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ABSTRACT: Inelastic scattering from molecules because of vibrational modes produces unique Raman shifts, allowing these
analytes to be detected with high specificity. Because Raman scattering is weak, surface-enhanced Raman scattering (SERS) has been
used as a label-free technique for the detection of a variety of analytes at low concentrations. Using simple solution-based colloidal
processing techniques, we have fabricated gold-coated carbon-black nanoparticles that show enhanced Raman activity. By varying
the fabrication conditions, we create particles of different surface morphologies, allowing control over the peak wavelength for
localized surface plasmon resonance (LSPR). By matching the LSPR wavelength to the incident laser wavelength, we get the highest
signal from two model analytes, 4-nitrobenzenethiol (4-NBT) and Congo Red (CR). Our straightforward room-temperature-
solution-based approach for making tunable SERS-active particles expands the range of incident radiation wavelengths that can be
used for the detection of analytes using Raman scattering.

1. INTRODUCTION

Raman scattering arising from vibrational modes in analytes

nanospheres, nanotriangles, and nanostars have been explored
for the SERS-based detection of rhodamine 6G. The star-

(often referred to as molecular Raman scattering) provides
unique fingerprints allowing detection with great specificity.’
Because Raman signals are extremely weak, various strategies
are used to overcome this limitation. In surface-enhanced
Raman scattering (SERS), incident radiation excites surface
plasmons on a rough metal substrate placed adjacent to a
dielectric medium.”~* The amplification of the incident electric
field at the substrate surface enhances the Raman scattered
signal, and a variety of analytes can be detected at low
concentrations.”>°

Tuning the plasmon resonance of the SERS particles to the
incident radiation wavelength can further enhance the local
electric field in the vicinity of the substrate.”” The size and
surface morphology of metal nanostructures can produce
changes in their localized surface plasmon resonance (LSPR)
wavelengths, suggesting a pathway for tuning the absorption
characteristics of the particles.®”"> The shape of gold
nanoparticles used for SERS has been varied by chan§ing the
concentrations of the gold salt,"* the reducing agent,” or the
seed particles.”> Gold nanospheres, aggregates of these
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shaped particles showed the maximum enhancement of SERS
signals'® because of the high enhancement of the electric fields
at the tips.>'>'772°

Gold-coated carbon-black nanoparticles (AuCB NPs) were
developed previously for the detection of a variety of analytes
using SERS.”" In this work, we demonstrate a facile synthesis
method in which the surface topology of the AuCB NPs is
tuned by varying the concentration of an amine-containing
polyelectrolyte that serves as a shape-directing agent. Carboxyl-
terminated carbon-black particles serve as the underlying
template, promoting the absorption of the polyelectrolyte as
well as providing a morphological guide. The ability to fine-
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Figure 1. Characterization of CB particles: (a) TEM image of CB particles; (b) {-potential of the CB and CB particles after the addition of PLL at
pH 8. The error bars refer to the standard deviation of the measurements. Four different samples were used, and the measurements were done in

duplicate.

tune the shape of our particles allows us to readily adjust the
AuCB NP LSPR to match available laser excitation wave-
lengths, thus providing substantially increased SERS signals
from a range of analytes.

Using 4-nitrobenzenethiol (4-NBT) and Congo Red (CR)
as model analytes, we show that the strongest Raman signals
arise when the laser wavelength, 532 and 785 nm for this study,
is as close as possible to the LSPR wavelength of the particles.
We note that this strategy is different from the resonance
Raman Scattering, where the radiation energy is specifically
matched to the energy transitions of the analyte.

To reduce the effects of heterogeneous hotspot distribution
in our samples, we explored two commonly used SERS signal
normalization methods: the electronic Raman scattering (ERS)
signal from the gold on our particles and the signal from the
underlying silicon substrate. Electronic Raman scattering arises
from inelastic scattering from sp-band electrons in metals.””
The ERS signal appears in the low Raman shift region.”” For
our particles, the magnitude and variability of the ERS and
silicon signals were highly dependent on the incident laser
wavelength. Both normalizations reduced the variability of the
molecular Raman scattering signal for the 785 nm radiation,
but not for the 532 nm radiation.

2. MATERIALS AND METHODS

Poly (r-lysine hydrochloride) (PLL, MW = 15,000—30,000),
tetrachloroauric(II) acid trihydrate (HAuCl,-3H,0), 4-nitrobenze-
nethiol (4-NBT), 4-aminothiophenol (4-ATP), Congo Red (CR),
and ascorbic acid (AA) were purchased from Sigma-Aldrich.
Deionized water (DIW), with a resistance of 18 MC, was obtained
from a Millipore Direct-3Q_purification system. A para-aminobenzoic
acid terminated carbon-black (CB) suspension (15% w/w) in water
was obtained from Cabot Corporation. All materials were used as
received.

2.1. Synthesis and Characterization of Gold-Coated
Carbon-Black Particle (AuCB). Three different sets of particles
were synthesized at room temperature with different PLL/CB weight
ratios. We prepared 4 mL of aqueous PLL solutions at concentrations
of 75, 175, and 375 pg/mL. 1 mL of CB 0.015% w/w was added
dropwise to the stirring PLL solution. The PLL/CB weight ratios for
AuCB-A, AuCB-B, and AuCB-C particles were 2:1, 5:1, and 10:1,
respectively. Subsequently, 1 mL of the suspension containing PLL
and CB was added to 3 mL of DIW and mixed with 80 uL of 50 mM
HAuCl,, followed by the addition of 80 uL of 75 mM ascorbic acid.
The solution was stirred for 2 min and the appearance of a brown-
bluish color indicated the formation of AuCB nanoparticles. The
suspension was centrifuged twice at 4930 g for 10 min, the
supernatant was removed each time, and then the pellet was
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resuspended in 4 mL of DIW. The sample suspensions were stored
at 4 °C until used.

The particles were imaged using transmission electron microscopy
(TEM) on JEOL JEM-2100 at an accelerating voltage of 200 kV.
Images were processed using Image]. For scanning transmission
electron microscopy coupled with electron energy loss spectroscopy
(STEM-EELS), a JEOL F200 STEM microscope equipped with a
Gatan Continuum spectrometer was used. The STEM-EELS maps
were acquired with a 1 nm per pixel spatial resolution and 50 meV/ch
EELS energy dispersion. A Zeiss Sigma VP field emission scanning
electron microscope was used to image the particles on silicon wafers.
The extinction spectrum of the suspension was monitored using a
Jasco spectrophotometer. A quartz cuvette was loaded with the AuCB
NP diluted by a factor of 7 from the original suspension
concentration. Optical densities were normalized by the highest
value obtained in each extinction spectrum. A Malvern Zetasizer
Nano ZS was used to determine the zeta potentials of the CB,
PLLCB, and AuCB nanoparticles. A Brookhaven Instruments BI-
2000SM goniometer was used to measure the hydrodynamic diameter
of the nanoparticles at a scattering angle of 90°.

2.2. Sample Preparation for Raman Scattering. 2.2.1. 4-
Nitrobenzenethiol (4-NBT). AuCB nanoparticle pellets were
resuspended in 3 uL of an aqueous solution of 10 uM 4-NBT in
an ice bath while shaking for 24 h at 60 RPM to allow the analyte to
be adsorbed on the particles.”® Excess 4-NBT was removed using
three centrifugation washes with DIW. 30 uL of the analyte-coated
particle suspension was then deposited on a 5 X S mm® plasma-
cleaned silicon wafer. The suspension spread uniformly over the wafer
and was allowed to dry overnight at room temperature. These
particle-loaded wafers were examined using confocal Raman
microscopy and scanning electron microscopy.

2.2.2. Congo Red (CR). Because AuCB NPs and CR are oppositely
charged, the addition of CR to the AuCB NP suspensions caused
particle agglomeration and precipitation. Therefore, for these
experiments, the AuCB NP suspension was deposited on a wafer
and allowed to air dry overnight. Particle-coated silicon wafers were
immersed in a 10 M aqueous CR solution overnight and then rinsed
with DIW to remove unbound CR prior to Raman measurements.

Since ascorbic acid was added at the stoichiometric ratio, we
assumed the complete reaction of all of the available HAuCl,. We
used this information to make equal mass areal loadings of AuCB-A,
AuCB-B, and AuCB-C on the silicon wafer for all our experiments,
allowing us to compare signals from different particles.

2.2.3. Spectral Processing. A confocal Raman microscope (WITec
a 300) with a 100X air objective and numerical aperture of 0.9 was
used to probe our samples. A 785 nm 1.2 mW laser and a 532 nm 2.2
mW laser were used for incident radiation. The integration time was
15 s. For each substrate, 150 spectra were acquired in random spots.
After baseline subtraction, all spectra were normalized by the laser
power and integration time.”*** In an effort to reduce variability
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Figure 2. Proposed mechanism for the formation of AuCB particles. Varying the PLL concentration changes the number of PLL-AuCl, clusters.
These clusters adsorb on the particles and act as nucleation sites. The different concentrations of nucleation sites result in different morphologies of

AuCB -A, AuCB-B, and AuCB-C particles.
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Figure 3. Images of AuCB synthesized with different PLL/CB weight ratios. TEM image of (a) AuCB-A, (b) AuCB-B, and (c) AuCB-C. SEM
images of (d) AuCB-A, (e) AuCB-B, and (f) AuCB-C. TEM and SEM images show differences in the size and morphology of AuCB particles.

coming from random distributions of hotspots, Raman signals were
also normalized using the electronic Raman scattering (ERS) from
0ld,****” or by the signal coming from the underlying silicon
wafer.”® The ERS signals appear as pseduopeaks at a shift of 63 cm™
for the 785 nm laser and 108 cm™ for the 532 nm laser due to the
presence of a long-pass filter to block Rayleigh scattering in our
confocal Raman microscope.”® The Raman peak from silicon was
located at 523 cm™!. SERS measurements from 4-NBT on AuCB-A
using a 633 nm laser excitation are shown in the Supporting
Information.

3. RESULTS

3.1. Carbon-Black Particle Characterization. Figure 1la
shows TEM images of the carbon-black nanoparticles used as
templates for the synthesis of AuCB NP. The primary particle
diameter is approximately 20 nm, and 8—10 of these particles
fuse together forming random structures. The mean hydro-
dynamic diameter of the CB particles in aqueous suspension at
30 ugm/L and pH 8 is 122 + 3 nm.

At pH 8, the carboxyl groups on the carbon-black particles
are deprotonated and the {-potential is —45 + 1.5 mV (Figure
1b).**” PLL is a cationic polyelectrolyte, with repeating L-
lysine units.”>*" It adsorbs on the negatively charged CB

particles, resulting in surface charge reversal as shown in Figure
1b. For PLL/CB weight ratios of 2:1, $:1, and 10:1, the {-
potentials were +44 + 0.7, +48 + 2.3, and +55 + 1.2 mV,
respectively, at pH ~8.

Carbon black in the AuCB can also induce nonspecific
binding, potentially allowing probe molecules to remain close
to the particle surfaces.”"**

3.2. Poly-L-Lysine Effect on AuCB Morphology.
Particles AuCB-A, AuCB-B, and AuCB-C are formed by the
process shown in Figure 2. Poly-L-lysine (PLL) is electrostati-
cally attached to the surface of CB, reversing the {-potential of
CB particles from —45 mV to +55 mV. The HAuCl, solution is
then added, and the AuCl," ions bind to the positively charged
surface with some AuCl,~ ions remaining in the solution. The
AuCl,” ions on the particle surfaces as well as in the bulk
solution are reduced to gold upon the addition of ascorbic
acid. We hypothesize that PLL in the solution interacts with
AuCl,” ions, forming PLL-AuCl, clusters that adsorb on
specific facets of the gold formed on the PLL/CB template,
causing an anisotropic growth of AuCB NP.”"**~*" Higher
PLL concentrations increase the number of growth sites,
leading to structures of different morphologies.
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Figure 4. Characterization of the AuCB NP produced with different PLL/CB weight ratios. (a) {-Potentials of AuCB-A, AuCB-B, and AuCB-C.
(b) Hydrodynamic diameters of particles AuCB-A, AuCB-B, and AuCB-C. (c) Extinction spectra of particles AuCB-A, AuCB-B, and AuCB-C
averaged over nine independent samples. The green and red arrows show the laser wavelengths of 532 and 785 nm. The extinction spectra are
broad because of the heterogeneity in the morphology of the nanostructures and differences in the size and morphology of the protrusions on the
particle surfaces. (d) Average wavelength of the LSPR peak from nine separate samples. Error bars correspond to the standard deviation.

Figure 3a—c shows TEM images and Figure 3d—f shows
SEM images of particles AuCB-A, AuCB-B, and AuCB-C. As
the PLL/CB weight ratio increases, the particles show
protrusions of increasing length, and their hydrodynamic
diameters grow larger. The average height of these
protrusionsl?”15 are 19 + 7, 38 + 12, and 59 + 20 nm for
AuCB-A, AuCB-B, and AuCB-C, respectively.

Figure 4a shows the {-potentials for PLL/CB with the
different PLL-to-CB weight ratios and for AuCB-A, AuCB-B,
and AuCB-C. Once PLL is adsorbed on the carbon-black
particles, the {-potential changes from negative to positive.
Adsorption of AuCl,” ions and a further reduction does not
change the (-potential, indicating that the charge on the
particle surface is dominated by the charge on the cationic
polyelectrolyte and HAuCl, is not in excess. The hydro-
dynamic diameters of AuCB-A, AuCB-B, and AuCB-C, shown
in Figure 4b, are 154 + 8, 175 + 12, and 200 + 6 nm,
respectively. Figure 4c shows the extinction spectra averaged
from nine separate samples for AuCB-A, AuCB-B, and AuCB-
C. The spectra red-shift as well as broaden as the PLL/CB
weight ratio is increased. The extinction spectra for AuCB NP
dried on glass are shown in the Supporting Information
(Figure S1). Figure 4d shows the location and average
magnitude of the peak LSPR wavelength in the extinction
spectrum of the nine samples. The broad extinction spectrum
obtained from these particles is caused by the morphological
heterogeneity of the underlying CB template, variations in
particle size, and differences in the size, position, and shapes of
the protrusions on the surface.""'***?

3.3. Particle Stability. We examined the stability of the
suspensions containing AuCB-A, AuCB-B, and AuCB-C by
monitoring the extinction spectra®® over 8 days, as all analyte

14348

detection experiments were performed within 1 week of
synthesis of the particles. The location of the highest extinction
peaks is shown in Figure 5. The wavelength of the extinction
maximum remains essentially unchanged over 8 days,
indicating that the particles do not change the morphology
or aggregate over this period."’
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Figure S. Highest extinction peak monitored over time for AuCB-A,
AuCB-B, and AuCB-C. X-axis scale logarithmic.

3.4. SERS Measurements. Since particles AuCB-A and
AuCB-B had the nearest LSPR peak wavelengths to the
available laser radiation of 785 and 532 nm, most of the Raman
measurements were done with those two sets of particles.

We did electron energy loss spectroscopy (EELS) for our
particles.”' Figure 6 shows the maps for AuCB-A, AuCB-B, and
AuCB-C. The energy windows correspond to surface plasmon
modes with photon wavelengths ranging from 953 to 755 nm
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Figure 6. EELS maps showing plasmonic hotspots for AuCB-A, AuCB-B, and AuCB-C. The energy values shown correspond to surface plasmons
modes with photon wavelengths of 953—755 nm (1.3—1.6 eV), 729—620 nm (1.7—2.0 eV), and 564—496 nm (2.2—2.5 V). The number on the
top left corner of each image is the average intensity per pixel. The scale bars are 100 nm.

Figure 7. SEM images of dried films of (a) AuCB-A and (b) AuCB-B on plasma-cleaned silicon wafers. Drying introduces some agglomeration of

the particles on the wafer, shown by red arrows.

(1.3-1.6 eV), 729 to 620 nm (1.7—2.0 V), and 564 to 496
nm (2.2—2.5 V). The average intensity of the pixels around
the particle is noted on each map. The intensity of the
plasmons of AuCB-A increases as the photon wavelength
decreases, whereas the plasmon intensity of AuCB-B decreases
as the photon wavelength decreases. AuCB-C EELS map
intensities remain almost constant within the experimentally
available photon energies, in agreement with the long-
wavelength resonance energy. The maximum plasmon
intensities are in the regions of the highest curvature of
these particles.***

Figure 7 shows SEM images of the particles on the wafer
after drying. The particles are distributed over the silicon wafer
surface, and there is some drying-related agglomeration.
Raman signals from the 4-NBT and Congo Red coated
samples were acquired on multiple spots on the substrate. The
same substrates were used to acquire data for the 785 and 532
nm lasers.

While both 4-NBT and Congo Red show several signature
Raman shifts that correspond to vibrations associated with
different bonds in the molecules, we focus on the prominent
NO, symmetric stretch at 1337 cm™! for 4-NBT,"*** and the
phenyl-N stretch at 1157 cm™ for the Congo Red."’Figure
8a,b show the data from the 785 and 532 nm lasers,
respectively, and are the average of the 150 Raman spectra
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gathered from different randomly selected spots on the
substrates. For all of the spectra, the background was
subtracted”® and then normalized by laser power and
integration time.”’

Figure 8c,d shows the average intensities of the 1337 cm™
signal corresponding to the NO, symmetric stretch, 7%
AuCB-B, with an LSPR maximum at 780 nm, produced the
highest Raman signal intensity for the measurements with 785
nm laser excitation, and the AuCB-A with an LSPR maximum
at 630 nm gave the highest Raman signal for the 532 nm
excitation source. This result supports the hypothesis that the
highest Raman signals come from excitation at wavelengths
closest to the LSPR of the particles.”* ' Raman spectra from
4-NBT on AuCB-A with a 633 nm wavelength laser are
presented in the Supporting Information, Figure S2. The
signals from AuCB-C were weaker than from the other two
types of particles for both lasers, (Figure S3 in the Supporting
Information). Additionally, 4-aminothiophenol (4-ATP) was
also detected and showed the same trend as 4-NBT (Figure S4
in the Supporting Information).

These experiments were repeated for CR and shown in
Figure 9a,b. AuCB-B gave a higher signal with the 785 nm laser
excitation, while AuCB-A showed a higher signal for the 532
nm laser source. Figure 9¢c,d shows the intensity of the 1157
cm™! peaks from the phenyl-N stretch of the CR.*” For this

1
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analyte too, the highest Raman signals arose when the laser

wavelength was closest to the particle LSPR. The Raman
spectra from CR are different for 532 and 785 nm wavelength

excitations because tCR exhibits an absorption band in the

visible range from 398 to 580 nm with a maximum at 496 nm,
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which is in resonance with a laser of 532 nm (Figure SS in the
Supporting Information).****
We calculated enhancement factors (EF) for our particles,

Iy o
defined by EF = %, where Iy,cp and Iy g are the
usheet

intensities of the Raman signals from the 1337 cm™' NO,
symmetric stretch for 4-NBT on our AuCB NP and 4-NBT
deposited on a gold sheet, respectively.””>® Each signal is
normalized by the integration time. The EF values, presented
in Table 1, for the two excitation wavelengths used in this work

are of the same order of magnitude as those shown by
others.”"**77

Table 1. Enhancement Factor for AuCB NPs

laser wavelength (785 nm) laser wavelength (532 nm)

particle EF EF

AuCB-A 3.5 x 10* 6.9 X 10*
AuCB-B 7.3 x 10* 2.6 X 10*
AuCB-C 1.2 x 10* 24 X 10%

We have demonstrated that our AuCB nanoparticles can be
used to detect analytes via SERS, exploiting two different
analyte—substrate interaction mechanisms, covalent bonds for
thiolated analytes, and electrostatic interaction for negatively
charged analytes. We have also demonstrated the versatility of
AuCB, which can be mixed with samples of analyte in a
suspension or deposited and dried first on a substrate and then
exposed to the analyte solution.

3.5. Data Normalization Using Electronic Raman
Scattering (ERS) and Silicon Signals. The long-pass filter
used to block the Raleigh scatter truncates the ERS signals and
creates pseudo-peaks at Raman shifts of 108 and 63 cm™" for
the 785 and 532 nm radiation, respectively. The silicon shift is
at 523 cm™L Figure 10a,b shows the intensities of the ERS

pseudo-peaks, Irps, and signal from the silicon, Ig;, for the 785
nm radiation, and Figure 10c,d shows those intensities for the
532 nm radiation. The silicon signal is dependent on gaps in
the coverage of the wafer by the particles and small differences
in the thickness of the coating of AuCB on the silicon wafer.
Because of the shorter penetration depth of the 532 nm
radiation, Iy has a large variability for both AuCB-A and
AuCB-B.

Therefore, we decided to only pursue normalization by the
ERS pseudo-peak (data shown in Figure S6 in the Supporting
Information). Izgg from the 785 nm excitation is of the order of
850 counts/mW-s with a low standard deviation, while that
from the 532 nm excitation is of the order of 0.7 counts/mW-s
with a large standard deviation. The differences in variability
arise from the difference in the ERS signal intensity; while the
ERS signal is much higher than the spectral noise for the 785
nm laser, the ERS signal intensity at 532 nm excitation is
comparable to the spectral noise. The low Raman-shift ERS
effect is enhanced with the near-infrared excitation compared
to the visible-light excitation because the photons at the near-
infrared wavelength do not have enough energy to excite
interband and intraband transitions.””

As shown in Figure 11, normalization of the Raman signals
using ERS (I, npr/Iggs) at 532 nm does not result in reduced
variability, while it did reduce variability for the 785 nm laser
going from a coeflicient of variation of 29 to 5% for AuCB-A
and a coefficient of variation going from 12 to 8% for AuCB-B.
Therefore, using nanoparticles optimized for 785 nm excitation
and normalizing the data using the ERS peak to account for the
variability of hotspot distribution has the potential to improve
reproducibility and lower the detection limit for analytes.
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Figure 10. Intensity of the ERS (Igrg) and Si (Ig;) wafer signals for particles AuCB-A, and AuCB-B. (a) Igxs (b) and I, for 785 nm laser source. (c)

Iggs and (d) I; for 532 nm laser source.
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4. CONCLUSIONS

Gold-coated carbon-black particles were synthesized using
colloidal processing at room temperature. Varying the
concentration of the cationic polyelectrolyte coated on the
anionic carbon-black particles allows tuning the size and
morphology of the particles and thus the peak localized surface
plasmon resonance wavelength (LSPR). When the LSPR of
the nanoparticles is most closely matched to the incident laser
wavelength, the Raman signals from two analytes with distinct
substrate attachment mechanisms showed the greatest
intensity. For the two hotspot normalization methods
evaluated, ERS normalization of the data acquired with a
785 nm laser excitation showed the best reduction in signal

variability.
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