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We construct the four-derivative supersymmetric extension of (1,0), 6D supergravity
coupled to Yang-Mills and hypermultiplets. The hypermultiplet scalars are taken to
parametrize the quaternionic projective space Hp(n) = Sp(n,1)/Sp(n) x Sp(1)g.
The hyperscalar kinetic term is not deformed, and the quaternionic K&hler struc-
ture and symmetries of Hp(n) are preserved. The result is a three parameter La-
grangian supersymmetric up to first order in these parameters. Considering the case
of Hp(1) we compare our result with that obtained from the compactification of
10D heterotic supergravity on four-torus, consistently truncated to N = (1,0), in
which the hyperscalars parametrize SO(4,1)/SO(4). We find that depending on how
Sp(1) € Sp(1,1) is embedded in SO(4), the results agree for a specific value of the
parameter that governs the higher derivative hypermultiplet couplings.
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1 Introduction

There exists a class of matter coupled gauged supergravities in six dimensions which are anomaly
free in a highly nontrivial fashion, and yet they do not seem to follow from string/M theory [1-3].
The anomaly cancellation in these theories requires Green-Schwarz mechanism in which the 3-
form field strength needs to be modified to include a Lorentz Chern-Simons term which breaks
supersymmetry. Restoring supersymmetry in this on-shell supergravity leads to a derivative
expansion in its own right, without necessarily having a connection to string theory. As such,
it is natural to study the higher derivative extensions of supergravity in the context of effective
theory of quantum supergravity, as well as the swampland program, in which it would be useful
to determine if such an effective theory passes the tests for providing consistent couplings of
matter to supergravity.

In this paper, we study the four-derivative extension of N = (1,0) supergravity in six-
dimensions coupled to Yang-Mills and hypermultiplets. We use the terminology of N = (1,0)
supergravity for short, to mean minimal supergravity coupled to a single tensor multiplet. Taking
advantage of the fact that the N = (1,0), 6D supergravity is known off-shell [4], two independent
curvature-squared off-shell invariants have been constructed [5-7].

It has been shown that a specific combination, upon dualization gives the 6D analog of the
Riemann-squared extension of heterotic supergravity in 10D which we refer to as Bergshoeff-de
Roo (BdR) supergravity [8] (see also [9]). Here, we shall consider this theory in 6D, referring to
it as BdR supergravity as well, since it has the same form as the corresponding supergravity in
10D, together with Yang-Mills and hypermultiplet couplings. The YM coupling is straightfor-
ward, since the two derivative YM action arises at the same order as the Riemann-squared term,
as in 10D supergravity as considered as low energy limit of heterotic string. The two-derivative
coupling is also known. The challenge is to construct the four-derivative couplings in the hy-
permultiplet sector, and it seems that it has not been addressed adequately in the literature so
far. Part of the difficulty stems from the fact that the hypermultiplets do not lend themselves
to a simple off-shell description. In this paper we shall not rely on superspace and we will con-
struct the higher-derivative hypermultiplet couplings to Einstein-Yang-Mills supergravity with
Riemann-squared extension by employing the Noether procedure.

As was first shown in [10], locally supersymmetric coupling of hypermultiplets to supergravity
requires that hyperscalars parametrize a quaternionic Kahler (QK) manifold of negative constant
scalar curvature. We shall recall basic facts about such manifolds in the next section. In this
paper we shall take the QK manifold to be the symmetric quaternionic projective space Hp(n) =
Sp(n,1)/Sp(n) x Sp(1)g, where Sp(1)r denotes the R-symmetry group. Denoting by L the
representative of this coset space, the Maurer-Cartan form L~'dL = P + Qspn) + Qsp(1)rs
defines, as usual, the covariant derivative of the scalars, and the composite connections denoted
by . In this paper, we shall consider the construction of a Lagrangian of the form

L= L(R)+ L(P?) + BL(F?) + aL(R?) + Lo~(P*), (1.1)



where the first three terms denote the two derivative couplings of hypermultiplets and Yang-Mills
to supergravity, £(R?) denotes the BAR action in 6D discussed above, and L, »(P*) denotes the
four-derivative hypermultiplet couplings. The parameter § = 1/ g% >« and «y are arbitrary
parameters, which go like the inverse string temsion o, if a string theory embedding of the
model would exist. The main result of this paper is the determination of £, (P?). We shall
do so by Noether procedure, implementing supersymmetry up to first order in «, 3,~. To that
end, we parametrize the most general dimension four couplings of the hypermultiplet field to
supergravity, requiring 33 parameters. As a result of Noether procedure we find that all of these
parameters depend on « and 7, and supersymmetry is established up to first order in these
parameters. The reason for presence of « dependent terms in EOW(PA‘) is due the fact that the
fermionic fields of supergravity necessarily couple to Sp(n) x Sp(1)r connections, and as a result
the supersymmetry variations of some of the « dependent terms conspire with some of the
dependent term to cancel. As a result, there will be some terms in the o dependent part of the
Lagrangian that depend on the higher derivative hypermultiplet couplings (see, comments below

(5.1)).

The paper is organized as follows. In section 2, we recall the properties of quaternionic Kéhler
manifolds, and focus on the quaternionic projective spaces. In section 3, we describe the Noether
procedure strategy we follow, and a general ansatz for the higher derivative hypermultiplet
couplings. We also explain the construction of the Riemann-squared extension of 6D, N = (1,0)
supergravity, which brings in an arbitrary parameter, . The Yang-Mills couplings are at the
two-derivative level, and have the independent overall parameter 5 = 1/ 932/ - In section 4, we
carry out the Noether procedure, and determine all the parameters appearing in the ansatz for
the total Lagrangian, and show that the hypermultiplet couplings bring in a single new constant,
. In section 5, we compare the Hp(1) truncation of our results with that of Riemann-squared
extension of 10D heterotic supergravity on T, followed by suitable truncations. Our notations
and conventions are given in appendix A, the lowest order field equations in appendix B, and
several useful identities used in the Noether procedure in appendices C and D.

2 Hypermultiplets and quaternionic Kahler manifolds

2.1 Generalities

In 1983 Bagger and Witten [10] showed that arbitrary number of hypermultiplets coupled to
N = 2 supergravity in 4D parametrise a quaternionic Kéhler (QK) manifold with constant
negative scalar curvature. A year later a similar result for the couplings of hypermultiplets to
N = (1,0) supergravity in 6D was presented in [15]. The QK in question can be noncompact
Wolf spaces, all of which are symmetric coset spaces, or Alekseevsky spaces [11,12] which are
homogeneous by non-symmetric cosets G/H where G is not simple, or more general QK manifolds
which are not homogeneous! [13,14]. The result for the full N = (1,0), 6D supergravity coupled

"We thank Guillaume Bossard for pointing these references to us.



to arbitrary number of hypermultiplets parametrizing an arbitrary QK manifold can be found
in [15,16], where the gauging of full isotropy group in the case of the noncompact Wolf space
Sp(n,1)/Sp(n) x Sp(1), was also given.

In this section, we recall the result of [15,16] for N = (1,0),6D supergravity, which has the
field content

{euraBuw@;zpﬁxyXA} ’ (2'1)

coupled to ngy number of hypermultiplets with fields
{o%, 0}, a=1,..,2n, a=1,....4n . (2.2)

The fermions (1/):?, x4, %) are symplectic-Majorana-Weyl, and A = 1,2. The rest of the notation

should be self-explanatory. Let us denote the vielbeins on the QK manifold by V.24 and its inverse
by V.%. They satisfy the relations [10]

GopVarVip = Quean . VOV +ae f=g54 (2.3)

where gop is the metric, and Qg,e4p are the antisymmetric invariant tensors of Sp(n) and
Sp(1), respectively. The vielbeins are covariantly constant, and the triplet of complex structures
Jt, i =1,2,3 obeying the quaternion algebra [J?, J7] = €% J* can be expressed as

L =TH" (VO?AVBaB —a ﬁ) , (2.4)

where T = —ic"/2 are the SU(2) generators. The integrability condition [Dg,Dg]V,, = 0
gives [10]

RoprsVosViy = €aBQagab + QapQapan » (2.5)
where Qqgqp and Qupap are the Sp(ny) and Sp(1) valued curvatures, respectively. The cyclic
identity for Rng,s and (2.4) imply that

Qapab = K° (VaaAVBbA - 5) + Qapea VIV 4 (2.6)

where Qgpeq is a totally symmetric Sp(n) tensor, and QaﬁAB = —2V[QB“VB}GA.

The complete action that describes the coupling of an arbitrary QK sigma model to 6D, N =
(1,0) supergravity was constructed in [16]? in a fashion similar to that of Bagger and Witten [10].
The geometrical ingredients described above are key to this construction, even though it should

be noted that the Sp(n) tensor Q444 arise only in the quartic fermion term

— 25 Qabea V2 Pertap? . (2.7)

2Only in the context of gauging isometries of the QK space that the quaternionic projective space G/H =

Sp(n,1)/[S(n) x Sp(1)] was picked in particular, and the group H was gauged.



2.2 The case of Hp(n)

In this section we shall take the QK manifold parametrized by the hyperscalars to be the quater-
nionic projective space Hp(n) with n > 1, which can be realized as the coset Sp(n,1)/[Sp(n) x
Sp(1)], that has real dimension 4n. In this case the tensor

Qubed = 0 . (2.8)

Using the (2n + 2) x (2n + 2) matrix L of Sp(n,1) as a representative of the coset, the Maurer-
Cartan form can be written as

Qab PaB
L~YdL = , (2.9)
Pab QAP
where Qup = Qpa, Qap = QBa, Pap = —Py4 and
P =0,0° Ve, QiB =0,0"Q7 ., Q¥ =0,6"Q% . (2.10)

Note that X := L~'dL is a general element of the Lie algebra Sp(n, 1), and therefore it satisfies
the condition (QX)” = QX where

0= . (2.11)

The Maurer-Cartan equation d(L~*dL) + L~*dL A L™1dL = 0 gives
Quva” = 20,,Qu)" + 2Qu1a Q. = 2P “P’c
Quva® = 204,Q,4" +2Qua“ Q1" = 2P, aP."
Dy Py = 0, Pe” + QuuaP” + QP  Prac =0 . (2.12)

With this building blocks, the locally supersymmetric two derivative QK sigma model [15, 16]
can be adapted to Hp(n), and with field redefinitions (3.22) can be applied, to pass to the string
frame.

3 The Noether procedure

3.1 Strategy

We adopt the following strategy for the Noether procedure. For the purposes of the present
discussion, it is convenient to write the total Lagrangian as £ = Lo+ £; where Ly represents the



two-derivative® part of supergravity coupled to hypermultiplets, and £; is the four-derivative
extension plus the two-derivative couplings of the Yang-Mills multiplet (Aﬁ,AI ). Putting a
generic small parameter in front of £y, the supersymmetry variation of the action up to first
order in that parameter takes the form

51 = / e <60£0 6oLy + 51,c0>

- / d® (5051 + %—%5@) = / d°x (6o£1 +5¢61¢) : (3.1)

where ¢ schematically denotes the set of fields in the theory, £, denotes their field equations that
follow from the lowest order action, and we have used the fact that f dSz 6oLy = 0. Thus the
invariance of the action at first order requires that | d%x 8oL vanishes up to lowest order field
equations, to wit

/ dbz 6oL = / Oz fle,9)Ey (3.2)

where f(€, ¢) is a functional of the fields, possibly containing &4 factors, and the supersymmetry
parameter, possibly including its derivative. It then follows that supersymmetry is ensured by
letting

519 =—f(e,0) . (3.3)

In the Noether procedure, consideration of the H = dB and ¢, = 0,¢ independent variations
of the action to begin with is motivated by the expectation that supersymmetry is powerful
enough to establish £; even by consideration of such variations alone. In constructing £, we
shall parametrize the most general four-derivative terms that include hypermultiplet fields, such
that we omit terms proportional to EOM’s that follow from Ly, since they automatically satisfy
(3.2). Once the vanishing of H and ¢, independent variations are established, we then turn to
the H and ¢, dependent variations as well, and determine if new terms need to be added to the
Lagrangian.

3.2 The ansatz

An action with the two derivative couplings of hypermultiplets and Yang-Mills multiplets [16]
can be extended readily by introducing the Riem? terms similar to the one in 10D [20]. Let us
denote the Lagrangian for this system as

L= L(R)+ L(P)+BL(F?) + aL(R?), (3.4)
—_———
Lo
where £(R) is the (1,0) supergravity Lagrangian, £(P?) is the Lagrangian that describes the two-
derivative couplings of hypermultiplets, £(F?) describes the couplings of Yang-Mills multiplets,
and L£(R?) is the Bergshoeff-de Roo type higher derivative extension, derivation of which will be

3In referring to n-derivative couplings, we mean the bosonic sector, while it is (n — 1)-derivative coupling in
the fermionic sector.



given at the end of this section. In the spirit of heterotic supergravity, we will treat the constant
parameters « and [ to be at the same footing in an expansion scheme in these parameters. The
Lagrangians Lo, £(F?) and £(R?) are given below in (3.8), (3.9) and (3.10), respectively.

Our goal is to extend this Lagrangian to describe four derivative couplings of the hypermul-
tiplets. Thus we consider a Lagrangian of the form

L = Lo+ BLF2) + al(R2) + Lo~ (PY) (3.5)

where £(P*) represents the higher derivative couplings of the hypermultiplets. The fact that the
higher derivative hypermultiplet couplings turn out to depend only on v and « is a nontrivial
consequence of the Noether procedure. In £(P*) we have allowed dependence on not just a new
coupling constant v but also dependence on « because aL(R?) has gravitino curvature terms
in which the covariant derivative contains the composite connection which is a function of the
hyperscalars. The hypermultiplet dependent terms in the variation of £(R?), given below in
(3.10), add up to

BL(RY)| = ec?| = 2Pl Q" ap + (S TYE — e 4+ N ) Ry Qo

(3.6)

hypers

Using (B.7) in this expression, which is a consequence of the gravitino field equation, gives
BoL(I?) = ee | — (ey"1,)Q% — 2)Q — 4 (Q"Q") 4y
+ 2(57’%”) (QupQup) + 4(€A7uw5)(P2)“prpAB + S(EAD;ﬂ/JG)PI/aBQuVAB ) (3-7)

where Q? := QWABQWAB, and we have set to zero the equations of motion SH,,,SZ? and £4,
discussed in appendix B. These terms trigger the Noether procedure which requires the addition
of higher derivative hypermultiplet dependent terms. We have opted for adding the most general
such terms as detailed in the section below.

The first three terms in (3.5) are known and, up to quartic fermion terms, they are given by
(see appendix A for the definitions of notations)

Lo = ee*?| 1R(w) + Oupdtp — 5 H,ypH™ — LPAPH,
B %TIEHVWJPDVTJDP + 2)27“VD;L¢V + ZXVHD;LX - %ZEGVHDu¢a

— i H,upOM — 3,0 (VMY 1y + 200" 7"X) — Puan (i v + 2x 9" |
(3.8)

L(F?) = ee® | —1F L, F" — NarD N — L H Ny PN + S FL X (P11, + 29 X)

sl o) @9



L(R?) = ee™ [—iRW”(Q_)R“”m(Q—) — " Dy (w, Q) s
- %HuupT/;rs’pr%s + %RMVTS(Q—) 1;7“8 (’Y’D’YW”L/Jp + 2'7#”)()

wh,, (H"P + 10“””)} : (3.10)

Lon(PY) = ce? [(bl Q2 + by(P2),, (P2 + bg(P2)2)

+ <01 PP B 4oy x A B 4 e 7/;;17“¢pVB)QMVAB + ca Yy P (P?)
+ es Dy (P2 + o by Dyth (P2
+ (cr gl Pl + s GNP + g NP ) (PDP)yap

+ (cl0 @ "0 + en 997X ) (PDP) s + 12 0", (PDPYL

+c13 T/_mez/XB DPQ" 4B + <C14 VY, + c1p &”X) 9, P?

+ X4V (CIG Q) P + c17 (P?) 0 PY* + c1 PSAP2>

+ ¢ Ya <619 QU PIP + oo (P?)™ PY 4 + C21PWAP2)

+ Ppay" <C22 Qup B PP op + o3 (P?),, PP + 624PuaAP2>

+ T/Z,fwup% (025 HaPP'P - cog Qg PP + cor (P?)M PA® + cog RMP7 P, >

+ 29 XAV P Qi AP Pras + 30 @f}’YW’wW Qupa® Prap

+ ’ngup (H"™? 4 %OWP)} 7 (3.11)
where

Hywp = 304, By)

Qs = Gprs £ Hyrs
Ours = Wprs + 5 (Vp1rths — st + Pryutbs)
ﬁwfp = Hyyp + %T/Z[u%wp] J
Ui = (O + 3™ 6+ QuAPm) — o v (3.12)
Furthermore we have the Chern-Simon forms

WY M
=tr (A[M&JAP} + %A[MAVAP}) J

“Whvp

9



Wiy = t1 (Q—[HOVQ—P] + %Q—[uQ—VQ—p}) ’
Wfﬁ,p =tr (Q[ua/@p} + %Q[uQva]) )
= (QuABaquBA + %QMABQVBCQ;)CA) ’ (3'13)

[1vp]

where A, = AﬁTI and tr(TI T/ ) = —6!7. We have anticipated that the Chern-Simons term
for the composite connection on Hp(n) will be needed in the Noether procedure. At this point
there is no loss of generality in doing so since we have introduced an arbitrary coupling constant
~ in front of it. Further definitions are the fermionic bilinear terms

Ouvp = VIV YT + 407 Px — AXYPX 4 PP (3.14)
and the covariant derivatives which now contain the Sp(n) x Sp(1) connections,

DuXA = (8u + %Wum'yrs)XA + Q,uABXB )

D™ = (O + Lw, "5 vs )0 + Qu "y (3.15)
The coefficients by, bo, b3, ¢, ..., c30 Wwill turn out to be linear in 7 and «. Note also that the
Chern-Simons terms in £(F?), £L(R?), L4, can be absorbed into the definition of H = dB to

define H as follows

Hywp = 301, Byp) — 65”5% — 6o wﬁl/p — 6y Wfﬁ,p : (3.16)

In the ansatz for £a7ﬁ,(P2), we have assumed that the derivative of the gravitino appears only
through the gravitino curvature. This is motivated by dimensional reduction of the R + « Riem?
action in 10D on T* that was carried out in [22]. This reduction also gives a term of the form
(D”PﬂA)2. However, in this case we have opted to parametrize the four-derivative hyperscalar
terms as in (3.11), in view of the following identity

[ Eaect? (P (DLPL) = [ e[ = AP (P = 4 Q@

— 1Q,ABQ" AP — PHAD, DV Pyya — (P2 R,,] . (3.17)

Removing the last three terms by using the field equations, and using (C.6) as well, leads to the
ansatz (3.11) with redefined parameters.

Turning to the supersymmetry transformation rules, in accordance with the Noether proce-
dure strategy outlined above, we need to start with the following ones:

de, " =&y, ,
0, = Dye + i?—l“pgvpoe ,
0Buy = =&ty + 28 AL 0AL + 2000, 60 ), + 27 Q. *P6Q a8 |
§X = 37"€0up — 15 M uwpy e
dp = €x ,

10



0 - _B%

L7YL = ,
et 0
0yt = —Piiatey
SAL, = ey, N,
SN = 1FLA"e . (3.18)

Substituting the expression for L™16L into the formula
S(L7YdL) = d(L7L) + [L7YdL, L715L] , (3.19)
we find
5QMAB _ 2€(A\¢CPMC\B) 7
5Quab _ 2EA¢(aPHb)A 7
6P, = —D, (") . (3.20)
The gravitino curvature transforms under supersymmetry as
Sy = FRuwrs(Q )" e + Qrs*Pep (3.21)

which contains hypermultiplet dependent terms. The requirement of cancelling this variations
triggers the Noether procedure for constructing the four-derivative couplings of the hypermulti-
plets to supergravity.

We end this section with some comments on the Lagrangians £y and £(R?). The Lagrangian
Ly was given completely in [16] in Einstein frame. Here we have passed to the ‘string’ frame by
performing the field redefinitions

1
e, — e%%u’" , Yy —> ei¥ (1,0“ + §mx> ,
X — e_%‘px , P — e_%‘pi/)“ , € — ei%e ,
1
d(e) + L (A) — d(e), A ==&y x . (3.22)

2
Note in particular the shift in the gravitino, and the Lorentz transformations with the field
dependent parameter given in the last equation. The latter is needed to put in to a canonical
form the supersymmetry transformation of the vielbein. We have also different conventions here,
which are related to those of [16], as described in appendix A.

The Lagrangian £(R?) has already been discussed in [8,22], in the absence of hypermultiplets.
Here, we shall explain its derivation which is based on the observation that the fields (2_,",4")
transform under supersymmetry (to lowest order in «) in fashion similar to the Yang-Mills
multiplet fields (A/I“ M), More precisely, one finds that under supersymmetry*

59—;”’5 = _gfmwrs )
“In obtaining 0%y , one uses the identity [6,20] Rpgrs(Q+) — Rrspg(—) = 4D, (w) Hypg)-

11



1
—Ryurs ()€, (3.23)

&‘prs = 4

which shows that (_,,s, ¥rs) transform as the Yang-Mills multiplet fields (A{L, M) valued in the
fundamental representation of the Lorentz algebra. The well known coupling of Yang-Mills mul-
tiplet to supergravity then makes it possible to immediately write down the supersymmetrization
of the R + aR,,,e RFP? up to order a by employing the map

YM to Lorentz map: (Af” My = (o Y. (3.24)

This map applied to the well-known Yang-Mills coupled to supergravity, immediately yields
L(R?) given in (3.10). Note the somewhat unusual covariant derivative in which the connection
Q_ only acts on the vector index of the gravitino curvature as follows

Dyu(w, 2 )trs = (B + §Wupg?™?) Yrs + QpurPPps + QP - (3.25)

Despite the fact that the coupling of Yang-Mills multiplet is exactly supersymmetric, the map
(3.24) provides an action invariant only up to order « because unlike Aﬁ the field €2, is not
an independent field, but rather a function of the vielbein and the H-field. Note also that
introduction of the hypermultiplets requires the introduction of the Sp(n) x Sp(1)r composite
connections in the covariant derivatives of (1, x). Consequently, £(R?) as given in (3.10) is no
longer a supersymmetric extension of £(R) + £(P?). By introducing appropriate o dependent
terms in £, the supersymmetry will be restored.

4 Supersymmetry variations of the total action

4.1 Variations independent of ¢, and H

There is no unique way of choosing a basis for the independent structures that need to vanish for
supersymmetry. In what follows, the coefficients collected in front of the chosen basis, and they
all need to vanish. Of those, 16 of them contain the hyperino, 14 of them contain the dilatino,
and 28 of them contain the gravitino. All of these structures are displayed below. They must
vanish, and therefore the supersymmetry of the 35 parameter Lagrangian gives 58 equations for
the 35 parameters, which is a highly nontrivial over-constrained system to admit a solution. A
very long calculation yields the following results.

Collecting the independent structures, gives for the supersymmetry variations of (3.5) which
contain the hyperino the result

V() = (e499) [(16b1 +les— 20 —ep + 2c19)P,mB (PDP)" .

+ (252 +4bs + §c5 4 306 — o1z + 5c20 + co1 — 2014) Pqa0tP?

+ ( — ¢4 + 4by + %05 + %612 + 620) (PQ)WD”P;A]

12



—~

_A 1 1 1 A B
€M) [(gcs — 7012 + C26 + 5622>P o D\Q" 4B
1 1 A B

765 T c3+ 5c12 — €5+ C22>Q” ABD" Py,

1 1 2
506 — 5627 — 024) Pé‘A(‘)”P

—ci+tes+ e+ — 623) (P?)**D Pyaa

o5 — ey — cos + 2<:28>PM A(PDPYM

=

— 2cg — 2625) P'uaB(PDP)I;XB]
e'D ) [(Sa +4cy — %cs +c3+ clg — C22 )PvaBQ%B
cs + co1 + 624>P L P+ <C4 + 3c5 4 206 + c20 + 623> (P2)WPWA]

Ay Dpth®) [(%Cs + c26 + C30> PPN,

D=

(
(
(
(
(
(€
(

+ 4+ + + o+ o+ 4+ o+

—
M|

+ ( — %65 +c3 + co5 + 2630>P“CLBQ2€B
+ ( — C4 — %65 + 206 — CQ7)P“GA(P2)VP — %ngPJaAR‘quo} . (4.1)
Next, we collect all the variations involving the dilatino. They are given by
= (EX) [( — 20+ 2by — 1 + %62 + %616 + %622)Q2
2[)2 — —617 — 023) (P2)MV(P2)“V (2[)3 — %Clg — 624) (P2)2 — 615DP2]
EAV“”XB) [( —cg — 4613) (DuPP 2)(Dy PpaB)
tes+ 3e16 + 029 + c22 — 230 — 3c13) (Qua@u™) 45
Tos — —616 + 617 + c29 — C22 + €23 — 2¢30 + 6c13) (PZ);LJQWAB
1cg — $c18 + 3c29 — €21 — €30 — €13) Quuap P’
Tc1+ 20— 1cs)R, QpcrAB]
iC29 + C30 + 4’7) (™77 x )(Quu@po)
cr —cs — ¢9) (E*DFXP)(PDP)ap + (— 15 + 2c14) (ED" )0, P
(6 ' DPx ) DpQuvaB — c1n (EVWDPX)(PDP)/LW ) (4.2)

+ o+ o+ o+ o+ +

(
(
(
(
(-
(-
(=
(

where we have used (D.15).

Finally, we turn to all the variations that contain the gravitino. They are given by

V() = @) [( —dar— 201 — €3 — gC19 — 5025 — C26 + 502 — 2030) (@10 Q") 4y
+ (4a + 2¢1 + C19 2625 2622 - C30)(P2)WQV0AB

+ ( C4 — l620 + c26 — 1627 - 5623 + 030)(P2)WQ”0AB
+(-

1.1 1 1 v p2
3C3 — 3C21 — 5C25 — 5C2a — C30) Q" AP
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+ ﬁ@staABR“Vpo}
+ E’yuﬂ)y) [(20[ —4by +¢1 —

— 4by + 610

— ¢4+ 28 + 2c14) (

(EA’YVpO'wE) |:( — %63 _

+ 4+ + + + + o+ 4+

(EVVpa¢u)RMTVp(P2) 7
C1 263)(6 Vuwyp) MQAB"i'

1 1
5C4 — 4bs + 5010 —5C21 —

(bg — 624) (P2)2 — 014DP2}

1 3 1
5C3 t 7C10 — 7C€19 —

%625 + %626 - %022 + %614) (Qup@up)

$e20 + 2eor + Beag — c14) (P?)up(P?),°

%627 + %CQ4 + 614) (P2)M,,P2

P2 ) po R,u,pucr

1
5C26 —

eAyry ) [ — 267 (DyP°®4) (DyPrap) + (— e1 — Ser) Ry
— Yo7 — cos — 30)QuuanP? + (o7 — coa + co3 — 2¢30) (P?)

(
(
(
(g7 + c22 — 2c30) (QMUQVU)AB]
(

where we have used (C.11) and (D.4).

2030) (QQ) 4 + 5¢25(Q"Q")

Sear + 3e30) (P QP ap + (B3 + Feos) RTHPQ7 , AB]

QO’TAB

,LLJQVUAB

+ (330 + £7) @7 0) (QupQor)

( —C4 — CIO)(EVPQ/)HV)(PDP)[),;W s (43)

Requiring that the coefficients of all the structures listed above vanish, gives the following

result:
b =a+ 1 by = —
1=aT 717, 2= =7,
63:07 C4_07
68:07 0920,
c13 =0, ciy =0,
_1 —_3
€18 =37, Cl9g = — ot —
_ _1
€3 = —7, C24 = 77,
_ 1
cos =0, €29 =37,

The ¢, dependent variations

bgzi’y, 61:0, 62:0,

5= —7, 6= —7, cr =0,

c1o =0, c11 =0, cr2 =37,

c15 =0, 16 = —"7, a7 = —2v,
020:%77 0212%77 0222—%7,

c5 =0, c6 =37, cor = — 37,

C30 = — 317 (4.4)

So far we have considered the H and ¢, independent variations of the action. Now that we have

found the solution (4.4) for such variations to vanish, we shall now examine all such variations as
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well. In this subsection, we shall consider variations that contain at least a factor of ¢, but no
H-dependence. Such variations arise from, (a) the variation of the dilatino, (b) from integrations
by part in which the exponential in dilaton factor is differentiated, and (c) the use of the EOM’s.
In the last case, we make use (B.5) and (B.6). Thus, without assuming the solution (4.4), all the
¢y dependent variations are found to be

Viy = 55‘&0

:€€2¢{(€A¢a) [(—%018 + c24) PP oa P2, + (3c16 — 22)Poa 2 Q" Appy + (—3c17 + c23) Pran (P @,

+ (0" [(%018 — Co1) P* o aP%¢" + (316 — €22) PP QY ap ot + (—4c17 + €23) Ppaa (P?) P

+ (3eo + ¢30) PP " Q" appp + (c20 + 2030)P“aBQVpAB<Pp]
1 _ —A ay pp B Avp o 4.5
+ ( 5C29 030)(6 'Vuupcrw ) a QP app > ( . )

with £ from (3.5). Employing the solution (4.4), we see that Vs, = 0. Therefore, we do not need
to add any new term to the Lagrangian (3.5)°

The H-dependent variations

Finally we consider all the remaining variations, namely those which contain at least a factor
of H, or H multiplied by ¢,, dependent factors. Collecting such variations, and omitting the
EOM terms, we find that even though all variations involving more than one H factor cancel
each other, but terms linear in H remain. To cancel all the H-dependent variations, we add the
following terms to action:

£H =e€ e2sp [thza'VMT/)bQupabHuup + t2&a7uup¢bH,uua(P2)paab + t3&a7uup¢bHuup(P2)ab

+ t41[}a7uup1/}aH;wa(P2)pa + t5zzafyuup¢aHuupP2 + tG&awuupawaQuuaprar] .
(4.6)
The total contribution to H-depended variations, modulo EOM’s, are then found to be

Vi =5(L+ L) (H
2662“0{(27 — Sea6 — Seag — Lezo + 261) (€M) PP QP apHywp

+ (EA’Y‘uywa) [(2& + %016 + %619 — %ng — %tz + 3t3)Po’aBQpUABHMVp

+ (—%617 + %620 + %623 + %tg + 3t3 + 2t4)PJaA(P2)p0HM,,p

Terms such as (P?)"x7,D.x and (PDP)% 5 x*7.x” contribute terms proportional to ¢, but such variations
have different structures than those given in V,, and they cannot be cancelled. Therefore the coefficients of such
terms are vanishing in the solution we have found for the parameters in (3.5).
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%029 + t2)P;mBQpUABHupcr

C26 + C29 + 2t1 - t2)PpaBQUuABHVpJ

Scor — 2ty — to 4+ 4tg) PP o a(P?)7  Hypo

—Teis + 301 + Seos + Sto + 6t5)PpaAP2Huup]
gAyHPT ) [(%029 + 3e30 — 2to + 6t6) Pua P Qu A H pox
%026 + %629 + 3630 + %t2)P>\aBQ,uVABHpU)\

Lo — 2ep0 —t3 — 2t6) P o® QoranHywp

_%627 - %t2 + 2ty — 6t6)P,u,aA(P2)V)\HpJ)\

%017 + %023 —t3+ 2t6)P)\aA(P2)a')\Hqu

+ o+ + + + + o+ +

1—12618 — %624 + 2t5 + 2t6)P,uaAP2Hupcr]
1 1 —A_ prpoT,a B
+ (_ﬁc29 B 6030 + 2t6)(6 Y w )Pua QVpABHo)\T} ) (47)

with £ from (3.5). Upon taking the following values

and using (4.4) and (4.8), we get

Thus the invariant total Lagrangian is
L = L(R) + L(P?) + BL(F?) + aL(R?) + Loy(P) + L , (4.10)
with parameters given in (4.4) and (4.8). In particular, L is given by

Ly = Y 66280 [ - % _a'V“waypabHuup - i&a'yuypqﬁbHuug(}ﬁ)paa - %ﬂ_}a’ywjpwaH,uuo(Pz)pU] :
(4.11)
The last two terms can be interpreted as bosonic torsion in the ¢; and c¢g terms in Lo (up to
quartic fermions). To be more specific, we have

_(1/;&7uDu1/}b)(P2)uyab - %(@aijpwb)(P%pcmbHuug = = (1/;&’YMDV(Q+)1/}b)(P2)uVab ’
(B Dyt (PR = (5 0,) (P Ho = — (63,0, (2 )0) (P . (4.12)

The first term in (4.11) has no torsion interpretation directly. The explicit expression for (4.10)
is given below in (5.1).

4.2 EOM terms and supertransformations

We shall now determine all the EOM terms we have suppressed in the supersymmetry variations
so far. These are the terms which dropped in (4.1), (4.2), (4.3) and (4.7). This needs to be done
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so that we can determine the field redefinitions required to cancel them, and the consequences
for the supertransformations. Collecting all the EOM terms that arise in the variation of the
total Lagrangian (4.10) given above, we find

Veom =0L|gom
= e e |8(e 1) )Q P apE" p + 2 ) )Q pape P EY
= 2D ES)QM ap + 5 (@ E)) Q7 aBHM o
— 8(e"uDyEP) Q™ ap — A€ 1,EP)Qupap HMP
= 2 €P)Qy" a5 Hw|
+yee?? [(gA?/fa)(—3Pua(A|P”b\B)§bB + (P’ + P*Ean)
+ (@M )®) (P o) P o3P + 3Q" aEa®)
+ (Y EN(=4P" P Quuas + PYaa(P?)uy — 1 Puaa P?)
+ 1 EVPE) P Quuan) | - (4.13)

We shall now cancel these by modifying the SUSY transformation rules. Denoting the modifica-
tion of supertransformation rules by dextra, we get the following extra terms in the variation of
Lagrangian.

5oxtra£ =€ 6280 - 2eur(5oxtraeur)gwj + (50xtra90)&p + %(50xtraB,uz/)€_2<pggy + VaaA(éoxtraQSa)gaA

- %EMA(aextraqu) + 45_A(6extraXA) - ga((sextrawa) . (414)

Requiring that these variations cancel Vgoas given above, we find that the supertransformations
(3.18) need to be supplemented by deytrq given by 6

Jextracy” = — A&y Y)Qu" ap
Sextratiua = 4a(00¥P)Q." ap — 8ae® (PDP)ap + 8ae® P,% (a\€uip) -
Sextra By =4 (€02 ) Q1) 4B
SextraXa = — 207" (800 2)Q" ap + 4o e® (PDP),ap — 407" P P,% (ai€aip)
Sextrap = 20(E47, 007 ) Q™ ap

VaaAéoxtra(ﬁa = 37(€B7pb)P“a(A|Ppb|B) - 7(€A¢b)(P2)ab - 7(€A7pa)P2
+ Y (@7 P o a1 PP yip) + 57(E 7 a) QM aB

5extra¢a :’Y(’YHEA)PVaA(P%;w - %’Y(’YﬂﬁA)PuaAPﬁ - %’Y(’Y“V’YPEA)PpaBQuVAB s (4-15)

SNote that integration by part in the two terms that have the form DHSBQZE gives terms of the form £2&,4.

This means that we can alternatively redefine the hyperscalar to remove such variation.
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where dg is the supersymmetry variation which is zeroth order in o, and v. The ¥”Q,,
and (0p¥")Q, terms in the first five transformation rules above can be removed by the field
redefinitions

Yua = Yua +4a ¢VBQ/JI/AB ) XA = XA — 2« 'WLT;Z)VBQMVAB . (4.16)

Consequently, this redefinition bring in terms of the form a&ty” Qv and a&yHap? Qv in the
Lagrangian, which are presented in the final results summarized in the next section.

5 The final results

In summary, substituting the parameter values given in (4.4) into the Lagrangian L, - given in
(3.11), adding the Lagrangian Lp given in (4.11), and performing the field redefinition (4.16),
our result for the total Lagrangian (4.10) is given by

£ = ec® [ LR(W) + o — Mg M — 10,07 Dyt + 2X7 Dyt + 2X7 Dy
— a1 Huwp (V7Y PAr 0T + Aoy X — AXVPX) — o (VH Yy + 200997 X)
— SPHAP, oA — 3 Dytba — oy Hyup V0 — Puaa (G947 0" + 24 4#9") }
e | — JFLF — Xyt DAT — SH My AT + LELN (4094, + 297 ) |
taee [ —LIRLT(Q)RY () + QM ABQuuap — U D (w, Q)b
+ S0 (VA e + 29" X) R (=) — MotV Pbrs — 81U b QM ap PP
2B EAQ a — BT EQ as]
+yee [ 3QM A Quuap — (P (P + §(P?)?
— (@ 9Dy (L)) (PP oy = (D 7u Dy (24 )ha) (PP = 34 4P QY by
+ %ZZ_)“%W(PDP)“@ + %)ZAV“"”WQWABPWB - i&fv“"”UWQupABPmB
I XAW%(_QWABPWB _ Z(Pz)WPVaA I %P“aAP2)
+ U a(—Q" ap P, + §(P?)M B, + 3 PHAP?)
+ Dua" P (= 3Qup P PPap — (P?),,PPa™ + 1 Poa” P?)
D ta(GQ AP — S Py (5.1)

where H,,,, is defined in (3.16), and only terms up to first order in «, 3 and v are to be kept.
There are two terms in the a dependent part of the Lagrangian which have higher derivative
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hypermultiplet dependence. Schematically these terms are of the form P?* and %ﬂﬁan. The ~
dependent terms above, together with these two terms, constitute the Lagrangian £, , appearing

in (3.5).
Taking into account the field redefinitions (4.16), the supertransformations are given by
de," =&y"Y, ,
OYpa =Dyea+ i’l—[w,pv”peA - 8aeB(PDP)uAB + 8aeBPH“(A‘§a|B) ,
0By = — eyuthy) + 28 AL GAL + 20001, 6005 + 27 Q" *P50Quan
oxa = %’y“eAaugo — %Huup’y’“’pm + 4a’y“eB(PDP)MAB — 4a’y”eBPM“(A|<E~’a‘B) ,
0p =Ex
Vaan09™ = — athe + 3y e PF 4 Py — 7 €4t (P?)ap — v €atpa P
+ P PPy 4 PP by + 27 EP9,01aQ" 4B
51bq =" Puga + 7 (7€) P 0 (P?),0

- %’Y(’YMEA)P/WAP2 - %’Y(’Y“V’YPGA)PpaBQMVAB >

SAI, = — ey N
SN =1F] 4" . (5.2)

6 Hp(1l) from Hp(n) compared with heterotic supergravity on 7"

It has been shown that the dimensional reduction of the BdR extended heterotic supergravity on
T* followed by a truncation to N = (1,0) supersymmetry yields the higher derivative couplings
of four hypermultiplets which parametrize SO(4,4)/S0(4) x SO(4) |23,22]. Truncating further
to keep a single hypermultiplet give the coset SO(4,1)/SO(4). Given that SO(4,1) ~ Sp(1,1)
and SO(4) ~ Sp(1) x Sp(1), we can compare our results for Hp(n) model truncated to Hp(1).
To do so, we begin with the truncation of the Hp(n) model to obtain the Hp(1) model.

6.1 The Hp(1l) model from the truncation of the Hp(n) model

To truncate the Hp(n) model to Hp(1), we let the index a = 1,2. This implies the identities

(P2)wjab = _%(P2)wj6ab )
Q* = —2(P)u (PP +2(P?)?

PI/aBQMVAB = - VaA(P2)uV + PuaAP2 ;
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= PP,BQ" ap — 3P a(PY) . (6.1)

P'uaB QVPAB
(pv]

Using these identities in the final Lagrangian (5.1) in terms that correspond to those with co-
efficients (by, cs, c16, €19, €22, c25) in (3.11), and leaving out SL(F?), and collecting the bosonic
terms that are linear in a and +, gives

ﬁBos.

e |:HNVp (@ wﬁup(Q—) + ’Yw/?l/p) — 10 Ryrs(Q-) R (Q-)

= (20 + 57) (P2 (PP)™ + (20 + §9)(P?)? | (6.2)

where wfﬁ,p is as defined in (3.13).

6.2 The Hp(1l) from the dimensional reduction

As mentioned above, in the reduction of heterotic 10D supergravity on T, upon truncation to
N = (1,0), the resulting hyperscalars parametrize the coset SO(4,4)/SO(4);+ x SO(4)_, and it
is important to note that the first index. Following the notation of [22], denoting a representative
of this coset by W, we have the Maurer-Cartan form

wow-t = | Grrer ~Fa (6.3)
— 4L uba Q—uab

where a,b = 1,...,4 and Q1q are the SO(4)+ connections. It is important to note that Pq
transforms under SO(4)4 as

5Puab = A-‘raCPM cb + A—bCP“ac . (64)

The R-symmetry group Sp(1)g C SO(4)1 [22]. The bosonic part of the Lagrangian takes the
form [23]

L Bos. 0wr) = a€ e [H M (@ (=) = Wik o (@) = FRuwrs (2 ) R7(Q)
+ 2 te(P,P)) tr(PPPYT) — Lt (PP PPPYT)
+ 3 te(PT PRI PY) — Sur(PPETPUPT) | 6.5)
with wk = from (3.13) and

pvp
wl?up(Q-i-) = (Q“‘[WbaVQ"'Pba + %Q+”abQ+VbCQ+pca> ‘[uvp]

=2 (Q,uABaquBA + %Q;LABQVBCQpCA>
[uvp]

+ 2<Q;LA’BIaVQpB’AI + %QHA’B/QVB’C/QpC’AI) uvp] : (6'6)

In obtaining the Lagrangian above, terms proportional to EOMs have been dropped on the basis
that they can be removed by field redefinitions, as usual.
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Truncation with Sp(1) C SO(4),

Considering the truncated coset SO(4,1)/SO(4) as locally being the same Sp(1,1)/Sp(1) x
Sp(1)r, we first consider the truncation scheme in which the Sp(1) factor here is embedded in
the SO(4)+. This amounts to letting the SO(4)_ index to take one value, say a = 1. Recalling
that the second index on P, is the SO(4)_ index, we thus let

P,uab_>Pua1 EPpa:i(Ua)AA’PMAIA ’ wa_>7/}1 El/} )
Q—pab — 0. (6.7)
It is convenient to define
Qua® = 1Q1ua(0™)A® . QM = —1Q1 (@)Y b . (6.8)

Making use of the above results in the Lagrangian (6.5), and making the following field redefini-

tion in Lo,
By — By — 4al, , where 9,0, = wffyp(QAB) + wffyp(QA/B/) , (6.9)
the Chern-Simons terms cancel, and the first order in « sector of the Lagrangian (6.5) becomes

£Bos.

= aee [Hﬂ%ﬁyp(sz_) — 1Ry () RMTI QL) + Q2] . (6.10)

Noting the second identity in (6.1), this result agrees with the bosonic part of the Lagrangian
for the Hp(1) model given in (6.2), provided that we set v = 0.

Truncation with Sp(1) C SO(4)_

There is another way to truncate the SO(4,4)/S0(4)+ x SO(4)— such that in the resulting coset
the surviving Sp(1) factor is now embedded into SO(4)_, instead of SO(4)+ considered above.
To see how this works, let us introduce the notation for the SO(4); x SO(4)_ indices as follows,

SOM4);: a— AA, SOM4)_: a— AA . (6.11)
Thus we have,
Puab = J5(0a) anr(00) 1 P 444 v ap =50l
QuaB = 3Q44ab(0™) an Quip = 1Q-ar(0™) a5
Quarg' = — 1Q1 (G wpr Quip = — 3Q—uab(F) 5 - (6.12)

The truncation such that Sp(1) C SO(4)- is implemented by setting

17A2 A 2'AT'A 1’ A2’ 2/ A1
Quar =0=Q, 25, By =0=1"P, Y% =0 =)

)
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PMIIAI/A _ PMTAQIA = —%PMAA , wl’AI’ _ w2/A§’ %wA ) (613)

The Sp(1)gr connection Quap C SO(4)4 as before, but now the Sp(1) connection Q, 55 C
SO(4)—. Performing the truncation described above in the bosonic part of the Lagrangian (6.5)
gives

ﬁBos.

nvp

= aee?® [H‘“’p(wL (Q-) — 2wffyp(QAB))
— 1 Ryurs (Q)RMTH(Q) 4 (P?), (P + 5(P?)?| (6.14)

This results agrees with the bosonic part of our Hp(1) model given in (6.2), for v = —2a.

7 Conclusions

The main result of this paper is the construction of higher derivative hypermultiplet couplings to
N = (1,0) supergravity. The higher derivative extension of the two-derivative supergravity cou-
pled to Yang-Mills and hypermultiplets by adding the aRiem? term and its superpartners gives
rise to hypermultiplet involving higher derivative supersymmetry variations since the composite
connection built out of the hyperscalars couples to all fermions. To restore supersymmetry up to
first order in «, requires addition of several new terms that involve higher derivative hypermul-
tiplet fields. We have parametrized the most general such terms and by employing the Noether
procedure we have determined the full Lagrangian and shown that only one new parameter,
called =, is needed to establish supersymmetry up to first order in the parameters a;, 3,7y, where
g=1/ 9%/ M-

Another key aspect of this construction is that we have taken the quaternionic K&hler space
parametrized by the hyperscalars to be the quaternionic projective space Hp(n) = Sp(n,1)/Sp(n)x
Sp(1)g. This is partly motivated by the fact that the dimensional reduction of Riemann-squared
extension of 10D supergravity on 7%, followed by a truncation to N = (1,0), yields the higher
derivative coupling of four hypermultiplets parametrizing the QK coset SO(4,4)/SO(4) x SO(4),
whose truncation to single hypermultiplet yields the QK coset SO(4,1)/SO(4), which is locally
the same as Hp(1). This model has only the parameter that comes with the Riemann-squared
invariant in 10D, denoted by a. Our result for the higher derivative couplings of Hp(n), on the
other hand, has a new independent parameter, denoted by y. We have considered two distinct
ways of truncating the coset SO(4,4)/SO(4) x SO(4) to SO(4,1)/S0O(4), which is locally the
same as Hp(1), and shown that the results agree with the truncation of our Hp(n) model to
Hp(1), for either v =0 or v = —2a.

There are a number of directions to explore in view of the results of this paper. First, it
would be useful to gauge the isometry group of SO(n,1) or any subgroup of it thereof, as an
extension of our results. In particular, it would be interesting to determine the consequences of
gauging the R-symmetry group Sp(1)g, or its U(1)g subgroup for our results. Next, it would be
useful to establish if the higher derivative extension is possible for all symmetric QK manifolds,
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known as the Wolf spaces. Last, but not least, it is worth investigating possible embedding of

our results in string theory which goes beyond the Hp(1) model describe in this paper.
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A Notation and Conventions

To pass from the conventions of [16] to those employed in this paper, we have made the redefi-

nitions 1
Mrs = —Nrs, ’YT — Z"YT 9 Y — ﬁ(p . (Al)

Thus, the spacetime signature is 7, = diag(— + + + ++). For arbitrary spinors carrying un-
contracted indices, we have

XA’V,ul...,unT;Z)a = (—1)n+1lf_)a%n...u1XA . (A2)

If the indices are the same type of symplectic indices, namely a or A, and contracted, then an

extra minus sign occurs. Thus, it follows that

@“mﬂbb = sz’}’;ﬂpa ) Tﬁa’mupwb = _Tﬁb’mupd}a ) f‘;a’}/,uupAwa = Jjb’ﬂwpkﬂ'l/}a . (A'?’)

Raising and lowering of symplectic indices is Q% = ¢ and 1)*Qyp = ¥y, with Q4,00 = 6.
Further definitions are:
ijmn = 28[uwy]mn + 2w[umpwy]pn , R = em“enVijmn . (A.4)
3

The van der Wardeen symbols are (%) 44/ = (0!, 02,03,4) and (6‘”)‘4"4 = (0%, 0%, 0%, —i), and

(O_ab)AB _ (O'[a)AA/(a'b])AIB 7 (a,ab)A’B/ _ (6,[a)A’A(O_b])AB/ ) (A5)

The following notations have been used:

Q2 = Q;WABQ'LWAB ) Pu = a/ﬁp
(P?) = PEAPY A, (P?)® = g™ (P*)%,
(P2)w/ = (P2)Zrb/ Qba pP? = QMV(P2)MV )
PDP)AB .= pveAp p, B PDP)® .= pvladAp pb)
1 H M Ho v
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(PDP)yp = P DyPjaa - (A.6)

Note the symmetry properties

(Pl = (PH = (PHl (P = (P (P = (PP ) »
(PDP)? = (PDP)*® . (PDP)% = (PDP){™ . (A7)

B Lowest order equations of motion

In view of the important role of the two-derivative field equations of motion that follow from
the a, 8 and v independent part of the Lagrangian (5.1), we record them here. To this end we
define

1 _9, 0Ly 1 _9,0L0 _10Lg
£ = 1,-1_-2¢ E = 1,-2¢p“~0 gaA = 1_V0caA
w = g€ e 56#@6,/@ , Eo=e e 5o e e )
5%” = 26_1—5£0 , grA = 6_16_2“0—5,&) , & = —ie_l _250—5?0 ,
0B, 0ua XA
oL
__ -1_-2 0
ga = —€¢ ¢ @W N (Bl)
and
Ean =€ 80, Ewi=Ew+ 190, - (B.2)
where the bosonic field equations are *
_ 1 m w 1772 2
E,= 3R —2D,o" — 20,0t — cH” — P~ | (B.3a)
gﬂu = %RHV - %‘Puu - %Hiu - %(P2)HV o ig@gwf ) (B.3b)
Eaa = D, (e*°PV,) | (B.3c)
g = D,(e*HM") (B.3d)
and the fermionic field equations are
EMA = Pyt Ayt Dyx A + Iyl Hy gl + Ly H o A+ 200
- (27“”” it — 2yt A 4 8y XA + 47”7“%‘) Py — 27 Y 1ha PIA (B.4a)
EX = DX+ 0, + VT Huwp + 17 - HX = 57700 o
+ 37" P + v x o (B.4b)
Ea = Do+ (= V'YV + 29" X)) Puaa + V" Yapp + 557 - Hiba - (B.4c)

"As we shall construct the higher derivative couplings up to quartic fermion terms, we will not need the
quadratic in fermion terms in the bosonic EOM’s in the Noether procedure calculation.
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where we have introduced the notation ¢, := D,0,¢, and it is important to note that in the
fermionic field equations above, ¥, = ¥, (w) = 2Dy,1by), unless stated otherwise. It follows for
the EOM’s given above that

Ry = 4Eu + 20 + HE, + 2(P) (B.5a)
Dyt = 2E, + 264, — 20, + LH? (B.5b)
DuPyy = Ean — 204 Py (B.5¢)
D HMP = e € — 20, HM | (B.5d)

and

Vg, = SE = 27,EM + 2D Xt + 2P, — oy

- %7 : HT/’ZX + %Huup <7Vp07/)? - 27V¢pA + 27Vpr> , (B.6a)
Yt = %’Y“gf — 484 %(’ywjl/},f‘ — qu)gpu — 2’YMXA(PM

+ g5 Hyup (V77005 = 3y X A) (B.6b)
Dipy = E, + (7'/7;@;4 - QWMXA)PHGA — Y app — 5y - Ha . (B.6c)

In the lowest order EOMs given above, it is understood that H = dB.

We will also need the following relations which follow from differentiation of (B.6a),

D| = tRupae (V7T 2070 ) =AD" Pt = 27U (PP,

[vp]
— Qu B (YU +2F) = 2 EQu p — Vihpr — VU HE,
+ D, (08 B, + Bt H T = Bt HOT 4 e x U H, )
— 4B + D, (£ — 47,E7) (B.7)
DFpit, = 9P P A Ry + 377705 Qpe B — P Qs
+ 30 P? + 4" (D) Pua™ — v Dy Py
— 29 (DX ™)t — b 0" — V00 + 27V Pua® — S0 0",
+ U H? = SR HE, — Sy Y + X H Y, 4§97 Pro oo
— D (YA T H = 3 pore TP
+ D“( — YoxHy? + %’Y;WAXAHVUA> ~-1iD, <'ypoAxAH ””A>
P EN, = 2HAE,, — 29T E S,
Ay AE,, — 28PN + L DES — 2y, DIEN . (B.8)
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C Identities not involving the equations of motion

In what follows we list lemmas which have been used in simplifying the variation of the La-

grangian.
PaPY = -1p, PR, + 1P,0a (PP + LP!, P? (C.1)
PRAPRE] L = AP QU — 1PR QG + P ©2)
B, A(PDP)l, = 1P (PDPY4 — £(P?), D* Py + L P40, P (C3)
(PDP)ZbPVbA‘[uu] = —iP . BPD\Q"™ ap + 1Q" 4pD" P\,® + 1(P?)"* D" Pyaa

— 1P A(PDP)MY (

(P)™®(P?)ap = Q% + $(P?)u (P*)™ (
QUL QY = 3Q* + (P?)? — (P?)u (P?)™ (C.6)

(

D[u(Pz)V}p = _(PDP)MW )

— 2(Q"Qup) 4B — 3(P?) " Quipan + 1QuuasP? (C.8)
PpaADuPJaB (o] = %DquO'AB - %GAB(PDP)u,pU (Cg)
P"*4D, P’y = (PDP)% + $D,(P*)" (C.10)
DD, P* = 2(D,P"*) (D, Ppua) + 2P *D,D,Pyon + 2(P*) Ryypo
+ %(QHPQVP) + (Pz);wpz - (P2)up(P2)up (C.11)
Py D”(P%) o i 1PN PDQM ap + 1Q" D" PP + 3(P?)P DY Pyoa
+ 1P, aa(PDP)PH (C.12)
Quo' DuF{| = P (PDP)ua — §Puaadh P* = 4 PraP DsQuuan + §PA4(PDP)s
(C.13)
P 4D, (P?) g = Pu®(PDP)Yp + 4(P?),, D" P2y + L P!, 0, P? (C.14)
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D Identities involving equations of motions

The following relations hold modulo the ¢, and H dependent terms.

DFQP = 2(PDP)AP — 2pP2AE,P) (D.1)

DMNP?)y, = 30,P? + EPaa (D.2)

D'Q®, = 2(PDP) — 28\ PDA (D.3)
DP(PDP), ., = (D, P?**) (DyPpas) — 3P°**D,D,Pran
+ %(QupQup) + %(P2)up(P2)up + %(PZ)WP2

+ 5P DyEan — €Dy Pras + 26, (P2), (D.4)

D,(PDP)yp = (Dyéa(a) P 5) (D.5)

P, aD, (P! =

L(P?),,D'PYy + 1P, B(PDP) 5 + L P!, 0,P? + 1 P80

+ 3PPy Pua 3y €8 — 1(P?)ay €24 (D.6)

Py®DyQ" ap = 2P, " (PDPY 5 + 3(PH)ay %4 — P" (a1 Pu 3y €2 (D.7)

PyaaDy(P?Y = LPuu a0 P? + L(P?)4y E 4 + P 44 P ) E°P (D.8)

PLaD,QM oy = —Pu®(PDP)  + L (P)" DyPyos — P10, P? — LP2E,4

+ P“bAPuangB (D.g)

P*.BD,Q" a = = 2P*,P(PDP)sp + 3Qhy €4 — Pl Pl €7 (D.10)

P" D, (P*) e JPILO PP+ Q" E 4+ Pl Pl EF (D.11)
PRAD (PG| = §P7a"DpQ" s+ 1Q" ap D" P
+ 1(P*)" D" Ppos + 1 Ppaa(PDP)PH

+1Q" A& + §QhE A — 3P Pl p EF (D.12)

DPﬁA = %(P2)MVPVaA + %QMVABPuaB + %PuaAP2 + DugaA + 4§MVPuaA ’
(D.13)
DQ;WAB = |:4(DuPpaA) (DVPpaB) + 3(QupQup)(AB) - 6(P2)upQupAB
+ QW/ABP2 - 4P/m(ADugaB) + SQMPABng} ‘[MV] (D'14)

op?

= 3Q 4 3(P2)" (P?),,, + (P*)? + 2(D"P"") (D, Pyan)
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+ 2P, ADHE, 4 + 8(PHE,, . (D.15)

The ¢, and H-dependent terms can simply be obtain in all teh equations by by letting

gaA — gaA - 2P“aA()0u

Ep = Eu + S + LH2, (D.16)
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