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A B S T R A C T

We consider the problem of determining the two-dimensional fluid velocity due to the rotation of an infinitely-
long ‘stick–slip’ cylinder in an otherwise quiescent Stokes flow. Stick–slip boundary conditions are introduced
as a model of a rough superhydrophobic surface, via a distribution of alternating solid–liquid (stick) and
gas–liquid (slip) interfaces. This leads to a mixed boundary-value problem for Stokes flow. Complex variable
techniques are employed to transform the flow problem into a Hilbert problem, which involves finding a
function analytic in a plane region assuming that on some portions of the boundary its real part is known,
while on others its imaginary part is given. We solve the Hilbert problem to obtain semi-analytic expressions
for all the pertinent fluid-dynamic quantities. We find that in the general aperiodic case there is no solution
in which the velocity of the fluid vanishes at infinity. This is a form of Jeffery’s paradox, typically associated
with viscous flow due to the counter-rotation of two equal rigid cylinders. Our work provides the first example
of Jeffery’s paradox due to the rotation of a single cylinder.

1. Introduction

A superhydrophobic surface is a microstructured or rough hy-
drophobic solid that occurs in natural settings (e.g., the lotus leaf,
butterfly wings, mosquito eyes) or is manufactured for applications [1,
2]. When immersed in a liquid, a stable configuration can form in which
air is trapped within the vacancies of the microstructure; it is known as
a Cassie state. This state tends to lead to reduced resistance for liquid
motion over the surface, which is of great interest in technological
applications [3].

Theoretical and numerical studies of liquid flow about superhy-
drophobic surfaces tend to concentrate on two classes of canonical
problems. These are (i) externally imposed shear flow over a single sur-
face, and (ii) pressure driven flow within a superhydrophobic channel.
The main quantity of interest is a lumped or course-grained parameter
that represents the reduced friction due to superhydrophobicity. In (i),
this quantity is the intrinsic slip length [4–6], which depends solely on
the detailed surface geometry. In (ii), the relevant quantity is the excess
volumetric flux compared to that for a channel with rigid walls [7]. Re-
cently, experiments [8–10] have explored a third class of flows, namely,
that due to the rigid-body motion of a superhydrophobic particle. In
this class, the lumped parameter of interest is the enhancement in
particle mobility.

Perhaps the simplest resistance problem for the rigid-body motion
of a particle in a viscous liquid is rotation of an infinite circular cylinder
about its axis. For that problem, superhydrophobicity is established by
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introducing an arrangement of air-filled grooves parallel to the cylinder
axis, separated by solid ridges (see Fig. 1). The grooves present a shear-
free or ‘slip’ boundary to the liquid flow, which alternates with the
no-slip or ‘stick’ boundary at the solid ridges. Yariv and Siegel [11]
considered a periodic arrangement of N equal-sized liquid–gas inter-
faces separated by N equal-sized solid–liquid interfaces at arbitrary
solid fraction � (where the liquid–air interface may have a different
size from a solid–liquid one). We refer to this as a ‘periodic’ geometry.
The ratio M of the rotational mobility to the respective mobility of a
homogeneous cylinder then depends only on N and �. Using a non-
conventional approach, where information from a conformal-mapping
procedure is combined with that from an asymptotic expansion for
N ∏ 1, [11] derive a simple exact expression

M = 1 *
2

N
log

0
sin

0
⇡�

2

11
(1)

for the mobility. This result was obtained without solving for the
detailed fluid flow.

The current paper has two main objectives. One is to extend the
complex variable approach introduced in [11] to find solutions for all
the pertinent fluid dynamic quantities. This is done by transforming
the flow problem into a Hilbert problem, which involves determining
an analytic function in the region exterior to the cylinder when its real
part is given on some sections of the boundary, while its imaginary
part is given on others. We solve the Hilbert problem to obtain semi-
analytic expressions for all the relevant flow quantities, allowing for
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Fig. 1. Schematic of the geometry. Grooves � (k)

G
with trapped gas bubbles alternate

with solid surfaces � (k)

S
for k = 1, 2,….

the general case of aperiodic arrangement of grooves. Our approach
is related to that employed in [12] for a different physical problem
involving drop deformation with surfactant. An alternative approach
that also applies to this class of mixed boundary-value problems is given
by Crowdy [13].

The second objective is to show that, in the case of an aperiodic
distribution of grooves, there is in general no solution to the problem in
which the velocity of the fluid vanishes at infinity. This is a form of the
Jeffery’s paradox, which is traditionally associated with the counter-
rotation of two equal infinite cylinders [14,15]. Here, we find that the
fluid velocity due to the steady rotation of a single aperiodic stick–slip
cylinder tends to a uniform flow at infinity. Our work provides the first
example of Jeffery’s paradox due to the purely rotational motion of a
single cylinder.

2. Governing equations

We consider an infinitely-long solid cylinder of radius a patterned
with N g 1 grooves, which are of infinite length in the axial direction.
The periodic geometry in the case of equally-sized and uniformly-
spaced grooves is shown in Fig. 1. (We do not require the geometry
to be periodic.) The cylinder is immersed in a liquid of viscosity � and
is assumed to attain a stable Cassie state, so that a gas bubble is trapped
in each groove. The boundary of the cylinder therefore consists of
an alternating array of liquid–gas interfaces (bubbles) and liquid–solid
interfaces (solid ridges which separate the bubbles). We further assume
(cf. [7]) that the surface has the constant curvature 1_a, so that the
curvature of the liquid–gas interfaces coincides with that of the solid
ridges. Their union is accordingly a circle of radius a. Denote the solid
fraction of the compound boundary by �, which satisfies 0 f � f 1.

A two-dimensional flow is generated by an imposed rotation of the
cylinder about its axis with angular velocity ⌦. We seek to ascertain
the flow, its associated rotational mobility M and the velocity at
infinity. The latter two quantities must also be determined as part of
the solution.

The governing equations are presented in dimensionless form using
a, a⌦ and �⌦ as the units of length, velocity, and stress, respectively.
We employ a fixed reference frame using (x, y, z) Cartesian coordinates,
with the z-axis coinciding with the cylinder axis. We also make use of
(r, ✓) polar coordinates in the xy-plane, where r is distance from the
z-axis and ✓ is the angle with respect to the x-axis.

Denote the fluid region by D, and introduce the sets �S and �G
in which ✓ À �S (respectively �G) if ✓ is on the solid (respectively
shear-free or groove) part of the boundary r = 1. These sets each
consist of N disjoint intervals � (k)

S
and � (k)

G
for k = 1,… ,N , so that

�S = ‰N
k=1

�
(k)

S
and �G = ‰N

k=1
�

(k)

G
(see Fig. 1). The velocity field

u(r, ✓) = u(r, ✓)Çer + v(r, ✓)Çe✓ in D satisfies the Stokes and continuity
equations,
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where p is the pressure. The boundary conditions at r = 1 are the
no-penetration condition u = 0 and the mixed no-slip and shear-free
conditions,

v = 1 for ✓ À �S ,
)v

)r
*
v

r
= 0 for ✓ À �G . (3)

Normalized by 4⇡�a2⌦, the hydrodynamic torque on the cylinder
in the counterclockwise direction is

T = *
1

4⇡  
2⇡

0

⌧
r2

⇠
)v

)r
*
v

r

⇡�
r=1

d✓. (4)

It may be evaluated over any cylindrical surface enclosing the unit
cylinder. In particular, the large-r asymptotic expansion of u must
include a rigid-body-rotation mode, (T _r)Çe✓ . By subtracting off that
mode, we define the excess velocity

Äu = u *
T

r
Çe✓ , (5)

where Äu = ÄuÇer + ÄvÇe✓ . The value of the torque depends on the surface
morphology and is determined as part of the solution from the require-
ment that the excess field (5) is torque-free. Note that T = 1 for a
homogeneous cylinder, where � = 1.

Just as for the torque, the far-field boundary condition on Äu is not
specified, but is rather determined as part of the solution. We single
out a unique solution by picking out the one which is least singular as
r ô ÿ.

3. Complex variable formulation

Define a streamfunction Ä associated with the excess velocity Äu as

Äu = ( Ä ù Çez.

The streamfunction satisfies the biharmonic equation in D. The no
penetration boundary condition implies that Ä is constant on r = 1,
which is taken to be zero. The mixed boundary condition at r = 1 (cf.
(3)) becomes

) Ä 

)r
= T * 1 for ✓ À �S ,

)2 Ä 

)r2
*
) Ä 

)r
= *2T for ✓ À �G .

We now employ the Goursat representation for biharmonic functions
[16],

Ä = Re
�
Ñ⇣f (⇣ ) + g(⇣ )

�
, (6)

where ⇣ = x + iy, and f (⇣ ) and g(⇣ ) are analytic functions in the fluid
region ⇣  > 1. The overbar denotes complex conjugate. We use the
notation h(✓) to denote evaluation of a function h(⇣ ) on the boundary
⇣ = ei✓ .

The vanishing of Ä on the cylinder boundary implies that the
streamfunction has the representation

Ä = Re

<0
Ñ⇣ *

1

⇣

1
G(⇣ )

=
, (7)

where G(⇣ ) is analytic in ⇣  > 1. Comparing (6) and (7), we identify
f (⇣ ) with G(⇣ ), and g(⇣ ) with *G(⇣ )_⇣ . All pertinent fluid dynamic
quantities, such as the velocity and pressure in D, can be determined
from knowledge of the Goursat functions [17].

The mixed no-slip and zero shear stress boundary condition is
written in terms of the single function G by substituting ⇣ = rei✓ into
(7) and taking r-derivatives of Ä to find on r = 1,

2Re

<
G(ei✓)

ei✓

=
= T * 1 for ✓ À �S , (8)
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4Re

<
G(ei✓)

ei✓
* G⇣ (e

i✓)

=
= 2T for ✓ À �G , (9)

where the ⇣ subscript denotes differentiation with respect to the argu-
ment. For later use, we note that

Äu =
⇠
r *

1

r

⇡
Im

<
G(rei✓)

rei✓
* G⇣ (re

i✓)

=
, (10)

Äv = *
⇠
r +

1

r

⇡
Re
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G(rei✓)
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=
*
⇠
r *

1

r

⇡
Re

�
G⇣ (re

i✓)
�
, (11)

throughout D. On the boundary we write
G(⇣ )

⇣
= U + iV for ⇣ = ei✓ , (12)

where U and V are real. Then it is easily seen that the boundary
conditions (8)–(9) on r = 1 are equivalent to

U =
T * 1

2
for ✓ À �S , (13)

)V

)✓
= *

T

2
for ✓ À �G . (14)

Integrating (14), we find that on r = 1

V = T

⇠
Ck *

1

2
✓

⇡
for ✓ À �

(k)

G
, (15)

where Ck (k = 1,… ,N) is a constant.
The problem has therefore been transformed into the Hilbert prob-

lem: to determine a function (namely, G(⇣ )_⇣) which is analytic in the
region D, with its real part given on some portion of the boundary, and
its imaginary part given on the remaining portion. We ask for a solution
satisfying the physical requirement that the tangential excess velocity
on the cylinder, which per (11)–(12) is Äv = *2U , is continuous in ✓ on
r = 1.

Using the Poisson Integral Formula [16], we can express the analytic
function G(⇣ )_⇣ for ⇣  > 1 in terms of an integral:

G(⇣ )

⇣
= *

1

2⇡i Õ⇣ ®=1
d⇣ ®

⇣ ®

⇣ ® + ⇣

⇣ ® * ⇣
U (⇣ ®) + iK , (16)

where K is a real constant, and the contour is taken in the counter-
clockwise direction. This provides a representation of the solution in D
in terms of an unknown ‘density’ U (⇣ ) on ⇣  = 1. We use an additional
degree of freedom, associated with the unknown torque T , to require
that the velocity be at least bounded at infinity. (It will be seen that the
velocity cannot in general be made to decay to zero at infinity.) From
(7), a bounded velocity implies that G(⇣ )_⇣ ô 0 at ⇣ ô ÿ. Enforcing
this by taking the limit ⇣ ô ÿ in (16) gives

 
2⇡

0

U (✓®) d✓® = 0, (17)

K = 0. (18)

Later, the condition (17) will be employed to obtain an expression for
the torque.

To obtain an equation for the density U , let ⇣ ô t = ei✓ in (16),
substitute ⇣ ® = ei✓

®
and use the Plemelj formula and (18) to find that

G(t)

t
= *

1

2⇡i
PV 

2⇡

0

U (✓®) cot

0
✓® * ✓

2

1
d✓® + U (✓),

for t = ei✓ and ✓ À [0, 2⇡],

= iH[U ](✓) + U (✓),

where PV denotes Cauchy principal value integral, and we have intro-
duced the periodic Hilbert transform H[f ], defined by

H[f ] =
1

2⇡
PV 

2⇡

0

f (✓®) cot

0
✓® * ✓

2

1
d✓®. (19)

It immediately follows that

V (✓) = H[U ](✓), for ✓ À [0, 2⇡], (20)

which is the usual relationship between the real and imaginary parts
of a function that is analytic in the exterior of a unit disk.

Next, introduce a modified ‘density’ function

T ÇU (✓) = U (✓) *
T * 1

2
, (21)

which in view of (13) is zero for ✓ À �S . To obtain an equation for ÇU (✓)

on �G, substitute (21) into (20) and make use of (15) and the fact that
the Hilbert transform of a constant is zero to obtain

1

2⇡
PV �G

ÇU (✓®) cot

0
✓® * ✓

2

1
d✓® = Bk(✓) for ✓ À � k

G
, k = 1,… ,N ,

(22)

where

Bk(✓) = Ck * ✓_2 (23)

for constant Ck.
The above integral equation for ÇU (✓) is the main result of this

section. We make two important remarks about this equation. First,
the principal value integral in (22) is not a Hilbert transform, since the
integration interval differs from [0, 2⇡]. Therefore, the usual formula
for the inversion of the Hilbert transform does not apply. Second,
continuity of U (✓) implies that ÇU (✓) ô 0 as ✓ tends to the endpoints
of each interval � (k)

G
for k = 1,… ,N . Thus, the principal value integral

is well defined at these points.
In the next two sections, we write down solutions for ÇU (✓) (first for

N = 1 and then for N > 1) from which all the relevant flow quantities
can be obtained. We also discuss the far-field velocity and Jeffery’s
paradox for our problem.

4. Solution of Hilbert’s problem for N = 1

We first consider the case N = 1, in which the cylinder has one
groove. The solution is extended to N > 1 in Section 5.

A particular solution to (22) can be found for N = 1 following [16].
First assume, with no loss of generality, that the groove or shear-free
part of the boundary is instantaneously located at �G = [✓m*✓0, ✓m+✓0],
where ✓m is the groove midpoint and 0 < ✓0 < ⇡. Let É✓ = ✓m + ✓0 be
the right endpoint of �G, and set ↵ = ei

É✓ so that the groove boundary
is the arc between ⇣ = * Ñ↵ and ↵, taken counterclockwise (see Fig. 4).
Introduce

!(⇣ ) =

0
⇣ * ↵

⇣ + Ñ↵

11_2

, (24)

with branch cuts chosen to lie along the surface contour corresponding
to �G. In the appendix it is shown that a particular solution to (22) is
given by the integral formula

ÇUp(✓) = PV �G K(✓, ✓®) cot

0
✓® * ✓

2

1
d✓® for ✓ À �G , (25)

where

K(✓, ✓®) = *
1

4⇡

4
!(✓)B(✓®)

!(✓®)
+
!(✓®)B(✓®)

!(✓)

5
. (26)

and B(✓) is given by (23). (For convenience we have omitted the
subscript 1 on B1.) It is easily verified that this expression for ÇUp(✓)

is real-valued. A required symmetry of this solution is that the ✓-
component of the excess velocity, Äv(✓), is even about the midpoint
of the groove ✓m. It follows from (11) and (12) that U and T ÇU =

U * (T * 1)_2 are even about ✓m, and from (22) that B(✓) is odd about
✓m. This odd symmetry determines the unknown constant C1 in (23) to
be ✓m_2, so that

B(✓) =
1

2

�
✓m * ✓

�
=

1

2

⇠
3⇡

2
* ✓

⇡
(27)

where, without loss of generality, we have chosen ✓m = 3⇡_2.
The particular solution ÇUp(✓) has a singularity of the form c(✓* É✓)*1_2

as ✓ approaches the endpoint É✓ where boundary conditions change
type, and an analogous singularity at the other endpoint of �G. The
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fluid velocity associated with ÇUp generates nonintegrable stress singu-
larities at these points, which is unphysical. To remove the singularities,
we add a solution ÇUh of the homogeneous version of (22)

1

2⇡
PV �G

ÇU (✓®) cot

0
✓® * ✓

2

1
d✓® = 0 for ✓ À �G , (28)

to ÇUp(✓), so that the leading-order singularities cancel out. This will
uniquely determine the solution to our problem.

The homogeneous solution is derived in the Appendix (Section A.2)
and takes the form

ÇUh(✓) = Q
ei✓ * i⌅

(ei✓ * ↵)(ei✓ + Ñ↵)
⇧1_2 for ✓ À �G , (29)

where Q is a constant which is taken to be real to ensure that ÇUh is

real (one can check that ÇUh = ÇUh). Note that ÇUh(✓), like ÇUp(✓), is an
even function of ✓ about ✓m. Thus, the leading order singularity at each
endpoint of �G can be removed by appropriate choice of the single
parameterQ. When ✓ À �G is near É✓ the leading-order singular behavior
of ÇU = ÇUp +

ÇUh is found to be

ÇU (✓) Ì i

4
*

1

4⇡
(↵ + Ñ↵)1_2J ( É✓) +Q

↵ * i

(↵ + Ñ↵)1_2

5
(✓ * É✓)*1_2,

where J (✓) is given by

J (✓) = PV �G B(✓
®)!(✓®) cot

0
✓® * ✓

2

1
d✓®, for ✓ À �G . (30)

Note that J ( É✓) is well defined since !(✓) tends to zero as ✓ ô É✓. We
remove the leading order singularity by setting the expression within
brackets to zero to obtain

Q =
1

4⇡

⇠
↵ + Ñ↵

↵ * i

⇡
J ( É✓). (31)

It can be analytically verified that J ( É✓)_(↵ * i) is real valued. This
completes our determination of the homogeneous solution.

It only remains to determine the torque. An expression for T is
readily obtained by substituting U (✓) = (T * 1)_2 + T ÇU (✓) (cf. (21))
into the condition (17) and solving for T , which gives

T =
⇡

⇡ + I(�) . (32)

where

I(�) =  �G
ÇU (✓®) d✓®. (33)

In the above, we have used ÇU (✓) = 0 for ✓ Ã �G. The notation I(�)
is chosen to emphasize that this quantity depends only on the solid
fraction �.

Summarizing, Eqs. (25), (29), (31), and (32) provide an explicit
representation for the solution U in terms of principal value integrals
of known functions:

U (✓) = (T * 1)_2 + T ÇU (✓) where (34)

ÇU (✓) = ÇUp(✓) +
ÇUh(✓) = *PV î

�G
K(✓, ✓®) cot

⇠
✓®*✓

2

⇡
d✓®

+
J ( É✓)

4⇡

⇠
↵ + Ñ↵

↵ * i

⇡
ei✓ * i⌅

(ei✓ * ↵)(ei✓ + Ñ↵)
⇧1_2 ,

(35)

for ✓ À �G, while U (✓) = (T * 1)_2 for ✓ À �S , per (13). Here we
recall that ↵ is defined in Fig. 4, and explicit formulas for !(✓),B(✓),
J (✓) and T are given by (24), (27), (30), and (32). This completes our
explicit solution in the case of a single groove. The fluid velocity in D
can be determined from the above formula for U (✓), via (10), (11), and
(16). Critically, the velocity is uniquely determined, and there are no
remaining free parameters which can be used to control the velocity at
infinity. We will see that in general, the velocity does not decay to zero
at infinity, which is a form of Jeffery’s paradox.

We are unable to analytically evaluate the singular integrals in
(35), but they are readily computed numerically using an adaptation
of the method in [12]. We provide a brief description of the numerical

Fig. 2. Surface velocity v(✓) for N = 1 at different solid fractions. (a) � = 1_20, (b)
1_4, (c) 1_2, (d) 3_4, and (e) 19_20.

method. When ✓ À �G is on the shear-free part of the boundary,

there is a pole singularity in the integrand at ✓® = ✓. This is re-

moved by a standard method of singularity subtraction, which gives

an integrand that is analytic at points in the interior of �G. However,

there are still inverse-square-root kernel singularities at the endpoints

of �G. The hybrid Gauss-trapezoid quadrature of Alpert [18] is applied

to the desingularized integrand to accurately handle these endpoint

singularities, improving on the simpler but less accurate method em-

ployed in [12]. Alpert’s method can be implemented with arbitrarily

high-order accuracy, and we choose a fourth-order version. Resolution

studies and comparison with exact formula (cf. Section 5.1) show

the method gives accurate results for velocities close to the stick–slip

points, and for solid fractions � that are either very small or near 1,

which are typically delicate to resolve.

It is instructive to plot some physical quantities for the caseN = 1. A

plot of the surface velocity v(✓) for ✓ À �G and different solid fractions

is shown in Fig. 2. This velocity has square-root singularities at the two

endpoints of the shear-free region �G, which is the canonical singularity

at a stick–slip point [12,19]. Below a critical solid fraction, there are

two stagnation points at the boundary with reversed flow between

them. The minimum v(✓) or largest magnitude reversed flow occurs

when � is about 0.27, which is close to the case plotted in (b) of Fig. 2.

Let  = *T ln r + Ä denote the streamfunction corresponding to

the physical velocity u. The flow streamlines  = const are shown for

two different solid fractions in Fig. 3. For � = 0.5 (Fig. 3(a)), there

is a pair of stagnation points on the boundary; see also Fig. 2, curve

(c). The streamlines that pass through these stagnation points divide

the flow into two sets of open streamlines: an ‘upper’ set in which the

flow is in the counterclockwise direction, and a ‘lower’ set where the

flow is reversed, i.e., in the clockwise direction. As the solid fraction

is increased the boundary stagnation points approach each other and

collide at ✓ = 3⇡_2, after which (for yet larger solid fraction) a single

stagnation point detaches from the boundary and moves into the fluid

interior. The topology of the streamlines then changes, as shown in

Fig. 3(b). There is a set of closed streamlines surrounding the cylinder

corresponding to counterclockwise flow. Further out, there are two sets

of open streamlines, corresponding to counterclockwise flow far above

the cylinder and clockwise motion far below. The streamline pattern

indicates a streaming motion at infinity.



Mechanics Research Communications 131 (2023) 104154

5

M. Siegel and E. Yariv

Fig. 3. Streamlines  = const due to counterclockwise rotation of the cylinder. The gas–liquid interface is shown in blue. (a) � = 0.5 (A� = *0.295), (b) � = 0.75 (A� = *0.126).
The nonzero value of A� implies the velocity does not decay to zero at infinity, which is a form of Jeffery’s paradox.

4.1. Jeffery’s paradox

We compute the far-field velocity by expanding G(⇣ ) for large ⇣
using (16), and simplify by employing the even symmetry of U (✓) about
✓m = 3⇡_2 to find that

G(⇣ ) Ì
i

⇡  
2⇡

0

U (✓®) sin ✓® d✓® as ⇣ ô ÿ.

It follows from (10), (11) that the radial and tangential excess velocity
as r ô ÿ satisfy

Äu Ì A� cos ✓, Äv Ì *A� sin ✓, (36)

where for the assumed cylinder orientation

A� =
1

⇡  
2⇡

0

U (✓®) sin ✓® d✓®, (37)

which depends only on the solid fraction �. When N = 1, the value of
A� is nonzero for all � À (0, 1) and tends to zero as � ô 0 or 1. Thus, the
velocity does not decay to zero at infinity for � ë 0, 1. This is Jeffery’s
paradox for the problem with N = 1.

In Cartesian coordinates, the far-field velocity (36) is a uniform
streaming motion u = (A�, 0) as can be seen in Fig. 3. We have cross-
validated (36) by numerically solving for Ä using a dual Fourier series
approach in the spirit of Lauga and Stone [7]. This gives a far-field
velocity that numerically agrees with (36).

5. Solution for N > 1 uniformly-spaced grooves

One can generalize the solution in Section 4 to N grooves of
arbitrary size and spacing, separated byN arbitrarily-sized solid bound-
aries. This is done in the appendix. We presently find it more instructive
to develop a class of periodic solutions with N > 1 equal-sized and
uniformly-spaced grooves. These solutions are obtained from that for
N = 1 using conformal mapping.

We illustrate the periodic solution for N = 2. Introduce a conformal
map from the ⇣ -plane to the upper-half z-plane, taking the branch cut
to go through the groove midpoint at ✓m. When ✓m = 3⇡_2, the map is
given by z(⇣ ) =

˘
i⇣ where

˘
⇣ = r1_2ei✓_2 and *⇡_2 < ✓ < 3⇡_2 (see

Fig. 4). Let z = rze
i✓z and define

U2(✓) = (T * 1)_2 + T ÇU (✓)_2, (38)

G2(z) = *
z

2⇡i Õ⇣ ®=1
d⇣ ®

⇣ ®

⇣ ® + ⇣ (z)

⇣ ® * ⇣ (z)
U2(⇣

®), (39)

where ⇣ (z) = *iz2 and recall ÇU is given by (35) for ✓ À �G, and
is zero for ✓ À �S . Eq. (38) defines a rescaled density on the unit
circle in the ⇣ -plane (compare to (34)), and (39) defines G2(z) in the
upper-half z-plane exterior to the unit disk. The function G2(z) can be
periodically extended to the whole z-plane exterior to the unit disk,
with Morera’s theorem guaranteeing analyticity there (equivalently, G2

can be analytically extended using the Schwarz reflection principle).
Then on z = ei✓z , (39) and the Poisson integral formula imply that

G2(z)

z
= U2 + iV2, (40)

which periodically extends the real function U2 to the unit circle in the
z-plane, and defines the real function V2(✓z) = H[U2](✓z).

By construction, the functions U2 and V2 in (40) satisfy

U2(✓z) =
T * 1

2
for ✓z À � z

S
(41)

)V2

)✓z
(✓z) = *

T

2
for ✓z À � z

G
. (42)

where � z
S
and � z

G
represent the solid and groove regions in the z-plane

after mapping and reflection. To see this, note that ÇU2 = 0 for ✓z À � z
S

which shows (38) satisfies (41). Eq. (42) follows from noting that for
✓z À � z

G
, V2(✓z) =

1

2
V (✓) with ✓ = 2✓z * ⇡_2, so that )V2_)✓z = )V _)✓ =

*T _2, per (14). Now define the streamfunction

Ä 2 =
⇠
Ñz *

1

z

⇡
G2(z). (43)

Comparing (41), (42) with (13), (14), we see that G2(z)_z solves the
Hilbert problem in the z-plane, and thus Ä 2 is a solution of the problem
for N = 2.

The square-root map can be generalized to z(⇣ ) = (i⇣ )1_N for integer
N > 1, and a straightforward extension of the above procedure gives
the solution in the exterior of the unit disk in the z-plane for N equally-
spaced and sized grooves (an illustration of the N = 4 geometry is
shown Fig. 4c). If we let ✓z = 0 correspond to the midpoint of a
groove, then the N-groove solution is written over a single period
0 f ✓z < 2⇡_N (i.e., a sector between midpoints of adjacent grooves)
as

UN (✓z) =

h
nnlnnj

T*1

2
+

T ÇU (N✓z*⇡_2)

N
, 0 f ✓z <

✓0

N
,

T*1

2
,

✓0

N
f ✓z <

2⇡*✓0
N

,

T*1

2
+

T ÇU (N✓z*⇡_2)

N
,

2⇡*✓0
N

f ✓z f 2⇡

N
,

(44)

where ÇU (✓) is the N = 1 solution from Section 4, and we recall that
✓ = N✓z * ⇡_2. The density UN (✓z) can be periodically extended to
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Fig. 4. (a) The cylinder in the ⇣ -plane for N = 1. The groove midpoint is ✓ = ✓m; other quantities are defined in the text. (b) N = 2 geometry generated by the mapping z = (i⇣ )1_2.
The groove boundary is mapped into the upper unit semi-circle, and is extended into the lower semi-circle upon Schwarz reflection. (c) N = 4 geometry after a second mapping
and Schwarz reflection.

✓z À [0, 2⇡]. Physical quantities (e.g., the velocity) in the z-plane are
obtained from

Ä N =
⇠
Ñz *

1

z

⇡
GN (z),

GN (z) = *
z

2⇡i Õ⇣ ®=1
d⇣ ®

⇣ ®

⇣ ® * izN

⇣ ® + izN
UN (⇣ ®), (45)

where we recall ⇣ = ei✓ . These are the N-groove analogues of (39),
(43).

The torque T can now be obtained by inserting (44) into the
condition (17). After changing integration variable to ✓, we find that

T =
⇡

⇡ + I(�)_N for N = 1, 2,… . (46)

where the quantity I is exactly the same as that in (33), i.e., indepen-
dent of N . The corresponding mobility is

M = 1 +
I(�)
N⇡

. (47)

5.1. Relation to large N asymptotics

Yariv and Siegel [11] were able to glean the 1_N scaling ofM*1 in
(47) without solving for the fluid velocity. Then, comparing (47) with
a two term asymptotic expansion for the mobility in the limit N ∏ 1,
they concluded that

I(�) = *2⇡ log (sin (⇡�_2)) , (48)

which together with (47) yields the exact expression (1). Formula (48)
agrees to high precision with numerical evaluation of I(�) using (33),
(35).

6. Remarks on Jeffery’s paradox for N > 1

The far-field limit of the excess velocity for the periodic N-groove
solution constructed in Section 5 can be computed by taking the limit
zô ÿ in (39). It is readily seen that

Äu = O(r1*N ) as r ô ÿ, (49)

which decays to zero when N g 2. Hence there is no Jeffery paradox
associated with these periodic solutions. However, the decay depends
on an essential way on the symmetry. Roughly speaking, the far-field
streaming motion induced by the presence of each groove cancels from
symmetry.

In a general geometry with an arbitrary (not necessarily periodic)
arrangement of grooves, the far-field excess velocity is given by the
limit of (16) as ⇣ ô ÿ combined with (10), (11). This gives a
torque-free excess velocity

Äu Ì A� cos ✓ * B� sin ✓, Äv Ì *A� sin ✓ * B� cos ✓, (50)

as r ô ÿ, where A� is defined in (37) and

B� =
1

⇡  
2⇡

0

U (✓®) cos ✓® d✓®.

In Cartesian coordinates, (50) represents a streaming motion Äu Ì

(A�,*B�). Note that A� = 0 when the distribution of grooves and ridges
is symmetric about the x-axis, and B� = 0 when it is symmetric about
the y-axis. The latter occurs in (36). When the distribution is symmetric
about both axes, there is even reflection symmetry about the origin and
A� = B� = 0.

For periodic structures, additional symmetries enter. Here,

A� = 0 (51)

follows from the even symmetry of UN (✓z) about ✓z = 0, while

B� =
1

⇡

L
N*1…
k=0

cos(2⇡k_N)

M
 

2⇡_N

0

UN (✓®
z
) d✓®

z
(52)

follows from the 2⇡_N periodicity of UN (✓z). For all N g 2 the sum
is zero and B� = 0. These arguments explain the absence of streaming
motion for the periodic solutions constructed in Section 5, in agreement
with (49).

Note the periodic symmetry is essential to the vanishing of A�,B�
above. Generally, when there is neither reflection symmetry about the
origin nor a periodic arrangement of grooves, at least one of A�, B� is
nonzero, and the fluid velocity does not tend to zero at infinity. This is
Jeffery’s paradox for N > 1.

The present problem is similar to that considered by Jeffery [14]
for the counter-rotating motion of two equal cylinders in a viscous
fluid. The far-field flow in [14] also consists of a streaming motion,
in which the fluid is forced out in a direction perpendicular to the
plane containing the axes of the cylinders, and drawn in the opposite
direction.

Finally, it is interesting to note that (50) would not be observed in a
model employing a homogenized or effective-slip boundary condition.
The fine-scale structure of the cylinder surface is essential to Jeffery’s
paradox.

7. Concluding remarks

We have considered the rotation of a stick–slip cylinder in a viscous
fluid, as a model for the rigid-body rotation of a rough superhy-
drophobic cylinder. Complex variable techniques have been applied
to determine all the pertinent fluid dynamic quantities, extending the
study in [11]. Our analysis has been based upon transforming the flow
problem into a Hilbert problem, which has been solved to obtain semi-
analytic expressions for the fluid velocity and rotational mobility. Other
fields, such as the pressure, can easily be determined. The solutions
apply to both periodic configuration of grooves, as considered in [11],
and aperiodic configurations.
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A key finding in our analysis is that, for aperiodic configurations, it
is generally not possible to find a solution in which the velocity of the
fluid vanishes at infinity. (We have not observed that anomaly in our
previous publication [11], which was exclusively focused upon periodic
arrangements.) Instead, the velocity approaches a streaming motion as
r ô ÿ. This is a form of the Jeffery paradox [14] familiar from the
counter-rotation of two equal rigid cylinders. Our work provides the
first example of Jeffery’s paradox due to the purely rotational motion
of a single cylinder.

In his paper, Jeffery [14] refers to the observed anomaly as a form
of the Stokes’ paradox. It should be emphasized, however, that in the
Stokes’ paradox the contradiction has to do with the appearance of a
velocity mode that diverges as ln r at large distances, thus contradicting
the need to approach a uniform velocity at large distances. That para-
dox is accordingly resolved by the incorporation of weak inertia, that
enters the dominant balance at large distances. To date, comparable
attempts to resolve Jeffery’s paradox [20,21] have not been successful.
Indeed, the resolution of Jeffery’s paradox requires the removal of a
uniform velocity at large distances; with that removal, small inertia is
uniformly weak.

The emergence of Jeffery’s paradox in the present context may be
explained using the general properties of Stokes flows [22]. When a
body of general geometry rotates in an unbounded fluid domain in
Stokes-flow conditions, it normally experiences a hydrodynamic force.
In three dimensions, such a force on a rotating stick–slip sphere is
determined in [23], but unless the particle is free to translate this force
is of no significance — it is merely balanced by an external force at
the rotation axis. In two dimensions, however, a finite hydrodynamic
force (per unit length) is associated with a velocity field that diverges
as ln r at large distances. To avoid that singularity, the mathematical
solution chooses a slightly less singular behavior, by allowing for a
uniform velocity at large distance. In our problem, the Stokes paradox
is avoided by allowing for a Jeffery paradox!
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Appendix. General solution for N grooves

A.1. Particular solution

We derive the particular solution for N grooves with arbitrary
position and arclength, closely following [16]. Let the grooves consist
of N disjoint arcs L1,… ,LN , on the unit circle, and define L = ‰N

i=1
Li

and �G = {✓ : ei✓ À L}. Define

F (⇣ ) =
1

2⇡i  L
d⇣ ®

⇣ ®

⇣ ® + ⇣

⇣ ® * ⇣
ÇU (⇣ ®), (53)

which clearly represents an analytic function in C * L. Let Fi(✓) (re-
spectively Fo(✓)) denote the value of F (⇣ ) as ⇣ ô ei✓ À L from inside
(respectively outside) L. Using contour deformation, it is easily seen
that

Fi(✓) * Fo(✓) = 2 ÇU (✓), (54)

Fi(✓) + Fo(✓) =
1

⇡i
PV �G

ÇU (✓®) cot

0
✓® * ✓

2

1
d✓® (55)

= *2iBk(✓), (56)

for ✓ À Lk, where in the last equality we have used (22). This is the
Riemann problem: to find a function given a linear relation between its
values on the inside and outside of a curve.

Now, let ↵k and �k denote the beginning and end of the arc Lk
(traversed counterclockwise) and introduce

!(⇣ ) =

N«
k=1

0
⇣ * ↵k

⇣ * �k

11_2

where the branch cuts are taken along the Lk. Define a function �(⇣ )
by

F (⇣ ) = !(⇣ )�(⇣ ). (57)

Substitute (57) into (55) and use !i(✓) + !o(✓) = 0 to find

�i(✓) *�o(✓) = *
2iBk(✓)

!i(✓)
,

for ✓ À Lk. Inspection of (53) and (54) suggests that

�(⇣ ) = *
1

2⇡  L
d⇣ ®

⇣ ®

⇣ ® + ⇣

⇣ ® * ⇣

Bk(⇣
®)

!i(⇣
®)
,

where the function Bk is used when integration is along the arc Lk. It
follows that

F (⇣ ) = *
!i(⇣ )

2⇡  L
d⇣ ®

⇣ ®

⇣ ® + ⇣

⇣ ® * ⇣

Bk(⇣
®)

!i(⇣
®)
.

Henceforth we omit the subscript i on !. Expressions for Fi(✓) and Fo(✓)
are determined from the above by contour deformation, from which
(54) gives for ⇣ À L

ÇU (⇣ ) = *
!(⇣ )

2⇡
PV L

d⇣ ®

⇣ ®

⇣ ® + ⇣

⇣ ® * ⇣

Bk(⇣
®)

!(⇣ ®)
,

or equivalently

ÇU (✓) = *
!(✓)

2⇡
PV �G

Bk(✓
®)

!(✓®)
cot

0
✓® * ✓

2

1
d✓®. (58)

for ✓ À �G.
Note that (58) remains a particular solution when !*1 is substituted

for !. This gives the symmetric form

ÇU (✓) = *
!(✓)

4⇡
PV �G

Bk(✓
®)

!(✓®)
cot

0
✓® * ✓

2

1
d✓®

*
1

4⇡!(✓)
PV �G Bk(✓

®)!(✓®) cot

0
✓® * ✓

2

1
d✓®,

for ✓ À �G, which in the case N = 1 is the particular solution in (25).

A.2. Homogeneous solution

We derive all solutions ÇUh to the homogeneous Eq. (28) for N
grooves, following [16]. Consider the function F (⇣ ) in (53) with ÇU =
ÇUh, which we denote by Fh. We require ÇUh to be integrable on L so
that

lim
⇣ôÿ

Fh(⇣ ) = *
1

2⇡  �G
ÇUh(✓) d✓.

is finite. Let �h be defined as in (57), and note that this function is
bounded as ⇣ ô ÿ and satisfies the equation

�hi(✓) *�ho(✓) = 0
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for ✓ À �G. Since �h takes the same values on both sides of L, it follows
that this function is regular in the entire plane, except possibly at ↵k
and �k. An argument given in Mikhlin [16] then shows that the �k’s
are regular points of �h and the ↵k’s are either regular points or simple
poles.

The above arguments show that the most general form for �h
having the correct behavior at infinity is

�h(⇣ ) =

≥N

k=0
ak⇣

k

±N

k=1
(⇣ * ↵k)

(59)

for ak À C. Thus,

Fh(⇣ ) =

≥N

k=0
ak⇣

k

±N

k=1

⌅
(⇣ * ↵k)(⇣ * �k)

⇧1_2 (60)

and ÇUh is given by (54) combined with Fhi(✓) = *Fho(✓). Examination
of the limiting behavior of Fh(⇣ ) as ⇣ ô ÿ and ⇣ ô 0 provides the
constraint

aN = *
a0±N

k=1
(↵k�k)

1_2
. (61)

The 2N free constants, ak for k = 0,… ,N * 1 and Ck for k = 1,… ,N

(the constants of integration in (15)) are chosen to enforce ÇUp +
ÇUh = 0

at ↵k, �k for k = 1,… ,N . The remaining condition (17) determines T .
When N = 1 (cf. Section 4) we set ↵1 = ↵, �1 = * Ñ↵, and a0 = *Di

so that from (61) a1 = D. The comment following (60) then shows that
the homogeneous solution ÇUh is given by (29).
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