Safe Permissionless Consensus
Youer Pu
Cornell University, Ithaca, NY, USA

Lorenzo Alvisi
Cornell University, Ithaca, NY, USA

Ittay Eyal

Technion, Haifa, Israel

—— Abstract

Nakamoto’s consensus protocol works in a permissionless model, where nodes can join and leave

without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a
necessary concession to the severe demands of supporting a permissionless model? This paper shows
that, at least in a benign failure model, it is not. It presents Sandglass, the first permissionless con-
sensus algorithm that guarantees deterministic agreement and termination with probability 1 under
general omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous communication
model, where, at all times, a majority of nodes (though their number is unknown) are correct and
synchronously connected, and allows nodes to join and leave at any time.

2012 ACM Subject Classification Computer systems organization — Dependable and fault-tolerant
systems and networks

Keywords and phrases Consensus, Permissionless, Nakamoto, Deterministic Safety
Digital Object Identifier 10.4230/LIPIcs.DISC.2022.33
Related Version Full Version: https://eprint.iacr.org/2022/796.pdf [25]

Funding This work was supported in part by the NSF grant CNS-CORE 2106954, BSF and IC3.

1 Introduction

The publication of Bitcoin’s white paper [22], besides jumpstarting an industry whose
market is expected to reach over $67B by 2026 [27], presented the distributed computing
community with a fundamental question [12]: how should the agreement protocol at the
core of Nakamoto’s blockchain construction (henceforth, Nakamoto’s Consensus or NC) be
understood in light of the combination of consensus and state machine replication that the
community has studied for over 30 years? The similarities are striking: in both cases, the
goal is to create an append-only distributed ledger that everyone agrees upon, which NC calls
a blockchain. But so are the differences. Unlike traditional consensus algorithms, where the
set of participants n is known and can only be changed by running an explicit reconfiguration
protocol, Nakamoto’s consensus is permissionless: it does not enforce access control and
allows the number and identity of participants to change without notice. It only assumes
that the computing power of the entire system is bounded, which effectively translates to
assuming the existence of an upper bound N on the number of participants. *

To operate under these much weaker assumptions, NC adopts a new mechanism for
reaching agreement: since the precise value of n is unknown, NC forsakes explicit majority
voting and relies instead on a Proof of Work (PoW) lottery mechanism [22], designed to

The bound can be trivial, e.g., equal to the number of atoms in the Universe, but it needs to exist;
otherwise, if it would be possible for a large, unknown group of nodes to be secretly adding blocks onto
a different branch of the blockchain, and Nakamoto’s decisions would never be, even probabilistically,
safe.

© Youer Pu, Lorenzo Alvisi, and Ittay Eyal;

37 licensed under Creative Commons License CC-BY 4.0
36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 33; pp. 33:1-33:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://eprint.iacr.org/2022/796.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2

Safe Permissionless Consensus

drive agreement towards the blockchain whose construction required the majority of the
computational power of all participants. Finally, whereas traditional consensus protocols
guarantee agreement deterministically, NC can do so only probabilistically; furthermore, that
probability approaches 1 only as termination time approaches infinity. Is settling for these
weaker guarantees the inevitable price of running consensus in a permissionless setting?

In this paper we show that, at least in a benign failure model, one can do much better.
We present Sandglass, a permissionless consensus algorithm that guarantees deterministic
agreement and terminates with probability 1. It operates in a model based on Nakamoto’s.
Our model allows an arbitrary number of participants to join and leave the system at any
time and stipulates that at no time the number of participants exceeds an upper bound N
(though the actual number n of participants at any given time is unknown). Further, like
Nakamoto’s, it is hybrid synchronous, in that, at all times, a majority of participants are
correct and able to communicate synchronously with one another. We call these participants
good; our protocol’s safety and liveness guarantees apply to them. Participants that are not
good (whether because they crash, perform omission failures, and/or experience asynchronous
network connections) we call defective. Sandglass proceeds in asynchronous rounds, with a
structure surprisingly reminiscent of Ben-Or’s classic consensus protocol [3]. Let’s review
it. Nodes propose a value by broadcasting it; in the first round, each node proposes its
initial value; in subsequent rounds, nodes propose a value chosen among those received in the
previous round. Values come with an associated priority, initialized to 0. The priority of v
depends on the number of consecutive rounds during which v was the only value received by
the node proposing v — whenever a node receives a value other than v, it resets v’s priority
back to 0. When proposing a value in a given round, node p selects the highest priority
value received in the previous round; if multiple values have the same priority, then it selects
randomly among them. A node can safely decide a value v after sufficiently many consecutive
rounds in which the proposals it receives unanimously endorse v (i.e., when v’s priority is
sufficiently high); and termination follows from the non-zero probability that the necessary
sequence of unanimous, consecutive rounds will actually eventually occur.

Of course, embedding this structure in a permissionless setting introduces unprecedented
challenges. Consider, for example, how nodes decide. In Ben-Or, a node decides v after
observing two consecutive, unanimous endorsements of v; it can do so safely because any two
majority sets of its fixed set of n nodes intersect in at least one correct node. This approach
is clearly no longer feasible in a permissionless setting, where n is unknown and the set of
nodes can change at any time.

Instead, Sandglass’s approach to establish safety is inspired by one of the key properties of
Nakamoto’s PoW: whatever the value of n, whatever the identity of the nodes participating
in the protocol at any time, the synchronously connected majority of good nodes will, in
expectation, be faster than the remaining nodes in adding a new block to the blockchain.

Think now of adding a block b at position i of the blockchain as implicitly starting a
new round of consensus for all the chain’s positions that precede i; for each position, the
new round proposes the corresponding block in the hash chain that ends at b. In this light,
the greater speed in adding blocks that PoW promises to the majority of connected nodes
translates into these nodes moving faster from one asynchronous round to the next in each
of the consensus instances.

This insight suggests an alternative avenue for achieving deterministic consensus among
good nodes — without relying on quorum intersection. Node p should decide on a value v
only after it has seen v unanimously endorsed for sufficiently many rounds that, if p is good,
the lead p (and all other good nodes) have gained over any defective node ¢ proposing some
other value is so large that ¢’s proposals can no longer affect the proposal of good nodes.

Y. Pu, L. Alvisi, and I. Eyal

Why can’t the same approach be used to achieve deterministic consensus in Nakamoto’s
original protocol? Because Nakamoto’s PoW mechanism, notwithstanding its name, is an
indirect and imperfect vehicle for proving work. As evidence of performed work, Nakamoto
presents the solution to a puzzle: this solution, however, could just have been produced as
a result of a lucky guess. Thus, however unlikely, it is always possible in NC for defective
nodes proposing a value other than v to catch up with, or even overtake, good nodes and
reverse their decisions.

To avoid this danger, Sandglass relies on a different PoW mechanism, which ties the
ability to propose a value to a deterministic amount of work. In particular, Sandglass nodes
can propose a value in any round other than the first only after they have received a specific
threshold of messages from the previous round. Therefore, each proposed value implicitly
represents all the work required to generate the messages needed to clear the threshold. The
threshold value is chosen as a function of the upper bound N on the number of nodes that
at any time run the protocol, in such a way that, whatever is their actual number n, any
node that does not receive messages from good nodes will inevitably take longer than them
in moving from round to round.

The full power of this PoW mechanism, however, comes from pairing it with the idea,
which we borrow from Ben Or, of associating a priority with the values being proposed. With
a fixed set of n nodes, Ben Or leverages priorities and quorum intersection to safely decide a
value v once it has reached priority 2, because it can guarantee that henceforth every node
executing in the same round as a correct node will propose v. In a permissionless setting,
we show that the combination of priorities and our PoW mechanism allows Sandglass to
offer good nodes the same guarantee (though, as we will see, v will be required to reach a
significantly higher priority value!). Intuitively, by the time v reaches the priority necessary
to decide, any node ¢ that manages not to fall behind (and thus become irrelevant) to the
unanimous majority of good nodes who have kept proposing v must have received some of the
messages proposing v from some good nodes. Furthermore, to keep up, ¢ must have received
such messages often enough that, given how the priority of received values determines what
a node can propose, it would be impossible for g to propose any value other than v.

In summary, this paper makes the following contributions: (i) it formalizes Nakamoto’s
permissionless model in the vocabulary of traditional consensus analysis; (i7) it introduces
novel proof strategies suitable for this new model; (ii4) it exposes the connection between PoW
and a voting mechanism that can be implemented by message passing; and (iv) it introduces
Sandglass, the first protocol that achieves deterministic agreement in a permissionless setting
under hybrid synchrony.

2 Related work

The consensus problem has been studied for decades, covering both benign and Byzantine
faults under different synchrony assumptions. Common across these classic works is the
assumption that the set of nodes that participate in running the protocol is either constant
or changes through an agreement among the incumbents (reconfiguration). In contrast,
Sandglass allows for participants to change arbitrarily and without any coordination, as long
as at all times a majority of nodes is correct and synchronously connected. More recent
papers also explore models where participants can change dynamically at any time, subject to
guarantees of well-behaved majority; unlike Sandglass, those works achieve only probabilistic
safety guarantees. We briefly review related prior work in more detail below.

33:3

DISC 2022

334

Safe Permissionless Consensus

The permissionless nature of our model implies that consensus solutions for classical
models (e.g., [13]) do not apply. For synchronous networks, previous solutions rely on
the fact that the number of failures is bounded in a period of time. They tolerate up
to (n — 1) benign failures [29] or Byzantine failures with authentication [7, 18]. For an
asynchronous network, Fisher, Lynch, and Paterson [8] show that it is impossible to solve
consensus with deterministic safety and liveness even with a single crash failure. Various
protocols (e.g., [16, 26, 28]) thus either solve asynchronous consensus with weaker liveness
guarantees than deterministic termination, or provide deterministic termination after a Global
Stabilization Time (GST) (e.g., [4]). They use logical rounds, and for each round collect
messages from a sufficient number of (authenticated) nodes, tolerating fewer than & failures in
a benign failure model [3, 17], and % failures with Byzantine failures and authentication [4, 31].
Although our model is not directly comparable, we note that our protocol matches the (n/2)
bound of a benign model in an asynchronous network, despite assuming synchrony among
good nodes.

Aspnes et al. [2] explore the consensus problem in an asynchronous benign model where
an unbounded number of nodes can join and leave [9], but where at least one node is required
to live forever, or until termination. It is easy to see that in their model, but without this
latter assumption, deterministic safety is impossible. In contrast, Sandglass, in a hybrid
synchronous model, guarantees deterministic safety while allowing all nodes to freely join
and leave.

Consider two groups of good nodes with different initial values running from ¢ = 0, with
messages within the groups delivered immediately, but messages between the two groups are
delayed until at least one in each group decides. By validity of consensus, the two groups
will decide on different values, which violates agreement.

A newer line of work, starting with Nakamoto [22], studies systems where principals can
unilaterally join or leave without notifying previous participants. These protocols (e.g., [21,
30]) are based on probabilistic assumptions and provide probabilistic guarantees. Specifically,
participation is based on probabilistic proofs of work, and the assumption that no minority
can find most proofs of work in a long period. They provide safety with high probability,
given a sufficiently long running time (latency) [6, 15, 23, 10]. Nonetheless, they are all based
on probabilistic techniques and provide probabilistic guarantees, which cannot be directly
translated to deterministic guarantees.

Several protocols, inspired by the PoW approach, achieve consensus among a large group
of principals while requiring the active participation of only a subset of them. In the Sleepy
Model [24] participants join and leave (“sleep”); the assumptions and guarantees of the
consensus protocol presented for this model are as probabilistic as those of pure proof of
work. Momose and Ren [20] present a consensus protocol in the Sleepy Model with constant
latency and deterministic agreement; however, their protocol does not guarantee progress
until the participation is stable. Ouroboros [14, 5] forms a chain in the spirit of PoW but
using internal tokens for the random choice of participants, again leading to probabilistic
guarantees. In Algorand [11], committees elect one another in a series of reconfigurations,
with assumptions and guarantees similar to classical consensus, except that participants are
chosen at random from a large pool, with a negligible probability of a Byzantine majority —
again, providing probabilistic guarantees.

In contrast, despite its permissionless model, our protocol guarantees deterministic safety
and terminates with probability 1. We note other differences: Sandglass’s failure model
assumes only benign failure and is thus stronger than the Byzantine model adopted by many
of these works, but its network assumptions are weaker, as defective nodes can experience
asynchronous communication, and all nodes can join or leave instantaneously.

Y. Pu, L. Alvisi, and I. Eyal

Abraham and Malkhi [1] formalize Nakamoto’s Consensus within a classical disturbed
systems framework, and in particular abstract the PoW primitive as a Pre-Commit, Non-
Equivocation, Leader Election (PCNELE) Oracle. However, the power of this probabilistic
oracle is similar to that of Nakamoto’s PoW and yields a consensus protocol that provides
only probabilistic guarantees as Nakamoto.

Lewis-Pye and Roughgarden [19] show that deterministic consensus cannot be achieved in
a permissionless synchronous model with Byzantine nodes, let alone in a partially synchronous
model (where communication becomes synchronous only after some point unknown to the
processes). Sandglass shows, for the first time, that deterministic safety and termination
with probability 1 can be achieved in a permissionless model, though the network is hybrid-
synchronous rather than synchronous. The exploration of a Byzantine model remains for
future work.

3 Model

The system comprises an infinite set of nodes p1,ps,.... Time progresses in discrete steps;
in each step, a subset of the nodes is active and the rest are ‘nactive. At each step, active
nodes are partitioned into good and defective subsets.

We assue a hybrid synchronous model. Good nodes are correct, and the network that
connects them to one another is synchronous; at all times, a majority of active nodes are
good. Defective nodes may suffer from benign failures, such as crashes and omission failures,
or simply lack a synchronous connection with some good node.

The system progress is orchestrated by a scheduler. In each step, the scheduler can
activate any inactive node p; (we say that p; has joined the system) and deactivate an active
node (which then leaves the system). The scheduler chooses which nodes to activate and
deactivate arbitrarily, subject only to the following three constraints: (i) The upper bound
of active nodes in any step is N; (i7) there is at least one active node in every step; and (i7)
in every step the majority of active nodes is good.

In each step where it is active, each node p; executes the stateful protocol shown as
procedure Step in Sandglass’s pseudocode (see Algorithm 1). It can execute computations,
update its state variables, and communicate with other nodes with a broadcast network.
In particular, since Sandglass assumes benign failures, every active node, whether good or
defective, waits for a full step to elapse before sending its next message.

The network allows each active node to broadcast and receive unauthenticated messages.
Node p; broadcasts a message m with a Broadcast;(m) instruction and receives messages
broadcast by itself and others with a Receive; instruction. The network does not generate or
duplicate messages, i.e., if in step t a node p; receives message m with Receive;, then m was
sent in some step ¢’ < t.

The communication model is designed to capture the design of Nakamoto’s consensus,
which relies on an underlying network layer to propagate and store blocks. Nakamoto’s
network layer provides a shared storage of data structures, called blocks, and guarantees
delivery of published blocks within a bounded time. Each block includes cryptographically
secure references to all blocks seen by its creator. This allows a newly joined node to receive
and validate the entire history of published blocks. Thus, in our model, the scheduler
determines when each message is delivered to each node under the following constraints.

First, propagation time is bounded between any pair of good nodes. Formally: if a good
node p; calls Broadcast;(m) in step t, and if a good node p; calls Receive; in step t' > t,
then m is returned, unless it was already received by p; in an earlier call to Receive;. Thus,
a newly activated good node is guaranteed, upon executing its first Receive, to receive all
messages from other good nodes broadcast in the steps prior to its activation.

33:5

DISC 2022

33:6

Safe Permissionless Consensus

Second, the network is reliable, but there is no delivery bound unless both nodes are
good. Formally: For any two nodes p; and pj;, where at least one of p; and p; is defective,
and for a message m broadcast by p;, if node p; calls Receive; infinitely many times, then m
is eventually delivered.

Each node is initiated when joining the system with an initial value v; € {a,b}. An active
node p; can decide by calling a Decide;(v) instruction for some value v. The goal of the
nodes is to reach a consensus based on these values:

» Definition 1 (Agreement). If a good node decides a value v, then no good node decides a
value other than v.

» Definition 2 (Validity). If all nodes that ever join the system have initial value v and any
node (whether good or defective) decides, then it decides v.

» Definition 3 (Termination). Every good node that remains active eventually decides.

4 Protocol

To form an intuition for the mechanics of Sandglass, it is useful to compare and contrast
it with Ben-Or. From a distance, the high-level structure of the two protocols is strikingly
similar: execution proceeds in asynchronous rounds; progress to the next round depends
on collecting a threshold of messages sent in the current round; safety and liveness depend
on the correctness of a majority of nodes; and nodes decide a value v when, for sufficiently
many consecutive rounds, all the messages they collect propose v. But looking a little closer,
the differences are equally striking. On the one hand, Sandglass’s notion of node correctness
and its hybrid synchronous model are stronger than Ben-Or’s. Sandglass assumes a majority
of good nodes that are not only free from crashes and omissions, but also synchronously
connected to one another. On the other hand, in Sandglass, unlike Ben-Or, the number n of
nodes running the protocol is not only unknown, but may be changing all the time. These
differences motivate four key aspects that separate the two protocols:

Choosing a threshold In Ben-Or, a node advances to a new round only after having received
a message from a majority of nodes. This strict condition for achieving progress is critical
to how Ben-Or establishes Agreement. Any node that, from a majority of the nodes in
round 7, receives a set of messages that unanimously propose v, can be certain that (7)
there cannot exist in 7 also a unanimous majority proposing a value other than v and (i4)
no node can proceed to round (r 4+ 1) unaware that v is among the values proposed in
round 7. Nodes that isolate themselves from a majority simply do not make any progress;
and since all majority sets intersect, nodes cannot make contradictory decisions.
Unfortunately, this approach is unworkable in Sandglass: when the cardinality and
membership of the majority set can change at any time, receiving messages from a
majority can no longer serve as a binary switch to trigger progress. More generally,
thresholds based on the cardinality of the set of nodes from which one receives messages
become meaningless. Instead, Sandglass allows nodes to broadcast multiple messages
during a round, one in each of the round’s steps, and lets nodes move to round (r + 1)
once they have collected a specified threshold of messages sent in round 7.

Think of the threshold 7 of messages that allows a node to move to a new round as the
number of grains of sands in a sandglass: a node (figuratively) flips the sandglass at the
beginning of a round, and cannot move to the next until all 7 sand grains have moved to
the bottom bulb. The value of T is the same for all nodes; the speed at which messages
are collected, however — the width of their sandglass’s neck — is not, and can change from

Y. Pu, L. Alvisi, and I. Eyal

step to step: if all nodes broadcast messages at the same rate, the larger the number of
nodes that one receives messages from in a timely fashion, the faster it will be to reach
the threshold. Thus, while in Sandglass setting a threshold cannot altogether prevent
nodes that don’t receive messages from a majority from making progress, it ensures that
they will progressively fall behind those who do.

Exchanging messages In each step of the protocol, a node currently in round r (i) determines,
on the basis of the messages received so far, what is the largest round 7,4, > 7 for which
it has received the required threshold of messages and (i7) broadcasts a message for round
Tmaz, Which includes the node’s current proposed value, as well as the critical metadata
discussed below.

Keeping history Unlike Ben-Or, Sandglass allows nodes to join the system at any time. To
bring a newly activated node up to speed, each message broadcast by a node p in round
r carries a message coffer that includes (i) the set of messages (at least T of them) p
collected in round r — 1 to advance to round r; (i4) recursively, the set of messages in
those messages’ coffers; and (ii7) the set of messages p collected so far for round 7.

Respecting priority In Ben-Or, a node decides v if, for two consecutive rounds, v is the only
value it collects from a majority set. To ensure the safety of that decision, Ben-Or assigns
a priority to the value v that a node p proposes: if v was unanimously proposed by all
the messages p collected in the previous round, it is given priority 1; otherwise, 0. Nodes
that collect more than one value in round r, propose for round r + 1 the one among them
with the highest priority, choosing by a coin flip in the event of a tie. Sandglass uses a
similar idea, although its different threshold condition requires a much longer streak of
consecutive rounds where v is unanimously proposed before v’s priority can be increased.
To keep track of the length of that streak, every message sent in a given round r carries a
unanimity counter, which the sender computes upon entering r.

4.1 Selecting the Threshold

Unlike Ben-Or, Sandglass’s threshold condition can not altogether prevent nodes from making
progress. It is perhaps surprising that, by leveraging only the assumption that at all times
a majority of nodes are good (i.e., correct and synchronously connected with each other)
without ever knowing precisely how many they actually are, Sandglass retains enough of the

disambiguating power of intersecting majorities to ultimately yield deterministic agreement.

In essence, Sandglass succeeds by causing defective nodes that isolate themselves from
the majority of nodes in the systen to fall eventually so far behind that they no longer share
the same round with good nodes. At the same time, it ensures that, once some good node
has decided on a value v, nodes that manage to keep pace with good nodes will never propose
anything other than v.

Of course, to obtain this outcome it is critical to set 7 appropriately. Consider two nodes,
one good and one defective, and suppose they flip their sandglass at the same time — i.e.,
they enter a new round in the same step. We want that, independent of how the number of
active nodes may henceforth vary at each step, if the defective node only receives messages
from other defective nodes (i.e., if it fails to hear from a majority of nodes), it will reach the
threshold 7 at least one step later than the good node will. The following lemma shows that
setting T to fNTZ] (where N is the upper bound on the maximum number of nodes active in
any step) does the trick.

33:7

DISC 2022

33:8

Safe Permissionless Consensus

» Lemma 4. For any k, consider any time interval comprising (k 4+ 1) consecutive steps.
Let the number of messages generated by good nodes and defective nodes in each step of
the interval be, respectively, go, g1, .- ,gk and dg,dy, ...,dy. Setting the threshold T to fNTz]
ensures that, if 2i=8 g, < T, then Xi=kd; < T.

Proof. Note how the lemma does not count the messages generated by good nodes in the
steps at the two ends of the interval. Recall that moving from the current round to the next
requires a node to receive at least a threashold T of messages sent in the current round.
Thus, we drop good messages from step 0 because good nodes that in step 0 enter a new
round r are unable to count against the threshold for round r messages generated by good
node that in step 0 are still in round » — 1. And we similarly drop step k because good nodes
may only need one of the messages sent by good nodes in step k to move to a new round —
and have no use for the remaining messages in gy.

We begin by observing that, when £k is either 0 or 1, the lemma trivially holds, since
in all steps defective nodes generate fewer than N messages. For example, when k = 1,

do+dy <X+ =N<[2- “7. We then prove the lemma for k > 2.

3 k 1 i=k—1
Let g= 27 and d = u denote, respectively, the average number of messages

generated by good nodes and by defectlve nodes during the k — 1 steps that include all but
the interval’s first and last step. Expressed in terms of § and d, the lemma requires us to
show that, if g- (k — 1) < T, then Xi=kd; = do +d - (k — 1) +dj, < T when T is chosen to
equal (NTQ}

Assume g- (k—1) < T; then k-1 < %. Substituting for (k — 1) in the formula that
computes the messages generated by defective nodes, we have:

Yizkdi =d- (k—1)+do+dy

<J-%+d0+dk (since (k—l)<§)

T N-1 N-1

<d = 5 + 5 (since defective nodes are always a minority)
9
T T . e N2
§d§+¥(/\/*1) (SIHCGT:’V7]Z7)
d 2N-1)
=T(=+ —77)
G+ 27

Then, to establish that %i=kd, < T, it suffices to prove that ¢ + % < 1.

Qllay

Since for any i, d; < g; — 1 and d; + g; < N, we know that d<g—landd+g <N .
Dividing both inequalities by g yields % < min(1 — %, %/ —1). Note that the largest value of

min(1 — 5, % -1 occurs when 1 — é = f%f — 1; solving for g and plugging the solution back
in, gives us: min(1 — f, ? -1 < AN/+1
— 3 2
Therefore, we have that g + 2(N 1) < %ﬁ + 2(%2 D _ NN‘gﬁngz < 1. <

4.2 Protocol Mechanics

Protocol 1, besides showing how Sandglass initializes its key variables, presents the code that
node p; executes to take a step. Every step begins with adding all received messages, as well
as the messages in their message coffers, to a single set, Rec; (lines 4 - 5). Going over the
elements of that set, p; determines the largest round 7,4, for which it has received at least
a threshold 7 of messages, and, if the condition at line 6 holds, sets the current round to
("maz + 1) (line 7). Upon entering a new round, p; does four things. First, after resetting

Y. Pu, L. Alvisi, and I. Eyal

Algorithm 1 Sandglass: Code for node p;.

1: procedure INIT(input;)
2: v; < input;; priority; < 0; uCounter; < 0; r; = 1; M; = 0; Rec; = 0; uid; = 0
3: procedure STEP

4:

5: Rec; + Rec; U{m} UM

6: if max|pec,(r)>7(r) > r; then
7: 7§ = MaX|Rec, (r)|>7 (1) + 1

8

9

M; =90

: foralm=(-,r;—1,-,-,-,M) € Rec;(r; —1) do
10: MM—MZU{m}UM
11: Let C be the multi-set of messages in M;(r; — 1) with the largest priority.
12: if all messages in C' have the same value v then
13: Vi <V
14: else
15: v; < one of{a, b}, chosen uniformly at random
16: if all messages in M;(r; — 1) have the same value v; then
17: uCounter; <— 1 + min{uCounter|(-,r; — 1,v;, -, uCounter,-) € M;(r; — 1)}
18: else
19: uCounter; < 0
20: priority; < max(0, L“CLT’“”’J —5)
21: if priority; > 6T + 4 then
22: Decide; (v;)

23: uid; < uid; + 1;
24: M; +— M; U Reci(ri)
25: broadcast (p;, uid;, r;, v;, priority;, uCounter;, M;)

its message coffer M, p; collects in the coffer all the messages it received from the previous
round — as well as the messages stored in the coffers of those messages (lines 8 - 10). Second,
p; chooses the value v that it will propose in the current round (lines 11 - 15): it picks the
highest-priority value among those collected in its coffer for the previous round ; if more
than one value qualifies, it chooses among them uniformly at random. Third, p; computes
the unanimity counter and the priority for all messages that p; will broadcast during the
current round (lines 16 -20). The counter represents, starting from the previous round and
going backwards, the longest sequence of rounds for which all corresponding messages in
pi’s coffer unanimously proposed v. The priority is simply a direct function of the value of
the unanimity counter: we maintain it explicitly because it makes it easier to describe how
Sandglass works. Finally, if v’s priority is high enough, p; decides v (lines 21- 22). Whether
or not it starts a new round, p; ends every step by broadcasting a message (line 25): before it
is sent, the message is made unique (line 23) and p; adds to the message’s coffer all messages
received for the current round (line 24).

5 Correctness: Overview

Sandglass upholds the definitions of Validity, Agreement, and Termination (with probability 1)
given in Section 3. We overview the proof below, as its approach differs from proofs of
classical, permissioned protocols. We defer the proof to the full version of this report [25],
which includes the formal statements of the lemmas we informally state below.

33:9

DISC 2022

33:10

Safe Permissionless Consensus

Validity is easily shown by induction on the round number, since if all nodes that join have
the same value, there is only one value that can be sent in each round. Establishing Agreement
and Termination is significantly more involved, and hinges on a precise understanding of the
kinematics of good and defective nodes — and how that interacts with the ability of good
nodes to converge on decision value and on the number of rounds necessary to do so safely.
How clustered are good nodes as they move from round to round? At what rate do good
nodes gain ground over defective nodes that cut themselves out from receiving messages
from good nodes? How often do defective nodes need to receive messages from good nodes
to be in turn able to have their messages still be relevant to good nodes?

The answer to these and similar questions constitute the scaffolding of lemmas and
corollaries on which the proofs of Agreement and Termination rely. We discuss it in greater
detail below, before moving on to the proofs.

5.1 The Scaffolding

The protocol achieves several properties that facilitate the consensus proof.
First, it keeps good nodes close together as they move from round to round. Specifically,
the following lemmas hold:

» Lemma 5. In any step two good nodes are at most one round apart.

» Lemma 6. If in any step a good node is in round r, then by the next step all good nodes
are guaranteed to be at least in round r.

A key intuition that guides the proof is that defective nodes move from round to round
slower than good ones. There is a complication, however: this intuition holds only when
defective nodes receive messages only from their own kind; in fact they can actually advance
faster than good ones by combining messages from good nodes with messages from defective
nodes that do not reach the good nodes. Nonetheless, we can show that

» Lemma 7. At any step a defective node is at most one round ahead of any good node.

Second, the protocol guarantees information sharing among good nodes. This may appear
trivial to establish, since good nodes are correct and synchronously connected, but the
laissez-faire attitude of the permissionless model, with nodes joining and leaving without
coordination at any step, complicates matters significantly, making it impossible to prove
seemingly basic properties. For example, consider a good node p that, in round r and step T,
proposes a value v with a positive uCounter. It would feel natural to infer that all good
nodes must have proposed v in the previous round — but it would also be wrong. If p just
entered r in step T, it would in fact ignore any value proposed by good nodes that newly
joined the systems in step T', but are still in round r — 1. Fortunately, we show that a much
weaker form of information sharing among good nodes is sufficient to carry the day. As a
matter of terminology, let’s say that a node collects a message in a round if it receives the
message and does not ignore it (messages originated from a lower round number are ignored).
We then prove the following facts about collected messages:

» Lemma 8. In any round, a good node collects at least one message from a good node.

» Corollary 9. For any round, there exists a message from a good node that is collected by
all good nodes.

Y. Pu, L. Alvisi, and I. Eyal

Third, it allows us to establish the basis for a key insight about the kinematics of Sandglass
nodes that will be crucial for proving Agreement and Termination: in the long run, the only
values proposed by defective nodes that remain relevant to the outcome of consensus are
those that have been, in turn, recently influenced by values proposed by good nodes. This
insight stands on a series of intermediate results. We already saw (Lemma 4) that, given any
sequence of steps, if good nodes cannot generate enough messages to get into the next round,
neither can defective nodes, even if they, unlike good nodes, are allowed to count messages
generated in the two steps at the opposite ends of the period. It follows that

» Lemma 10. During the steps that good nodes spent in a round, defective nodes can generate
fewer than the T messages necessary to move to the next round.

It all ultimately leads to the following lemma, which quantifies the slowdown experienced
by defective nodes that don’t allow themselves to be contaminated by good nodes:

» Lemma 11. Defective nodes that do not collect any message from good nodes for kT
consecutive rounds fall behind every good node by at least (k — 1) rounds.

5.2 Agreement

The intuition behind our proof of Agreement is simple. To each value v proposed and
collected by Sandglass nodes is associated a uCounter, which records the current streak of
consecutive rounds for which all the messages collected by the proposer of v were themselves
proposing v. Once v’s uCounter reaches a certain threshold, v’s priority increases; and once
the value v proposed by a node reaches a given priority threshold, then a node decides v
(see Algorithm 1, line 21). Since, as we saw, good nodes share information from round to
round (recall Corollary 9), proving Agreement hinges on showing that, once a good node
decides v, no good node will ever propose a value other than v. To prove that, we must in
turn leverage what we learned about the kinematics of Sandglass nodes to identify a priority
threshold that makes it safe for good nodes to decide. It should be large enough that, after
it is reached, it becomes impossible for a defective node to change the proposal value of any
good node.

The technical core of the Agreement proof then consists in establishing the truth of the
following claim:

> Claim 12. Let pg be the earliest good node to decide, in round r4 at step Ty. Suppose pg
decides vg. Then, any good node p, that in any step (whether before, at, or after T;) finds
itself in a round 7, that is at least as large as rq, proposes vq for ry with priority at least 1. 2

It is easy to see that if the above claim holds, then Agreement follows. Say that T} is
the earliest step in which a good node pg, currently in round rg, decides vg. The claim
immediately implies that no good node can decide a value other than v4 in a round greater
or equal to 74, since, from r4 on, every good node proposes v4. Recall that, since good nodes
are never more that one round apart at any step (Lemma 5), the earliest round a good node
can find itself at Ty is (rq — 1); and that, by Lemma 6, every good node is guaranteed to be
at least in round rg by step (Ty + 1). All that is left to show then is that no good node p/’,
which at Ty found itself in round (rq — 1), can decide some value v other than v4. To this
end, we leverage the information sharing that we proved exists among good nodes.

2 Although proving Agreement does not require that vg be proposed with priority at least 1, it makes
proving the claim easier.

33:11

DISC 2022

33:12

Safe Permissionless Consensus

By Corollary 9, there is at least a message m generated in round (r4 — 2) by a good node
that is collected by all the good nodes. Since py at Ty has reached the priority threshold
required to decide vy, m must have proposed vg; but if so, it would be impossible for good
node p’, which also must have collected m, to have reached the priority threshold required to
decide a different value v’.

Proving Claim 12 is non trivial. The core of the proof consists in showing that any
node that proposes a value v’ other than the decided value vy must find itself, at Ty, in a
much earlier round than the earliest round occupied by any good node. In fact, we show
something stronger: we choose a priority threshold large enough that any node, whether
good or defective, that at Ty or later is within earshot of a good node (i.e., whose message
m can be collected by a good node), not only proposes vg4, but it does so with a uCounter
large enough that allows whoever collects m to propose vg with priority at least 1.

To see why those who propose v’ are so far behind good nodes, note that the good node
pq that decided vg at Ty must have received only messages proposing vy for a long sequence
of rounds, so long as to push vg’s priority over the (67 + 4) threshold required for a decision.
Let’s zoom in on that sequence of rounds. It took 67 unanimous rounds for vy to reach
priority 1 (see Algorithm 1, line 20); after clearing that first hurdle, v4’s priority increased
by 1 every 7 rounds.

Consider now the set S of messages collected by py during the long climb that took vy’s
priority from 1 to (67 +4). Any node p’ that during this climb proposes something other
than vy faces a dilemma. It can either refuse to collect any message in S — but if it does so, it
will advance more slowly than good nodes, and, by the time v4’s priority reaches the decision
threshold, it will be so far behind that no good node will collect its messages. Or p’ can try
to keep up by collecting messages from S — but, if it wants to keep proposing v’ # vq, it can
do so in at most one round during the entire climb: since the first message collected from S
would reset v’ priority to 0, any further message from S collected by p’ in later rounds would
have higher priority than the one of v/, forcing p’ to henceforth propose vy instead of v’.

In short, since p’ can collect messages from S in at most one round, to ensure that any
node that in round ry is within earshot of good nodes will propose vy it suffices to choose a
large enough priority threshold for deciding. In particular, setting the threshold to (67 + 4)
ensures that (7) all messages collected by good nodes for round (r4y — 1) will propose vg4, and
(i1) vg’s uCounter in all these messages is at least (67 — 1), ensuring that all good nodes in
round rg will propose vg with uCounter at least 67, i.e., with priority at least 1.

Finally, a simple induction argument shows that, if all good nodes propose vy with priority
at least 1 from r4 on, then any node that, from step (Ty + 1) on, continues to propose a
value other than vy, will fall ever more behind good nodes, as it will be allowed to collect
messages from good nodes only once every 67 rounds, on pain of being forced to switch its
proposed value to vy.

5.3 Termination

The Termination property requires good nodes that stay active to eventually decide. Sand-
glass’s Termination guarantee is probabilistic: for Termination to hold, Sandglass needs to
be lucky, so that it can build a sequence of consecutive rounds during which all messages
collected by good nodes propose the same value; long enough that the value will reach the
priority required for a node to decide. Luck is required because Sandglass allows some
randomness in the values that a node proposes: nodes are required to propose the highest
priority value from any message collected in the previous round, but, if they receive multiple
values with the same priority, they can choose among them uniformly at random.

Y. Pu, L. Alvisi, and I. Eyal

To help us prove that luck befalls Sandglass with probability 1, we introduce the inter-
dependent notions of lucky period, lucky value, and lucky round. Intuitively, a lucky period
is a sequence of steps that leads to a decision: all nodes that are active in the step that
immediately follows the end of the lucky period are guaranteed to decide in that step, if not
earlier. A lucky round is simply the first round of a lucky period. What is more interesting
is the quality that makes a period lucky: during a lucky period, whenever Sandglass allows
nodes to use randomness in picking which value they will propose in the current round, they
select the same value — the lucky value for that round.

A minimum requirement for a round’s lucky value is that it should be a plausible value
on which good nodes may converge, in the sense that it should not explicitly go counter the
value that some good node is required to propose in that round. Concretely, if the messages
collected by a good node require it to propose v and all other nodes can randomly choose
between v and v, then the round’s lucky value better not be v. In addition, to encourage the
possibility of a lucky period, the lucky value should be sticky: we would like random choices
to consistently pick the same value, round after round, unless doing so would make the value
implausible.

In the end, Sandglass adopts a definition of lucky value (see [25]) that, in addition to
upholding plausibility, has two additional properties that express its stickiness.

» Property 13. In every round good nodes collect at least one message that proposes the
lucky value of the previous round.

» Property 14. For the lucky value in the current round to change, some good node must
have collected a different value with priority at least 1 from the previous round.

Property 13 guarantees that under no circumstances the previous round’s lucky value will
simply be forgotten when moving to a new round; building on Property 13, Property 14
establishes that lucky values don’t flip easily.

To prove that Sandglass guarantees Termination with probability 1, we then proceed in
two steps.

First, we show that the uCounter of all good nodes active in the step that immediately
follows the end of the lucky period reaches a value that allows these good nodes to decide.
To this end, we begin by proving that, in any lucky period, the lucky value after a while
becomes locked: specifically, we show that the lucky value vy at round 67 in the lucky
period remains the lucky value until the end of the lucky period, and, further, that after
that round all good nodes propose vy. Then, leveraging techniques similar to those used to
prove Agreement, we show that any node p’ that proposes a value v’ other that v, must fall
behind good nodes during the lucky period. The reason is that, once v, is locked, p’ can
collect a message from a good node only every 67 rounds. If it did it more often, p’ would
collect a message proposing v, from a good node while v’ has priority 0, which would force
p’ to change its proposal to vy — even if v’ and v, both had priority 0, and p’ could choose
randomly among them, it would have to propose vy in the next round, since vy is the lucky
value. Thus, by choosing a sufficiently long lucky period, we ensure that nodes that propose
values other that v, fall so far behind good nodes that v,’s priority, for any good node that
is active in the step right after the end of a lucky period, reaches the threshold necessary for
deciding.

Second, we show that lucky periods occur with non-zero probability, since the probability
of a certain outcome of random choices for a finite number of nodes during a finite number
of steps is non-zero. Since in any infinite execution lucky periods appear infinitely often,
it follows that any good node that stays active, no matter when it joins, is guaranteed to
eventually decide.

33:13

DISC 2022

33:14

Safe Permissionless Consensus

6 Conclusion

Sandglass shows, for the first time, that it is possible to obtain consensus with deterministic
safety in a permissionless model. This result suggests that it is the probabilistic nature of its
PoW mechanism, rather that its permissionless model, that prevents deterministic safety
in Nakamoto’s consensus. It also opens up several additional interesting questions. First
among them is to understand how the interplay between permissionlessness and the hybrid
synchronous model shape the boundaries of what is possible, and at what cost. As we noted,
Sandglass matches the (n/2) bound of a benign model in an asynchronous network, even
though a majority of its nodes are synchronously connected. Perhaps at the root of this result
is that in both an asynchronous model and a permissionless hybrid one it is impossible for a
node to know when it has received all the messages that were intended for it. Regardless,
whether there exists a protocol that achieves deterministic safety and termination in a hybrid
synchronous model remains an open question. Another natural question is whether there
exists a deterministic solution to consensus in a hybrid-synchronous model with Byzantine
failures. Answering these questions might pave the way to a qualitative improvement of
permissionless systems that would provide deterministic guarantees; or, at the very least,
give us more insight about the nature of consensus.

—— References

1 TIttai Abraham, Dahlia Malkhi, et al. The blockchain consensus layer and bft. Bulletin of
EATCS, 3(123), 2017.
2 James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite arrivals. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 524-533,
2002.

3 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, pages 27-30. ACM, 1983.

4 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173-186, 1999.

5 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66—98. Springer,
2018.

6 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and Nakamoto always wins. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Securily, pages
859-878, 2020.

7 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656-666, 1983.

8 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Technical report, Massachusetts Inst. of Tech., Cambridge
Lab for Computer Science, 1982.

9 Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierarchy, and algorithms
for unbounded concurrency. In Proceedings of the twentieth annual ACM symposium on
Principles of distributed computing, pages 161-169, 2001.

10 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis
and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281-310. Springer, 2015.

11 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium on
operating systems principles, pages 51-68, 2017.

Y. Pu, L. Alvisi, and I. Eyal

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Maurice Herlihy. Blockchains and the future of distributed computing. In Proceedings of the
2017 ACM Symposium on Principles of Distributed Computing (PODC ’17), page 155, August
2017. Keynote Address.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 165—-175, 2021.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357-388. Springer, 2017.

Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to analyze
blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 729-744, 2018.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
speculative Byzantine fault tolerance. Communications of the ACM, 51(11):86-95, November
2008.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS),
16(2):133-169, 1998.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382-401, 1982.
Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless setting.
arXiv preprint, 2021. arXiv:2101.07095.

Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. Cryptology ePrint
Archive, 2022.

Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs of storage. In
Annual International Cryptology Conference, pages 381-409. Springer, 2019.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, December 2008. Accessed:
2015-07-01. URL: https://bitcoin.org/bitcoin.pdf.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 643—-673. Springer, 2017.

Rafael Pass and Elaine Shi. The sleepy model of consensus. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 380-409. Springer,
2017.

Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe permissionless consensus. Cryptology ePrint
Archive, Paper 2022/796, 2022. URL: https://eprint.iacr.org/2022/796.

Michael O Rabin. Randomized byzantine generals. In 2/th Annual Symposium on Foundations
of Computer Science (sfcs 1983), pages 403-409. IEEE, 1983.

Research and Markets. Blockchain market with covid-19 impact analysis, by component
(platforms and services), provider (application, middleware, and infrastructure), type (private,
public, and hybrid), organization size, application area, and region - global forecast to 2026.
https://www.researchandmarkets.com, November 2021.

Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asynchronous consensus.
In International Symposium on Distributed Computing, pages 438-450. Springer, 2008.

TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2(2):80-94, 1987.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1-32, 2014.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347-356, 2019.

33:15

DISC 2022

http://arxiv.org/abs/2101.07095
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2022/796
https://www.researchandmarkets.com

	1 Introduction
	2 Related work
	3 Model
	4 Protocol
	4.1 Selecting the Threshold
	4.2 Protocol Mechanics

	5 Correctness: Overview
	5.1 The Scaffolding
	5.2 Agreement
	5.3 Termination

	6 Conclusion

