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The COVID-19 pandemic lit a fire under researchers who have subsequently raced to
build models which capture various physical aspects of both the biology of the virus and
its mobility throughout the human population. These models could include characteris-
tics such as different genders, ages, frequency of interactions, mutation of virus etc. Here
we propose two mathematical formulations to include virus mutation dynamics. The
first uses a compartmental epidemiological model coupled with a discrete-time finite-
state Markov chain. If one includes a nonlinear dependence of the transition matrix on
current infected, the model is able to reproduce pandemic waves due to different variants.
The second approach expands such an idea to a continuous state-space leveraging a com-
bination of ordinary differential equations with an evolution equation for measure. This
approach allows to include reinfections with partial immunity with respect to variants
genetically similar to that of first infection.

Keywords: epidemiology; SARS-CoV-2; SIRS compartmental models; measure differen-
tial equations; measure theory

1. Introduction

Throughout the COVID-19 pandemic there has been a growing need for more robust
predictive epidemiological models in order to help policy makers answer important
questions about the future “*°. Policy decisions must balance the prevention of
morbidity and mortality with the preservation of societal functioning '”. Researchers
work to answer questions such as: what sort of non-pharmaceutical interventions
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will still be important to a population during and after a vaccination campaign

*°? How do age and physical space affect the dynamics of a virus "~ >'°?7 What
do the variables associated with the virus depend upon, and can such variables be
made more dynamic to better understand long term viral propagation through a
population <> ?

As COVID-19 moves towards a possible endemic stage, including a method
which can capture mutation is imperative to more long term predictions *">~°. Such
methods could be useful when modeling endemic response to many viruses, such
as response to the seasonal flu "> “". Understanding the dynamics of a changing
system helps in directing public response against a virus “>'"°". It takes multiple
months for a government to identify, address and release policy to mitigate the risk
of a new disease “*"". It then takes the public time to react and begin following
such policies °'. The ability to model a changing virus could vastly cut down on
decision making time and thus help a society react more efficiently.

Here we introduce two methodologies to consider mutation of a virus. We first
assume a discrete-time process where the virus mutates from variant A to variant
B at fixed intervals of time. Mathematically, this amounts to coupling a classical
epidemiological model based on ordinary differential equations, with a discrete-time
Markov chain. The latter contains a finite set of states, corresponding to the major
variants of interest. We focus on the classical SIRS model (Susceptible-Infected-
Removed-Susceptible). The model properties are immediate from the discrete-time
properties of the Markov chain, including positivity of solutions and conservation of
mass. Then, we propose a nonlinear transition matrix, to take into account the effect
of the total number of infected over the virus mutability. This modification allows
to reproduce various pandemic waves linked to different mutations, see Section 2.3.

Our second model proposes a continuous diffusion process for virus variants,
where the infection begins somewhere on a continuous state-space of possible vari-
ants and, as time progresses, the virus diffuses over the same space. We choose
a measure-theoretic approach proposed in ** called measure differential equations
(briefly MDEs). Such framework is very general and flexible, allowing to couple
ordinary differential equations (briefly ODEs), e.g. for susceptible population, with
measure evolution equations, or for infected differentiated by the virus variant. In
particular, a first model coupling ODEs and MDEs was proposed in “” with results
on existence and uniqueness of trajectories. Here, we extend this model to include
reinfection. The latter is modelled by an additional compartment, called recovered
susceptible. In this compartment, individuals have partial immunity to variants ge-
netically similar to that of the first infection. This is realized by an infection rate
that depends both on the original variant and the new infecting variants. We prove
that this extended model can be cast within the general theory developed in
Then, we focus on simulations, using a scheme combining numerical approxima-
tions for ODEs and lattice approximate solutions for MDEs. The latter is based
on approximating measure with finite sums of Dirac deltas centered at the points
of a lattice. The simulations show how the model can track the variants dynamics
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together with the many compartments. The resulting dynamics shows a rich set of
possible evolution. Concluding, these new approaches bring us closer to developing
tools for pandemic management.

The focus of this paper is in introducing two mathematical formulations to in-
clude mutation dynamics of a virus, and is organized as follows. First we introduce
epidemiological models in a general sense in Section 1.1. We then define our first
model, an MC-ODE system which uses a discrete-time finite-state MC to govern
mutation dynamics. In Section 2 we define the properties of this system before
presenting simulations of a theoretical model built in Matlab using variables in-
spired by the COVID-19 pandemic. In Section 3 we introduce MDEs and define
the characteristics of such equations. We then describe the general theory for cou-
pled ODE-MDE systems in Section 4. Using such a formulation, in Section 5, we
generalize our model to a continuous state-space by introducing a measure for the
mutation space, rather than a vector of variants. We define the coupled system and
provide a method for solving the system. We then introduce properties of the sys-
tem of equations before providing simulations, once again, of a theoretical model
built in Matlab using variables inspired by the COVID-19 pandemic.

1.1. Epidemiological modeling

Epidemiological models come in two general forms: agent based and compartmental

. The more popular models tend to be compartmental as they have a lower compu-
tational cost associated with larger population sizes and remove stochasticity thus
leaving space for predictions based on optimal control °*»°”»*'. The models are de-
signed using population compartments, which sum together at any given time to be
the total population. Models that are proposed here are an expansion of SIR models

. These classical models are built using three compartments: susceptible, infec-
B oI,
R = ~I, where 8 and v are the infection rate and recovery rate respectively. The

tious, and removed with the following general structure: S = —%, I=

infection rate and recovery rate combine to form what we call the ”replication rate”
represented by Ry where Ry = 2. The replication rate of a virus, or basic repro-
duction number, is the leading driver in prediction and works as follows: A variant
with a replication rate of 2 means that for each person infected, they will infect two
others. A replication rate under 1 would mean that for each person infected, they
are infecting less than one person, thus the virus is diminishing *°. A benefit of such
a model is the ability to scale compartments to fit the needs of the researcher, such
as capturing disease progression “*>°", considering age structure and spacial distance
2527 “and even projecting the need for hospital beds as the virus progresses

2. Markov chain coupled with ODEs

2.1. Motivation and definition of MC-ODE system

From August 2020 until December 2020, the Beta variant of SARS-CoV-2 was dom-
inant. Later, from December 2020 until April 2021, the Alpha variant took stage.
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The Gamma variant began to become more prevalent, only to be outpaced by the
Delta variant before having a chance to become dominant®"’. Lastly, the Omicron
variant appeared in November 2021 and held its position as the lead infection holder
through the new year “~»”'. With each new dominant variant, a new set of defining
parameters are required for predictive modeling *>"°. With a seemingly discrete
number of dominant variants, one may choose to model the interactions and muta-
tions in a discrete way ’. We use a SIR model coupled with a nonlinear discrete-time
Markov chain (briefly NDMC) representing the emergence of virus variants. The sys-
tem will be fully coupled, but the discrete-time nature of the Markov chain allows
a simple mathematical treatment and simulations.

Transition Matrix Heatmap
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Fig. 1: Left: heatmap representing the transition matrix. Right: graph representation
of the Markov chain with main COVID-19 variants.

Assume the infected population is represented by a sequence of random variables
I : Q — I, with (2, F, P) measure space and Z = {I',... IP} representing the
distribution over the space representing the set of significant virus mutations. The
meaning is the following: the total population of infected people ), I; will follow a
standard compartmental model, with I;/ ). I; representing the probability of the
generic infected person to have variant 7. Alternatively, we can think of Z as a vector
representing the infected population distinguished in sub-populations via the virus
variants. We assume that the evolution of Z is given by a NDMC associated to a
transition matrix 7" = {t(4, )} j=1,... p- An example of NDMC using the COVID-19
main variants is given in Figure 1. The goal is then to use the discrete-time evolution
of the MC for infected distribution with time-varying mass coupled with the SIR
dynamics. Assuming the time step of the Markov chain is given by At, the coupled
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ODE-MC dynamics is given by:

S ==Y, BEPLE) + oiR(1),

R=3" ~vIi(t) — o:R(t),

T(kAt+) = T(kAt) - T(Z(kAL)), k € N.

Here S is the susceptible population, I;(¢) is the population infected by the i-th
variant, R recovered population, N the total population, (;, 7;, o;, respectively
represent the infection rate, recovery rate, and loss of immunity rate, of the i-
th variant. Notice that the Markov chain term Z1(kA) = Z - T(Z) redistributes
the infected population among the different variants every At time units. T'(Z)
represents a transition matrix for the Markov chain which governs the mutations,
and the dependence on Z makes it a nonlinear MC. The state of this MC is a dynamic
characteristic tied to both the number of infected people with the given variant and
the total infected. In the simulations to follow, we choose T;;(Z) = Ty -1p(I;), where
¥(I;) = 1 —n[l; — L;]4. Here, I; is a chosen threshold and 1 depends on both the
total infected and amount of infected with infection ¢. Clearly in a discrete state
space, the transition matrix would be MxM where M represents the number of
infectious variants. In a continuous state space our equations would need to account
for a continuous spectrum of variants which will be addressed in the next section.
The presence of the Markov chain term is the key difference between our model
and the usual SIR, allowing for the mutation of infected populations seen strongly
in the wide field of variants of Sars-CoV-2. Using the above described equations,
a Markov chain coupled SIR model is able to simulate the dynamics of a virus
spreading through a population while capturing the changing characteristics of the
disease due to new variants appearing and taking hold over the majority of the field
of infections.

2.2. Properties of MC-ODE system

For system (2.1), S and R evolve continuously in time, while the infected populations
I; jump at times kAt. A solutions is defined as follows.

Definition 2.1. A solution to (2.1) is a triple (S,Z, R) : [0,T] — R x RP x R such
that the following holds.

e The maps ¢t — S(t) and t — R(t) are absolutely continuous and satisfy
(2.1)1,3 for almost every time ¢;
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e The map t — 7 is absolutely continuous in time on R\ {kAt : k € N}, with
components I; satisfying (2.1); 3 for almost every time t € R\ {kA¢: k €
N}

o At times {kAt : k € N} 7 is right-continuous and satisfy (2.1)4.

One can easily prove the following:

Lemma 2.1 (Positivity). Consider a solution to (2.1) with S(0) > 0, I;(0) > 0,
i=1,...,p, R(0) >0, then S(t) >0, I;(t) >0,i=1,...,p, R(t) > 0 for every
t>0and N(t)=S(t)+ Y."_, I + R(t) is contant in time.

2.3. Simulations for Markov chain model

There have been four dominant variants throughout the COVID-19 pandemic (up
to early 2022), thus we focus on them for our definitions of parameters. It is worth
noting that the model is adaptable to any number of variants as long as compu-
tational cost is considered. All infection rates and recovery rates in this section
are determined by the specific characteristics of the variants of COVID-19, with
data found in related literature °"»°°. Specifically, the following estimated replica-
tion rates were used: 2.1, 1.95, 3.15, 3.16 for the variants Alpha, Beta, Delta, and
Omicron, respectively. For simulations that include reinfection, we consider a 60
day immunity followed by returning to the susceptible population. The recovery
rate, or -, is set to a constant 14 days from infection.

Transition Matrix Heatmap
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Fig. 2: Static Markov chain example

Number of Individuals

In Figure 2 we illustrate a simple example of a linear transition matrix (not
dependent on the infected population Z, thus corresponding to a linear MC. We
notice that such models let all the variants peak at the same time, something which
did not happen for COVID-19. Therefore, we consider the case of nonlinear MC,
with T;;(Z) = ZN’” p(IL;), where 9 (I;) = 1—mn;[I; — I;]+ . In our simulations, we choose
1; = .005 % If(lI) and I; = 300. The corresponding dynamics is depicted in Figure
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Fig. 5: Evolution for replication rate Ry = 2.5 across all variants.

3 for a simulation corresponding to 400 days. We notice that the virus mutates
slowly at the start as the first infection takes hold. As the total infected grows, the
mutability increases, giving rise to other variants. Infection four in this simulation,
despite having the largest infection rate, never takes hold as the dominant variant
due to a lack of reinfection. This highlights the importance of modeling reinfection,
which is done in Figure 4. Here, one can appreciate the drastic difference between
the long term predictions of Figures 3 and 4. In 4, infection four is the last to
take hold and in fact will become endemic having the highest infection rate. Lastly,
we run the same model but with all replication rates Ry = % equal to 2.5, see
Figure 5. Trajectories are very different from the data observed during the COVID-
19 pandemic. This discrepancy is due to the general notion that a virus mutates
towards more aggressive variants, as shown in their heightened infection rates, as
an evolutionary trajectory.
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3. Measure differential equations with source

We recall the main definitions and properties of MDEs, first introduced in ", then
further developed and analyzed in ' and extended to include sources in

The definition of MDE is a natural generalization of Ordinary Differential Equa-
tion and based on the concept of measure vector field and source. Given a Polish
space X, M(X) indicates the space of Radon measures with finite mass on X.

Definition 3.1. A Measure Vector Field (briefly PVF) is a map V : M(R") —
M(TR™) such that m#V [u] = u, where w1 : TR™ — R™ is the canonical projection.
A source is a map h: M(R") - M(R"™).

A Measure Differential Equation with MVF V' and source h is defined by:
it =V & hul, (3.1)

and a solution to (3.1) is a map g : [0,7] — M(R") such that the following holds.
For every f € C°(R"), the integral [ p,(Vf(x)-v) dV]u(s)](z,v) is defined for
almost every s, s = [0, (Vf(2) - v) dV[u(s)|(z,v) € L'([0,T]), t = [ fdu(t) is
absolutely continuous and

G [ r@aune = [

(Vf(@)-v) dV]p@)](z,0)+ [ flz)dhu(t)](z), (3.2)
R® TR™ R
holds for almost every ¢ € [0, T]. In simple words, the MVF V spread the mass of u
along the directions in the fiber components, while the source h adds or subtracts
mass.

Existence of solutions to (3.1) is guaranteed under natural assumptions. To
state such assumptions, we need to recall the definition of generalized Wasserstein

distance:

Definition 3.2 (The generalized Wasserstein distance). Let u,v € M(X)
be two measures. We define the functional

WO, v) = = il 4+ v — 2] + W (@, ). (3.3)

inf

PEM, |A]=|D]

It is easy to check that the infimum is achieved by a couple (fi,7) such that
i < pand 7 < v. We also introduce the operator W9. Fix V;,V, € M(TR"), and
define V(V1,V3) to be the set of pairs (Vi,Va), such that V; < V;, ¢ = 1,2, and
W9 (p1, p2) = [p — fu| + W (i, fi2) + [p2 — fiz|, where p; = m#V; and p; = m#Vi,
i = 1,2. We also denote by P(V1,V2) the set of transference plans between V; and
V5 and by P"pt(/ll, fi2) the set of optimal transference plans between fi; and fis.
We set

WI(Vy, Va) :inf{/ lv —w|dT(z,v,y,w) :
TR™ xTR™

T S P(‘?L ‘72)7 (‘71a ‘72) S V(‘/la ‘/'2),7_‘_13#1" S Popt(ﬂl7ﬂ2)7 }7 (34)
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The following conditions ensure existence of a semigroup of solutions for (3.1):

(H1) V is support sublinear, i.e. there exists C' > 0 such that for every y € M(X)
it holds:

sup | <C 1+ sup |z|].
(z,v)€Supp(V[u]) x€Supp(p)

(H2) the map V : M(R™) — M(TR") satisfies:
WV ul, VIv]) < KW9(p,v),

with K > 0 bounded for measures with uniformly bounded support.

(H3) the map h is uniformly bounded, for measures with uniformly bounded
support, and Lipschitz continuous (for the topology given by the generalized
Wasserstein distances W9 on R™ and TR™).

We refer the reader to *~ for details.

Solutions can be constructed via Lattice Approximate Solutions (briefly LAS).
In simple words, LAS consist of approximating measures with finite sums of Dirac
deltas centered at points of a lattice, e.g. Z™.
More precisely, fix a time-step Ay = %, define the velocity step A%, = %, the
space step A% = AV AN = % and set

i) =D mi (o, (3.5)
with mf () = p(zi +Q), Q = ([0, =) and

sz 5(% v;) (3.6)

where my;(V[u]) = V{ul({(zs,v) : v € v; + Q'}), and Q" = ([0, )™
The definition of LAS is as follows:

Definition 3.3. Givena MVF V, T > 0 and N € N, the LAS " : [0,T] — P.(R")
is defined as follows: pl = A% (10) and:

Mé\;l =M ( Z Zmlj EAN)]) 6Ii+AN X (37)

Notice that Supp(ulY) is contained in the set Z"/(N?) N [-N,N]", thus pl¥ =
> m s . for some m; N> 0. Then N can be defined for all times by interpola-
tion:

NUAy +t Zm” NAN)]) Ouitt v, (3.8)
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4. General theory for coupled ODE-MDE

Here we recall the theory for coupled systems of ODEs and MDEs developed in
A coupled ODE-MDE system is written as:

(4.1)

fr="VIpl @ s )

where g : R™ x M(R") - R™ V is a MVF and s is a source term depending on
x. In simple words, a solution to (4.1) is a couple (x(-), u(-)) so that z is a solution
of the ODE with ¢ — u(t) plugged into the right-hand side, and u solves the MDE
with ¢ — x(¢) plugged in the source term. The precise definition is as follows:

Definition 4.1. A solution to (4.1) is a couple (x, u), with « : [0,7] — R™ and
w0, 7] - M(R™) such that:

1) t — x(t) is absolutely continuous and z(t) = z¢ + fot g(x(1), u(7)) dr for
almost every t € [0, 7.

2) t — p(t) has uniformly bounded mass, [, (Vf(y)-v)dV[u(t)|(y,v) is de-
fined for almost every t € [0,T], t — [o. f(y) ds[u(t), z(t)](y) € L'([0,T]),
t = [gn f(y)du(t)(y) is absolutely continuous and for almost every t €
[0,T7] it satisfies:

% L Fantt) = /TRJVf-v) W) + [ fdslp)2@) - (12)

The existence of a semigroup of solutions for the system (4.1) is provided by the
following theorem:

Theorem 4.1. Consider the system (4.1), with g locally Lipschitz uniformly in
w, the MVF V satisfying (H1), (H2), s with uniformly bounded mass and support,
and satisfying for some M > 0:

W9 (slp, x], s[v,y]) < M (|l =yl + W (p,v)). (4.3)

Then there exists a Lipschitz semigroup of solutions to (4.1).

5. An MDE-ODE compartmental model with virus variants
dynamics

After SARS-CoV-2 infection is transmitted, the virus begins multiplying quickly.
Within days, billions of virus particles have been produced, and during each replica-
tion cycle it is known that small copy mistakes occur. With about 30, 000 nucleotides
in the SARS-CoV-2 genome, and with each nucleotide either being adenine, cyto-
sine, guanine, or thymine, there a fixed number of possible viral mutations of the
genome. As a result, within days of the virus entering the system, so many mu-
tations have occurred that there is a high probability that a single infected body
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contains every possible genomic mutation of the virus °*. Despite this maximally
diverse population of mutations, the dominant strain of a previous host is extremely
likely to be the dominant strain of the new host, as it is the strain which has the
most time to develop a large viral load. This suggests that due to the fairly contin-
uous process of mistakes being made and having some probability to cause a new
variant, a new variant of concern could appear at any time, changing the parameters
of all predictive models by invalidating the parameters of the previous dominant
variant. Such realities demand the need for a more continuous mindset, where the
underlying assumption is that over time the virus will mutate often and mutate to
new strains not previously observed. Here we introduce an MDE inspired model for
viral infections where mutations are occurring as viral dynamics in a continuous
state-space.

We assume that the population of infected is represented by a measure over a
space representing virus mutations. For simplicity, we parameterize these mutations
using one parameter a € R, but our framework allows for other choices. The infected
population can be thought of as a continuous distribution over a closed interval. As
for standard compartmental models, the population of susceptible can be identified
as a single scalar value, thus S € R. The dynamics of the susceptible population is
captured by the ODE:

. S
§ =~ [ o) ara)

where §(«) is the infectivity rate which now depends on the virus mutation identified
by the parameter a. Before introducing the dynamics of infected population, we
recall an MDE model with finite diffusion.

5.1. An MDEFE modeling finite speed diffusion

The MDE framework allows modeling diffusion with finite speed, which we will use
for virus variants dynamics. The diffusion speed can be regulated by assigning an
increasing map ¢ : [0,1] — R and defining and MVF V,, as follows. First we set

Op(F(2)) if F(z7) = Fu(x),
Jo(x) = (5.1)

99#(X[Fu<m—),m<m)ﬁ)
Fu(z)—=Fu(z™)

otherwise,

where F),(z) = u(]—o00, z]) is the cumulative distribution of 4, and X is the Lebesgue
measure. We set

Volu] = p @y Jp(), (5.2)
thus the mass at  moves with speed ¢(i(F,(x))). For example, choosing ¢(a) =
o — %, the solution starting from a Dirac delta centered at 0 is given by u(t) =

X

t t
272

.
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5.2. MDE-ODE system with reinfection

We now define a generalization of the example of Section 5.1 to be applied to
the measure with time-varying mass I(t). First set Fy(xz) = %, which is
the normalized cumulative distribution of infected up to a given x value, so that
Fr(—o0) = 0 and Fy(+o00) = 1. Fix an increasing map ¢ : [0,1] — R and define
VolI] = I ®4 J,(x), where J,(z) is given by (5.1). The dynamics for I are given by
the MDE:

= V,l1]+ 2 5e)] ~ (@)1

where () is the recovery rate, also dependent on the virus mutation. V,[I] denotes
the MVF representing the finite speed diffusion. Put simply, V,[I] moves the ordered
masses with speed prescribed by ¢.

Finally a second ODE describes the dynamics of R:

B= /R ~(a) dI(a).

The overall dynamics consists of coupled ODEs and MDE:

I =Vy[I(a)] + §B(e)I(@) = v(a)(a), (5:3)

R= [, ~(a)dI(a).

A long-term effect of the pandemic is the possibility of reinfection, especially
for an individual previously exposed to variants which are genetically significantly
different. Modeling reinfections fits two purposes: not only to better represent the
actual dynamics of COVID-19, but also to illustrate the ease with which new com-
partments can be added to such a system. In order to do so, we parameterize the
recovered population by the same variant space as the infectious. After a certain
amount of time o, an individual becomes again vulnerable to the virus, but with
some immunity with respect to the variant of original infection as well as similar
variants. This reinfection is achieved introducing a new compartment denoted by
Sg, which stands for susceptible after recovery, see “°. Our final model reads as
follows:
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(5.4)
R(a) = y(a) I() - oR(a),

S.R(Oé) =0oR— SRT(Q)IRB(O[7&) dI(OA‘)v

where 3(a, &) is the infection rate of variant o among patients that recently (within
the last o time period) recovered from variant &. The example in Figure 7 effectively
constrains 3(«, &) = 0 for o = &, and dampens the infection rate for all « sufficiently
close to &. Biological information could be the driving force for such parameters,
for example B(«, &) could directly reflect the antigenic distance D,4 between the
two variants

Notice that (5.4) can be interpreted as an ODE (for the compartment S), coupled
with an MDE (for the compartment I'), and two linear PDEs (for the compartments
R and Sg). For our framework, it is convenient to interpret the two linear PDEs
as MDEs. This interpretation allows to take advantage of convenient discretization
schemes as explained in next section.

5.3. Approximate solutions to the ODE-MDE system

To discretize the ODE-MDE system we use the operator splitting method as fol-
lows:

Step 0. The Radon measures I, R and Sg are approximated by a finite sum of
Dirac deltas centered at points of a fixed space lattice I' of step Azx.

Step 1. We use the ODE solver to update the compartment S. Due to the approx-
imation of the measure I, the right-hand side is a finite sum (over compact sets).
Step 2. Since the sink/source terms act as parameterized ODEs (for the parameter
a), we can use the same solver to update the other compartments.

Step 3. We approximate V,,|,, for € I', with a finite sum of Dirac deltas cen-
tered at points of a velocity lattice I',, of step A,. Choosing the time step so that
At - Av = A,, the mass at a lattice point « € I is shifted to another point of the
lattice y € T, as for Lattice Approximate Solutions. We can then go back iteratively
to Step 1.

5.4. Properties of the MDE-ODE SIRS model

In this section we discuss the existence of solutions for the system (5.4). More
precisely rewrite the system as:

SZQ(S,M)7 /lZV[,U]@S(/L, S)? (5'5)
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where p = (I, R, Sg) is a vector measure, g = — % [. B(a) dI(«),

and
T8 () + 252 [ B(a,6) dI(&) — v(a)I()
s(p, S) = V(@) I(a) — o R(a)
oR— 58 [ B(a, &) dI(a)
We have the following

Theorem 5.1. Consider the system (5.5) and assume that 58, 7, 3 are Lipschitz
functions. Then the hypotheses of Theorem 4.1 are satisfied, thus there exists a
Lipschitz semigroup of solutions to (5.5).

Proof. We follow the proof given in “° for the system (5.3). The vector field g is
Lipschitz continuous since § is Lipschitz continuous. The MVF V has one compo-
nent given by V,, and two vanishing ones, thus (H1), (H2) hold true as proved in
Proposition 4.1 of

We are left to prove the estimate (4.3) for s. The source has new terms given
by 22 [ B(a,a) dI(@) wrt. (5.3). It holds:

w9 (‘%@Aﬁ(a,a) dIl(d),S%V@/RB(a,d) dﬂ(d)) <

Sk [ 5.1 Sk [ 5.1 Sk (5.0 Sk [ 5 0
W9 | == dl-, == dI W9 | —= dr-, == dI*) =A1+ A
(3 [aar Sz [par)vwo (52 [5ar 3E [ 5ar) = ai+a,
Let S% < Sk, i = 1,2, be the measures achieving the infimum in the definition of
W9(Sk, S%) and mg € P°Pt(S},5%) (the set of optimal transference plans). Then
# = [ BdI'ms is a transference plan between S}, [ SdI' and S% [ BdI* (both well
defined measures obtained by multiplying a Lipschitz function by a measure). Then
we obtain:

1 ) 1 ~ o
Av< & [ |1 = 20| di (21, 20) + (ISR = S|+ 1S = SEDIIBI <] 1] <

1 =
V1Bl W (Sk, SE).

Now let us pass to Ay. Let I' < I', i = 1,2, be the measures achieving the infimum
in the definition of W9(It, I?) and n; € P°Pt(I', I?) (the set of optimal transference
plans). Notice that:

Ay < %\S?—J . H/Rﬁ d(It —1?)

Lo
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To estimate the right-hand side, we first notice that:

/R Ba(it - 2)

where Lip(B) indicates the Lipschitz constant of B On the other side, for i = 1,2:

’ABﬂﬁ—m

Combining the last two estimates, we get:

< Lip(B) - / |21 — 22| dmp(21, 22)

1o°

< Bl I* 1.
LOO

Ay < |SImax{ Lip(5), |l o~ ) W9(1', 12).
Finally, treating the other terms as in Proposition 4.1 of “”, we obtain:
W9 (s(p1,51), 8(p2, S2) < M(|S1 — Sa| + W9 (p1, p2)
and (4.3) holds true. |

5.5. Simulations for MDE model

Here we visualize the time evolution of model (5.4) using simulations developed in
MatLab and the discretization scheme outlined in Section 5.3. Our first simulation
uses the the parameters shown in Figure 6. For all simulations, unless specified
otherwise, we will consider a 60 day loss of immunity rate. In Figure 7 the simulation
starts with one person infected with the variant found at the center of our variant
space, and at every updating step we mutate at a maximum velocity which is
dependent on the total number infected at the time, similar to what done for model
(2.1). The more people there are currently infected, the faster the virus may be
expected to mutate. This is modeled by adjusting the diffusion speed v as follows:

v=w~%/df(a);

where 1 is a chosen scale factor. The corresponding dynamics is represented in
Figure 7 where the velocities grow as the total infected population grows, and will
slow down if the infected population diminishes.

The symmetry in Figure 7 is due to the symmetry in the replication rates shown
in Figure 6. However, infection rates may well happen to be asymmetric w.r.t. to the
initial variant. Asymmetry can be represented simply by changing the replication
rates, using a function that is no longer symmetrical over the center variant. In
Figure 8 we exemplify this using a simple linear function as our replication rates.
The resulting dynamics in Figure 9 show that the virus is ”favoring” the direction
of higher infection rate. Lastly, we explore loss of immunity, expanding from 60 days
to 120 in Figure 10. Notice that in Figure 10 we observe a wave-like pattern in the
dynamics very similar to the wave-like pattern of COVID-19, suggesting that 60
days may be too short to consider as the average time of reinfectability.
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Fig. 6: Model parameters as function of variants. Top left: recovery rate, top right:
replication rate, bottom left: infection rate, bottom right: mutation rate
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Fig. 7: Top left: heat map of infected over the variant space.Top right: Infected
dynamics over time. Bottom: Dynamics of SIR model.
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Fig. 8: Parameters with asymmetric replication rates.
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