time, ts. The distribution of D1 has a
singular value of T1 if t > ts, but the PDF for t < ts
depends on Eq. (2) with a change of variables to the D1

of Eq. (3). The result is

g(D1) =

{
g0(D1) + exp

[
− ln 2 ts

t1/2

]
δ(D1 − T1) ;D1 ≤ T1

0 ;D1 > T1

g0(D1) =
ln 2

|a|t1/2
√

2M∗A(T1 −D1)
exp

[
− ln 2

v0 −
√

2(T1 −D1)/M∗A
|a|t1/2

]
,

(4)

where δ(·) is the Dirac delta function.

The PDF of D2 is clearly dependent on D1 because
the value of D2 depends on t which is deterministically
related to D1. We deal with this by using the joint PDF
of D1 and D2, g(D1, D2). The PDF for D2 can then be
obtained by integrating the joint PDF over all D1.

To obtain the joint distribution g(D1, D2) we use a

basic relationship from conditional probability,

g(D1, D2) = h(D2|D1)g(D1). (5)

The PDF h(D2|D1) is the PDF of D2 given a spe-
cific value of D1. The function h is not challenging
to obtain because the only relevant random variable is
βcm– t is fixed because D1 is fixed. We can then think
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of D2 as a deterministic function of D1 and βcm like
D2(t(D1), βcm).

To obtain the function h we note that whatever kinetic
energy the final nucleus has after the intermediate decay
will be the deposited energy [12]. We calculated bounds
on this kinetic energy, T2, given the value of βcm,

T2 =
∆2

2MA

[
2MA(T1 −D1)

∆2

+2

√
2MA(T1 −D1)

∆2
cosβcm + 1

]
,

(6)

where ∆ is the difference between the intermediate state
energy and the ground state. The value of cos βcm is
between -1 and 1, so this gives a clear minimum and
maximum for this kinetic energy. An alternate form for
the kinetic energy T2 is given in Appendix A. The total
energy deposited can be zero if and only if the decay is
immediate and ∆ is exactly halfway between the ground
state and the neutron separation energy Sn. The function
h is then

h(D2|D1) =

{
1

2∆

√
MA

2
1

T1−D1
;T2,min ≤ D2 ≤ T2,max

0 ; otherwise

(7)
Using Eq. (7) we constructed the joint distribution from
Eq. (5). The joint distribution is plotted in Fig. 4 for
two cascades — one (orange) with a very fast intermedi-
ate decay and another (blue) with a slower intermediate
decay. The spike shown in the slow distribution is a two-
dimensional Dirac delta function that corresponds to the
situation when the intermediate recoil stops before the
subsequent decay. In that case the values of D1 and D2

are fixed and are the values you would expect from at-
rest one-gamma decay of each excited nuclear state. The
fast intermediate decay produces a behavior where D1

tends to be lower and increases toward zero. With the
joint distribution specified, the distribution of the total
energy deposit, Dt is obtained by the following integral:

p(Dt) =

∫
D1

g(D1, Dt −D1)dD1. (8)

The total distribution for Dt is plotted in Fig. 5 for
both example cascades. Once again the “spike” in the
slow cascade corresponds to the case where the interme-
diate recoil stops before the subsequent decay — that
results in a fixed total energy deposited. This spike is
proportional to the Dirac delta function, and so cannot
be shown on the correct scale. However, it is easy to see
the Dt value for the spike and it must account for the
remaining probability after removing the integral of the
plotted distribution. In the fast cascade most remnants
of the monoenergetic “spike” are gone and the total en-
ergy is nearly uniform between two fixed bounds.
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FIG. 4. (Color online) The two-dimensional joint PDF from
Eq. (5). D1 and D2 are the energies deposited from the first
and second cascade step respectively. The darker (blue) sur-
face is for a two-step cascade stopping at the first excited state
of 29Si; the lighter (orange) surface is for a two-step cascade
stopping at the (tenth) excited state of 29Si — the most likely
cascade.
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FIG. 5. (Color online) The PDF of the total deposited en-
ergy from nuclear recoils, Dt, for this two-step cascade. E1
indicates the intermediate level being the first excited state of
29Si; E10 indicates the intermediate level being tenth excited
state of 29Si — the most likely cascade for Si.

IV. MONTE CARLO APPROACH

For cascades with more than two steps we have not
worked out the analytical distributions as we have in
Sec. III. For these many step cascades we use a Monte
Carlo approach that allows us to include arbitrarily many
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steps in the sequence. The main limitation is that we
compute one thermal neutron capture realization at a
time so that it might be prohibitive to produce a PDF
with sufficient smoothness (high statistics) for cascades
with small overall likelihood. On the other hand, those
cascades represent only a small change to an experimen-
tal spectrum [6].

Using the information from Table I, these steps are
followed to generate one Monte Carlo capture event:

1. Select a cascade with a probability based on the
prevalence of that specific deexcitation path.

2. Randomly select a decay time for the first inter-
mediate state based on an exponential distribution
with the appropriate lifetime. This variable is t
from the two-step calculation.

3. Calculate the first energy deposit D1 based on the
decay time and the stopping acceleration. This is
the slowing-down energy deposited in time t.

4. Adjust the kinetic energy of the recoil based on the
kinematics of in-flight decay. This adjustment is
based on the center-of-mass angle of the emitted
gamma, βcm from the two-step calculation.

5. Repeat steps 2–4 for each intermediate level.

The result of this procedure is a set of energy deposits
{Di} with the same number of elements as gamma rays
emitted. The Dis are saved and may be summed to ob-
tain the total deposited energy. The emitted gamma ray
energies for each step are saved alongside the Dis. These
steps are implemented in our public code [11].

Figure 6 shows how the analytical calculation for the
deposited energy of a two-step cascade compares to our
Monte Carlo procedure. The two are an excellent match
and the reduced χ2 statistic is 1.02.

The full spectrum from all the cascades in Table I is
shown in Fig. 7 with a 10 eV nominal resolution applied.
The sharpest peaks come from the direct-to-ground tran-
sitions of 29Si and 30Si and the 6.8% two-step transition.
In the two-step transition there is a sizeable probability
of having the first NR stop before the subsequent decay
— it is a quasimonoenergetic transition for this reason.
When we use these spectra we account for the events that
will be distorted by energy deposits from the exiting gam-
mas [6]. This is sometimes done by estimating what frac-
tion of cascades have gammas that escape (around 90%
for a cylindrical silicon detector of diameter 100 mm and
thickness 30 mm). Other times we use a particle trans-
port code like Geant4 to find exactly which cascade re-
alizations have exiting gamma interactions. When using
materials that are more electron dense than silicon the
fraction of interactions from exiting gammas increases. It
is typically true that those events that have interactions
from exiting (high-energy) gammas will be removed from
the low energy range completely — they produce little
contamination of the capture-induced NR “signal.”
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FIG. 6. (Color online) A comparison of the analytical PDF
for the two-step cascade (see Sec. III) with that of the Monte
Carlo procedure. The histogram is the PDF derived from
many events generated by the Monte Carlo procedure.
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FIG. 7. (Color online) The complete silicon capture spec-
trum using the data from Table I. 95.63% of all cascades are
taken into account here. A nominal 10 eV resolution has been
applied.

The Geant4 particle transport code gets different re-
sults for the resulting NR spectra from the capture pro-
cess with silicon, germanium, and neon [11]. The results
for silicon are the closest but still have significant differ-
ences that may be experimentally relevant to dark matter
and CEνNS studies. The most recent version of Geant4
that was compared to our spectral results is v10.7.3 and
comparisons are stored with our open-source code [11].
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V. USES FOR DARK MATTER AND CEνNS

Our major goals in understanding the neutron capture
induced nuclear recoil spectra are (a) to use these nuclear
recoil events to enhance our understanding of low-energy
nuclear recoils in solids — to provide excellent low-energy
calibrations and (b) to compute the experimental back-
grounds for dark matter and CEνNS searches.

In silicon and other materials there has not been con-
sensus on how much ionization nuclear recoils produce
at low recoil energies. Typically, our theoretical guid-
ance in the field comes from the early Lindhard paper [4]
and associated work. On the other hand, measurements
down to the 100 eV range seem like they may deviate
from those predictions and be marginally consistent or
inconsistent with each other [6, 13, 14].

Exploring the detector response to NRs at low energies
is therefore prudent and thermal neutron induced cap-
tures provide an excellent venue for this — as pointed
out by the CRAB Collaboration [7] and others working
with xenon for dark matter [5]. The key features for
thermal neutron induced captures are shown in Fig. 8.
In that figure a nominal Lindhard ionization yield [4] is
applied to the result shown in Fig. 7.
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FIG. 8. (Color online) The NR capture spectrum corre-
sponding to events that are resulting from neutron-capture.
The three Gaussian peaks shown outline the particular cas-
cades that have sharp signatures. The horizontal scale is in
electron-equivalent energy (eVee) which quantifies the amount
of charge produced rather than the true recoil energy of the
NR (which is higher). 95.63% of all cascades are modeled us-
ing the data from Table I. A nominal 10 eVee resolution has
been applied.

Calibrations using thermal neutron induced captures
are superior to other styles of calibrations that have been
used: direct elastic neutron scattering [15], photoneutron
sources [16, 17], and 252Cf sources [18]. Figure 8 shows

that the spectrum has sharp mono-energetic features that
are lacking in wide-band photoneutron or 252Cf sources.
The spectrum extends down well below 100 eV which is
probably near the limit of elastic scattering sources. Us-
ing this technique is also feasible in situ because any neu-
tron source will elevate the thermal neutron flux during
its deployment. Finally, if there is a case where exiting
gammas can be measured in coincidence, the direct-to-
ground transitions provide directionally tagged nuclear
recoils. This would lead to a heretofore unavailable NR
directionality calibration, as pointed out in [7].

A large enough thermal neutron flux could lead
to meaningful backgrounds for low-mass dark matter
searches or CEνNS measurements. The thermal neu-
tron flux is typically not measured directly in many ex-
periments because of the difficulty in doing so. One
measurement that does exist for CEνNS is from the
MINER collaboration [19] and is several orders of mag-
nitude higher than the accepted sea level environmental
value, 4 cm−2 hr−1 [20]. We have previously shown the
effect of thermal neutrons on CEνNS measurements in
detail [8].

The SuperCDMS Soudan thermal neutron flux can be
estimated from the germanium activation lines [21] and
is . 7.2×10−2 cm−2 hr−1[22].
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FIG. 9. (Color online) Comparison of the thermal neutron
capture induced NR spectrum in silicon with expected dark
matter and CEνNS signals in line with currently available
data.

Figure 9 shows the comparison of the thermal neutron
induced NR spectra at the estimated flux levels without
shielding with the dark matter and CEνNS spectra. The
capture cross section is assumed to be 0.171 barns, from
2003 measurements at Brookhaven National Lab [23]
(this value is also used in the EGAF (Evaluated Gamma
Activation File) database [24]). This value is about 4%
higher than the value given by evaluations a few years
earlier at Los Alamos National Lab that are used in
ENDF and the JENDL 5 database [25] and the cross
section measurements made by Raman [9].
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For a CEνNS experiment with a 1 MW reactor at a
distance of 8 m we arbitrarily compared a thermal neu-
tron flux of 0.1% of the sea level value. We have used
the Mueller spectrum for the reactor anti-neutrinos [26].
The detector resolution function is assumed to have a
10 eV baseline that rises to 30 eV at a recoil energy of
25 eV. We use this form for the energy-varying resolu-
tion:

√
σ2

0 +AEr; Er is the recoil energy and σ0 and A
are constants.

For the dark matter comparisons in Fig. 9 we used a
1 GeV mass dark matter particle with a cross section just
below the limit produced in recent SuperCDMS work [21,
27].

Figure 9 shows that both for dark matter searches and
CEνNS the spectral overlap of thermal neutron capture
induced NRs can interfere with measurements especially
in cases where the detector baseline resolutions are larger
than 10 eV — true for all but the best modern detectors.

VI. CONCLUSION

We have carefully derived and simulated the spectrum
of NRs following thermal neutron captures in silicon. The
spectra do not match the contemporary Geant4 particle
transport code, indicating the details of decay-in-flight
and atomic slowing-down are poorly modeled.

The level of thermal neutron fluxes that may be
present in underground laboratories (mostly from radio-
genic sources in deep labs) is comparable to the contem-
porary rate limits on dark matter scattering. Further-
more, in the CEνNS venue the thermal neutron capture
background could also play an important role due to the
proximity of some experiments to neutron-generating re-
actors [28, 29]. In both of these situations the authors
recommend studies of the thermal neutron flux levels and
taking the thermal neutron capture background into ac-
count during data analysis.
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Appendix A: Another perspective on equations

In Sec. III, we give several equations that are con-
structed from the perspective of simulation. Below are
the derivations, from the equations in Sec. III, of equiv-
alent forms that give a more conceptual perspective.

We use the following substitutions. Let v1 = (2(T1 −
D1)/M∗A)1/2 be the velocity just before the second
gamma’s emission, vCM = ∆/MA be the velocity just
after emission in the center-of-mass frame, and E1 =
1
2M

∗
Av

2
1 and ECM = 1

2MAv
2
CM be the associated kinetic

energies.
First, we will reorganize g0(D1) from Eq. (4):

g0(D1) =
v1 ln 2

v1|a|t1/2M∗A
√

2(T1 −D1)/M∗A
exp

(
− ln 2

v0 − v1

|a|t1/2

)
=

v1 ln 2

|a|t1/2M∗Av2
1

exp

(
− ln 2

v0 − v1

|a|t1/2

)
=

ln 2

2E1

v1

|a|t1/2
exp

(
− ln 2

v0 − v1

|a|t1/2

)
.

(A1)
Next, we reorganize T2, given by Eq. (6):

T2 =
1

2
MA

∆2

M2
A

[
M2
AM

∗
A

√
2(T1 −D1)/M∗A

2

MA∆2
+ 2
√
MAM∗A

√
2(T1 −D1)/MA

∆2
cosβCM + 1

]

=
1

2
MAv

2
CM

[
M∗Av

2
1

MAv2
CM

+ 2

√
M∗Av

2
1

MAv2
CM

cosβCM + 1

]

= ECM

[
E1

ECM
+ 2

√
E1

ECM
cosβCM + 1

] (A2)

This new form for T2 makes it clear that T2 can reach
zero when E1 = ECM and β = π.

Finally, we reorganize h(D2|D1) for the nonzero case,
given by Eq. (7):

h(D2|D1) =
MA

2MA∆

√
1/MAM∗A

2(T1 −D1)/M∗A

=
2

4MAvCM

√
MA

M∗A

1

v1

=
2

4MAv2
CM

√
MAv2

CM

M∗Av
2
1

=
1

4ECM

√
ECM
E1

(A3)
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