
Computing Shortest Hyperpaths
for Pathway Inference

in Cellular Reaction Networks

Spencer Krieger1(B) and John Kececioglu2

1 Computational Biology Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
skrieger@andrew.cmu.edu

2 Department of Computer Science, The University of Arizona,
Tucson, AZ 85721, USA

kece@cs.arizona.edu

Abstract. Signaling and metabolic pathways, which consist of a series
of reactions producing target molecules from source compounds, are cor-
nerstones of cellular biology. The cellular reaction networks containing
such pathways can be precisely modeled by directed hypergraphs, where
each reaction corresponds to a hyperedge, directed from its set of reac-
tants to its set of products. Given such a network represented by a
directed hypergraph, inferring the most likely set of reactions that pro-
duce a given target from a given set of sources corresponds to finding a
shortest hyperpath, which is NP-complete. The best methods currently
available for shortest hyperpaths either offer no guarantee of optimality,
or exclude hyperpaths containing cycles even though cycles are abundant
in real biological pathways.

We derive a novel graph-theoretic characterization of hyperpaths,
leveraged in a new formulation of the general shortest hyperpath problem
as an integer linear program that for the first time handles hyperpaths
containing cycles, and present a novel cutting-plane algorithm that can
solve this integer program to optimality in practice. This represents a
major advance over the best prior exact algorithm, which was limited to
acyclic hyperpaths (and hence fails to find a solution for the many biolog-
ical instances where all hyperpaths are in fact cyclic). In comprehensive
experiments over thousands of instances from the standard NCI-PID and
Reactome databases, we demonstrate that our cutting-plane algorithm
quickly finds an optimal hyperpath, with a median running-time of under
ten seconds and a maximum time of around thirty minutes, even on large
instances with many thousands of reactions.

Source code implementing our cutting-plane algorithm for shortest
hyperpaths in a new tool called Mmunin is available free for research use
at http://mmunin.cs.arizona.edu.

S. Krieger—Research performed at the Department of Computer Science of the Uni-
versity of Arizona.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Tang (Ed.): RECOMB 2023, LNBI 13976, pp. 155–173, 2023.
https://doi.org/10.1007/978-3-031-29119-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29119-7_10&domain=pdf
http://mmunin.cs.arizona.edu
https://doi.org/10.1007/978-3-031-29119-7_10

156 S. Krieger and J. Kececioglu

1 Introduction

Signaling and metabolic pathways are cornerstones of systems biology. They
underly cellular communication, govern environmental response, and their
perturbation has been implicated in the cause of disease [21]. Networks com-
prised of these pathways are traditionally represented as ordinary graphs [30,31],
modeling each protein or molecule as a vertex, and each reaction by a collec-
tion of edges, directed from each reactant to each product. However, this does
not faithfully model multiway reactions—ubiquitous in cellular processes—and
shortest paths from these models are often not biologically meaningful [14,27].

Directed hypergraphs generalize ordinary graphs where an edge, now called
a hyperedge, is directed from one set of vertices, called its tail, to another set
of vertices, called its head. Hypergraphs have been used to model many cellular
processes [7,10,11,14,23,24,26,27,33]. In particular, a biochemical reaction with
multiple reactants—all of which must be present for the reaction to proceed—and
multiple products—all of which are produced upon its completion—is correctly
captured by a single hyperedge, directed from its set of reactants to its set of
products. Despite hypergraphs affording more faithful models of reaction net-
works, the lack of practical algorithms has hindered their potential for properly
representing and reasoning about molecular reactions.

Biologically, a typical metabolic or signaling pathway consists of a series of
reactions synthesizing a set of target molecules—a key metabolite or transcrip-
tion factor—from a set of source compounds—molecules available to the cell
or activated membrane-bound receptors [2]. Computationally, finding the most
efficient way to produce a set of target molecules from a set of available source
compounds maps to the shortest hyperpath problem we consider here: Given a
network of cellular reactions whose reactants and reactions are modeled by the
vertices and weighted hyperedges of a directed hypergraph, together with a set
of sources and a set of targets, find a hyperpath from the sources to the targets
of minimum total weight. We briefly summarize prior work on related problems.

Related Work

The two fundamental hypergraph models that have emerged for pathway infer-
ence are hyperpaths and factories (see [15] for a survey).

Factories are informally a set of reactions that produce the targets from the
sources, while ensuring intermediate metabolites are not depleted. Unlike hyper-
paths, a factory’s hyperedges are unordered, essentially running simultaneously.
Current approaches find a factory producing the targets using either the fewest
reactions (min-edge) or fewest sources (min-source). Cottret et al. [8] intro-
duced the min-source factory problem and showed it is NP-hard, and Zarecki
et al. [32] extended the problem to consider molecular weights of the sources.
Methods from Acuña et al. [1] and Andrade et al. [3] enumerate all min-source
factories either excluding or including stoichiometry. Krieger and Kececioglu [17]
introduced the min-edge factory problem, showed it was NP-complete, incorpo-

Shortest Hyperpaths in Cellular Reaction Networks 157

rated negative regulation into pathway inference for the first time, and solved
the problem with a mixed-integer linear program that is fast in practice.

Hyperpaths were first studied in the field of algorithms (see the survey from
Ausiello and Laura [4]). Italiano and Nanni [12] proved that finding a shortest
source-sink hyperpath is NP-complete, even when hyperedges have a single head
vertex. Gallo et al. [9] defined and explored special cases of hypergraphs and
hyperpaths, including what they call a B-path (though see the correction of
Nielsen and Pretolani [22]), which is essentially equivalent to our definition of
hyperpath in Sect. 2. They showed the vertices reachable from a source vertex
in a hypergraph can be found in time linear in the total size of the tail and
head sets of all hyperedges, gave an efficient algorithm for a variant of shortest
hyperpaths with a so-called additive cost function, and proved that finding a
minimum cut in a hypergraph is NP-complete. Carbonell et al. [6] gave an effi-
cient algorithm to find a source-sink hyperpath if one exists—irrespective of its
length—and proved that finding any hyperpath that must contain a specified set
of hyperedges is NP-complete. Ritz et al. [25,26] were the first to solve the short-
est acyclic hyperpath problem by formulating it as a mixed-integer linear pro-
gram (MILP)—later extended by Schwob et al. [29] to include time-dependence
among reactions—and showed that in the context of signaling networks, opti-
mal acyclic hyperpaths can be found even for large cell-signaling hypergraphs.
Their formulation does not extend to allow cycles, which are common in pathway
databases (see experimental results in Sect. 4), and are often caused by feedback
loops or by the components of protein complexes during assembly and disas-
sembly. Krieger and Kececioglu [16,18] gave the first heuristic for the general
shortest hyperpath problem allowing cycles, proved it finds optimal hyperpaths
for the special case of singleton-tail hypergraphs, gave a tractable hyperpath
enumeration algorithm, and verified that the heuristic is close to optimal on all
instances from the standard pathway databases by leveraging the enumeration
algorithm.

Our Contributions

In contrast to prior work, we provide an exact algorithm for the general short-
est hyperpath problem, allowing cycles. Note that cycles appear in pathway
databases—often as feedback loops—so an algorithm that handles cycles is vital
for the adoption of hypergraph models of cellular reaction networks. We formu-
late this problem as an integer linear program (ILP) and develop a cutting-plane
algorithm that can quickly solve this ILP to optimality in practice. More specif-
ically, we make the following contributions.

• We derive a new graph-theoretic characterization of hyperpaths in terms of
source-sink cuts, that captures fully-general hyperpaths with cycles.

• We leverage this characterization to obtain the first integer linear program-
ming formulation of the general shortest hyperpath problem. This cut-based
ILP formulation has an exponential number of constraints, however, and can-
not be solved directly.

158 S. Krieger and J. Kececioglu

Fig. 1. A hyperedge e with tail(e)={v1, . . . , vk} and head(e)={w1, . . . , w!}. To use e
in a hyperpath P , every vertex vi ∈ tail(e) must have a preceding hyperedge f in P
with vi ∈ head(f).

• Nevertheless, we show we can solve this ILP on real biological instances with
a practical cutting-plane algorithm that computes over a small subset of the
constraints, while guaranteeing an optimal solution to the full ILP.

• Our cutting-plane algorithm is typically fast in practice, finding optimal
hyperpaths with a median running time under 10 s, and a maximum run-
ning time around 30 min, as measured through comprehensive experiments
on thousands of instances from standard reaction databases.

• We demonstrate the strength of hyperpath models for pathway inference by
showing the cutting-plane algorithm accurately recovers annotated pathways,
with a median overlap score of over 95%, while recovered hyperedges outside
the annotated pathway provide evidence for possible cross-talk.

A preliminary implementation of the cutting-plane algorithm in a new tool
called Mmunin (short for “integer-linear-programming-based cutting-plane algo-
rithm for shortest source-sink hyperpaths”) is available free for non-commercial
use at http://mmunin.cs.arizona.edu.

Plan of the Paper

The next section defines the computational problem of shortest hyperpaths.
Section 3 gives a new graph-theoretic characterization of hyperpaths that leads
to the first formulation of shortest hyperpaths as an integer linear program for
fully-general hyperpaths with cycles, as well as a cutting-plane algorithm for
solving it to optimality in practice. Section 4 compares our algorithm to alternate
hyperpath methods through comprehensive experiments over the two standard
pathway databases, and demonstrates on concrete biological examples that we
can accurately recover known annotated pathways. Finally, Sect. 5 concludes.

2 Shortest Hyperpaths in Directed Hypergraphs

A hypergraph is a generalization of an ordinary graph, where an edge, instead of
touching two vertices, now connects two subsets of vertices. Formally, a directed
hypergraph is a pair (V,E), where V is a set of vertices, and E is a set of
directed hyperedges. Each hyperedge e ∈ E is an ordered pair (X,Y), where
both X,Y ⊆ V are non-empty vertex subsets. Edge e is directed from set X to

Shortest Hyperpaths in Cellular Reaction Networks 159

set Y . We call X the tail of e, and Y the head of e, and refer to them by the
functions tail(e) = X and head(e) = Y . We also refer to the in- and out-edges of
a vertex v by in(v) =

{
e∈E : v∈head(e)

}
and out(v) =

{
e∈E : v∈ tail(e)

}
.

Figure 1 shows a directed hyperedge.
In ordinary directed graphs, a path from a vertex s to a vertex t is a sequence

of edges starting from s ending at t, where for consecutive edges e and f in the
sequence, the preceding edge e must enter the vertex that the following edge f
leaves. We say t is reachable from s when there is such a path from s to t.

In generalizing these notions to directed hypergraphs, the conditions both
for when a hyperedge can follow another in a hyperpath, and when a ver-
tex is reachable from another, become more involved. A hyperpath is again a
sequence of hyperedges, but now for hyperedge f in a hyperpath, for every vertex
v∈tail(f), there must be some hyperedge e that precedes f in the hyperpath for
which v∈head(e). Reachability is captured by the following notion of superpath.

Definition 1 (Superpath). In a directed hypergraph (V,E), an s, t-superpath,
for vertices s, t∈V , is an edge subset F ⊆E such that the hyperedges of F can
be ordered e1, e2, . . . , ek, where

(i) tail(e1) = {s},
(ii) for each 1 < i ≤ k,

tail(ei) ⊆ {s} ∪
⋃

1≤j<i

head(ej) ,

(iii) and t ∈ head(ek).

For an s, t-superpath, we call s its source vertex and t its sink vertex, and we
say t is reachable from s. !

This definition of superpath is equivalent to the notion of B-connectivity
from the literature, but is more explicit, and more amenable to formulation as
an integer linear program in Sect. 3.

We can now define hyperpaths in terms of superpaths. Recall that a set S is
minimal with respect to some property X if S satisfies X, but no proper subset
of S satisfies X.

Definition 2 (Hyperpath). An s, t-hyperpath is a minimal s, t-superpath. !

In other words, a hyperpath P is a superpath for which removing any edge
e∈P leaves a subset P−{e} that is no longer a superpath.

We say a hyperpath P contains a cycle if, for every ordering e1, . . . , ek of its
hyperedges satisfying properties (i)–(iii) in the definition of superpath, P con-
tains some hyperedge f with a vertex in head(f) that also occurs in tail(e) for an
earlier hyperedge e in the ordering. While in ordinary graphs a minimal s, t-path
can never contain a cycle, in hypergraphs an s, t-hyperpath, which by definition
is minimal, can in fact contain cycles.

160 S. Krieger and J. Kececioglu

Notice that when the hyperedges of a hypergraph all have real-valued weights
that are strictly positive, then an s, t-superpath of minimum total weight must
be minimal. (If it is not minimal, deleting an edge will give another superpath
of strictly smaller weight, contradicting its optimality.) Hence for positive edge
weights, a minimum weight superpath is a minimum weight hyperpath. This
leads to the following definition of the shortest hyperpaths problem.

For an edge weight function ω(e), we extend ω to edge subsets F ⊆ E by
ω(F) :=

∑
e∈F ω(e).

Definition 3 (Shortest Hyperpaths). The Shortest Hyperpaths problem is
the following. Given a directed hypergraph (V,E), a positive edge weight func-
tion ω : E→R+, source s ∈ V and sink t ∈ V , find

argmin
F⊆E

{
ω(F) : F is an s, t-superpath

}
. (1)

This s, t-superpath of minimum weight is a shortest s, t-hyperpath. !

For uniform weights ω(e)=1, this finds a series of the fewest possible reactions
that produce t from s, where for each reaction in the series, all its input reactants
are produced as output products of earlier reactions in the series.

We note that Shortest Hyperpaths with a single source and sink can also
capture more general versions of the problem with multiple sources and multiple
sinks, as follows. To find a hyperpath that starts from a set of sources S ⊆ V ,
simply add a new source vertex s to the hypergraph together with a single hyper-
edge ({s}, S) of zero weight, and equivalently find a hyperpath from the single
source s. To find a hyperpath that reaches all vertices in a set of sinks T ⊆ V ,
add a new sink vertex t, a zero-weight hyperedge (T, {t}), and equivalently find
a hyperpath to the single sink t. To find a hyperpath that reaches some vertex
in a set of sinks T ⊆ V , add new sink vertex t, zero-weight hyperedges ({v}, {t})
from all v ∈ T , and again equivalently find a hyperpath to the single sink t. Thus
versions of shortest hyperpaths with multiple sources and sinks can be reduced
to the problem above with a single source and sink.

Shortest Hyperpaths is NP-complete [25] (even for acyclic hypergraphs), so it
is unlikely we can efficiently compute shortest hyperpaths in the worst-case. The
next section presents a new formulation of Shortest Hyperpaths as an integer
linear programming problem, which allows us to leverage techniques for solving
integer linear programs to quickly find shortest hyperpaths in practice, even for
large reaction networks.

3 Computing Hyperpaths by Integer Programming

We now formulate Shortest Hyperpaths as a discrete optimization problem
known as an integer linear program, using a characterization of superpaths in
terms of cuts. This integer linear program is the first formulation that handles
fully general hyperpaths that may contain cycles.

Shortest Hyperpaths in Cellular Reaction Networks 161

3.1 Characterizing Superpaths via Cuts

We can give a clean characterization of superpaths—that captures fully general
superpaths containing cycles—in terms of cuts.

An s, t-cut of a hypergraph is a bipartition (C,C) of its vertices V , for non-
empty subsets C ⊆ V and C := V −C, where source s ∈ C and sink t ∈ C. We
call C the source side and C the sink side of the cut, and often refer to a cut by
just specifying its source side C.

A hyperedge e crosses s, t-cut C iff tail(e) ⊆ C and head(e) ∩ C (= ∅. In other
words, for a hyperedge to cross a cut, all its tail vertices must be on the source
side, while at least one head vertex must be on the sink side. We say an edge
subset F ⊆ E crosses an s, t-cut iff at least one hyperedge e ∈ F crosses the cut.

The following characterization theorem for superpaths is the key that will
enable us to find shortest hyperpaths via integer linear programming.

Theorem 1 (Characterizing Superpaths). F is an s, t-superpath if and
only if F crosses every s, t-cut.

Proof. To prove the forward implication, take an ordering of the hyperedges of
s, t-superpath F that satisfies the definition of superpath, and an arbitrary s, t-
cut C. In the ordering of F , consider the first hyperedge e such that head(e) ∩ C
is nonempty. (Such an edge e must exist, as F reaches t ∈ C.) We claim that
tail(e) ⊆ C, which can be shown by proving

⋃
f∈F : f precedes e head(f) ⊆ C,

using induction over the ordering of F . Thus edge e ∈ F crosses cut C, so F
crosses C as well.

For the reverse implication, we prove the contrapositive. Suppose F is not
an s, t-superpath. Collect the set R of all vertices reachable from s in F . While
s ∈ R, notice t (∈R (since otherwise F reaches t from s, contradicting that F is
not an s, t-superpath). Thus (R,R) is an s, t-cut. F does not cross cut R (since
e ∈ F crossing R would contradict that R holds all vertices reachable from s
in F). !

3.2 Representing Superpaths by Linear Inequalities

We now formulate Shortest Hyperpaths as an integer linear programming prob-
lem. In general, an integer linear program (ILP) is a mathematical optimization
problem over integer-valued variables, that maximizes a linear function of these
variables, subject to constraints that are linear inequalities in the variables. The
key to the formulation is to represent the set of all s, t-superpaths in a hyper-
graph (V,E) by linear inequalities.

The variables of our ILP encode the hyperedges in a superpath F . For every
hyperedge e∈E, there is a variable xe, where xe∈{0, 1}. An assignment of values
to these variables encodes a superpath F by xe =1 iff e∈F . We represent the
collection of all variables in the ILP by a vector x = (xe)e∈E , where x∈{0, 1}|E|.

The constraints of the ILP ensure an assignment of values to the variables
actually encodes an s, t-superpath. The domain D of the ILP is all assignments

162 S. Krieger and J. Kececioglu

of values to variables x that satisfy the constraints. For our ILP, the domain is

D :=

{
x∈{0, 1}|E| : ∀s, t-cuts C

∑

e∈E : e crosses C

xe ≥ 1

}
. (2)

This has a constraint for every s, t-cut of the hypergraph, which is a linear
inequality in the variables xe. Notice that this inequality for a cut C is satisfied
iff at least one hyperedge e crossing C has xe=1. Equivalently, the set F ⊆ E
encoded by x must contain at least one hyperedge e ∈ F crossing C. Thus
assignments x∈D encode edge subsets F that cross every s, t-cut.

Consequently, by Theorem 1, the domain D of the ILP in Eq. (2) is exactly
the set of all s, t-superpaths in the hypergraph.

The objective function of the ILP is to minimize
∑

e∈E ω(e)xe, for fixed edge
weights ω, which is a linear function of the variables x. For x∈D, the value of this
objective function is the total weight of the hyperedges in superpath F encoded
by x. We can write this objective function as a dot product ω ◦ x, where ω is
now a vector of edge weights.

Finally, our integer linear program is to compute argminx∈D
{
ω ◦ x

}
. Since

domain D is all s, t-superpaths, this is equivalent to the definition of the Shortest
Hyperpaths problem, so a solution to this ILP is a shortest s, t-hyperpath.

3.3 Solving the Integer Program by a Cutting Plane Algorithm

For a hypergraph of n vertices and m hyperedges, the integer linear program
given above hasm variables and Θ(2n) constraints (corresponding to the number
of s, t-cuts). Thus for a large hypergraph, we cannot even feasibly write down
the corresponding ILP, due to its exponentially-many constraints. Nevertheless,
we can actually compute optimal solutions to this full ILP in practice, even for
large hypergraphs, using an approach known as a cutting-plane algorithm.

A cutting-plane algorithm computes over a subset of the constraints of the full
integer linear program, and solves a series of less-constrained problems, stopping
once it detects it has an optimal solution to the full ILP. The key to a cutting-
plane algorithm is an efficient separation algorithm, which for a given solution x
to the current ILP, reports whether x satisfies all constraints of the full ILP,
and if x does not, returns a constraint violated by x. (This violated constraint
is a hyperplane, called a cutting plane, that separates x from the domain of the
full ILP.) For our above ILP for Shortest Hyperpaths, this proceeds as follows.

(1) Let I be an initial set of inequalities, containing a subset of the inequalities
from the full ILP, and let S := I be the current set of inequalities.

(2) Solve the ILP restricted to the inequalities in S, and let x∗ be the optimal
solution to this current ILP.

(3) Run the separation algorithm to efficiently find an s, t-cut C that is not
crossed by the hyperedges e with x∗

e = 1, if such a cut exists.
(4) If the separation algorithm found a cut C not crossed by x∗, add the new

cut-inequality given by C to set S, and go back to Step (2).

Shortest Hyperpaths in Cellular Reaction Networks 163

(5) Otherwise, the hyperedges in x∗ cross every s, t-cut. Halt and output the
current solution x∗.

This starts with an initial set of inequalities I, and adds inequalities to this set
as it finds cuts that solutions to prior ILPs do not cross.

The above cutting-plane algorithm outputs an optimal solution to the
full ILP, though it works with only a subset of its constraints. Note that when
the algorithm outputs its final solution x∗ at Step (5), which crosses every cut,
x∗ encodes an s, t-superpath (by Theorem 1). Furthermore, as x∗ is an optimal
solution for a less-constrained ILP that is a minimization problem, its objec-
tive function value is a lower bound on the weight of an optimal solution to the
full ILP. Hence x∗ is a minimum-weight s, t-superpath, or equivalently, a shortest
s, t-hyperpath.

The next section specifies the initial inequalities I used in practice, which are
crucial to its success. Then Sect. 3.5 presents our efficient separation algorithm,
which finds multiple violated inequalities that are all added to the current ILP.
As demonstrated in Sect. 4, this cutting-plane algorithm can find optimal hyper-
paths even for large instances from real cellular reaction networks.

3.4 Strengthening the Initial Integer Program

We can markedly reduce the number of iterations of the cutting-plane algorithm
by seeding it with a strong set of initial inequalites I. We start with I containing
both the structure-based and distance-based inequalities that we describe next.

Structure-Based Inequalities. We define three classes of inequalities, based
on structural properties of hyperpaths.

The tail-covering inequalities ensure that for any hyperedge chosen by a
solution to the ILP, its tail set is covered by the head sets of other chosen
hyperedges (corresponding to condition (ii) in Definition 1 for a superpath).
More formally, for every hyperedge e ∈ E, and every vertex v ∈ tail(e)−{s}, we
have the inequality,

∑
f ∈ in(v) xf ≥ xe.

The head-hitting inequalities ensure that for a hyperedge e chosen by a solu-
tion, its head intersects (or “hits”) the tail of another chosen hyperedge (fol-
lowing from the minimality condition in Definition 2 for a hyperpath, since
otherwise e can be safely trimmed while maintaining reachability). More for-
mally, for every hyperedge e ∈ E with t (∈ head(e), we have the inequality,(∑

f &= e : head(e)∩ tail(f) &= ∅ xf

)
≥ xe.

The target-production inequality ensures that target t is reached by hyper-
edges chosen by the solution (corresponding to condition (iii) in Definition 1 for
an s, t-superpath). More formally,

∑
f ∈ in(t) xf ≥ 1.

Together, these structure-based inequalities drive the solution found by the
cutting-plane algorithm toward having the connected structure of a hyperpath
(whereas without them, the solutions over many iterations tend to be discon-
nected hyperedges that cross the current set of cuts). Adding these inequalities to
the initial ILP dramatically reduces the number of iterations of the cutting-plane
algorithm, greatly improving its running time.

164 S. Krieger and J. Kececioglu

Distance-Based Inequalities. We first show that for ordinary graphs, there
is a small subset of constraints from our original ILP, given by what we call
distance-based cuts, that we can efficiently find and that guarantee that the ILP
solved on just these distance-based inequalities has objective function value equal
to the shortest path length. We then generalize these inequalities to hypergraphs.

Ordinary Graphs. For an ordinary directed graph with source s and sink t reach-
able from s, let D(v) be the length of a shortest s, v-path for every vertex v
reachable from s. Over these reachable vertices v other than s with distance
D(v) ≤ D(t), let d1< · · ·<dk be the sorted set of their unique distances D(v).
Define a sequence of s, t-cuts C1 ⊂ · · · ⊂ Ck associated with these unique dis-
tances, for 1≤ i≤k, by

Ci := {s} ∪
{
v∈V : D(v) < di

}
. (3)

Finally, denote the family of these s, t-cuts by C := {C1, . . . , Ck}, which we call
the distance-based cuts.

The following theorem implies that for ordinary graphs, if we solve our origi-
nal ILP just over inequalities corresponding to these distance-based cuts—which
for a graph with n vertices is an ILP with less than n inequalities—then the
objective function value of the optimal solution to this small ILP will in fact be
the length of a shortest s, t-path.

Theorem 2 (Distance-Based Cuts Suffice for Ordinary Graphs). In
an ordinary graph, let F be an edge set that crosses every cut in the family C
of distance-based s, t-cuts. Then F has total weight ω(F) that is at least the
length D(t) of a shortest s, t-path.

Proof. We show by induction that the weight of an edge set crossing cuts
C1, . . . , Ci is at least di, for all 1 ≤ i ≤ k. Since dk = D(t), this proves the
theorem.

For the basis with i = 1, consider cut C1 = {s}, and let e = (s, v) be a
minimum-weight edge leaving s. Consider any setF crossing C1, which must
contain an edge f leaving s. Since we have thatω(F) ≥ ω(f) ≥ ω(e) = D(v) = d1,
the basis holds.

For the inductive step with i > 1, let F be any edge set that crosses cuts
C1, . . . , Ci. Set F must contain an edge f = (x, y) that crosses cut Ci. Notice
that D(x) < di, which implies D(x) = dj for some j<i. Let F ′ ⊆ F − {(x, y)}
be the subset of F that crosses cuts C1, . . . , Cj . We have

ω(F) ≥ ω(F ′) + ω(f)
≥ D(x) + ω(f) (4)
≥ D(y) (5)
≥ di , (6)

where inequality (4) follows from the inductive hypothesis on j<i, inequality (5)
follows from the fact that D(x) + ω(f) = D(x) + ω(x, y) ≥ D(y), and inequal-
ity (6) follows from the definitions of edge (x, y) and cut Ci. Thus the induction
holds. !

Shortest Hyperpaths in Cellular Reaction Networks 165

Notice that a shortest s, t-path crosses every cut in family C. Hence a conse-
quence of Theorem 2 is that, for the optimal solution to the ILP whose inequali-
ties are just the cut constraints given by the distance-based cuts C, its objective
function value is the length of a shortest s, t-path.

The number of cuts in family C is less than the number of vertices. More-
over, Dijkstra’s single-source shortest-path algorithm computes distanceD(v) for
every vertex v reachable from s with distance at most D(t). Thus for an ordinary
graph with n vertices and m edges, we can find the distance-based inequalities
given by cuts C, which constitute less than n inequalities, in the same time as
running Dijkstra’s algorithm, namely O(m+ n log n) time.

Generalizing to Hypergraphs. To generalize the distance-based cuts C to hyper-
graphs, we need both a measure of distance to a vertex in a hypergraph, and a
way to efficiently compute this measure. While there does not appear to be any
natural distance measure on vertices for shortest hyperpaths that corresponds
toD(v) in ordinary graphs, we can define a generalized vertex distance as follows.

For a hyperedge e, let an s, e-superpath be a superpath from source s that
reaches all vertices in tail(e), and define an s, e-hyperpath to be a minimal s, e-
superpath. For a hyperpedge e, let its tail-distance D(tail(e)) be the length of a
shortest s, e-hyperpath. Finally, for a vertex v in a hypergraph, we can define its
vertex-distance from source s to be, D(v) := mine∈ in(v)

{
D

(
tail(e)

)
+ ω(e)

}
.

Note that computing tail-distances D(tail(e)) for hyperedges is at least as
hard as Shortest Hyperpaths, so computing the above vertex-distances D(v) is
unfortunately NP-complete as well.

To make this practical, we run the efficient hyperpath heuristic of Krieger
and Kececioglu [16,18], which computes estimated tail-distances D̃(tail(e)) for
all hyperedges e that are reachable from source s. We then apply these tail-
distance estimates in the above definition of vertex distance, to obtain efficiently-
computable estimated vertex-distances D̃(v).

Using these vertex-distance estimates D̃(v), and their unique estimated
vertex-distances d̃1 < · · · < d̃k, we can directly generalize our prior distance-
based cuts C1, . . . , Ck, defined by (3), to hypergraphs. This yields the distance-
based inequalities that our cutting-plane algorithm starts from in its initial set I.

3.5 A Separation Algorithm Leveraging Distance-Based Cuts

The cutting-plane algorithm starts with inequalities I, where I contains the
structure-based inequalities, as well as the distance-based inequalities from
the family of cuts C. Since the solution x∗ to the current ILP crosses all cut-
inequalities in S ⊇ I with its active hyperedges e where x∗

e = 1, solution x∗

already crosses every cut in C. To find new cuts not crossed by x∗, the separation
algorithm considers every s, t-cut C ∈ C, and enlarges its source-side C ⊇ {s},
called source-augmentation, or enlarges its sink-side C = V −C ⊇ {t}, called
sink-augmentation, to obtain a new cut Ĉ not crossed by x∗.

Source-augmentation of C ∈ C, to obtain Ĉ ⊃ C not crossed by x∗, proceeds
as follows. Recall that hyperedge e crosses C if tail(e) ⊆ C but head(e) (⊆ C.

166 S. Krieger and J. Kececioglu

For a given active hyperedge e that crosses C, we enlarge C to form a new
cut Ĉ = C ∪ head(e), which is the minimal enlargement of C that e no longer
crosses. We then repeat this process on Ĉ for every active hyperedge that crosses
it, until we obtain a final cut Ĉ that no active hyperedge crosses. (Here Ĉ could
grow until it includes sink t, which makes it no longer an s, t-cut, in which
case there is no source-augmentation of C that x∗ does not cross.) This process
actually finds the cut Ĉ ⊃ C of minimum size

∣∣Ĉ
∣∣ that x∗ does not cross.

Since the cut C = {s} is one of the distance-based cuts in C, and source-
augmentation of this trivial cut yields Ĉ ⊃ {s} consisting of all vertices reach-
able from s along active hyperedges, by the proof of Theorem 1 this separation
algorithm is guaranteed to find a cut not crossed by x∗ whenever one exists.

Sink-augmentation of C ∈ C, to obtain Ĉ ⊂ C not crossed by x∗, proceeds
as follows. For a given active hyperedge e that crosses C, we enlarge C by
moving one vertex v ∈ tail(e) − {s} from C to its sink-side C, yielding new
cut Ĉ = C−{v}. This is a minimal enlargement of C that e no longer crosses.
Of course, this may cause new active hyperedges to now cross Ĉ that did not
before. To reduce the number of new edges crossing Ĉ, we exploit the freedom
in picking v by greedily choosing the v ∈ tail(e)−{s} that causes the fewest
active hyperedges to newly cross Ĉ. (Once an active hyperedge e crossing Ĉ
has tail(e) = {s}, this fails to find a sink-augmentation of C not crossed by x∗.)
We repeat this process on Ĉ for every active hyperedge crossing it, until we
obtain a final cut Ĉ ⊂ C that x∗ does not cross.

This separation algorithm can find up to 2k inequalities that are violated
by x∗, where k = |C| is the number of distance-based cuts, all of which are added
to the current set S by the cutting-plane algorithm. For a hypergraph of size
=

∑
e∈E

(
|tail(e)|+ |head(e)|

)
, this separation algorithm can be implemented

to run in O(k2 #) time.

4 Experimental Results

We present experimental results with our implementation of the cutting-plane
algorithm, named Mmunin [20], that show it can find optimal hyperpaths in large
real-world cellular reaction networks quickly, often in less than 10 s. We first give
details of our experimental setup, describing our datasets and implementation.
We then show, through comprehensive experiments over all source-sink instances
from the two standard reaction databases in the literature, how Mmunin surpasses
both the state-of-the-art heuristic for general shortest hyperpaths [16,18], and
the state-of-the-art exact algorithm for shortest acyclic hyperpaths [25]. Finally,
we discuss an illustrative biological example, and analyze how well Mmunin recov-
ers known biological pathways.

4.1 Experimental Setup

We first briefly describe our datasets and how we transform them into hyper-
graphs, and then give details on our implementation, including two modifications
that further improve running time.

Shortest Hyperpaths in Cellular Reaction Networks 167

Table 1. Dataset summaries

NCI-PID Reactome

Pathways 213 2,516

Vertices 9,009 20,458

Hyperedges 8,456 11,802

Sources 3,200 8,296

Targets 2,636 5,066

Reachable targets 2,220 2,432

mean max mean max

Tail size 1.9 10 2.4 26

Head size 1.1 5 1.6 28

In-degree 1.0 323 0.9 1,056

Out-degree 1.7 326 1.4 1,167

Doubly-reachable set 756 1,836 929 1,725

Datasets and Preparation. We prepared instances from two benchmark
datasets, called NCI-PID and Reactome, following the hypergraph construction
protocol of Ritz et al. [25] and Krieger and Kececioglu [18]. The NCI-PID dataset
aggregates all pathways from NCI-PID [28], while the Reactome dataset aggre-
gates all pathways from Reactome [13]. To build a hypergraph from each dataset,
we map each protein or small molecule to a vertex, and each reaction to a hyper-
edge, with reactants and positive regulators in the tail, and products in the
head. All hyperedges are given unit weight, even though the cutting-plane algo-
rithm handles general weights, as NCI-PID is missing reaction rates for many
reactions. Table 1 gives summaries of these hypergraphs. The NCI-PID hyper-
graph has 9,009 vertices and 8,456 hyperedges, while the Reactome hypergraph
has 20,458 vertices and 11,802 hyperedges. For all instances, we create a super-
source s and add a single hyperedge e, where tail(e) = {s} and head(e) contains
all vertices with no in-edge, which we call sources. For each individual instance,
we create a sink t and connect it by an ordinary graph edge (v, t) to one vertex v
with no out-edges, which we call a target. Considering all possible targets v,
generates 2,636 instances from NCI-PID, and 5,066 instances from Reactome.

Implementation. The cutting-plane algorithm and its separation algorithm
are all implemented in Python 3.8, comprising around 2,000 lines of code. All
procedures are implemented as described earlier, with a few exceptions. First,
we use a procedure from Hhugin to compute the doubly-reachable subgraph H,
which contains only those hyperedges from the input hypergraph G that can
possibly be in any s, t-hyperpath. Next, the initial distance-based inequalities
require approximate tail-distances from Hhugin, but to improve running time,
the cutting-plane algorithm begins with only the distance-based inequality given
by cut C = {s}. We begin execution of Hhugin and the cutting plane algorithm in

168 S. Krieger and J. Kececioglu

Table 2. Suboptimality of alternate hyperpath methods

NCI-PID Reactome

Reachable instances 2,220 2,432

AcycMILP suboptimal 38 22

Hhugin suboptimal 23 0

Mmunin suboptimal (none) (none)

median max median max

AcycMILP path-length difference-from-optimal (∞) (∞) (∞) (∞)

Hhugin path-length difference-from-optimal 1 6 0 0

Table 3. Performance of Mmunin

NCI-PID Reactome

Instances 2,220 2,432

median max median max

Number of iterations 3 1,598 3 874

Time per iteration (sec) 2 12 3 12

Total time (sec) 7 1,788 9 776

parallel, and at each iteration, the cutting-plane algorithm checks if Hhugin has
terminated, in which case it computes the full set of distance-based inequalities
using the approximate tail-distances returned by Hhugin and adds them to the
current constraint set. Lastly, at each iteration the cutting-plane algorithm com-
pares its objective value to the length of Hhugin’s heuristic hyperpath P , and if
they are equal, returns P (since we then know P is optimal, as the cutting-plane
objective value is a lower bound on the shortest hyperpath length).

We also made one modification to Hhugin. Previously, when hyperedges were
removed from the heap, their in-edge lists were frozen, so that new hyperedges
were never added. We changed this behavior so that these in-edge lists continue
to grow as new hyperedges are extracted from the heap.

Source code for the cutting-plane algorithm, including all datasets, is avail-
able at http://mmunin.cs.arizona.edu [20].

4.2 Comparing Alternate Hyperpath Methods

Mmunin outperforms state-of-the-art hypergraph methods for pathway inference:
the hyperpath heuristic Hhugin [19], and the MILP for shortest acyclic hyper-
paths [25] , which we call AcycMILP. We compare these methods over all instances
from Reactome and NCI-PID. Table 2 gives statistics for these instances.

For all these instances, Mmunin computes an optimal shortest hyperpath
in less than 30min, while allowing cycles for the first time. Mmunin surpasses
AcycMILP on 22 Reactome instances and 38 NCI-PID instances where all s, t-
hyperpaths are cyclic, hence AcycMILP fails to return any hyperpath. Mmunin
outperforms Hhugin on the 23 NCI-PID instances where Hhugin is suboptimal.

http://mmunin.cs.arizona.edu

Shortest Hyperpaths in Cellular Reaction Networks 169

Mmunin not only returns an optimal hyperpath for these instances, but also fin-
ishes its computation before Hhugin, showing that Mmunin (even without the
distance-based constraints given by Hhugin) is faster for these instances. In fact,
we found that Mmunin is faster than Hhugin on over 20% of all instances.

4.3 Speed of Computing Optimal Hyperpaths

Mmunin is typically fast in practice, with a median running time under 10 s.
Table 3 gives statistics on the running time, number of iterations, and time per
iteration over the instances from each dataset. The maximum running time over
all these instances is just under 30min, demonstrating it is now feasible to find
optimal shortest hyperpaths even for large instances with over 10,000 hyper-
edges. We note that inherent randomness in the CPLEX solver may cause
variable running times, even for the same instance.

The number of iterations needed for the cutting-plane algorithm to return
an optimal solution tends to be low, around 2 or 3 iterations, but can be as high
as 1,598 iterations. Even though the cutting-plane algorithm may require many
iterations, the instance with the highest average time per iteration takes only
12 s per iteration. Note that at each iteration, the cutting-plane algorithm solves
an ILP containing thousands of variables and inequalities within this time.

4.4 A Concrete Biological Example

As an illustration of the hyperpaths found by Mmunin, we show one concrete bio-
logical example from NCI-PID. This instance was chosen from the 23 instances
where Mmunin outperforms the hyperpath heuristic Hhugin, because the size of
the hyperpaths makes them reasonable to draw. Note that AcycMILP is also
optimal on this instance, since the optimal hyperpath is acyclic. Figure 2 shows
the hyperpaths returned by Mmunin and Hhugin for this instance, which rep-
resents the deactivation of “nuclear factor of activated T cells” (NFATC2) by
“cAMP response element modulator” (CREM) in NCI-PID. Hyperedges drawn
in a red dash are unique to Mmunin’s hyperpath, hyperedges in a green dotted
line are unique to Hhugin’s hyperpath, and hyperedges in a solid black line are
common to both hyperpaths. Eight of the nine hyperedges that are shared by
both pathways have been omitted for simplicity, and have been replaced with
ellipses. The hyperedges from MAPK8 to JUN and from MAPK3 to JUN denote
transcription of JUN, where all other hyperedges denote biochemical reactions.
Vertices with gray fill denote the activated form of a given protein. Note that
stoichiometry of the reactions are not considered in our hyperpath formulation,
so two copies of NFATC2 are needed in the final reaction.

The hyperpaths contain hyperedges from four different NCI-PID path-
ways: “Calcium signaling in the CD4+ TCR pathway”, “RAS signaling in
the CD4+ TCR pathway”, “JNK signaling in the CD4+ TCR pathway”, and
“Nongenotropic androgen signaling”. The hyperpaths show CREM repressing
the activated form of NFATC2 before forming a ternary complex with NFATC2

170 S. Krieger and J. Kececioglu

Fig. 2. Comparing hyperpaths whose target is the NFATC2/CREM complex.

and its DNA binding sites, resulting in the attenuation of transcription of T
helper-1-specific cytokine genes in human medullary thymocytes [5].

Hhugin’s hyperpath contains 13 hyperedges and Mmunin’s hyperpath contains
11 hyperedges, which is optimal. Notably, hyperedges unique to Mmunin use
vertices that are shared between both hyperpaths, and is therefore much simpler,
making it a more likely pathway.

4.5 Analysis of Recovering Known Pathways

Mmunin accurately recovers annotated pathways from Reactome. We define new
problem instances for a small number of annotated pathways P ∗ from Reactome:
ten pathways from the 22 instances with only cyclic hyperpaths (so AcycMILP
fails to return any hyperpath), where the target appears in only one anno-
tated Reactome pathway. (These ten benchmark pathways are: “Regulation of
Complement Cascade”, “Sphingolipid Metabolism”, “Triglyceride Catabolism”,
“Hydrocarboxylic Acid-Binding Receptors”, “Transport of Small Molecules”,
“Proton/Oligopeptide Cotransporters”, “Interleukin-37 Signaling”, “Uncoating
of the Influenza Virion”, “Glycogen Synthesis”, and “Tolerance by Mtb to Nitric
Oxide Produced by Macrophages”.) For each instance, hypergraph G includes
all vertices and hyperedges from Reactome, the sources consist of all vertices in G
with no in-edges and all vertices in P ∗ with no in-edges from P ∗, and the targets
are all vertices in P ∗ with no out-edges from P ∗. For these ten instances, the
number of hyperedges in P ∗ ranges from 2 to 98, with a median of [14,17]. Note
that these instances now contain multiple targets. For five of these instances, the
sink is not reachable from the source, so to restore reachability, we added to the
source set vertices that are unreachable due to an unreachable cycle. (A simple
example of this is when vertex a is in the tail of all in-edges to vertex b and
vice versa.) This resulted in a doubly-reachable set containing 3,600 hyperedges
for some instances, which is twice the size of the doubly-reachable set for any
single-target instance (shown in Table 1). Due to this increase, the running time
of Mmunin on these instances was significantly longer, taking at most 25 h to
compute an optimal hyperpath.

Shortest Hyperpaths in Cellular Reaction Networks 171

We compared Mmunin’s hyperpath P with the known pathway P ∗ from
Reactome for each instance. For five of the instances, P = P ∗, meaning Mmunin
perfectly recovered the annotated pathway. For the other five instances, P con-
tained fewer hyperedges than P ∗, either due to redundant branches in P ∗ (so
P ⊂ P ∗), or hyperedges outside P ∗ more efficiently reaching vertices within
P ∗, which is evidence of potential crosstalk between biological pathways. We
measured the similarity of P and P ∗ for each instance by the so-called Sorensen
coefficient 2 |P ∩ P ∗| / (|P |+ |P ∗|). Over these ten instances, this similarity mea-
sure ranged from 0.62 to 1, with a median of [0.95, 1]. Overall, this experiment
shows that Mmunin is able to accurately recover known pathways, or possibly
discover more efficient ones.

5 Conclusion

We have presented a new formulation of the general shortest hyperpath problem
as an integer linear program, and a practical cutting-plane algorithm that for the
first time can find shortest hyperpaths with cycles. Comprehensive experiments
on large real-world cellular reaction networks show we can quickly compute opti-
mal hyperpaths, and accurately recover annotated biological pathways.

Acknowledgments. We thank Anna Ritz and T.M. Murali for helpful discussions and
for providing the BioPax parser, and the anonymous referees for their useful comments.
This research was supported by the US National Science Foundation, through grants
CCF-1617192 and IIS-2041613 to JK.

References

1. Acuña, V., Milreu, P.V., Cottret, L., Marchetti-Spaccamela, A., Stougie, L.,
Sagot, M.F.: Algorithms and complexity of enumerating minimal precursor sets
in genome-wide metabolic networks. Bioinformatics 28(19), 2474–2483 (2012)

2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell. Garland Science, New York (2007)

3. Andrade, R., Wannagat, M., Klein, C.C., Acuña, V., Marchetti-Spaccamela, A.,
Milreu, P.V., Stougie, L., Sagot, M.F.: Enumeration of minimal stoichiometric
precursor sets in metabolic networks. Alg. Mol. Bio. 11(1), 25 (2016)

4. Ausiello, G., Laura, L.: Directed hypergraphs: introduction and fundamental
algorithms–a survey. Theoret. Comput. Sci. 658, 293–306 (2017)

5. Bodor, J., Habener, J.F.: Role of transcriptional repressor ICER in cyclic amp-
mediated attenuation of cytokine gene expression in human thymocytes. J. Biol.
Chem. 273(16), 9544–9551 (1998)

6. Carbonell, P., Fichera, D., Pandit, S.B., Faulon, J.L.: Enumerating metabolic path-
ways for the production of heterologous target chemicals in chassis organisms. BMC
Syst. Biol. 6(1), 10 (2012)

7. Christensen, T.S., Oliveira, A.P., Nielsen, J.: Reconstruction and logical modeling
of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Syst.
Biol. 3(1), 7 (2009)

172 S. Krieger and J. Kececioglu

8. Cottret, L., et al.: Enumerating precursor sets of target metabolites in a metabolic
network. In: Proceedings of the 8th Workshop on Algorithms in Bioinformatics,
pp. 233–244 (2008)

9. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discret. Appl. Math. 42(2–3), 177–201 (1993)

10. Heath, L.S., Sioson, A.A.: Semantics of multimodal network models. IEEE/ACM
Trans. Comput. Biol. Bioinf. 6(2), 271–280 (2009)

11. Hu, Z., Mellor, J., Wu, J., Kanehisa, M., Stuart, J.M., DeLisi, C.: Towards
zoomable multidimensional maps of the cell. Nat. Biotech. 25(5), 547–554 (2007)

12. Italiano, G.F., Nanni, U.: Online maintenance of minimal directed hypergraphs.
Department of Computer Science, Columbia University, Tech. Rep. (1989)

13. Joshi-Tope, G., et al.: Reactome: a knowledgebase of biological pathways. Nucleic
Acids Res. 33, D428-432 (2005)

14. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Com-
put. Biol. 5(5), e1000385 (2009)

15. Krieger, S.: Algorithmic Inference of Cellular Reaction Pathways and Protein Sec-
ondary Structure. Ph.D. dissertation, Department of Computer Science, The Uni-
versity of Arizona (July 2022)

16. Krieger, S., Kececioglu, J.: Fast approximate shortest hyperpaths for inferring
pathways in cell signaling hypergraphs. In: Proceedings of the 21st ISCB Work-
shop on Algorithms in Bioinformatics (WABI). Leibniz International Proceedings
in Informatics, vol. 201, pp. 1–20 (2021)

17. Krieger, S., Kececioglu, J.: Computing optimal factories in metabolic networks with
negative regulation. Bioinformatics, In: Proceedings of the 30th ISCB Conference
on Intelligent Systems for Molecular Biology (ISMB) 38(Suppl 1), i369–i377 (2022)

18. Krieger, S., Kececioglu, J.: Heuristic shortest hyperpaths in cell signaling hyper-
graphs. Algorithms Mol. Biol. 17(1), 12 (2022)

19. Krieger, S., Kececioglu, J.: Hhugin: hypergraph heuristic for general shortest
source-sink hyperpaths, version 1.0 (2022). http://hhugin.cs.arizona.edu

20. Krieger, S., Kececioglu, J.: Mmunin: integer-linear-programming-based cutting-
plane algorithm for shortest source-sink hyperpaths, version 1.0 (2022). http://
mmunin.cs.arizona.edu

21. Li, Y., McGrail, D.J., Latysheva, N., Yi, S., Babu, M.M., Sahni, N.: Pathway
perturbations in signaling networks: linking genotype to phenotype. Semin. Cell
Dev. Biol. 99, 3–11 (2020)

22. Nielsen, L.R., Pretolani, D.: A remark on the definition of a B-hyperpath. Depart-
ment of Operations Research, University of Aarhus, Tech. Rep. (2001)

23. Ramadan, E., Perincheri, S., Tuck, D.: A hyper-graph approach for analyzing tran-
scriptional networks in breast cancer. In: Proceedings of the 1st ACM Conference
on Bioinformatics and Computational Biology, pp. 556–562 (2010)

24. Ramadan, E., Tarafdar, A., Pothen, A.: A hypergraph model for the yeast protein
complex network. In: Proceedings of the 18th Parallel and Distributed Processing
Symposium, pp. 189–196 (2004)

25. Ritz, A., Avent, B., Murali, T.: Pathway analysis with signaling hypergraphs.
IEEE/ACM Transactions on Comp. Bio. and Bioinf. 14(5), 1042–1055 (2017)

26. Ritz, A., Murali, T.: Pathway analysis with signaling hypergraphs. In: Proceedings
of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics (ACM-BCB), pp. 249–258 (2014)

27. Ritz, A., Tegge, A.N., Kim, H., Poirel, C.L., Murali, T.: Signaling hypergraphs.
Trends Biotechnol. 32(7), 356–362 (2014)

http://hhugin.cs.arizona.edu
http://mmunin.cs.arizona.edu
http://mmunin.cs.arizona.edu

Shortest Hyperpaths in Cellular Reaction Networks 173

28. Schaefer, C.F., et al.: PID: the pathway interaction database. Nucl. Acids Res. 37,
674–679 (2009)

29. Schwob, M.R., Zhan, J., Dempsey, A.: Modeling cell communication with time-
dependent signaling hypergraphs. IEEE/ACM Trans. Comput. Biol. Bioinform.
18, 1151–1163 (2019)

30. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

31. Vidal, M., Cusick, M.E., Barabási, A.L.: Interactome networks and human disease.
Cell 144(6), 986–998 (2011)

32. Zarecki, R., Oberhardt, M.A., Reshef, L., Gophna, U., Ruppin, E.: A novel nutri-
tional predictor links microbial fastidiousness with lowered ubiquity, growth rate,
and cooperativeness. PLoS Comput. Biol. 10(7), 1–12 (2014)

33. Zhou, W., Nakhleh, L.: Properties of metabolic graphs: biological organization or
representation artifacts? BMC Bioinform. 12(1), 132 (2011)

	 Preface
	 Organization
	 Contents
	Extended Abstracts
	VStrains: De Novo Reconstruction of Viral Strains via Iterative Path Extraction from Assembly Graphs
	1 Introduction
	2 Methods
	2.1 Preliminary
	2.2 Algorithm Overview
	2.3 Preprocessing
	2.4 Graph Disentanglement
	2.5 Contig-Based Path Extraction

	3 Experimental Setup
	3.1 Experimental Datasets
	3.2 Baselines and Evaluation Metrics

	4 Experimental Results
	4.1 Performance on Simulated Datasets
	4.2 Performance on Real Datasets

	5 Software and Resource Usage
	6 Conclusion and Discussion
	References

	Spectrum Preserving Tilings Enable Sparse and Modular Reference Indexing
	1 Introduction
	2 Problem Definition and Preliminaries
	3 Spectrum Preserving Tilings
	3.1 Definition
	3.2 A General and Modular Index over Spectrum Preserving Tilings
	3.3 ``Drop in'' Implementations for Efficient k-mer-to-tile Queries
	3.4 Challenges of the Tile-to-Occurrence Query

	4 Pufferfish2
	4.1 Interpreting pufferfish as an Index over a Unitig-Based SPT
	4.2 Sampling Unitigs and Traversing Tilings to Sparsify the Unitig-to-Occurrence Query
	4.3 Implementing the pred Query with pufferfish2
	4.4 A Random Sampling Scheme to Guarantee Short Backwards Traversals
	4.5 Closing the Gap Between a Constant Time pred Query and Contiguous Array Access

	5 Experiments
	6 Discussion and Future Work
	References

	Statistically Consistent Rooting of Species Trees Under the Multispecies Coalescent Model
	1 Introduction
	2 Background
	2.1 Allman, Degnan, and Rhodes (ADR) Theory
	2.2 Quintet Rooting

	3 QR-STAR
	3.1 Determining the Rooted Shape

	4 Theoretical Results
	4.1 Statistical Consistency

	5 Experimental Study
	6 Conclusion
	References

	Sequence to Graph Alignment Using Gap-Sensitive Co-linear Chaining
	1 Introduction
	2 Concepts and Notations
	2.1 Co-linear Chaining on Sequences Revisited
	2.2 Sparse Dynamic Programming on DAGs Using Minimum Path Cover

	3 Problem Formulations
	4 Proposed Algorithms
	5 Implementation Details
	6 Experiments
	References

	DM-Net: A Dual-Model Network for Automated Biomedical Image Diagnosis
	1 Introduction
	2 Methodology
	2.1 The Shallow CNN Model: L-Net
	2.2 The Deep CNN Model: R-Net
	2.3 Loss Function

	3 Experiments
	3.1 Datasets and Settings
	3.2 Segmentation Results
	3.3 Ablative Evaluation on Segmentation

	4 Conclusions
	References

	MTGL-ADMET: A Novel Multi-task Graph Learning Framework for ADMET Prediction Enhanced by Status-Theory and Maximum Flow
	1 Introduction
	2 Methodology
	2.1 Problem Formulation
	2.2 Overview of Framework
	2.3 Auxiliary Task Selection
	2.4 Multi-task Graph Learning Model

	3 Experiments
	3.1 Dataset and Setup
	3.2 Comparisons with State-of-the-Art
	3.3 Ablation Studies
	3.4 Case Study: Interpretability of MTGL-ADMET

	4 Conclusions
	References

	CDGCN: Conditional de novo Drug Generative Model Using Graph Convolution Networks
	1 Introduction
	2 Materials and Methods
	2.1 Molecular Graph Generation
	2.2 Model Architecture
	2.3 Loss Computation and Training

	3 Results and Discussion
	3.1 Datasets
	3.2 Baselines
	3.3 Implementation Details
	3.4 Evaluation Metrics
	3.5 Experimental Evaluation

	4 Conclusion
	References

	Percolate: An Exponential Family JIVE Model to Design DNA-Based Predictors of Drug Response
	1 Introduction
	2 Methods
	2.1 Trade-off Between Robust and Predictive Types
	2.2 Exponential Family Distribution
	2.3 Saturated Model Parameters
	2.4 Generalized Linear Model Principal Component Analysis (GLM-PCA)
	2.5 Comparison of GLM-PCA Directions by Percolate
	2.6 Projector of Joint Signal
	2.7 Drug Response Prediction
	2.8 Data Download, Modelling and Processing

	3 Results
	3.1 The Breakdown of the Joint Signals Highlights the Topology of Multi-omics Data
	3.2 Robust Signal Predictive of Drug Response Is Concentrated in the Joint Part
	3.3 Out-of-sample Extension Recapitulates the Predictive Performance of Robust Signal
	3.4 Study of Genes Contributing to the Joint Signals
	3.5 Iterative Application of Percolate Deprives Gene Expression from Predictive Power

	4 Discussion
	References

	Translation Rate Prediction and Regulatory Motif Discovery with Multi-task Learning
	1 Introduction
	2 Methods
	2.1 MTtrans Model
	2.2 Extraction of Sequence Motifs from Convolutional Filters
	2.3 Motif Similarity Comparison
	2.4 Motifs Matching
	2.5 Building Logistic Regression and Random Forest Model on PWM-Derived Scores
	2.6 Identification of Important Motifs

	3 Results
	3.1 MTtrans Learns the Shared Patterns from Multiple Experimental Systems
	3.2 MTtrans Better Coordinates MPRA Tasks and Improves Translation Rate Prediction
	3.3 MTtrans is Robust Across Replicates
	3.4 MTtrans Learns More Transferable Sequence Features
	3.5 MTtrans Better Predicts the Translation Rate of Endogenous Transcripts in Human Cell Lines
	3.6 Discovery of 5'UTR Sequence Motifs from the Deeper Layer of Shared Encoder
	3.7 The Discovered Regulatory Motifs can be Experimentally Validated

	4 Discussion
	A Appendix
	References

	Computing Shortest Hyperpaths for Pathway Inference in Cellular Reaction Networks
	1 Introduction
	2 Shortest Hyperpaths in Directed Hypergraphs
	3 Computing Hyperpaths by Integer Programming
	3.1 Characterizing Superpaths via Cuts
	3.2 Representing Superpaths by Linear Inequalities
	3.3 Solving the Integer Program by a Cutting Plane Algorithm
	3.4 Strengthening the Initial Integer Program
	3.5 A Separation Algorithm Leveraging Distance-Based Cuts

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Comparing Alternate Hyperpath Methods
	4.3 Speed of Computing Optimal Hyperpaths
	4.4 A Concrete Biological Example
	4.5 Analysis of Recovering Known Pathways

	5 Conclusion
	References

	T-Cell Receptor Optimization with Reinforcement Learning and Mutation Polices for Precision Immunotherapy
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Problem Definition
	3.2 Mutation Policy Network
	3.3 Potential TCR Validity Measurement
	3.4 TCRPPO Learning

	4 Experimental Settings
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Baseline Methods
	4.4 Evaluation Metrics

	5 Experimental Results
	5.1 Comparison on TCR Optimization Methods
	5.2 Evaluation on Optimized TCR Sequences

	6 Conclusions and Outlook
	References

	Short Papers
	TREE-QMC: Improving Quartet Graph Construction for Scalable and Accurate Species Tree Estimation from Gene Trees
	References

	mapquik: Efficient Low-Divergence Mapping of Long Reads in Minimizer Space
	Deriving Confidence Intervals for Mutation Rates Across a Wide Range of Evolutionary Distances Using FracMinHash
	References

	Entropy Predicts Sensitivity of Pseudo-random Seeds
	Reference

	Seed-Chain-Extend Alignment is Accurate and Runs in Close to O(m logn) Time for Similar Sequences: A Rigorous Average-Case Analysis
	References

	Extremely-Fast Construction and Querying of Compacted and Colored de Bruijn Graphs with GGCAT
	References

	PASTE2: Partial Alignment of Multi-slice Spatially Resolved Transcriptomics Data
	References

	FastRecomb: Fast Inference of Genetic Recombination Rates in Biobank Scale Data
	References

	Efficient Taxa Identification Using a Pangenome Index
	1 Introduction
	References

	Vector-Clustering Multiple Sequence Alignment: Aligning into the Twilight Zone of Protein Sequence Similarity with Protein Language Models
	Single-Cell Methylation Sequencing Data Reveal Succinct Metastatic Migration Histories and Tumor Progression Models
	References

	Information-Theoretic Classification Accuracy: A Criterion That Guides Data-Driven Combination of Ambiguous Outcome Labels in Multi-class Classification
	Reference

	Efficient Minimizer Orders for Large Values of k Using Minimum Decycling Sets
	References

	Dashing 2: Genomic Sketching with Multiplicities and Locality-Sensitive Hashing
	1 Introduction
	2 Methods Summary
	3 Results Summary
	References

	Startle: A Star Homoplasy Approach for CRISPR-Cas9 Lineage Tracing
	A Fast and Scalable Method for Inferring Phylogenetic Networks from Trees by Aligning Lineage Taxon Strings (Extended Abstract)
	References

	Aligning Distant Sequences to Graphs Using Long Seed Sketches
	References

	MD-Cat: Phylogenetic Dating Under a Flexible Categorical Model Using Expectation-Maximization
	Phenotypic Subtyping via Contrastive Learning
	HOGVAX: Exploiting Peptide Overlaps to Maximize Population Coverage in Vaccine Design with Application to SARS-CoV-2
	Ultra-Fast Genome-Wide Inference of Pairwise Coalescence Times
	References

	Leveraging Family Data to Design Mendelian Randomization That is Provably Robust to Population Stratification
	References

	Minimal Positional Substring Cover: A Haplotype Threading Alternative to Li & Stephens Model
	References

	Cell Segmentation for High-Resolution Spatial Transcriptomics
	References

	Unsupervised Deep Peak Caller for ATAC-seq
	References

	Unraveling Causal Gene Regulation from the RNA Velocity Graph Using Velorama
	PIsToN: Evaluating Protein Binding Interfaces with Transformer Networks
	References

	DebiasedDTA: A Framework for Improving the Generalizability of Drug-Target Affinity Prediction Models
	1 Introduction
	2 DebiasedDTA
	3 Results
	4 Conclusion
	References

	Drug Synergistic Combinations Predictions via Large-Scale Pre-training and Graph Structure Learning
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	References

	Pisces: A Cross-Modal Contrastive Learning Approach to Synergistic Drug Combination Prediction
	Modeling and Predicting Cancer Clonal Evolution with Reinforcement Learning
	References

	Enabling Trade-Offs in Privacy and Utility in Genomic Data Beacons and Summary Statistics
	References

	Accurate Evaluation of Transcriptomic Re-identification Risks Using Discriminative Sequence Models
	1 Introduction
	2 Methods
	3 Results
	References

	Author Index

