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The COVID-19 pandemic lit a fire under researchers who have subsequently raced to

build models which capture various physical aspects of both the biology of the virus and
its mobility throughout the human population. These models could include characteris-

tics such as different genders, ages, frequency of interactions, mutation of virus etc. Here
we propose two mathematical formulations to include virus mutation dynamics. The

first uses a compartmental epidemiological model coupled with a discrete-time finite-

state Markov chain. If one includes a nonlinear dependence of the transition matrix on
current infected, the model is able to reproduce pandemic waves due to different variants.

The second approach expands such an idea to a continuous state-space leveraging a com-

bination of ordinary differential equations with an evolution equation for measure. This
approach allows to include reinfections with partial immunity with respect to variants

genetically similar to that of first infection.

Keywords: epidemiology; SARS-CoV-2; SIRS compartmental models; measure differen-
tial equations; measure theory

1. Introduction

Throughout the COVID-19 pandemic there has been a growing need for more robust

predictive epidemiological models in order to help policy makers answer important

questions about the future 4,48. Policy decisions must balance the prevention of

morbidity and mortality with the preservation of societal functioning 19. Researchers

work to answer questions such as: what sort of non-pharmaceutical interventions
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will still be important to a population during and after a vaccination campaign
5,43? How do age and physical space affect the dynamics of a virus 6,29,13,18? What

do the variables associated with the virus depend upon, and can such variables be

made more dynamic to better understand long term viral propagation through a

population 2,3,10,47?

As COVID-19 moves towards a possible endemic stage, including a method

which can capture mutation is imperative to more long term predictions 30,26. Such

methods could be useful when modeling endemic response to many viruses, such

as response to the seasonal flu 15,12,21. Understanding the dynamics of a changing

system helps in directing public response against a virus 40,16,36. It takes multiple

months for a government to identify, address and release policy to mitigate the risk

of a new disease 27,46. It then takes the public time to react and begin following

such policies 37. The ability to model a changing virus could vastly cut down on

decision making time and thus help a society react more efficiently.

Here we introduce two methodologies to consider mutation of a virus. We first

assume a discrete-time process where the virus mutates from variant A to variant

B at fixed intervals of time. Mathematically, this amounts to coupling a classical

epidemiological model based on ordinary differential equations, with a discrete-time

Markov chain. The latter contains a finite set of states, corresponding to the major

variants of interest. We focus on the classical SIRS model (Susceptible-Infected-

Removed-Susceptible). The model properties are immediate from the discrete-time

properties of the Markov chain, including positivity of solutions and conservation of

mass. Then, we propose a nonlinear transition matrix, to take into account the effect

of the total number of infected over the virus mutability. This modification allows

to reproduce various pandemic waves linked to different mutations, see Section 2.3.

Our second model proposes a continuous diffusion process for virus variants,

where the infection begins somewhere on a continuous state-space of possible vari-

ants and, as time progresses, the virus diffuses over the same space. We choose

a measure-theoretic approach proposed in 44 called measure differential equations

(briefly MDEs). Such framework is very general and flexible, allowing to couple

ordinary differential equations (briefly ODEs), e.g. for susceptible population, with

measure evolution equations, or for infected differentiated by the virus variant. In

particular, a first model coupling ODEs and MDEs was proposed in 25 with results

on existence and uniqueness of trajectories. Here, we extend this model to include

reinfection. The latter is modelled by an additional compartment, called recovered

susceptible. In this compartment, individuals have partial immunity to variants ge-

netically similar to that of the first infection. This is realized by an infection rate

that depends both on the original variant and the new infecting variants. We prove

that this extended model can be cast within the general theory developed in 25.

Then, we focus on simulations, using a scheme combining numerical approxima-

tions for ODEs and lattice approximate solutions for MDEs. The latter is based

on approximating measure with finite sums of Dirac deltas centered at the points

of a lattice. The simulations show how the model can track the variants dynamics
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together with the many compartments. The resulting dynamics shows a rich set of

possible evolution. Concluding, these new approaches bring us closer to developing

tools for pandemic management.

The focus of this paper is in introducing two mathematical formulations to in-

clude mutation dynamics of a virus, and is organized as follows. First we introduce

epidemiological models in a general sense in Section 1.1. We then define our first

model, an MC-ODE system which uses a discrete-time finite-state MC to govern

mutation dynamics. In Section 2 we define the properties of this system before

presenting simulations of a theoretical model built in Matlab using variables in-

spired by the COVID-19 pandemic. In Section 3 we introduce MDEs and define

the characteristics of such equations. We then describe the general theory for cou-

pled ODE-MDE systems in Section 4. Using such a formulation, in Section 5, we

generalize our model to a continuous state-space by introducing a measure for the

mutation space, rather than a vector of variants. We define the coupled system and

provide a method for solving the system. We then introduce properties of the sys-

tem of equations before providing simulations, once again, of a theoretical model

built in Matlab using variables inspired by the COVID-19 pandemic.

1.1. Epidemiological modeling

Epidemiological models come in two general forms: agent based and compartmental
15. The more popular models tend to be compartmental as they have a lower compu-

tational cost associated with larger population sizes and remove stochasticity thus

leaving space for predictions based on optimal control 33,39,41. The models are de-

signed using population compartments, which sum together at any given time to be

the total population. Models that are proposed here are an expansion of SIR models
32. These classical models are built using three compartments: susceptible, infec-

tious, and removed with the following general structure: Ṡ = −βSI
N , İ = βSI

N − γI,

Ṙ = γI, where β and γ are the infection rate and recovery rate respectively. The

infection rate and recovery rate combine to form what we call the ”replication rate”

represented by R0 where R0 = β
γ . The replication rate of a virus, or basic repro-

duction number, is the leading driver in prediction and works as follows: A variant

with a replication rate of 2 means that for each person infected, they will infect two

others. A replication rate under 1 would mean that for each person infected, they

are infecting less than one person, thus the virus is diminishing 35. A benefit of such

a model is the ability to scale compartments to fit the needs of the researcher, such

as capturing disease progression 23,24, considering age structure and spacial distance
14,11,52,52, and even projecting the need for hospital beds as the virus progresses 1.

2. Markov chain coupled with ODEs

2.1. Motivation and definition of MC-ODE system

From August 2020 until December 2020, the Beta variant of SARS-CoV-2 was dom-

inant. Later, from December 2020 until April 2021, the Alpha variant took stage.
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The Gamma variant began to become more prevalent, only to be outpaced by the

Delta variant before having a chance to become dominant8,49. Lastly, the Omicron

variant appeared in November 2021 and held its position as the lead infection holder

through the new year 22,31. With each new dominant variant, a new set of defining

parameters are required for predictive modeling 51,42. With a seemingly discrete

number of dominant variants, one may choose to model the interactions and muta-

tions in a discrete way 9. We use a SIR model coupled with a nonlinear discrete-time

Markov chain (briefly NDMC) representing the emergence of virus variants. The sys-

tem will be fully coupled, but the discrete-time nature of the Markov chain allows

a simple mathematical treatment and simulations.
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Fig. 1: Left: heatmap representing the transition matrix. Right: graph representation

of the Markov chain with main COVID-19 variants.

Assume the infected population is represented by a sequence of random variables

Ii : Ω → I, with (Ω,F , P ) measure space and I = {I1, . . . , Ip} representing the

distribution over the space representing the set of significant virus mutations. The

meaning is the following: the total population of infected people
∑

i Ii will follow a

standard compartmental model, with Ii/
∑

i Ii representing the probability of the

generic infected person to have variant i. Alternatively, we can think of I as a vector

representing the infected population distinguished in sub-populations via the virus

variants. We assume that the evolution of I is given by a NDMC associated to a

transition matrix T = {t(i, j)}i,j=1,...,p. An example of NDMC using the COVID-19

main variants is given in Figure 1. The goal is then to use the discrete-time evolution

of the MC for infected distribution with time-varying mass coupled with the SIR

dynamics. Assuming the time step of the Markov chain is given by ∆t, the coupled
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ODE-MC dynamics is given by:

Ṡ = −
∑p

i=1 βi
S(t)
N Ii(t) + σiR(t),

İi = βi
S(t)
N Ii(t)− γiIi(t),

Ṙ =
∑p

i=1 γiIi(t)− σiR(t),

I(k∆t+) = I(k∆t) · T (I(k∆t)), k ∈ N.

(2.1)

Here S is the susceptible population, Ii(t) is the population infected by the i-th

variant, R recovered population, N the total population, βi, γi, σi, respectively

represent the infection rate, recovery rate, and loss of immunity rate, of the i-

th variant. Notice that the Markov chain term I+(k∆) = I · T (I) redistributes

the infected population among the different variants every ∆t time units. T (I)
represents a transition matrix for the Markov chain which governs the mutations,

and the dependence on I makes it a nonlinear MC. The state of this MC is a dynamic

characteristic tied to both the number of infected people with the given variant and

the total infected. In the simulations to follow, we choose Tii(I) = T̃ii ·ψ(Ii), where
ψ(Ii) = 1 − η[Ii − Īi]+. Here, Īi is a chosen threshold and η depends on both the

total infected and amount of infected with infection i. Clearly in a discrete state

space, the transition matrix would be MxM where M represents the number of

infectious variants. In a continuous state space our equations would need to account

for a continuous spectrum of variants which will be addressed in the next section.

The presence of the Markov chain term is the key difference between our model

and the usual SIR, allowing for the mutation of infected populations seen strongly

in the wide field of variants of Sars-CoV-2. Using the above described equations,

a Markov chain coupled SIR model is able to simulate the dynamics of a virus

spreading through a population while capturing the changing characteristics of the

disease due to new variants appearing and taking hold over the majority of the field

of infections.

2.2. Properties of MC-ODE system

For system (2.1), S andR evolve continuously in time, while the infected populations

Ii jump at times k∆t. A solutions is defined as follows.

Definition 2.1. A solution to (2.1) is a triple (S, I, R) : [0, T ] → R×Rp ×R such

that the following holds.

• The maps t → S(t) and t → R(t) are absolutely continuous and satisfy

(2.1)1,3 for almost every time t;
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• The map t→ I is absolutely continuous in time on R\{k∆t : k ∈ N}, with
components Ii satisfying (2.1)1,3 for almost every time t ∈ R \ {k∆t : k ∈
N};

• At times {k∆t : k ∈ N} I is right-continuous and satisfy (2.1)4.

One can easily prove the following:

Lemma 2.1 (Positivity). Consider a solution to (2.1) with S(0) ≥ 0, Ii(0) ≥ 0,

i = 1, . . . , p, R(0) ≥ 0, then S(t) ≥ 0, Ii(t) ≥ 0, i = 1, . . . , p, R(t) ≥ 0 for every

t > 0 and N(t) = S(t) +
∑p

i=1 Ii +R(t) is contant in time.

2.3. Simulations for Markov chain model

There have been four dominant variants throughout the COVID-19 pandemic (up

to early 2022), thus we focus on them for our definitions of parameters. It is worth

noting that the model is adaptable to any number of variants as long as compu-

tational cost is considered. All infection rates and recovery rates in this section

are determined by the specific characteristics of the variants of COVID-19, with

data found in related literature 50,38. Specifically, the following estimated replica-

tion rates were used: 2.1, 1.95, 3.15, 3.16 for the variants Alpha, Beta, Delta, and

Omicron, respectively. For simulations that include reinfection, we consider a 60

day immunity followed by returning to the susceptible population. The recovery

rate, or γ, is set to a constant 14 days from infection.
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Fig. 2: Static Markov chain example

In Figure 2 we illustrate a simple example of a linear transition matrix (not

dependent on the infected population I, thus corresponding to a linear MC. We

notice that such models let all the variants peak at the same time, something which

did not happen for COVID-19. Therefore, we consider the case of nonlinear MC,

with Tii(I) = T̃ii ·ψ(Ii), where ψ(Ii) = 1−ηi[Ii− Īi]+. In our simulations, we choose

ηi = .005 ∗ I(i)∫
I and Īi = 300. The corresponding dynamics is depicted in Figure
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Fig. 3: Evolution for nonlinear MC

without reinfection.
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Fig. 4: Evolution for nonlinear MC

with reinfection.
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Fig. 5: Evolution for replication rate R0 = 2.5 across all variants.

3 for a simulation corresponding to 400 days. We notice that the virus mutates

slowly at the start as the first infection takes hold. As the total infected grows, the

mutability increases, giving rise to other variants. Infection four in this simulation,

despite having the largest infection rate, never takes hold as the dominant variant

due to a lack of reinfection. This highlights the importance of modeling reinfection,

which is done in Figure 4. Here, one can appreciate the drastic difference between

the long term predictions of Figures 3 and 4. In 4, infection four is the last to

take hold and in fact will become endemic having the highest infection rate. Lastly,

we run the same model but with all replication rates R0 = βi

γi
equal to 2.5, see

Figure 5. Trajectories are very different from the data observed during the COVID-

19 pandemic. This discrepancy is due to the general notion that a virus mutates

towards more aggressive variants, as shown in their heightened infection rates, as

an evolutionary trajectory.
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3. Measure differential equations with source

We recall the main definitions and properties of MDEs, first introduced in 44, then

further developed and analyzed in 7 and extended to include sources in 45.

The definition of MDE is a natural generalization of Ordinary Differential Equa-

tion and based on the concept of measure vector field and source. Given a Polish

space X, M(X) indicates the space of Radon measures with finite mass on X.

Definition 3.1. A Measure Vector Field (briefly PVF) is a map V : M(Rn) →
M(TRn) such that π1#V [µ] = µ, where π1 : TRn → Rn is the canonical projection.

A source is a map h : M(Rn) → M(Rn).

A Measure Differential Equation with MVF V and source h is defined by:

µ̇ = V [µ]⊕ h[µ], (3.1)

and a solution to (3.1) is a map µ : [0, T ] → M(Rn) such that the following holds.

For every f ∈ C∞
c (Rn), the integral

∫
TRn(∇f(x) · v) dV [µ(s)](x, v) is defined for

almost every s, s →
∫
TRn(∇f(x) · v) dV [µ(s)](x, v) ∈ L1([0, T ]), t →

∫
f dµ(t) is

absolutely continuous and

d

dt

∫
Rn

f(x) dµ(t)(x) =

∫
TRn

(∇f(x) · v) dV [µ(t)](x, v)+

∫
Rn

f(x)dh[µ(t)](x), (3.2)

holds for almost every t ∈ [0, T ]. In simple words, the MVF V spread the mass of µ

along the directions in the fiber components, while the source h adds or subtracts

mass.

Existence of solutions to (3.1) is guaranteed under natural assumptions. To

state such assumptions, we need to recall the definition of generalized Wasserstein

distance:

Definition 3.2 (The generalized Wasserstein distance). Let µ, ν ∈ M(X)

be two measures. We define the functional

W g(µ, ν) := inf
µ̃,ν̃∈M, |µ̃|=|ν̃|

|µ− µ̃|+ |ν − ν̃|+W (µ̃, ν̃). (3.3)

It is easy to check that the infimum is achieved by a couple (µ̃, ν̃) such that

µ̃ ≤ µ and ν̃ ≤ ν. We also introduce the operator Wg. Fix V1, V2 ∈ M(TRn), and

define V(V1, V2) to be the set of pairs (Ṽ1, Ṽ2), such that Ṽi ≤ Vi, i = 1, 2, and

W g(µ1, µ2) = |µ1− µ̃1|+W (µ̃1, µ̃2)+ |µ2− µ̃2|, where µi = π1#Vi and µi = π1#Vi,

i = 1, 2. We also denote by P (Ṽ1, Ṽ2) the set of transference plans between V1 and

V2 and by P opt(µ̃1, µ̃2) the set of optimal transference plans between µ̃1 and µ̃2.

We set

Wg(V1, V2) = inf

{∫
TRn×TRn

|v − w| dT (x, v, y, w) :

T ∈ P (Ṽ1, Ṽ2), (Ṽ1, Ṽ2) ∈ V(V1, V2), π13#T ∈ P opt(µ̃1, µ̃2),

}
, (3.4)



August 2, 2023 7:7 WSPC/INSTRUCTION FILE output

Expanding the Classical SIR to Capture Mutability of Virus 9

The following conditions ensure existence of a semigroup of solutions for (3.1):

(H1) V is support sublinear, i.e. there exists C > 0 such that for every µ ∈ M(X)

it holds:

sup
(x,v)∈Supp(V [µ])

|v| ≤ C

(
1 + sup

x∈Supp(µ)

|x|

)
.

(H2) the map V : M(Rn) → M(TRn) satisfies:

Wg(V [µ], V [ν]) ≤ KW g(µ, ν),

with K > 0 bounded for measures with uniformly bounded support.

(H3) the map h is uniformly bounded, for measures with uniformly bounded

support, and Lipschitz continuous (for the topology given by the generalized

Wasserstein distances W g on Rn and TRn).

We refer the reader to 45 for details.

Solutions can be constructed via Lattice Approximate Solutions (briefly LAS).

In simple words, LAS consist of approximating measures with finite sums of Dirac

deltas centered at points of a lattice, e.g. Zn.

More precisely, fix a time-step ∆N = 1
N , define the velocity step ∆v

N = 1
N , the

space step ∆x
N = ∆v

N∆N = 1
N2 and set

Ax
N (µ) =

∑
i

mx
i (µ)δxi

(3.5)

with mx
i (µ) = µ(xi +Q), Q = ([0, 1

N2 [)
n and

Av
N (V [µ]) =

∑
i

∑
j

mv
ij(V [µ]) δ(xi,vj) (3.6)

where mv
ij(V [µ]) = V [µ]({(xi, v) : v ∈ vj +Q′}), and Q′ = ([0, 1

N [)n.

The definition of LAS is as follows:

Definition 3.3. Given a MVF V , T > 0 and N ∈ N, the LAS µN : [0, T ] → Pc(Rn)

is defined as follows: µN
0 = Ax

N (µ0) and:

µN
ℓ+1 = µN ((ℓ+ 1)∆N ) =

∑
i

∑
j

mv
ij(V [µN (ℓ∆N )]) δxi+∆N vj

. (3.7)

Notice that Supp(µN
ℓ ) is contained in the set Zn/(N2) ∩ [−N,N ]n, thus µN

ℓ =∑
im

N,ℓ
i δxi

for some mN,ℓ
i ≥ 0. Then µN can be defined for all times by interpola-

tion:

µN (ℓ∆N + t) =
∑
ij

mv
ij(V [µN (ℓ∆N )]) δxi+t vj

. (3.8)
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4. General theory for coupled ODE-MDE

Here we recall the theory for coupled systems of ODEs and MDEs developed in 25.

A coupled ODE-MDE system is written as:
ẋ = g(x, µ)

µ̇ = V [µ]⊕ s(µ, x)

(4.1)

where g : Rm ×M(Rn) → Rm, V is a MVF and s is a source term depending on

x. In simple words, a solution to (4.1) is a couple (x(·), µ(·)) so that x is a solution

of the ODE with t→ µ(t) plugged into the right-hand side, and µ solves the MDE

with t→ x(t) plugged in the source term. The precise definition is as follows:

Definition 4.1. A solution to (4.1) is a couple (x, µ), with x : [0, T ] → Rm and

µ : [0, T ] → M(Rn) such that:

1) t → x(t) is absolutely continuous and x(t) = x0 +
∫ t

0
g(x(τ), µ(τ)) dτ for

almost every t ∈ [0, T ].

2) t→ µ(t) has uniformly bounded mass,
∫
TRn(∇f(y) · v) dV [µ(t)](y, v) is de-

fined for almost every t ∈ [0, T ], t →
∫
Rn f(y) ds[µ(t), x(t)](y) ∈ L1([0, T ]),

t →
∫
Rn f(y) dµ(t)(y) is absolutely continuous and for almost every t ∈

[0, T ] it satisfies:

d

dt

∫
Rn

f dµ(t) =

∫
TRn

(∇f · v) dV [µ(t)] +

∫
Rn

f ds[µ(t), x(t)]. (4.2)

The existence of a semigroup of solutions for the system (4.1) is provided by the

following theorem:

Theorem 4.1. 25 Consider the system (4.1), with g locally Lipschitz uniformly in

µ, the MVF V satisfying (H1), (H2), s with uniformly bounded mass and support,

and satisfying for some M > 0:

W g(s[µ, x], s[ν, y]) ≤M (|x− y|+W g(µ, ν)) . (4.3)

Then there exists a Lipschitz semigroup of solutions to (4.1).

5. An MDE-ODE compartmental model with virus variants

dynamics

After SARS-CoV-2 infection is transmitted, the virus begins multiplying quickly.

Within days, billions of virus particles have been produced, and during each replica-

tion cycle it is known that small copy mistakes occur. With about 30, 000 nucleotides

in the SARS-CoV-2 genome, and with each nucleotide either being adenine, cyto-

sine, guanine, or thymine, there a fixed number of possible viral mutations of the

genome. As a result, within days of the virus entering the system, so many mu-

tations have occurred that there is a high probability that a single infected body
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contains every possible genomic mutation of the virus 34. Despite this maximally

diverse population of mutations, the dominant strain of a previous host is extremely

likely to be the dominant strain of the new host, as it is the strain which has the

most time to develop a large viral load. This suggests that due to the fairly contin-

uous process of mistakes being made and having some probability to cause a new

variant, a new variant of concern could appear at any time, changing the parameters

of all predictive models by invalidating the parameters of the previous dominant

variant. Such realities demand the need for a more continuous mindset, where the

underlying assumption is that over time the virus will mutate often and mutate to

new strains not previously observed. Here we introduce an MDE inspired model for

viral infections where mutations are occurring as viral dynamics in a continuous

state-space.

We assume that the population of infected is represented by a measure over a

space representing virus mutations. For simplicity, we parameterize these mutations

using one parameter α ∈ R, but our framework allows for other choices. The infected

population can be thought of as a continuous distribution over a closed interval. As

for standard compartmental models, the population of susceptible can be identified

as a single scalar value, thus S ∈ R. The dynamics of the susceptible population is

captured by the ODE:

Ṡ = − S

N

∫
R
β(α) dI(α),

where β(α) is the infectivity rate which now depends on the virus mutation identified

by the parameter α. Before introducing the dynamics of infected population, we

recall an MDE model with finite diffusion.

5.1. An MDE modeling finite speed diffusion

The MDE framework allows modeling diffusion with finite speed, which we will use

for virus variants dynamics. The diffusion speed can be regulated by assigning an

increasing map φ : [0, 1] → R and defining and MVF Vφ as follows. First we set

Jφ(x) =


δφ(Fµ(x)) if Fµ(x

−) = Fµ(x),

φ#
(
χ[Fµ(x−),Fµ(x)]λ

)
Fµ(x)−Fµ(x−) otherwise,

(5.1)

where Fµ(x) = µ(]−∞, x]) is the cumulative distribution of µ, and λ is the Lebesgue

measure. We set

Vφ[µ] = µ⊗x Jφ(x), (5.2)

thus the mass at x moves with speed φ(i(Fµ(x))). For example, choosing φ(α) =

α − 1
2 , the solution starting from a Dirac delta centered at 0 is given by µ(t) =

1
tχ[− t

2 ,
t
2 ]
dλ.
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5.2. MDE-ODE system with reinfection

We now define a generalization of the example of Section 5.1 to be applied to

the measure with time-varying mass I(t). First set FI(x) = I(]−∞,x])
I(R) , which is

the normalized cumulative distribution of infected up to a given x value, so that

FI(−∞) = 0 and FI(+∞) = 1. Fix an increasing map φ : [0, 1] → R and define

Vφ[I] = I ⊗x Jφ(x), where Jφ(x) is given by (5.1). The dynamics for I are given by

the MDE:

İ = Vφ[I] +
S

N
β(α)I − γ(α)I

where γ(α) is the recovery rate, also dependent on the virus mutation. Vφ[I] denotes

the MVF representing the finite speed diffusion. Put simply, Vφ[I] moves the ordered

masses with speed prescribed by φ.

Finally a second ODE describes the dynamics of R:

Ṙ =

∫
R
γ(α) dI(α).

The overall dynamics consists of coupled ODEs and MDE:



Ṡ = − S
N

∫
R β(α) dI(α),

İ = Vφ[I(α)] +
S
N β(α)I(α)− γ(α)I(α),

Ṙ =
∫
R γ(α) dI(α).

(5.3)

A long-term effect of the pandemic is the possibility of reinfection, especially

for an individual previously exposed to variants which are genetically significantly

different. Modeling reinfections fits two purposes: not only to better represent the

actual dynamics of COVID-19, but also to illustrate the ease with which new com-

partments can be added to such a system. In order to do so, we parameterize the

recovered population by the same variant space as the infectious. After a certain

amount of time σ, an individual becomes again vulnerable to the virus, but with

some immunity with respect to the variant of original infection as well as similar

variants. This reinfection is achieved introducing a new compartment denoted by

SR, which stands for susceptible after recovery, see 28. Our final model reads as

follows:
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

Ṡ = − S
N

∫
R β(α) dI(α),

İ = Vφ[I(α)] +
S
N β(α)I(α) +

SR(α)
N

∫
R β(α, α̂) dI(α̂)− γ(α)I(α),

Ṙ(α) = γ(α) I(α)− σR(α),

ṠR(α) = σR− SR(α)
N

∫
R β(α, α̂) dI(α̂),

(5.4)

where β(α, α̂) is the infection rate of variant α among patients that recently (within

the last σ time period) recovered from variant α̂. The example in Figure 7 effectively

constrains β(α, α̂) = 0 for α = α̂, and dampens the infection rate for all α sufficiently

close to α̂. Biological information could be the driving force for such parameters,

for example β(α, α̂) could directly reflect the antigenic distance Dαα̂ between the

two variants 17,20.

Notice that (5.4) can be interpreted as an ODE (for the compartment S), coupled

with an MDE (for the compartment I), and two linear PDEs (for the compartments

R and SR). For our framework, it is convenient to interpret the two linear PDEs

as MDEs. This interpretation allows to take advantage of convenient discretization

schemes as explained in next section.

5.3. Approximate solutions to the ODE-MDE system

To discretize the ODE-MDE system we use the operator splitting method as fol-

lows:

Step 0. The Radon measures I, R and SR are approximated by a finite sum of

Dirac deltas centered at points of a fixed space lattice Γ of step ∆x.

Step 1. We use the ODE solver to update the compartment S. Due to the approx-

imation of the measure I, the right-hand side is a finite sum (over compact sets).

Step 2. Since the sink/source terms act as parameterized ODEs (for the parameter

α), we can use the same solver to update the other compartments.

Step 3. We approximate Vφ|x, for x ∈ Γ, with a finite sum of Dirac deltas cen-

tered at points of a velocity lattice Γv of step ∆v. Choosing the time step so that

∆t ·∆v = ∆x, the mass at a lattice point x ∈ Γ is shifted to another point of the

lattice y ∈ Γ, as for Lattice Approximate Solutions. We can then go back iteratively

to Step 1.

5.4. Properties of the MDE-ODE SIRS model

In this section we discuss the existence of solutions for the system (5.4). More

precisely rewrite the system as:

Ṡ = g(S, µ), µ̇ = V [µ]⊕ s(µ, S), (5.5)
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where µ = (I,R, SR) is a vector measure, g = − S
N

∫
R β(α) dI(α),

V [µ] =


Vφ[I(α)]

0

0

 ,

and

s(µ, S) =


S
N β(α)I(α) +

SR(α)
N

∫
R β̃(α, α̂) dI(α̂)− γ(α)I(α)

γ(α) I(α)− σR(α)

σR− SR(α)
N

∫
R β̃(α, α̂) dI(α̂)

 .

We have the following

Theorem 5.1. Consider the system (5.5) and assume that β, γ, β̃ are Lipschitz

functions. Then the hypotheses of Theorem 4.1 are satisfied, thus there exists a

Lipschitz semigroup of solutions to (5.5).

Proof. We follow the proof given in 25 for the system (5.3). The vector field g is

Lipschitz continuous since β is Lipschitz continuous. The MVF V has one compo-

nent given by Vφ and two vanishing ones, thus (H1), (H2) hold true as proved in

Proposition 4.1 of 25.

We are left to prove the estimate (4.3) for s. The source has new terms given

by SR(α)
N

∫
R β̃(α, α̂) dI(α̂) w.r.t. (5.3). It holds:

W g

(
S1
R(α)

N

∫
R
β̃(α, α̂) dI1(α̂),

S2
R(α)

N

∫
R
β̃(α, α̂) dI2(α̂)

)
≤

W g

(
S1
R

N

∫
R
β̃ dI1,

S2
R

N

∫
R
β̃ dI1

)
+W g

(
S2
R

N

∫
R
β̃ dI1,

S2
R

N

∫
R
β̃ dI2

)
= A1 +A2

Let S̃i
R ≤ Si

R, i = 1, 2, be the measures achieving the infimum in the definition of

W g(S1
R, S

2
R) and πS ∈ P opt(S̃1

R, S̃
2
R) (the set of optimal transference plans). Then

π̂ =
∫
β̃dI1πS is a transference plan between S̃1

R

∫
β̃dI1 and S̃2

R

∫
β̃dI1 (both well

defined measures obtained by multiplying a Lipschitz function by a measure). Then

we obtain:

A1 ≤ 1

N

∫
|z1 − z2| dπ̂(z1, z2) +

1

N
(|S1

R − S̃1
R|+ |S2

R − S̃2
R|)∥β̃∥L∞ |I1| ≤

1

N
∥β̃∥L∞ |I1|W g(S1

R, S
2
R).

Now let us pass to A2. Let Ĩ
i ≤ Ii, i = 1, 2, be the measures achieving the infimum

in the definition ofW g(I1, I2) and πI ∈ P opt(Ĩ1, Ĩ2) (the set of optimal transference

plans). Notice that:

A2 ≤ 1

N
|S2

R| ·
∥∥∥∥∫

R
β̃ d(I1 − I2)

∥∥∥∥
L∞

.
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To estimate the right-hand side, we first notice that:∥∥∥∥∫
R
β̃ d(Ĩ1 − Ĩ2)

∥∥∥∥
L∞

≤ Lip(β̃) ·
∫

|z1 − z2| dπI(z1, z2)

where Lip(β̃) indicates the Lipschitz constant of β̃. On the other side, for i = 1, 2:∥∥∥∥∫
R
β̃ d(Ii − Ĩi)

∥∥∥∥
L∞

≤ ∥β̃∥L∞ |Ii − Ĩi|.

Combining the last two estimates, we get:

A2 ≤ 1

N
|S2

R|max{Lip(β), ∥β̃∥L∞}W g(I1, I2).

Finally, treating the other terms as in Proposition 4.1 of 25, we obtain:

W g(s(µ1, S1), s(µ2, S2) ≤M(|S1 − S2|+W g(µ1, µ2)

and (4.3) holds true.

5.5. Simulations for MDE model

Here we visualize the time evolution of model (5.4) using simulations developed in

MatLab and the discretization scheme outlined in Section 5.3. Our first simulation

uses the the parameters shown in Figure 6. For all simulations, unless specified

otherwise, we will consider a 60 day loss of immunity rate. In Figure 7 the simulation

starts with one person infected with the variant found at the center of our variant

space, and at every updating step we mutate at a maximum velocity which is

dependent on the total number infected at the time, similar to what done for model

(2.1). The more people there are currently infected, the faster the virus may be

expected to mutate. This is modeled by adjusting the diffusion speed v as follows:

v = ψ · 1

N

∫
dI(α);

where ψ is a chosen scale factor. The corresponding dynamics is represented in

Figure 7 where the velocities grow as the total infected population grows, and will

slow down if the infected population diminishes.

The symmetry in Figure 7 is due to the symmetry in the replication rates shown

in Figure 6. However, infection rates may well happen to be asymmetric w.r.t. to the

initial variant. Asymmetry can be represented simply by changing the replication

rates, using a function that is no longer symmetrical over the center variant. In

Figure 8 we exemplify this using a simple linear function as our replication rates.

The resulting dynamics in Figure 9 show that the virus is ”favoring” the direction

of higher infection rate. Lastly, we explore loss of immunity, expanding from 60 days

to 120 in Figure 10. Notice that in Figure 10 we observe a wave-like pattern in the

dynamics very similar to the wave-like pattern of COVID-19, suggesting that 60

days may be too short to consider as the average time of reinfectability.



August 2, 2023 7:7 WSPC/INSTRUCTION FILE output

16 R. Weightman, A. Sbarra, B. Piccoli

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5
( )

0 0.2 0.4 0.6 0.8 1
2

2.2

2.4

2.6

2.8
Replication Rate

0 0.2 0.4 0.6 0.8 1
0.14

0.16

0.18

0.2
( )

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5
( )

Fig. 6: Model parameters as function of variants. Top left: recovery rate, top right:

replication rate, bottom left: infection rate, bottom right: mutation rate
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Fig. 7: Top left: heat map of infected over the variant space.Top right: Infected

dynamics over time. Bottom: Dynamics of SIR model.
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Fig. 8: Parameters with asymmetric replication rates.

Fig. 9: Time evolution for asymmetric replication rates. Top left: heat map of in-

fected over the variant space.Top right: Infected dynamics over time.
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Fig. 10: Time evolution for loss of immunity after 120 days. Top left: heat map

of infected over the variant space.Top right: Infected dynamics over time. Bottom:

Dynamics of SIR model.
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