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Redshift and multiplication for truncated
Brown—Peterson spectra

By JEREMY HAHN and DYLAN WILSON

Abstract

We equip BP(n) with an E3-BP-algebra structure for each prime p and
height n. The algebraic K-theory of this ring is of chromatic height exactly

n + 1, and the map K(BP(n))) — L, K(BP(n))(, has bounded above

fiber.
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1. Introduction

Our main aim here is to prove the following:

1277
1285
1299
1309
1317
1320
1329
1336
1339
1344

THEOREM. For each prime p and height n, there exists an E3-BP-algebra
structure on BP(n). The algebraic K-theory of the p-completion of this ring
has finitely presented cohomology over the mod p Steenrod algebra, and it is of

fo-type n + 1 after p-completion.
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The principal connective theories in the chromatic approach to stable
homotopy theory are thus more structured than previously known, and they
satisfy higher height analogs of the Lichtenbaum—Quillen conjecture. The Eg
forms of BP(n) constructed here give the first known examples, for n > 1, of
chromatic height n theories with algebraic K-theory provably of height n + 1.

The redshift philosophy. In his 1974 ICM address, Quillen [Qui75] stated
as a “hope” the now proven Lichtenbaum-Quillen conjecture [Voe03], [Voell].
His hope was that the algebraic K-theory of regular noetherian rings could be
well approximated by étale cohomology, at least in large degrees. Ten years
later, Waldhausen [Wal84] investigated interactions between his K-theory of
spaces and the chromatic filtration. He observed that, in the presence of a
descent theorem of Thomason [Tho82], the Lichtenbaum—Quillen conjecture
could be restated in terms of localization at complex K-theory. Let L{ de-
note the localization that annihilates those finite spectra with vanishing p-adic
complex K-theory; for suitable rings R, the Lichtenbaum—Quillen conjecture
is equivalent to the statement that

mK(R)() — mLIK(R) ()

is an isomorphism for * > 0.

Algebraic K-theory is defined not only on rings, but (crucially for ap-
plications to smooth manifold theory) on ring spectra. One of the deepest
computations of the algebraic K-theory of ring spectra to date is by Ausoni
and Rognes [AR02], who for primes p > 5 computed the mod (p,v;) K-theory
of the p-completed Adams summand Eﬁ. Their computations imply that

K(£)) ) — LKD) )

is a m,-isomorphism for * > 0. Here Lg is the next localization in a hierarchy
of chromatic localizations Lf; for each n > 0 (at an implicit prime p). This of
course suggests a higher height analog of the Lichtenbaum—Quillen conjecture.
In the Oberwolfach lecture [Rog00], Rognes laid out a far-reaching vision of
how this higher height analog might go, which is now known as the chromatic
redshift philosophy. The name redshift refers to the hypothesis that algebraic
K-theory should raise the chromatic height of ring spectra by exactly 1.

To give a more precise statement, we will need the notion of fp-type,
due to Mahowald-Rezk [MR99]: A p-complete, bounded below spectrum X is
of fp-type n if the thick subcategory of p-local finite complexes F' such that
| (F ® X)| < oo is generated by a type (n+ 1) complex (i.e., a complex with
a vp41 self-map).

With this definition, Ausoni—Rognes conjecture that

Conjecture. For suitable Ei-rings R of fp-type n, K(R);\ is of fp-type n+1.
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As we review below (see Theorem 3.1.3), this statement also implies that
K(R) — Lfl 1 K(R) is a p-local equivalence in large degrees, so we can think
of it as a higher height analog of the Lichtenbaum—Quillen conjecture.

In the years since the Ausoni—-Rognes computations, redshift has been
verified for additional height 1 ring spectra, including ku;\, KU;)\, and ku/p
at primes p > 5 [BMOg], [Ausl0], [AR12a], and evidence for redshift has ac-
cumulated in general [BDRO4], [Rogl4], [Wesl7], [Veel8], [AK21], [AKQ21a],
[CSY21]. Recent conceptual advances show that the algebraic K-theories of
many height n rings are of height at most n+1 [LMMT22], [CMNN20]. Here,
we give the first arbitrary height examples of ring spectra for which redshift
provably occurs.

Main Results. The truncated Brown—Peterson spectra, BP(n), are among
the simplest and most important cohomology theories in algebraic topology.
There is one such spectrum for every prime p and height n > 0, though we will
follow tradition by localizing at the prime and omitting it from notation.! The
height 1 spectrum BP(1) is the Adams summand ¢, while BP(2) is a summand
of either topological modular forms (at p > 5), or topological modular forms
with level structure (at p = 2,3).

Both ¢ and tmf are extraordinarily structured: they are E..-ring spectra,
inducing power operations on the cohomology of spaces. Our first main result,
proven in Section 2, is a construction of part of this structure at an arbitrary
height n. To make sense of the statement, we remind the reader that BP
admits the structure of an E4-ring by [BM13].

THEOREM A (Multiplication). For an appropriate choice of indecompos-
able generators

Un+1, Un+2, - .. € TBP,

the quotient map

BP — BP/(vpsi1,...) = BP(n)

is the unit of an E3-BP-algebra structure on BP(n).
Our second main theorem establishes the above conjecture for R=BP(n).

THEOREM B (Redshift). Let BP(n) denote any E3-BP-algebra such that
the unit BP — BP(n) is obtained by modding out a sequence of indecomposable
generators Up41,Vpt2,.... Then K(BP(n>$);,\ is of fp-type n + 1.

1At each prime p and height n > 0, BP(n) is conjectured to be unique as a p-local
spectrum. For n > 1, uniqueness is only proved up to p-completion, by work of Angeltveit
and Lind [AL17].
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Corollary. For BP(n) any Es-BP-algebra as above, both maps
K(BP(n)}) ) = Ly KBP(n)}) ),
K(BP(n))(,) — LI KBP(n))y,
induce isomorphisms on 7, for * > 0.

To prove Theorem B by trace methods, the critical thing to show is that
m(V @ TC(BP(n))) is bounded above for some type (n + 2) complex V. We
recall [NS18] that the p-completed topological cyclic homology of BP(n) can
be computed as the fiber

1
A @S —can

TC(BP(n)) ~ fib ((THH(BP<n>)h51) - (THH(BP<n>)t51)A> :
P P
where the map
¢ : THH(BP(n)) — THH(BP(n))!‘r

is the cyclotomic Frobenius. (See Section 3.2 for our conventions on cyclotomic
spectra.)

One would like to argue that (¢ ' —can) is an equivalence in large degrees
after tensoring with a type (n + 2) complex. We will deduce this from the
following two theorems:

THEOREM C (Segal conjecture). Let F' be any type n + 1 complex. Then
the cyclotomic Frobenius THH(BP(n)) — THH(BP(n))“r induces an isomor-
phism

F,THH(BP(n)) = F,(THH(BP(n))“»)

i all sufficiently large degrees x > Q.

THEOREM D (Canonical vanishing). Let F' be any type n + 2 complex.
There exists an integer d > 0 (depending on F') such that, for all 0 < k < oo,
the composite

7>a(F@THH(BP(n))"“»*) — F@ THH(BP(n))"“» <% F @ THH(BP(n))'“*
18 nullhomotopic.

We note that the first theorem involves only the cyclotomic Frobenius
map, and the second theorem only the canonical map. We use different tech-
niques to analyze each one.

In order to prove Theorem C, we use a filtration on BP(n) to reduce the
statement to a graded version of the Segal conjecture for polynomial algebras
over [Fp,, which we then prove directly. This is done in Section 4.

To prove Theorem D, we investigate the S!-spectrum THH(BP(n)/MU)
of Hochschild homology relative to MU. This spectrum is much simpler to
understand because of the following analog of Bokstedt’s periodicity theorem:
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THEOREM E (Polynomial THH). The ring THH(BP(n)/MU), is polyno-
mial over m,BP(n) on even-degree generators, one of which can be chosen to
be the double-suspension class 0?v, 1. (For the definition of double-suspension
classes, see A.2.4.)

We may take advantage of the circle action on THH to shift the class
0%v,41 down to a class detecting v, 1. More precisely, we prove

THEOREM F (Detection). There is an isomorphism of Zgy[v1,. .., vn]-
algebras

m.(THH(BP(n)/MU)"*") 2 (r, THH(BP (n)/MU)) [¢],
where |t| = —2. This isomorphism can be chosen such that, under the unit map
1 1
T (MU} ) = o (THH(BP(n) /MU)"S"),
the canonical complex orientation maps to t and vpy1 is sent to t(02vn+1).
Theorem F already implies the following weak form of redshift:

Corollary (Corollary 5.0.2). L ,4+1)K(BP(n)) is non-zero.

Finally, in order to prove Theorem D, we must descend information along
the S'-equivariant map

THH(BP(n)) — THH(BP(n)/MU).

In Section 6, we study this descent spectral sequence after tensoring with a
type n 4+ 1 complex. Using this information we are able to understand enough
about the homotopy and Tate fixed point spectral sequences associated to
THH(BP(n)) to prove a weak form of the Canonical Vanishing Theorem. As
explained to us by an anonymous referee, and proven in Section 3, this weak
form of canonical vanishing together with the Segal conjecture is enough to
prove the strong form of canonical vanishing as well as the main theorem. In
fact, we establish the following result, which is equivalent to the combination
of Theorems C and D and also directly implies Theorem B.

THEOREM G (Bounded TR). For any type n+2 complex F', the spectrum
F ® TR(BP(n)) is bounded.

For a review of the functor TR, see Section 3.2.

Remarks on the Multiplication Theorem. As pointed out by Morava, BP(n)
may be equipped with different homotopy ring structures [Mor89]. Our redshift
arguments only apply to forms of BP(n) that are E3-BP-algebras, which we
guarantee to exist by Theorem A. To check whether previously studied forms
of BP(n) admit such structure, there is a convenient criterion due to Basterra
and Mandell:
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Remark 1.0.1. Suppose that a form of BP(n) is equipped with an E4-
algebra structure. Then there are no obstructions to producing an E4-ring

map from BP to BP(n) [BM13, Cor. 4.4 and Lemma 5.1]. Any such E4-map
is the unit of an [Ez-BP-algebra structure, allowing us to apply Theorem B.

Ezample 1.0.2. At p = 2, connective complex K-theory is an E,, form of
BP(1), and it follows that K(ku})) is of fp-type 2. Even the non-vanishing of
L (2) K(ku) was previously known only for p > 5 [AR02].

Similarly, we can deduce at p = 2 that K(tmf1(3)%)5 is of fp-type 3,
since tmf;(3) is the Lawson—Naumann E,, form of BP(2) [LN12]. Applying
algebraic K-theory to the Eo,-ring map tmf — tmf;(3), we conclude that
LK(3) K(tmf) # 0.

Remark 1.0.3. Our methods may help to prove that the algebraic K-
theories of many other height n rings are not K(n + 1)-acyclic, especially
when combined with the descent and purity results of [CMNN20], [LMMT22].
For example, at the prime 3 these results imply that the non-vanishing of
L (2)K(ku) is equivalent to the non-vanishing of Lg 2y K(ko) (cf. [Aus05]),
and the latter follows from the fact that 3-localized ko is an Eo, form of BP(1).

To give context to Theorem A, the question of whether BP(n) can be
made E., was once a major open problem in algebraic topology [May75]. In
breakthrough work, Tyler Lawson [Law18] and Andrew Senger [Sen22] showed
this to be impossible whenever n > 4.

While the non-existence of structure is of great theoretical interest, it is
the presence of structure that powers additional computations. For example,
in this work we use the Eg-algebra structure guaranteed by Theorem A in order
to prove the Polynomial THH Theorem (2.5.3), which is the key computational
input to many of the remaining results of the paper. Our proof of Theorem A
relies on a number of ideas that we have not discussed so far; see Section 2.1
for an outline of the proof of Theorem A.

Remark 1.0.4. Prior to our work, other authors had succeeded in equip-
ping BP(n) with additional structure. Notably, Baker and Jeanneret produced
E;-ring structures [BJ02] (cf. [Laz01], [Ang08]), and Richter produced Robin-
son (2p—1)-stage structures on related Johnson-Wilson theories [Ric06]. Law-
son and Naumann equipped BP(2) with E.-structure at the prime 2 [LN12],
and Hill and Lawson produced an E., form of BP(2) at p = 3 [HL10].

Remark 1.0.5. Basterra and Mandell proved that BP admits a unique
[E4-algebra structure, a fact that is necessary to make sense of E3-BP-algebras
[BM13]. They also show that BP is an E4-algebra retract of MU 4, so a p-local
Es-MU-algebra inherits an Es-BP-algebra structure. Our proof of Theorem A
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most naturally produces an E3-MU-algebra structure on BP(n). In fact, if one
also formulates Theorem B in terms of E3-MU-algebra structures, then none
of the statements or proofs in this paper rely on [BM13].

Remark 1.0.6. It is not surprising that Es-algebra structure on BP(n) is
useful in the proof of redshift. As far back as 2000, Ausoni and Rognes observed
that redshift could be proved whenever BP(n) is Eo and the Smith-Toda
complex V(n) exists as a homotopy ring spectrum [Rog00]. Unfortunately,
both of these hypotheses are known to generically fail [Nav10], [Law18].

Open Questions. Our work leaves open many natural questions, chief
of which is to determine the homotopy type of K(BP(n)). Since we show
this homotopy type to be closely related to its localization L{l 1 K(BP(n)),
one might hope to assemble an understanding via chromatic fracture squares

(cf. [AR12b]). We would also like to highlight the following:

Question 1.0.7. For what ring spectra R, other than R = BP(n), is it
possible to prove a version of the Segal conjecture?

Question 1.0.8. For what ring spectra R, other than R = BP(n), is it
possible to prove a version of the Canonical Vanishing Theorem?

While variants of the Segal conjecture have received much study (see Sec-
tion 4 for some history), the Canonical Vanishing result does not seem as widely
analyzed. It seems plausible that a ring R might satisfy Canonical Vanishing
but not the Segal conjecture, or vice versa.

Question 1.0.9. What ring spectra R, other than R = BP(n), satisfy
redshift, or various less precise forms of the Lichtenbaum—Quillen conjecture?

For an arbitrary BP(n)-algebra R satisfying the Segal conjecture, Akhil
Mathew has deduced (given our work here) various Lichtenbaum—Quillen state-
ments. He has graciously allowed us to reproduce his results at the end of
Section 3.3.

Remark 1.0.10. Redshift for E;-rings that are far from complex oriented
remains mysterious. For some intriguing results in this direction, see the work
of Angelini-Knoll and Quigley [AKQ21a] on the family of spectra y(n).

One would also like to make many of the above results effective, rather
than asserting an isomorphism in degrees above an unspecified dimension. Es-
pecially the following question is interesting, since it does not depend on a
choice of a finite complex:

Question 1.0.11. In precisely what range of degrees is the map
K(BP(n))(,) — LI KBP(n))y,

a my-isomorphism?
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Theorem A proves that some form of BP(n) admits an Ez-BP-algebra
structure, and it remains an interesting open question to determine exactly
which forms admit such structure.

Question 1.0.12. Which forms of BP(n) admit an Ez-BP-algebra struc-
ture? Which of these can be built by the procedure in Section 27

The subtleties behind Question 1.0.12 are indicated by work of Strickland
[Str99, Rem. 6.5], who observed at p = 2 that neither the Hazewinkel or Araki
generators may be used as generators in Theorem A.

Remark 1.0.13. We suspect that our [Eg-algebra structure will be of use
in additional computations. For example, Ausoni and Richter give an elegant
formula for the THH of a height 2 Johnson—Wilson theory, under the assump-
tion that the theory can be made Eg [AR20]. Our result does not directly feed
into their work, for the simple reason that they use a form of BP(2)[vy '] spec-
ified by the Honda formal group. It seems unlikely that their theorem relies
essentially on this choice.

Remark 1.0.14. By imitating our construction of an Es-MU-algebra struc-
ture on BP(n), we suspect one could produce an Ey,1-MUg-algebra structure
on BP(n)r. As a result, the fixed points BP(n)H% would acquire an E;-ring
structure. At the moment, these fixed points are not even known to be homo-
topy associative [KLW18].
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Conventions and notation.

We work in the setting of co-categories as used in [Lurl7]. We will say cat-
egory and groupoid instead of co-category and oo-groupoid. We will denote
by Mape(X,Y) the mapping space between objects X,Y € C.

We let Sp denote the category of spectra.

If € is enriched over a category A, we denote by mape(X,Y) the morphism
object associated to a pair of objects X,Y € C. For example, if € is stable,
then it is canonically enriched over Sp, and we use mape(X,Y') to denote the
internal mapping spectrum. In cases below where € is stable and canonically
enriched over Modg for some E.-ring, no confusion should arise because the
underlying spectrum of the morphism object in R-modules will agree with
the morphism object in spectra.

We do not distinguish between a space and its corresponding groupoid; in
particular, we will speak about functors X — ©, where X is a space and C
is a category.

If M is a (discrete) module over a (discrete) ring R with elements x,y € M,
then we write x = y to mean that = \y where X is a unit in R.

If € is a category and G is a (possibly topological) group, then the category
of objects of C with G-action is the functor category Fun(BG,€). When
C = Sp, we will sometimes refer to these objects as G-spectra. The theory
of “genuine G-spectra” is not used in this paper, so there should be no
confusion.

Our conventions on grading spectral sequences associated to towers differs
from the usual one, since we prefer to begin our spectral sequences at the
second page. See Section C.1.

If € is a stable category equipped with a t-structure, we say that an object
X € Cis bounded above if X = 17<4X for some d € Z. We say that X is
bounded below if X = 754X for some d € Z. We say that amap f: X =Y
is truncated if the fiber of f is bounded above.

If A is an E;-R-algebra where R is an Eo-ring, we denote by THH(A/R)
the R-module A ® gg 00 A.

Our conventions on cyclotomic spectra differ somewhat from those in [NS18]
since we are only interested in constructions with p-complete spectra. See
Section 3.2 for a discussion.

2. The Multiplication Theorem

We begin by giving a more precise formulation of Theorem A. Recall that

there is a canonical inclusion [Qui69],

BP* — (MU(p))*,
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classifying the p-typification of the universal formal group law. We will write
{xi}i>0 for a choice of indecomposable polynomial generators of (MU ),
with |z;|=2i, such that the classes {x,,;_;};>1 form polynomial generators for
BP., over Z,). It will be convenient, at times, to change these generators, so
we do not fix such a choice. We write v; for the generator x,;_;. By convention
we agree that vy = p. The following definition may be compared with [LN12,
3.1, 3.2.

Definition 2.0.1. Let 1 < k < oo and n > 0. Let B be a p-local E;-MU-
algebra. We say that B is an Ex-MU-algebra form of BP(n) if the composite

Z(p) [’Ul, c ,Un] C BP, C (MU(p))* — B,
is an isomorphism. By convention, we consider I}, as the unique E;-MU-algebra
form of BP(—1).

Remark 2.0.2. The subring
Zip)[v1, .-, vn] € BPy

is equal to the subring generated by all elements of degree at most 2p™ — 2,
and hence is independent of our choice of polynomial generators. It follows
that the definition of an E;-MU-algebra form of BP(n) also does not depend
on this choice.

Ezxample 2.0.3. For any k > 1, there is a unique E;-MU-algebra form of
BP(0), which is the p-local integers Z,. The Adams summand ¢ of ku,
can be equipped with an E,-MU-algebra structure, which makes ¢ into an
E«-MU-algebra form of BP(1).

We will now relate the notion of a form of BP(n) to the quotients in
Theorem A.

Notation 2.0.4. Let J C Z>q be an indexing set, and {z;};cs a sequence
of elements in MU (). Define

MU, /(2525 € J) = Co}im ® MU )/ 2j,
jeJj<m

where the tensor product is taken over MU, and MUy, /#; is defined by the
cofiber sequence

BI35IMU ) 2 MU,y — MU, /2.

LEMMA 2.0.5. If B is an E1-MU-algebra form of BP(n), then there is a
choice of indecomposable generators xj € m;MU,), j > 1, and there is an
extension of the unit map ¢ : MU,y — B to an equivalence of MU-modules

(MU /(255 #p = 1,1 <i <n)) ~ B,
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Proof. Let :c; be any choice of indecomposable generators such that

(m;il,xlpzil, ... 7£U;)n71) = (’Ul, .o ,’Un).

By definition, if j # p’ — 1 for 1 < i < n, then W) = fj(v1,...,v,) for some
polynomial f; with coefficients in Z,). Define

z j=p-L1<i<n,
T4 = ;
i fj(l‘p,b cee 7xp”—1) else.
Then {z;} gives a new set of indecomposable generators for .MU,y with the

property that «(z;) = 0 when j # p* — 1 for some 1 < i < n. We may then
construct maps

& MUy /2 = (09 B — B,
j<m.j#pi—1,1<i<n j<m,j#pi—1,1<i<n
where the second map is the multiplication on B. Passing to the colimit gives
the desired equivalence

MU(p)/(xj1]'7épi—1,1§2‘§n)_>3' 0

It follows from the above lemma and Remark 1.0.5 that Theorem A is a
consequence of the following theorem, which will be the main result of this
section:

THEOREM 2.0.6. For all n > —1, there exists an Eg-MU-algebra form
of BP(n).

Remark 2.0.7. There are only a few results from Section 2 that will be
needed later in the paper. In addition to Theorem 2.0.6, the reader interested
in redshift need only understand Proposition 2.5.3 and Theorem 2.5.4.

2.1. Outline of the proof. For ease of exposition, we will not take care
in this outline to distinguish between different forms of BP(n). Our proof of
Theorem 2.0.6 proceeds by induction on n: assuming that BP(n) is an E3-MU-
algebra, we will construct BP(n + 1) as an E3-MU-algebra.

Consider the tower of MU-modules

BP(n+1) = -+ —= BP(n+1)/(vF. ) — - — BP(n).

By our inductive hypothesis, the base of the tower, BP(n), has been refined
to an Ez-MU-algebra. One possible way to proceed would be to inductively
equip each BP(n+1)/(vk ;) with an E3-MU-algebra structure. Unfortunately,
this would involve understanding the Es-MU-algebra cotangent complex of
BP(n +1)/(vk, ), which becomes increasingly difficult to control as k grows.

Instead, we will make a stronger inductive hypothesis. As we review
in Section 2.6, there are E.-MU-algebras MU[y]/(y*) refining the truncated
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polynomial algebras MU, [y]/(y*), where |y| = 2p"*! — 2. We will induct on
k to build BP(n +1)/(vk, ) as an E3-MU[y]/(y*)-algebra. Taking a limit, we
produce BP(n + 1) as an E3-MU[y|-algebra, where y acts by vp41.

In Sections 2.2 and 2.3 we review some background in deformation theory.
In Sections 2.4 and 2.5 we make the key non-formal computations of envelop-
ing algebras and cotangent complexes, which ultimately rest on Steinberger’s
computation of the action of Dyer—Lashof operations on the dual Steenrod al-
gebra and on Kochman’s computation of the action of Dyer—Lashof operations
on the homology of BU. Finally, in Section 2.6, we put the pieces together and
prove Theorem 2.0.6.

Remark 2.1.1. Our original argument, appearing in a preprint version
of this paper, relied on the theory of centers and some manipulations with
Koszul duality. We are extremely grateful to the first referee for explaining
how our two uses of Koszul duality “cancel each other out,” suggesting the
more intuitive argument sketched above.

Remark 2.1.2. Our argument constructs BP(n+1) as an E3-MU][y|-algebra,
where y acts by vy,4+1, but we remember BP(n + 1) only as an E3-MU-algebra
when constructing BP(n + 2). One might wonder whether, with more care,
it is possible to construct BP(n) as an E3-MU[yo, y1, . .., yn]-algebra, where y;
acts as v;. In fact, this is not possible, even when n = 1. If / were an Eg-
MU|yo]-algebra, tensoring over MU[yg]| with the augmentation MU[yy] — MU
would construct £/p = k(1) as an Es-algebra. However, any Es-algebra with
p = 0 in its homotopy groups must be an F,-module [MNN15, Th. 4.18].

2.2. Background: Operadic modules and enveloping algebras. Fix an E, 4 1-
algebra k, and let C = LMody,. If A € Algg (C) is an E,-algebra, then we can
define an E,,-monoidal category, Mod'{" (@), of E,,- A-modules ([Lurl7, 3.3.3.9]).
The relevance of this category in our case is the equivalence of ModE”(G)
([Lurl7, 7.3.4.14]) with the tangent category Sp(Algg, (C),4) controlling defor-
mations of A (see Recollection 2.3.1).

It follows from [Lurl7, 7.1.2.1] that we have an equivalence

Mod'}" (€) ~ LModym 4y,
where U™ (A), the E,-k-enveloping algebra of A, is the endomorphism algebra

spectrum of the free E,-A-module on k.

Remark 2.2.1. Tt follows from [Lurl7, 4.8.5.11] that the assignment B
un=7) (B) is a lax Ej-monoidal functor of B. In particular, if A is an E,-algebra
in €, then U("=7)(A) has a canonical E;1-algebra structure.

We will need the following standard fact:
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PROPOSITION 2.2.2. There is a canonical equivalence of algebras
UM (A) ~ A Brin-1a) A,
where AP denotes A regarded as an Ei-U"Y(A)-algebra with its opposite

multiplication.

Proof. The enveloping algebra is obtained by taking the endomorphism
algebra of a free object. So it suffices, by [Lurl7, 4.8.5.11, 4.8.5.16], to provide
an equivalence

Mod%" (€) =~ LMod 4(€) ® RMod 4(€@).

Mod "1 (€)

By [Lurl7, 4.8.4.6,4.3.2.7], we may identify the right-hand side as a category
of bimodules

LMod4(€) ® RMod 4 (€) ~ BMod 4(Mod ;" (€)).

Mod' "1 (€)

The result now follows from [HNP19, 1.0.4] by taking tangent categories at A
of the equivalence ([Lurl7, 5.1.2.2]):

A'%En(e) = AlgIEZ1 (A|g1En,1 (©)). U

Remark 2.2.3. One can use this result and induction on n to prove that

UM (4) ~ / A
R"—{0}

of the enveloping algebra with the factorization homology of A over R™ — {0}.

there is an equivalence

2.3. Background: Deformation theory. In this section we will review the
obstruction theory for deforming an algebra over a square-zero extension.
Throughout, if f : S — S’ is a map of Ey-rings, we will denote by f* the
induced functor S’ ®g (—) and by f. the restriction of scalars along f, to
emphasize the dependence on f.

In this section we will be using the cotangent complex formalism as in
[Lurl7, §7.3], which we briefly review now.

Recollection 2.3.1. If € is a presentable category, then there is a cocarte-
sian fibration Te — € whose fiber over A € C is given by the stabilization
Sp(€a). If M € Sp(€4), then we will denote by A® M the image of M under
the functor Q> : Sp(€,4) — C,4, and we will refer to this object as the trivial
square-zero extension of A by M. The cotangent complex of A, denoted Ly,
is the image of id4 under the adjoint ¥5° : €,4 — Sp(C€/4), so that

MapSp(e/A)(LAvM) =~ Mape/A(A, A ) M)
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Given 1 : Ly — M we will refer to the adjoint map d,, : A - A® M as the
derivation classified by n. Given such a derivation, we may form the pullback

AN A
e

n

where dj is classified by the zero map 0 : Ly — M. We refer to A" as the
square-zero extension classified by 7.

In the special case € = Algg (D), where D is a stable and presentably
E,,-monoidal category, there is a canonical equivalence [Lurl7, Th. 7.3.4.13]
Sp(Algg,, (D) /a) =~ ModE’"(@) with the category of E,,-A-modules. (When
m = oo, this is equivalent to the ordinary category of A-modules.) We denote
L4 by LEm and further decorate it as LE?R in the setting where D = Modpg
for an Eyo-ring R.

We now turn to the problem of classifying algebras over square-zero ex-
tensions. Let R be a connective Eo-ring and I a connective R-module. Let
n: Lr — X1 be a map of R-modules from the E,-cotangent complex of R to
31, and denote by R" the corresponding square-zero extension. By definition,
this sits in a pullback diagram

RN R

e

where d is adjoint to 1 and dy is the trivial derivation.

Recollection 2.3.2. If S is a connective Eo-ring, we will denote by Mod$'
the category of connective S-modules. By [Lurl8, Th. 16.2.0.2], the pullback
diagram above induces a symmetric monoidal equivalence
d(f%n@zl Mo CRn’
and hence an equivalence upon taking categories of E,,-algebras

Algg, (Mod,) — Algg, (Mod) X Algg, (Modst,s,) Algg,, (ModZ').
Denoting an element in the target by (A, B,a : d*A ~ djB), the inverse to
this equivalence is implemented by the functor (A4, B,a) — A Xg4+4 B.

Mod%, — Mod%' X Mo

LEMMA 2.3.3. Suppose n = 0 classifies the trivial derivation, so that
R"= R® I and d = dy. Then Algg, (Mod%y) is equivalent to the category
of pairs (A,p : LIE{/”R — A ®p XI) where A is a connective Ep,-R-algebra
and p is a map of E,,-A-modules. Under this equivalence, the E,,-R"-algebra
corresponding to (A, p) has underlying E,,-R-algebra given by the square-zero
extension classified by p.
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Proof. By Recollection 2.3.2, the category of connective E,,,- R"-algebras is
equivalent to the category of triples (4, B,a : AQr(R®XI) ~ Br(R®XI)),
where A and B are connective E,,- R-algebras and « is an equivalence. Since dy
is a section of the projection p: R® %1 — R, we have a canonical equivalence
p*dyA = A. It follows that this category of triples is equivalent to the subcat-
egory where A = B, so we are left with understanding automorphisms of the
E,-(R & XI)-algebra A®p (R® XI) = d{A. By adjunction, this is equivalent
to understanding the space of E,,- R-algebra sections of the projection

(do)*dSA =AR®p (R D EI) — (do)*p*p*déA = A.

If Ais an E,,-R-algebra, then A ®p (R @ XI) is canonically a spectrum
object in Algg, (Modg),4 with deloopings given by A®g (R®YFLI). In other
words, A®pr (R® XI) is a trivial square-zero extension of A by A®pr ¥I. The
result now follows by the universal property of the cotangent complex. O

Construction 2.3.4. Returning to the case of a general square-zero exten-
sion R", suppose that A is an E,,-R-algebra. Then d*A is an E,,-(R @ XI)-
algebra. Moreover, since d is a section of the projection map, base changing
d*A along R ® X1 — R recovers A. By the previous lemma (applied to the
trivial square-zero extension R @ I rather than R @ I), the E,,-(R @ XI)-
algebra d*A is determined by a pair (A, o0(A) : LE’?R — A®pg X2I). We refer
to o(A) as the obstruction class for deforming A. Though it is not indicated
in the notation, this class also depends on 7.

Definition 2.3.5. Let R and R" be as above, and let A be a connective
.- R-algebra. Define the category of lifts of A by the pullback

Lifts(A) (A}

l l

Algg (Modfy,) — Algg  (Mod%').

PROPOSITION 2.3.6. The category Lifts(A) is a groupoid equivalent to the
space of nullhomotopies of the E,,-A-module map o(A) : LE’;R — A®p X?1.
In particular,

(i) there exists an E,,-R"-algebra A such that A@pn R ~ A if and only if

o(A) is nullhomotopic;

(ii) if o(A) is nullhomotopic then the space Lifts(A) is equivalent to

Em
MapMod]im(ModR) (LA/R’ A@gEI).
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Proof. By Recollection 2.3.2 and the definition of the category of lifts,
each square in the rectangle

Lifts(A) (A}

l |

Algg (Modg,) — Algg, (Mod%')

l l

Algg,, (Mod') —— Algg,, (Modzy5;)

is a pullback. Thus Lifts(A) is equivalent to the category of pairs (B,d*B ~
d§A), where B is a connective E,,- R-algebra, d is the derivation classified by 7,
and dy is the trivial derivation. Let p: R ® X1 — R be the projection so that
pod=pody=idgr. By Lemma 2.3.3, an equivalence d*B ~ djA corresponds
to an equivalence B = p*d*B ~ p*djA = A together with a homotopy between
the two resulting maps LE’;R — A ®pg XI. Again, we may restrict to the
equivalent subcategory with A = B, and we have arrived at an equivalence
between Lifts(A) and the category of homotopies between o(A), which yields

d*A, and the zero map, which yields djA. This completes the proof. O

2.4. Grounding the induction. The purpose of this section is to compute
the higher MU-enveloping algebras of IF,,. This will allow us to resolve extension
problems when computing the E3-MU-cotangent complex of BP(n) during the
inductive step.

In the course of this computation we will make use of the Kudo-Araki-
Dyer—Lashof operations [BMMSS86], which are natural maps of spectra (see,
e.g., [GL20]) for any E.-Fp-algebra, A,

QA x2P-DA p>2
Q' :A— YA p=2.
We will also use the suspension operation o discussed in Section A.

LEMMA 2.4.1. The E1-MU-enveloping algebra of F), has homotopy given by

W*UI(\}I%J(IFP) ~ A(owv; 20 > 0) ®p, Aoz : j # pF—1).
When regarded as an Eo-Fp-algebra via the map® idp, ® 1: Fp = F), @umu Fp,
we have the identities

i .
Qp OVj = OUj+1, p> 27
2i+1

Q

oV = OVl p=2,

We make this choice for definiteness, but it does not have a significant effect on our
computations. Indeed, once £ > 2, there is a canonical E..-F,-algebra structure on
Ul(\% (Fp) = fwi{o} F,, up to equivalence, since R*¥ — {0} is connected.
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Q’ Haa:j = 0Xjpyp—1, mod decomposables p> 2,
Q¥ +20’.’L’j = 0xjpyp—1, mod decomposables p=2.

Proof. The algebra structure follows from [Ang08, Prop. 3.6]. To compute
the action of the operations we use the two E.,-maps:

F, ®TF, i) Fp, @mu Fp A Fy ®r, oMU Fp

We have f(7;) = ov; (independently of our choice of v;) and g(ox;) = b,
where b; is the Hurewicz image of x; (for j # p¥ —1). The first identity now
follows from Steinberger’s calculation [BMMS86, II1.2] that

i__ _
QP Ti = Tit1,

(and the analogous result at p = 2). For the second identity, first recall that
the Thom isomorphism is an equivalence

F, ® MU ~F, ® BU,.
of Eo-F,-algebras, and hence we have an equivalence
Fp ®F,emuU Fp ~ Fp ®F,g8U, Fp ~ F, ® BU,.

of Eoo-F,-algebras.

Since X% is symmetric monoidal, the canonical map X (Q2X) — QXX
is a map of non-unital E-algebras for any E,-space X. In particular, taking
X = B2U, we see that the homology suspension H,(BU;F,) — H..1(B?U;F,)
preserves Dyer—Lashof operations. The result now follows from Kochman’s
computation [Koc73, Th. 6] of the action of Dyer—Lashof operations on H,(BU).

O

Lemma 2.4.1 implies that the Kiinneth spectral sequence for uﬁ%(wp)
collapses at the E? term, which is a divided power algebra:

E®=E>® =T{c%v;,0%x; :i > 0,j # p'—1} = m.(F,® F,) = U (F,).

UH (Fp)

Here we recall that, in the bar complex computing Tor™(*) (Fp,Fp), the
class ,i(0z), where i > 0, is represented by the element

2®2® - ®2 € A2)® .

PROPOSITION 2.4.2. There are non-trivial multiplicative extensions in the

bar spectral sequence for uﬁ)U(Fp) as follows:

(i) If wo; € mul(\i%(lﬁ'p) is detected by the divided power 7 (c%vg), then wgi-
is detected by 7, (02v;), up to a unit.

(ii) If yjq € muﬁ)U(Fp) is detected by the divided power (02x;), then y?i
is detected by 7, (02T jpip—1), up to a unit.
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In particular, the homotopy groups of Uﬁ%(Fp) are polynomial on even
dimensional classes, one of which can be chosen to be o2vy.

Proof. This follows from the computation of power operations in the pre-
vious lemma by applying [BM13, Th. 3.6] to the standard representatives of
divided powers in the bar complex. O

Remark 2.4.3. From the equivalence ul(\%(]Fp) ~ THH(F,/MU), we de-
duce the crucial fact that the homotopy groups of THH(F,/MU) are polyno-
mial. An anonymous referee points out that one may also deduce this from
Bokstedt’s perioidicity theorem, as we now sketch. We have THH(F,/MU) ~
THH(F)) @tanmiu) MU. By Bokstedt’s theorem, m/ THH(IF,) is polynomial,
and one is reduced to proving that F;, @ gparyy MU has polynomial homo-
topy. By a Thom spectrum argument [BCS10], this spectrum is equivalent to
F, ® BSU,, which is known to have polynomial homotopy groups.

PROPOSITION 2.4.4. The E3-MU-enveloping algebra of F,, has homotopy

given by an exterior algebra on odd dimensional generators, one of which can
be chosen to be o3vy.

Proof. The proof is immediate from [Ang08, Prop. 3.6]. O
The spectral sequence
EXtmuﬁ{I(]Fp)(Fp’Fp) = W*mapuﬁ%(FP)(Fp,]Fp)

then immediately collapses with no possible [Fj-algebra extensions, and so
proves

THEOREM 2.4.5. The spectrum map, ) )(Fp,]Fp) has homotopy given
MU\ P

by a polynomial algebra on even degree generators.

2.5. Computation at the inductive step. In this section, we will assume
that we have constructed an Ez-MU-algebra form of BP(n), and simply denote
it by BP(n). We will also choose our polynomial generators for m.(MU,) in
such a way that ker((MU.),y — BP(n).) is generated by the v; with i > n+1
and by the x; with j # pF—1.

Remark 2.5.1. If R is a p-local Eg-MU-algebra, then, with notation as
in Section A, [ B, for any non-empty k-manifold M, can be computed in
MU ,)-modules instead of MU-modules. We may therefore make sense of the
suspension operations from Section A for elements in m.(cofib(MU(,) — R)),
rather than just elements of 7, (cofib(MU — R)).

LEMMA 2.5.2. The E{-MU-enveloping algebra of BP(n) has homotopy
given, as a BP{(n).-algebra, by

W*ul(vl[)U(BP<7’L>) ~ ABP<n)*(UUi i >n+ 1) ®BP<n>* ABp<n>*(axj : ] 7'5 pk — 1)
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Proof. The proof is immediate from [Ang08, Prop. 3.6]. O

It follows that the bar spectral sequence for W*ul(\i% (BP(n)) collapses to a
divided power algebra on even classes:
E?=FE>*= FBP<”>*(02vi 112 n+1) @pppy, FBP<n>*(O'2LUj g APk — 1).
PROPOSITION 2.5.3. For @ > 0, choose any lift wp41,; of the divided
power class 7, (0%vpy1). For j # —1modp and i > 0, choose any lift Yj,i
of ’ypi(O'ij). The Eo-MU-enveloping algebra of BP(n) has homotopy given, as
a BP(n).-algebra, by
= U3 (BP(n))
~ BP(n).[wn+t1,i 1 i > 0] ®Bp(ny, BP(n)«[yji : j # —1mod p,i > 0,5 > 1].

Moreover, we may choose wy 10 = UQUTLH.

Proof. The enveloping algebra UI(VQI%J (BP(n)) is an Eg-algebra (see Re-
mark 2.2.1) and, in particular, its homotopy groups are a graded commutative
algebra. Thus, our choice of elements w, 11, and y;; extends to a map

[ BP(n)u[wnt1; 10 > 0] @pprny, BP(n)«[yji: j # —1mod p,i > 0,5 > 1]
— U2 (BP(n)),

which we would like to be an isomorphism. From the bar spectral sequence we

already know that mUﬁ%(BP(M) is a connective, free BP(n),-module with

finitely many generators in each degree. It suffices from this and a dimension
count to prove that f is injective modulo (p,v1,...,v,).
But now observe that the map

T UE) (BP (1)) (9, v1s s ) — U (B

is injective by our previous calculation of the target and naturality of the bar
spectral sequence, since it is so on the E°-page of the bar spectral sequence.
The result now follows by Proposition 2.4.2. O

Since uﬁ% (BP(n)) coincides with THH(BP(n) /MU) as an E;-algebra, this
is also the computation of Hochschild homology given in the introduction:

THEOREM 2.5.4 (Polynomial THH). There is an isomorphism of BP(n).-
algebras

THH(BP (n) /MU),
~ BP(n).[wn+t1,i 1 4 > 0] ®Bp(ny, BP(n)«[yji: j # —1mod p,i > 0,5 > 1].

Moreover, we may take wp41,0 = 02vn+1.
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Again, it follows from [Ang08, Prop. 3.6] that the Es-MU-enveloping al-
gebra has homotopy given by an exterior algebra, and hence that the spectral
sequence

Ext BP(n)., BP(n).) = m.map,

W*UI(V?;%J(BF’(”L))( () (BP(n)) (BP(n), BP(n))

collapses at the Ey page. This proves

THEOREM 2.5.5. The spectrum map, ) (BP(n))(BP<n>’ BP(n)) has homo-
MU

topy groups isomorphic to a polynomial algebra over Zgy[vi, ..., vy on even

degree generators. In particular, the homotopy groups are concentrated in even
degrees.

For the purposes of our obstruction theory argument, we will require the
following closely related statement:

PROPOSITION 2.5.6. Let LE%WWMU denote the Es-MU-algebra cotangent

complex of BP(n). Let I denote the fiber fib(MU,) — BP(n)).
(i) The groups W_kaapuﬁ’{}(BP(n))(L%%m}/MU’ BP(n)) vanish for k > 0.
(ii) Let dvpt1 € memapyy(BP(n), BP(n)) denote the BP(n).-linear dual of
the element ovpy1 with respect to the standard monomial basis of

m«(BP(n) @mu BP(n)) ~ A(ov; : i > n+1) ®p, A(oz; : j # pF—1).

Identifying m.mapyy (21, BP(n)) with the BP(n).-module summand of
memapyy (BP(n), BP(n)) complementary to the unit, the class dv,11 lies
i the image of the forgetful map

T map,, LIEEs3P<n)/MU7 BP(n)) — m.mapyy (X1, BP(n)).

@ e
Proof. By [Lurl7, Th. 7.3.5.1], we have a cofiber sequence of uﬁ)U (BP(n))-
modules

USH (BP(n)) = BP(n) — SPLE,

Claim (i) then follows by applying the functor map, () (Bp<n>)(—,BP<n)) and
MU
the previous theorem. The same reasoning also shows that the spectral se-

quence

Ext m.BP(n))

E

mUE) (BP(n)) (W*LB?f’<n>/MU’
E

= W*mapuﬁ%(Bpm))(LB?ﬁ(n)/MU’ BP<n>)

collapses at the Fs-page. It will therefore suffice to show that dv,4; lies in
the image of the following map (which arises from the forgetful functor from
Es-algebras to Egp-algebras):

Hom &) 5p ) (”*LIEEa?i«m vy TBP (1)) = Homyy, (X1, m.BP(n)).
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So we must study the MU,-module map

E
XL = T LEL -

The homotopy groups of the source are given by the suspension of I, =
ker(MU, — BP(n),) while the homotopy groups of the target are given by
$4J,, where J, = ker(Uﬁ%(BP(n»* — BP(n),). Under these identifications,
Lemma A.3.2 implies that x; — a3xj for those z; lying in I,. By our computa-

tion of US%(BP(TL))*, the subset of non-zero classes of the form {o3x;} spans
)

an MU,-module summand of USU (BP(n)).. Among these is the non-zero class
030n+1, and the result follows. O

2.6. Proof of Theorem A. We will now prove Theorem 2.0.6, and hence
Theorem A. We will deduce the theorem as a consequence of a more precise
assertion. In order to state it we will need to recall a construction.

Construction 2.6.1. Recall that we have an E,,-map of spaces
Jc : BU x Z — Pic(Sp)

where the target denotes the Picard space of the category of spectra. Left Kan
extension then yields a symmetric monoidal functor

BU x Z — Pic(Sp) —= Sp.

l _ 7 MUt
Z —

We interpret MU[2%!] as a graded Eo.-ring. Here the notation is justified by
the fact that the homotopy groups of the underlying spectrum (i.e., the direct
sum of the graded components) are given by MU,[z*!], where z is a class in
degree 2. For any j € Z, we may then construct a (non-negatively) graded
Eoo-ring

MU[z%1]
*>

MUJy] : Zso = Z -5 Z Sp.

Here, the homotopy groups of the underlying spectrum of MU[y] are given by
MU, [y] where |y| = 2j. By Lemma B.0.6, we may write MUJy] as the limit of
a tower of E,.-MU-algebra square-zero extensions

MU[y] — -+ = MU[y]/(y*) = MU[y]/(y*"") = --- = MU.

When j > 0, this is also a limit diagram of underlying E,,-MU-algebras and
square-zero extensions thereof. In our work below, we regard MU[y] and
MU[y]/(y*) as ungraded E-MU-algebras.
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PROPOSITION 2.6.2. Fizn > —1, and let B be any E3-MU-algebra form

of BP(n). Then there exists a sequence of maps
-+ —B,—>Bp,_1—---Bj=B

where
(a) By is given the structure of an E3-MU[y]/(y")-algebra, where |y| =2p"+1-2.
(b) each map By, — By_1 is given the structure of a map of E3-MU[y]/(y*)-

algebras,
and such that the following properties are satisfied:

(i) Each map By — Bj_1 induces an equivalence of E3-MU[y]/(y*)-algebras

MU[Y]/(y" ") @mupy)/ k) Br = Br-1-
(ii) The map
B = B; — cofib(By — B;) ~xW+1B
is detected by dv,41 in
Ey = Eo = Extyy, (Bs, By) = mamapyy (B, B).

Proof. First we prove that we can build By satisfying (ii). Observe that
MUJy]/(y?) is a trivial square-zero extension of MU by ZI¥/IMU. According to
Lemma 2.3.3, it suffices to supply a map

e ()

in ModI]EgS(ModMU) whose image under the forgetful map

E
APy @) (Bp ) (LEp (ny M0 BP(n))

— memapyy (ib(MU,) — BP(n)), BP(n))

detects dv,11. But this is precisely the content of Proposition 2.5.6(ii).

Suppose by induction that we have constructed the algebras B; for j < k
as in (a) and (b), satisfying (i) and (ii). By Proposition 2.3.6, the obstruction
to building By,1 is a map

.1E k+1)|y|+2
o(Br) + L, januty) oy — Bk Enivp/ny 2T EMU
in I\/Iod%z (Modyqupy)/(y+))- Base change along the augmentation MU[y]/(y*) —
MU gives rise to a functor

e* : Mod (Modyy)/y+y) — Mod i (Moday),

where we have used (i) to identify ¢*By ~ B. So the obstruction o(By) is
adjoint to a map
— E(k;""l)‘yl'f'QB

E
LBS/MU

in Mod%’(l\/lodMU). By Proposition 2.5.6(i), any such map is nullhomotopic.
This completes the proof. [l
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Proof of Theorem 2.0.6. We prove the claim by induction on n > 1, the
cases n = —1,0 being trivial. By induction, suppose there exists an Es-MU-
algebra form of BP(n), say B, and construct a tower as in the previous propo-
sition.

Let B := lim By be the E3-MUJy|-algebra at the limit of the tower. We
claim that B is an Es-MU-algebra form of BP(n + 1).

By (i), the associated graded tower is a sum of shifts of B, and we see
that ~

gr(m. B) = B.Jy).
By (ii), the exact sequence of MU,-modules
0—2¥B, A 7.By,— B, =0

corresponds to the class dv,11, so that y acts by v,+1 on By. Combining these
observations we see that the composite

Z(p) [Ul, e ,’l)n+1] — (MU*)(I?) - E*

is an isomorphism, which is what we wanted to show. O

3. Unraveling Lichtenbaum—Quillen

Having constructed an E3-MU-algebra form of BP(n), we aim in the re-
mainder of the paper to study its p-localized algebraic K-theory spectrum
K(BP(n)) ). The philosophy of chromatic homotopy theory, together with the
vanishing results of [CMNN20], suggests that we should study K(BP(n)), by
computing its chromatic localizations Ly ;) K(BP(n))y) for 0 < i < n+1, which
assemble into the smashing localization L£ 1 K(BP(n))(,). One wants to know

whether the localization Lfl 1 K(BP(n)),) faithfully reproduces K(BP(n))
This is far from assured: for example, Quillen proved that K(F,)q = Z
but LY Z,) = Q.

It turns out, however, that the difference between K(BP(n))(,
Lﬁ 41 localization is entirely concentrated in low degrees. In short, in the re-
mainder of the paper we aim to prove that the localization map K(BP(n))) —
L} K(BP(n)) ) is truncated.

In the case n = 0, this becomes the classical Lichtenbaum—Quillen conjec-
ture for Z,, which is a celebrated theorem of Voevodsky and Rost [Voe03],
[Voell]. Our goal is to reduce the general case to the Voevodsky—Rost theorem.

p)-
p)s

) and its

We accomplish this first by leaning on the Dundas—Goodwillie-McCarthy theo-
rem [DGM13, Th. 0.0.2], which relates K to the more computable (p-completed)
TC invariant that we review in Section 3.2. The purpose of this section is to
discuss a general strategy for proving, for any connective E;-ring spectrum R,
that

TC(R) — L), TC(R)
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is truncated. Future sections of the paper then implement the strategy in the
case of R = BP(n).

In broad outline, our strategy proceeds as follows. First, following Ausoni
and Rognes, we apply work of Mahowald and Rezk to reduce to proving that
m«(F ® TC(R)) is finite for some type n + 2 complex F' [MR99]. As we will
review, TC(R) is constructed from the simpler invariant THH(R) together
with two pieces of structure, a cyclotomic Frobenius and a circle action. One
of the main observations of this paper is that, while the definition of TC mixes
these structures by taking S fixed points of the Frobenius, it actually suffices
to study the two structures independently.

We reduce the problem of checking that m.(F ® TC(R)) is bounded to
checking that THH(R) satisfies the Segal conjecture, which is purely about
the Frobenius, and that THH(R) satisfies canonical vanishing, which is purely
about the S' action.

These two properties of THH(R) together imply that FQTR(R) is bounded
above, and we thank the third referee for pointing out that they are in fact
equivalent to the statement that F' ® TR(R) is bounded above. After checking
that the homotopy groups m; R are finitely generated, the statement that F' ®
TR(R) is bounded above implies that 7.(F @ TC(R)) is finite.

The remainder of this section fixes conventions and makes precise the re-
ductions to canonical vanishing and the Segal conjecture. Section 4 verifies the
Segal conjecture for THH(BP(n)), while Section 6 verifies canonical vanishing
via entirely different means.

3.1. The work of Mahowald—Rezk.

Definition 3.1.1. A p-complete, bounded below spectrum X is said to be
fp if H*(X;F,) is finitely presented over the mod p Steenrod algebra.

THEOREM 3.1.2 (Mahowald—Rezk). Suppose that X is an fp spectrum.
Then there ezists a non-zero p-local finite complex F such that m.(X ® F) is
finite. In other words, X ® F has finitely many non-zero homotopy groups,
and m;(X ® F) is finite for each i.

On the other hand, suppose Y is any bounded below p-complete spectrum.
If there exists a non-zero p-local finite complex F' such that m,(Y @ F') is finite,
then'Y is an fp spectrum.

Proof. The proof follows from [MR99, Prop. 3.2]. O

The collection of F' such that 7.(X ® F') is finite is obviously a thick
subcategory. One says that an fp spectrum X is of fp-type n if m,(X ® F) is
infinite when F' has type n, but finite when F has type n+ 1. Our key interest
in fp spectra comes from the following result of Mahowald and Rezk:
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THEOREM 3.1.3 (Mahowald—Rezk). If Y is a spectrum of fp-type n, then
the localization map Y — L£Y 18 an equivalence on homotopy in large degrees.

Proof. Mahowald and Rezk [MR99, Th. 8.2(2)] prove that the fiber C' of
the map ¥ — L1Y has Brown Comenetz dual IC that is bounded below. It
follows that C' is bounded above (since for any abelian group N, if Hom(N,Q/Z)
=0, then N = 0), whence the claim. O

3.2. Background and conventions on cyclotomic spectra.

Definition 3.2.1. A p-typical cyclotomic spectrum X is a p-complete object
X € Fun(BS', Sp) equipped with an S'-equivariant map ¢ : X — X*Cr, where
the action on the target is via the equivalence S = Sl/Cp. If X is a bounded
below p-typical cyclotomic spectrum, so that (X tCP)hCP’“ ~ X1Cpkt1 by [NS18,
I1.4.1], then we define invariants

] — hC, hC o hC ;
TR](X) =X X xtCp X"r XXthg X"p XXthg s X tCp; X

using the maps gohcpk and the canonical maps from homotopy fixed points to

the Tate fixed points. We define TR(X) = lim; TR?(X) where the connecting
maps

R:TR/(X) — TR/} (X)

are projection away from the last factor. Observe that each object TRY(X)
and the limit TR(X) has a residual S'-action.

Remark 3.2.2. This is slightly different than the notion of a “p-cyclotomic
spectrum” considered in [NS18]. However, when restricting attention to
bounded below and p-complete objects, as we do here, the two notions co-
incide (see [NS18, Rem. II.1.3]). The definition above is the same as in [AN21]
except that we have added the hypothesis that X be p-complete.

Definition 3.2.3. If X is a bounded below, p-typical cyclotomic spectrum,
then we define
TC(X) := ﬁb(gphs1 —can: X" thl).

Remark 3.2.4. There are maps F : TR™"(X) — TR" ! (X) corresponding
to projecting away from the first factor and then using the inclusion of each Cx
homotopy fixed points into the C)x—1 homotopy fixed points. These assemble to
amap F': TR(X) — TR(X), and the original definition of (p-adic) topological
cyclic homology was as the fiber:

fib(1 — F : TR(X) = TR(X)).

It is shown in [NS18, Th. I1.4.10] that this agrees with the definition above.
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Remark 3.2.5. Antieau—Nikolaus construct [AN21, Ex. 3.4] an Sl-equi-
variant map V' : TR(X)pc, — TR(X) that fits into a cofiber sequence

TR(X)no, — TR(X) = X

of Sl-spectra. Thus, one can recover both TC(X) and X from knowledge of
TR(X).

Definition 3.2.6. Suppose that A is a connective Eq-ring spectrum. Then
THH(A)I/,\ is a bounded below p-typical cyclotomic spectrum. We will in
this circumstance abbreviate TR/ (THH(A);) by TR/ (A), and similarly for

TR(THH(A)]/)\) and TC(THH(A);\).
3.3. Bounds on TR and related conditions on cyclotomic spectra.

Definition 3.3.1. Let X be a bounded below p-typical cyclotomic spec-
trum. We will be interested in the following conditions on X, which may or
may not hold:

e [Bounded TR | The spectrum TR(X) is bounded.

. ‘Segal Conjecture‘ The Frobenius ¢ : X — X7 is truncated.

° ‘ Canonical Vanishing ‘ There is an integer d > 0 such that the compos-

ite
Tzd(XhCPk) — Xk ARtk

is nullhomotopic for all 0 < k < oo.

. ‘Weak Canonical Vanishing‘ There is an integer d > 0 such that, for
* > d, the map

hC. ok tC

my(can) : m X — T X

is zero for all 0 < k < o0.

. ‘Tate Nilpotence | X*Cr lies in the thick tensor ideal of Fun(BS',Sp)
generated by DS, the Spanier-Whitehead dual of S_li_.

o ‘Fp Nilpotence‘ TR(X) € Fun(BS!,Sp) lies in the thick tensor ideal

generated by [F),, where [, is considered to have trivial S L action.

) For each ¢ € Z and 0 < k < oo, the groups thCP’“ and

7. X' are finite, and hence so too are the groups T TC(X).

As suggested by its name, the ‘ Segal Conjecture ‘ condition holds particu-
lar historical significance, some of which we recall in Section 4. It turns out that
there are many non-trivial implications between the conditions, summarized
by the following theorem:

THEOREM 3.3.2. Let X be a bounded below, p-power torsion p-typical
cyclotomic spectrum. That is, we assume there is some N > 0 for which
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p 1 X — X is nullhomotopic as a map of p-typical cyclotomic spectra. Then
the following implications hold:

(a) (Antieau—Nikolaus) | Bounded TR | = ‘Segal Conjecture ‘

(b) [Bounded TR | = | F, Nilpotence |

(¢) (Mathew) ‘Fp Nilpotence‘ = ‘Tate Nilpotence ‘

e ‘Segal Conjecture‘ + ‘Tate Nilpotence‘ = ’Canonical Vanishing ‘

)
)
(d) If each homotopy group m; X is finite, then ’ Bounded TR‘ = \Finiteness \
)
)

(
(f ‘Segal Conjecture‘ + ‘Weak Canonical Vanishing‘ = |Bounded TR |.

Remark 3.3.3. We thank the anonymous referee for suggesting both the
formulations and proofs of several of the statements in the above Theorem 3.3.2.
Of the statements, (a) appeared in previous work of Antieau and Nikolaus
[AN21, Prop. 2.25], and (c) was communicated to us by Akhil Mathew. We
thank both the referee and Mathew for suggesting that we present their work
within this paper.

We postpone the proof of Theorem 3.3.2 to Section 3.5. Let us now
describe how we apply it. The main theorem of the remainder of the paper,
stated as Theorem G in the introduction, is the following:

THEOREM 3.3.4. Let BP(n) denote any E3-MU-algebra form of BP(n),
and suppose that F is a type n + 2 complex. Then F @ THH(BP(n)) satisfies

Bounded TR |

By the thick subcategory theorem of Hopkins and Smith [HS98], Theo-
rem 3.3.4 holds for an arbitrary type n + 2 complex F' if and only if it holds
for some type n+ 2 complex F. Thus, given Theorem 3.3.2(d,f), we can prove
Theorem 3.3.4 by checking the following two results independently:

THEOREM 3.3.5 (see Theorem 4.0.1). For all type n + 2 complexes F,
F @ THH(BP(n)) satisfies the Segal conjecture.

THEOREM 3.3.6 (see Theorem 6.3.1). For some type n + 2 complex F,
F @ THH(BP(n)) satisfies weak canonical vanishing.

While it is convenient for our proof of Theorem 3.3.6 that we pick a
particularly nice F', it follows from Theorem 3.3.2(a,b) that it holds for all
choices of F'. As Akhil Mathew explained to us, we may also use Theorem 3.3.2
to deduce results about general E1-BP(n)-algebras:

PROPOSITION 3.3.7 (Mathew). Suppose that A is a connective E;-BP(n)-
algebra and that F is a type n+ 2 complex. Then, if F @ THH(A) satisfies the
Segal conjecture, F @ TR(A) is bounded.
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Proof. 1t suffices to show that F' ® TR(A) satisfies ‘ IF,, Nilpotence ‘ How-
ever, F® TR(A) is a retract of F ® TR(BP(n)) ® TR(A), so it suffices to check
that F@ TR(BP(n)) satisfies ‘ IF, Nilpotence ‘ This follows from Theorem 3.3.4
and Theorem 3.3.2(b). O

3.4. Lichtenbaum—Quillen and bounded TR.

THEOREM 3.4.1. Let A be a connective Eq-ring and F' a type n + 2 com-
plex. Suppose that
(i) F® TR(A) is bounded;
(ii) mi(Ap) is a finitely generated Zy-module for all i.
Then TC(A) is an fp-spectrum of fp-type at most n + 1. In particular, this
implies that

TC(A) — LI, TC(A)

is truncated.

Proof. Since TC is calculated as the fiber of a self-map of TR, we know
by assumption (i) that m.(F @ TC(A)) is bounded. It remains only to check
that each m;(F ® TC(A)) is finite. By Theorem 3.3.2(e), it suffices to show
that each homotopy group m;(F @ THH(A)) is finite. Recall that THH(A) can
be computed as the geometric realization of the cyclic bar construction e —
A®*+1 Since A is connective, it therefore suffices to prove m;_x(F @ A®F+1)
is finite for each i and k. The p-completion of the tensor product A®*1 will
have finitely generated homotopy groups, by connectivity and (ii). Since F' is
not type 0, the result follows. O

THEOREM 3.4.2. Let A be a connective Eq-ring and F a type n+ 2 com-
plex. Suppose that
(i) F® TR(A) is bounded;
(ii) mi(Ap) is a finitely generated Zy-module for all i
(iii) F ® TR (mpA) is bounded/
Then,
(a) if m(F @ K(mgA)) is finite, then K(A);,\ is an fp-spectrum of fp-type at
most n + 1;
(b) if the map K(moA) () — L£+1K(7T0A)(p) is truncated, then the map

K(A)(p) - L£+1K(A)(p)

18 truncated.

Remark 3.4.3. The condition in (a) of the above theorem is that K(mA),
is fp of fp type at most n + 1. Mitchell’s theorem [Mit90] ensures that, if

K(?T()A)I/)\ is fp, then it will be of fp type at most 1. Similarly, Mitchell’s

f

2+1K(moA) appearing in (b) is equivalent

theorem implies that the spectrum L
to LIK(mA).
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Proof. By p-completing the pullback square in the Dundas—Goodwillie—
McCarthy theorem [DGM13, Ch. VII, Th. 0.0.2], we obtain a pullback square

K(A)) —— TC(A)

! !

K(moA)) —— TC(mo(A)).

Here we note that the symbol TC above agrees, by our conventions, with the
p-completion of what the authors of [DGM13] denote by TC.

The assumption that each homotopy group mAlﬁ is finitely generated en-
sures additionally that (WoA);}\, by which we mean the p-completion of the
Eilenberg-MacLane spectrum mwA, also has finitely generated homotopy
groups. By Theorem 3.4.1, we know that TC(mpA) and TC(A) are fp-spectra
of type at most n 4+ 1. We then observe that the condition of being an fp-
spectrum of type at most n + 1 is preserved under fiber sequences and finite
coproducts, proving (a).

Similarly, to prove (b) we observe that the collection of spectra X such that

Xp) = L£+1X(p)

is truncated is also closed under fiber sequences and finite coproducts. This
class of spectra includes all rational spectra. The claim (b) now follows from
Theorems 3.1.3 and 3.4.1, the Dundas—Goodwillie-McCarthy square above,
and the arithmetic pullback square

Xp) Xp
Xl —= X)) 0

As a corollary of these results, we deduce the main theorems of the intro-
duction.

COROLLARY 3.4.4. Let A denote any E3-MU-algebra form of BP(n). Then
e TC(A) is fp of fp-type at most n+ 1, as is K(A),);
e the map

K(A)p) — L K(A)

s an equivalence in large degrees.

Proof. We observe that the Z,-module
T (BP(n)))) = Zy[v1, 02, . .., 0]
is finitely generated in each degree. If we let F' denote any type n+ 2 complex,

our main Theorem 3.3.4 states that F'® TR(A) is bounded. We also observe
that F'® TR(mA) ~ F @ TR(Zy) is bounded, for example by our work here
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and the fact that Z,) is an Ew-MU-algebra form of BP(0) (cf. [BM94] and
[Rog99] for more explicit proofs of this fact). It remains to check only that

K(Zp))p) — L£+1K(Z(p))(p) = L{K(Z(p))(p)

is an equivalence in large degrees. But this is exactly Waldhausen’s reformu-
lation [Wal84, §4] of the Lichtenbaum-Quillen conjecture for Z,), which is
proven by the celebrated work of Voevodsky and Rost [Voe03], [Voell]. O

Remark 3.4.5. In fact, in the notation of the above corollary, TC(A) is of
fp-type exactly n + 1, as follows from Corollary 5.0.2.

3.5. Proof of Theorem 3.3.2. In this section we supply the proof of The-
orem 3.3.2. The statements and proofs will rely on the following notion of
nilpotence, which goes back at least to Bousfield [Bou79]. For an excellent
survey of modern uses of this notion, we recommend [Mat18].

Definition 3.5.1. Let C be a stable, symmetric monoidal category, and let
A be an E;-algebra object. We say that M € € is A-nilpotent if M lies in the
thick tensor subcategory generated by A. Equivalently, we can ask that M
lies in the thick subcategory generated by those objects of € that admit the
structure of a left A-module.

Definition 3.5.2. Let G be a compact Lie group. We say that a (Borel)
G-spectrum Y is G-nilpotent if it is DG -nilpotent, where DG, denotes the
Spanier-Whitehead dual of G..

LEMMA 3.5.3. Let F : € = D be a lax symmetric monoidal functor be-
tween stable, symmetric monoidal categories, and let A € Alg(C) and B €
Alg(D) be algebra objects. If F(A) is B-nilpotent, then F(M) is B-nilpotent
for any A-nilpotent object M.

Proof. The subcategory € C C of objects M such that F'(M) is B-nilpotent
is thick so we need only show that it contains all A-modules. If M is an
A-module, then F(M) is an F(A)-module and hence a retract of F/(A)® F(M).
But F(A) is B-nilpotent and hence so is F'(A) ® F(M) and the retract F(M).

O

LEMMA 3.5.4. IfY € Fun(BS%,Sp) is Fp-nilpotent, where F,, is given the
trivial action, then Ypc,, Y"Cr  and Y are also Fp-nilpotent, where we give
each the residual S*/C, ~ S* action.

Proof. From the cofiber sequence Yc, — Y"C — Y*Cr it is enough to
prove the claim for Y*“» and Y*“». By Lemma 3.5.3 it is enough to check that

hC,p Cp

Fp ™" and IF;,CP are [F-nilpotent. Both are modules over ]FZ and hence also,

by restriction, modules over F,, hence [Fp-nilpotent. U
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LEMMA 3.5.5. If Y € Fun(BSY, Sp) is F,-nilpotent, Y% 4s S'-nilpotent.

Proof. First we claim that (]FZCP )" = 0. One can check this by direct

Cp

. . hCp .
calculation, or else argue as follows. Since I, ” is a module over F,, we have
hC,

that (IE‘,’;C”)tS1 is p-complete and (IF) )it Ip = (FZC”)tCP, by [NS18, Lemma

IV.4.12]. But (IF'ZC”)tCP = 0 by [NS18, Lemma 1.2.2], whence the claim. It now

follows from [MNN17, Th. 4.19] that IFZC” is S-nilpotent. The lemma now

follows from Lemma 3.5.3. O

LEMMA 3.5.6. If Y € Fun(BG, Sp) is G-nilpotent, there is a d > 0 such
that, for all integers n, the map T>aq1nY — T>pY factors through a G-nilpotent
spectrum.

Proof. Choose an N so that the map ¥ — map(sky(EG)+,Y) has a
retract r. Let d be the dimension of the finite complex sky(EG);. Then,
for all n € Z, the spectrum map(sky(EG)+, T>d4+nY ) is n-connective, so the
composite

map(sky (EG) 1, T>qnY) — map(sky (EG)4,Y) 5 Y

factors through 7>,Y. The map 7>44,Y — 7>,Y then factors through the
diagonal

T>dginY — map(sky (EG) 4, T>anY ),
the target of which is G-nilpotent. O

LEMMA 3.5.7. Let X be an S'-spectrum, and suppose we have a map of
Slospectra f: X =Y, where Y is S'-nilpotent, which induces an equivalence
TomX ~ T>nY for some m > 0. Then there is a d > 0 such that the map
7>4X — X factors through an S'-nilpotent spectrum.

Proof. By the previous lemma there is a d’ > 0 such that 7> g1, Y — 75, Y
factors through an S'-nilpotent spectrum for all integers n. Set d = d’' + m.
Then 754X ~ >ginY — ™>nY >~ 75, X factors through an Sl-nilpotent
spectrum and hence so does the composite 754X — 7>, X — X. O

LEMMA 3.5.8. Let X andd be as in Lemma 3.5.7. Then, for all 0 <k <oo,
(i) (Tde)tCP’“ — X" s nullhomotopic;
(ii) Tzd(XhCP’“) — X'k s nullhomotopic;
(iii) the map X' — (7.9X)"O0" has a retract.

tC’pk

Proof. The Tate construction (—) annihilates all S'-nilpotent spectra,

so (i) is immediate from the previous lemma. The map in (ii) factors as

Toa(X"H) = (720 X) " = (120 X) P X1
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and so is nullhomotopic by (i). The claim (iii) follows from (i) and the cofiber
sequence

(12aX)" P = X' 5 (7qX) 1. O

Proof of Theorem 3.3.2. Claim (a) is [AN21, Prop. 2.25].

We now prove (b). By assumption, there is some N for which pV : X — X
is nullhomotopic as a map in CycSp,. It follows that p™V annihilates each
homotopy group m; TR(X). It follows that each object m;TR(X) admits the
structure of a Z/p"™ -module in S'-spectra, and hence that each object m; TR(X)
is Fp-nilpotent. If TR(X) is bounded, then we conclude that TR(X) is also
[F)-nilpotent, as an S L_spectrum.

Now we prove (c). Assume that TR(X) is F,-nilpotent. By Lemma 3.5.4,
we deduce that TR(X )hcp is F-nilpotent as well and, from the S L_equivariant
cofiber sequence

TR(X)no, & TR(X) = X,

we deduce that X is Fj,-nilpotent. By Lemma 3.5.5, we deduce that X tCh s
Sl-nilpotent, which completes the proof of (c).

Claim (e) is immediate from Lemma 3.5.8(ii).

For claim (d), first observe that (a), (b), (c), and Lemma 3.5.8(iii) imply
that X “%* is a retract of (74X )“»*. The finiteness assumption on X ensures

that the homotopy groups of (74X )tcp’“ are finite and hence so are the homo-

thk.

topy groups of X »*. The homotopy groups of X being finite also implies that

the homotopy groups of X hC. ), are finite, since X was assumed bounded below.

The claim (d) now follows from the cofiber sequence X oy = X hCp _y X1Cpk,

We are left with establishing the claim (f), for which we argue as in
[Mat21]. Recall that we have pullback squares

TRF(X) —2~ TRF1(X)

i |

Xy _ X 1Ok
The right vertical map is an equivalence in large degrees, independent of k, by
Tsalidis’s theorem [NS18, 11.4.9] and the assumption that ‘Segal Conjecture
holds. The bottom horizontal map is zero in in large degrees by the assumption
that ‘ Weak Canonical Vanishing ‘ holds. It follows that the top horizontal map

is zero in large degrees, and hence that the limit TR(X) is bounded above.
Since X was assumed bounded below, TR(X) is bounded below, and hence
TR(X) is bounded. O
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4. The Segal conjecture

We fix throughout this section an Es-MU-algebra form of BP(n). Our
purpose is to prove the Segal conjecture (Theorem C), which we restate here
for convenience.

THEOREM 4.0.1. Let F' denote any type n+1 finite complex. Then the cy-
clotomic Frobenius THH(BP(n)) — THH(BP(n))!“? induces an isomorphism

F,THH(BP(n)) = F,(THH(BP(n))!“")
i all sufficiently large degrees x > Q.

Remark 4.0.2. This theorem implies the corresponding statement for F' a
type n + 2 complex, which is all that is used in deducing the Lichtenbaum—
Quillen statements as in the previous section.

The idea of the proof is to use (the décalage of) the Adams filtration on
BP(n) to reduce the claim to a much simpler one about graded polynomial
algebras over [F),.

Remark 4.0.3. There are several antecedents to the Segal conjecture. First,
the classical Segal conjecture for the group C), states that the map

S% = THH(S®) — THH(S?)!C» = (8°)tCr

is p-completion; this is a theorem of Lin [Lin80] (at p = 2) and Gunawardena
[AGMS85] (for p odd). For various classes of ordinary commutative rings R, the
map

¢ : THH(R) — THH(R)!“"

is a p-adic equivalence in large degrees: this is the case for DVRs of mixed
characteristic with perfect residue field in odd characteristic [HMO03], [HMO04]
for smooth algebras in positive characteristic [Hes18, Prop. 6.6], and for p-
torsionfree excellent noetherian rings R with R/p finitely generated over its
pth powers [Mat21, Cor. 5.3].

When R = ¢ is the Adams summand, it is proved in [AR02, Th. 5.5] for
p > 5 that

o : THH(O)/(p,v1) — THH()'" /(p, 01)

is an equivalence in degrees larger than 2(p — 1) (cf. [LN05]). When R = MU,
Lunge-Nielsen and Rognes show [LNR11] that

¢ : THH(MU) — THH(MU)!“»

is a p-adic equivalence. In another direction, Angelini-Knoll and Quigley
[AKQ21b] have shown that ¢ is an equivalence for Ravenel’s X (n) spectra.
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4.1. Polynomial rings over the sphere. First we record some facts about
polynomial rings over the sphere spectrum, starting with their construction.

Construction 4.1.1. For r,w € Z, we will denote by S*"(w) the graded
spectrum that is S?" in weight w and zero elsewhere. Recall (see, e.g., [Lurl5,
3.4.1,3.4.2]) that there is a graded Ep-ring S°[y_2 1] equipped with a class
Yy-2.-1 : S73(=1) — S°y_o._1] that exhibits the target as the free graded
E;-algebra on S~2(—1). This graded Es-ring corresponds to an Eg-monoidal
functor

SOly—2,-1] : Z% — Sp
that factors through the subcategory Pic(Sp) of invertible spectra. When r < 0
we define the graded Eo-ring S°[ys, 1] as the composite

0
zds 1y gds 502 Pic(Sp) — Sp.

When 7 > 0 we define the graded Eo-ring S°[yo, 1] as the composite

zds () zds T3] Pic(Sp) 3 Pic(Sp) — Sp,
where D denotes the duality functor. Finally, we define S°[yg;.,,] for arbitrary
r,w € Z by left Kan extending S°[ya,,—1] along the map (—w) : Z% — Z9%.
Thus, for each 7,w € Z, we have constructed a graded Es-ring S°[a] equipped
with a class a : S?"(w) — S°[a] which exhibits the target as the free graded
E;-ring on S?"(w).

Next we establish an important finiteness property for THH(S%[a]). But
first we recall a definition.

Definition 4.1.2. If G is a (topological) group, we will say that a spectrum
with G-action, X € Fun(BG,Sp), is finite if it lies in the thick subcategory
generated by the objects G/H., where H C G is a closed subgroup and G/H +
denotes X°(G/H).

LEMMA 4.1.3. The graded Eq-ring map
S%a] — THH(S[a])
induces on F,-homology the ring map
Fpla] — Fpla] ® Ap, (ca).
Here, the weights of a and oa are both w. Furthermore, if w # 0, then, as a
graded Cp-spectrum, THH(S[a]) is pointwise finite. That is, at each weight j,

the Cp-spectrum THH(S[a]); lies in the thick subcategory generated by S°
and Cpy.

Proof. We have that F, ® THH(—) = THH(F, ® (—)/F,), so the induced
map on homology is given by

Fyla] — THH(Fpla]/Fp)s.
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This map depends only on the E;-algebra structure of Fp[a], which is free, so
this is equivalent to the classical calculation of THH(FF,[a]/F,). (i.e., ordinary
Hochschild homology over F)).

We now show that THH(S%[a]) is pointwise finite as a graded Cjp-spectrum.
This statement only depends on the graded Ei-algebra structure on S°[a],
which is free. The Hochschild homology of free Eq-algebras is well known (see,
e.g., the argument in [Mat21, Th. 3.8], which applies verbatim to the graded
case), and in this case specializes to

THH(S[a]) ~ @) IndZ, (S*™* (wk)).
k>0

Here Indglk denotes the induction functor, given by left Kan extension along
the functor BC), — BS?, and Cy acts by permuting the factors in (S?"(w))®* =
S?rk (wk). Observe that, since w # 0, there is at most one non-zero summand in
each fixed weight. To complete the proof we need to show that each summand
is finite as a C)-spectrum.

The property of finiteness is always preserved by induction. In this case,
the restriction functor Fun(BS!,Sp) — Fun(BC), Sp) also preserves finiteness.
Indeed, when k = mp, the object S'/Cjy is equivalent to St = £(Cp/Cp)4 as
a Cp-spectrum, and when £ is coprime to p, then we have a cofiber sequence

Cpp — S /Cry — X0y

So it suffices to show that (527)®* is finite as a Cj-spectrum. After possibly
dualizing we may assume that r > 0, and then this is the suspension spectrum
of the one-point compactification of 2r copies of the regular representation
of Cf, which admits a finite C,-CW-structure. ([l

We now prove the Segal conjecture for these graded polynomial rings over
the sphere. For the statement, recall that the cyclotomic Frobenius on filtered
objects multiplies filtrations by p; we review the formalism for this using the
functor L, in Section C.5.

PROPOSITION 4.1.4. Suppose w # 0. Then the cyclotomic Frobenius
L,THH(S%a]) — THH(S [a])! "
witnesses the target as the p-completion of the source.
Proof. As in the previous proposition, we may compute

THH(S°[a)) =~ @D Ind?; (S (wk)).
k>0

Since there is at most one non-zero summand in each fixed weight, taking the
Tate fixed points (in the category of graded spectra) commutes with this sum,
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so that we have

THH(S°[a))'“” ~ @D(Indg, (S*™* (wk)))*r.
k>0

When £ is not divisible by p, the restriction of Indg; (S%7%) to a Cp-spectrum
lies in the thick subcategory generated by C), and so is annihilated by (—)tCP.
When k& = mp is divisible by p, then the restriction of IndgC (8?7k) is equivalent
to ST ® (S#™)®P where C), acts trivially on the first term and by cyclic
permutations on the second. Thus
THH(S[a])'" = @D ((S*™) P (wmp))'“ @ T((S*™) P (wmp))'.
m>0
To compute what the cyclotomic Frobenius does, recall that, directly from the

construction of the cyclotomic Frobenius, we have a commutative diagram for
any graded E;-ring A:

LpA@m (A@mp)th
L,THH(A) — THH(A)“>.

The bottom arrow is S* = St/ Cp-equivariant, so we may induce up the targets
of the vertical maps to get a diagram

St @ L,A®™ —— St @ (A®mP)iCp

| |

L,THH(A) THH(A)!r.

If we now take A = S%[a] and restrict to the summand corresponding to a™,
then we learn that the cyclotomic Frobenius map in weight mp is given by
tensoring the Tate diagonal

SZrm N ((SQTm)®p)th

with Si. The Tate diagonal here witnesses the target as the p-completion of
the source by the classical Segal conjecture. U

4.2. The Segal conjecture for polynomial Fp-algebras. In this section we
consider a graded Eo-FF)-algebra R, with homotopy groups a polynomial ring
Tx(R) = Fplai, ag, ..., apl.

Each a; will have non-negative even degree |a;| and positive weight wt(a;),
though we suppress the weights from the notation. In fact, there is a unique
ring R with the above description:
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PROPOSITION 4.2.1. As a graded Eo-Fp-algebra, the ring R above must
be equivalent to

F, ® S%a1] @ S%ag] @ - - - @ S%[ay),

where S°[a;] is the ring constructed in Construction 4.1.1 with 2r = |a;| and
w = wt(a;).

Proof. Let us denote F, ® S%[a1] ® S%az] @ -+ ® SYa,] by A. We first
claim that A has a graded Eo-IFj-algebra cell structure with cells in even de-
grees. Indeed, this algebra is canonically augmented over F,,, so we may apply
[GKRW21, Th. 11.21,Th. 13.7] which, together, show that, if

Fp ®]FP®AFP Fp

has homotopy groups in even degrees, then A has a minimal cell structure as
a graded [Eo-IF)-algebra with cells in even degrees.> But the Kiinneth spec-
tral sequence computing these homotopy groups collapses at the Es-page as a
divided power algebra on even degree classes, so the claim follows.

There is then no obstruction to constructing an Eo-map A — R sending
a; to a;, since the homotopy groups of R are concentrated in even degrees. The
result follows. O

Our main theorem about this Es-IF)-algebra R is as follows:
PROPOSITION 4.2.2. The cyclotomic Frobenius
L,THH(R) — THH(R)'“"
induces on homotopy groups the ring map
Fplz,a1,a2,...,a,) ® A(oar,oa, -+ ,0a,)
— Fp[:r:il, ai,az,...,ay) @ Aoay,cag, - ,0ay)

that inverts x. Here, x is in degree 2 and weight 0. The degree of oa; is one
more than the degree of a;, and the weight of oa; is the same as the weight of a;.

A version of the above is well known in the case that all a; are in degree
0 and weight zero, so R is a classical commutative ring. (See, e.g., [Hes18, 6.6]
for a much stronger result.) Our main observation is that the result extends
to the case where not all a; are in degree 0, in which case R is not discrete.
Since an exterior algebra on classes of degree |a;| + 1 has no homotopy above
degree n + >~ |a;|, we obtain the following result:

3Here it is important that we are considering Eq-algebras: the iterated bar construction
is related to the Eg-cotangent complex up to a shift by k. Since k = 2, the property of being
concentrated in even degrees is insensitive to this shift.
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COROLLARY 4.2.3 (Segal conjecture for graded polynomial F,-algebras).
The map

m(THH(R)/(a1, ..., an)) = m(THH(R)? /(ay,.. ., a,))
is an equivalence in degrees x > n + S i |a;|.

Proof of Propostion 4.2.2. For convenience, we will omit the grading shear,
L,, from the notation throughout.
By Proposition 4.2.1, we may assume that R is a tensor product of graded
Eo-rings
R~TF,®S%a] @ @ S%ay)].
Since THH is symmetric monoidal as a functor to cyclotomic spectra [NS18,
p.341], we may compute

THH(R) ~ THH(F,) ® THH(S[a1]) ® - - - ® THH(S [a,,])

as a Cp-equivariant Ei-ring spectrum. We next compute the cyclotomic Frobe-
nius on each component of the above tensor product. It follows from Bokstedt’s
unpublished computation of THH(F,) (see [NS18, §IV.4] for a modern refer-
ence) that the map

¢ : THH(F,) — THH(F,)""
induces, on homotopy groups, the map

FP[CE] - Fp[xilh

290 is in degree 2 and weight zero. We have already

seen (Proposition 4.1.4) that each map
¢ : THH(S[a,]) — THH(S [a,])"“

which inverts z. Herez = o

is an equivalence after p-completion. It follows that the map
THH(F,) @ Q) THH(S[a;]) — THH(F,)*“ @ ) THH(S[a,])""”
i i

has the desired effect on homotopy groups. To finish the proof we need to show
that the lax monoidal structure map

tCyp
THH(F,)"“» ® Q) THH(S[a,])"> — (THH(FP) ® () THH(S" [al])>

is an equivalence. By Lemma 4.1.3 it suffices to prove the following more
general statement: if X and Y are non-negatively graded C)-spectra, and, for
each weight j the Cp-spectrum Y; lies in the thick subcategory generated by
Cp+ and S0, then the map

a: Xy 5 (X @Y)o

is an equivalence after p-completion.
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The Tate construction on graded C),-spectra is computed pointwise, so we

need to prove that
@ X:Cp ® thcp N (@ X, ® Yj)tcp
i+j=w

is a p-adic equivalence. Since X and Y are non-negatively graded, these sums
are finite. We are therefore reduced to proving the analogous ungraded state-
ment: that ais a p-adic equivalence, where X and Y are (ungraded) C)-spectra
and where we assume that Y belongs to the thick subcategory generated by
S0 and Cp+. Since the Tate construction is exact, the category of C)-spectra
Y for which « an equivalence after p-completion is a thick subcategory. So we
need only prove the claim for Y = S° and Y = C,.. When Y = C,, both
sides vanish. When Y = 59, we may identify Y*C» with the p-complete sphere,
(SO)Q, by the Segal conjecture, so this map becomes the canonical one

X' @ (%), = X',
which is indeed an equivalence after p-completion. O

4.3. The Segal conjecture for BP(n). The key to the proof of Theorem C
is the following:

THEOREM 4.3.1. The map of BP-algebras

THH(BP(n))/(p,v1, 02, . . ., v,) — THH(BP ()" /(p,v1, v, ..., vp)
18 an equivalence in large degrees. Here we regard p,vi,...,v, as elements in
the homotopy of the right-hand side via the ring map .

Before proving it, we need to recall a few things about the Adams spectral
sequence for BP(n).

Recollection 4.3.2. Recall the descent tower desci’(BP(n)) discussed in
Section C. We claim that the associated graded object has homotopy groups
given by

m(gr(desei’BP(n))) ~ Fplvg, v1,...,vn],
where each v; lies in weight 2p’ — 1. (Recall that the weight of a class in E;’t
is t; see Convention C.1.1.) Indeed, from the definition of the descent tower,
these homotopy groups agree with
Extj‘q’;k (Fp, Hi(BP(n); F})).

Recall that the homology of BP(n) as a comodule is coextended from the
quotient Hopf algebra A(7g, . .., 7,) (where we write 7; for (j41 at the prime 2):4

H.(BP(n);Fp) = A0, 70 Fp-

“Here we use the convention of [Mil58] for the definition of ;.
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(This goes back to the construction of BP(n); see [Wil75, Prop. 1.7].) By the
change of rings isomorphism [Rav86, A1.3.13], we have

Ext;’f(Fp, H,(BP(n);F))) = EXtXEkTT),...,ﬁ) (Fp,Fp) 2 Fplvo, - .., vl

where the v; are represented by [7;] in the cobar complex. The classes are
so-named because they detect the corresponding classes in m,BP(n), and vy
detects p. For i > 0, we denote by ©; chosen lifts of each v; to elements in
mdesc]%fp "“1(BP(n)), and we observe that vy admits a unique lift to an element

in m.descr,(BP(n)), which we denote by the same symbol.

Proof of Theorem 4.3.1. For convenience, in this proof we will suppress
the functor L, from the notation when discussing the cyclotomic Frobenius for
filtered and graded objects.

First observe that we may reformulate this claim as saying that the map

Fp @Bpmy ¢ : Fp @ppy THH(BP(n)) — F), @pp ) THH(BP (n))"
is an equivalence in large degrees, since

BP(n)/(p,v1,...,vn) = Fp.

To define this map, we are using that THH(BP(n)) is an E;-BP(n)-
algebra, and the map ¢ is an Es-algebra map, and hence ¢ in particular has
the structure of a map of modules over BP(n) (where the module structure on
the target is defined using the map o).

The Eg-algebra BP(n) refines to a filtered Eg-algebra descﬁ)’(BP(n)), and

desc%p' (F,) = Fp is a module over this algebra, where the right-hand side is the
tower with 0 in positive filtration and F, in non-positive filtration. Moreover,
THH inherits a filtration, and so we can ask whether the map

F, ® THH(descz* (BP(n)))

descﬁ' (BP(n))

—F,® THH(descz * (BP(n)))"“”

descﬁ; (BP(n))
is an equivalence in large degrees on homotopy groups.

We would like to reduce this to a claim on the associated graded, but
in order to do so we need to know that the towers on both sides are con-

ditionally convergent. By Proposition C.5.4, the towers THH(desci’BP(n))

and THH(desc%p'BP(n»tCP are conditionally convergent, after vy-completion.
Using the notation in Recollection 4.3.2, it suffices by a thick subcategory
argument to prove that

desc%p'(BP(n»/(vg, Uly...,Up) = Fp
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as filtered modules over descij'(BP(n)). Again, since desci'(BP(n» is con-
ditionally convergent after vg-completion, it suffices to check this equivalence
upon taking the associated graded, where it is clear from Recollection 4.3.2.
We are now reduced to checking that the associated graded of the map
>e
F, D geseZ* (BP(n)) THH(desclgp (BP(n)))

.
P

= Fp B0z (mp(n)) THH(descs (BP(n)))”

is an equivalence in high enough degrees.
Upon taking associated graded, we may, by Recollection 4.3.2, identify
this map with

THH(F,[vo, v1, - - -, vn])/(V0, - - - V) = THH(Fp[vg, v1, - - -, va]) 1% /(v0, - . ., 0n),

and it follows from Corollary 4.2.3 that this map is an equivalence in large
degrees. This completes the proof. O

From a thick subcategory argument in BP-modules, we then learn the
following:

COROLLARY 4.3.3. For any positive integers ig, i1, - . ., in, the map of BP-
algebras

THH(BP(n))/(p®, v, v2, ..., vim) — THH(BP(n))! /(p", v 022, ... vin)

n

s an equivalence in large degrees.
In particular, if we let S/I denote a generalized Moore spectrum of the
form S°/(p'o, v}, ... vir), then

(S/1),THH(BP(n)) — (S/I),THH(BP(n))»
s an equivalence in large degrees.

The Segal conjecture (Theorem C) now follows by a thick subcategory
argument in spectra, since any S/I generates the thick subcategory of type
n + 1 spectra.

5. The Detection Theorem

Throughout this section, we will use BP(n) to denote a fixed E3-MU-
algebra form BP(n). By vpi1 € mgpmt1 oMU, we will refer to a specific
indecomposable generator, with

e trivial mod p Hurewicz image, and
e the key property that the unit map MU, — BP(n) sends v,41 to 0 in
homotopy.
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This last assumption ensures that v,41 admits a unique lift to an element in the
homotopy of the fiber of the unit map MU,y — BP(n). Our main aim will be
to prove Theorem F from the introduction, which we restate for convenience:

THEOREM 5.0.1 (Detection). There is an isomorphism of Zy[v1, .. ., vn]-
algebras

m.(THH(BP (n) /MU)"$") = (7, THH(BP (n)/MU)) [t],

where |t| = —2. This isomorphism can be chosen such that, under the unit
map
1 1
T.(MUS) = m(THH(BP(n)/MU)""),

the canonical complex orientation maps to t and v,y1 is sent to t(c?vpi1).

Before turning to the proof, we observe that the Detection Theorem im-
plies a weak form of redshift.

COROLLARY 5.0.2. For each 0 < m < n+ 1, Lg@K(BP(n)) # 0. In
particular, Ly 11 K(BP(n)) # 0.

Proof. By [BGT14], the cyclotomic trace map
K(-) —» TC(-)

is a lax symmetric monoidal natural transformation. It follows that the trace
K(BP(n)) — TC(BP(n)) is a map of Ep-rings. Recall that there is a canonical
map TC(—) — THH(—)"S", to negative cyclic homology. Thus we have a
sequence of Eo-ring maps,

K(BP(n)) — TC(BP(n)) — THH(BP(n))"S" — THH(BP (n)/MU)"5",
and hence an Es-ring map
Lic(myK(BP(n)) = Ly THH(BP(n) /MU)"S'

for each height m < n+ 1. If the source of this map were zero, then the target
would be zero as well, since this is a map of rings. The relative negative cyclic
homology THH(BP (n)/MU)"5" has the structure of an MU-module. It follows
from [Hov95, Th. 1.9] and [Hov97, Th. 1.5.4] that
1 1 _
L (my THH(BP (n) /MU)"S" = (THH(BP(n) /MU)" ) [, 10, 01 o1

By Theorems 5.0.1 and 2.5.4, this completion and localization can be computed
algebraically, and the result is non-zero. ([

Remark 5.0.3. In the statement and proof of the theorem we have used
that the S'-action on THH(BP(n)/MU) is compatible with the algebra struc-
ture. One way to see this is to use the generality in which THH is defined.
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Recall that for any symmetric monoidal category € with tensor product com-
patible with sifted colimits, Hochschild homology gives a functor

HHe : Algg, (C) — Fun(BS', €).

For a reference, one could observe that the construction of THH with its circle
action in [NS18, §II1.2] works just the same for € in place of Sp. Alternatively,
one can use the identification of THH with factorization homology over S*,
which is defined in this generality ([Lurl7, §5.5.2], [AF15]). Now apply this
in the case C = Algg,(Modyy) to see that THH(BP(n)/MU) has a canonical
enhancement to an object in Fun(BS?!, Algg, (Modyu)).

Let us now proceed with the proof of Theorem 5.0.1. First we com-
pute THH(BP(n) /MU)hSl. Recall that we computed the homotopy groups
of THH(BP(n)/MU) in Theorem 2.5.4. An immediate consequence of that
calculation is the following proposition:

PROPOSITION 5.0.4. The homotopy fixed point spectral sequence for
THH(BP (n)/MU)"S"
collapses at the Es-page, with
E. = THH(BP(n)/MU).t],
where t € H?>(CP>) is the standard generator.
Proof. The homotopy fixed point spectral sequence computing
THH(BP (n)/MU)"S"
is concentrated in even degrees by Theorem 2.5.4, and hence collapses as indi-

cated. O

As we will shortly explain, the remainder of the argument for Theo-
rem 5.0.1 is a formal consequence of the relationship between the suspension
map o2 and the circle action. We explore this relationship in Section A.

Proof of 5.0.1. The image of the canonical complex orientation under the

unit map
T MU[S — m THH(BP (n)/MU)"S"

will be detected by t in the homotopy fixed point spectral sequence. We recall
that 7. THH(BP(n)/MU) is a polynomial Z,)[v1, ..., v,]-algebra generated by
classes wy41,; (for ¢ > 0) and y;; (for i > 0, j > 1, and j # —1 modulo p).
Furthermore, we may set wy41,0 equal to o2p 1.

Since polynomial algebras are free commutative algebras, an isomorphism

7, THH(BP (n) /MU)"*" 2 (7, THH(BP (n) /MU)) [t]
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is determined by a choice of elements wy11.,v;; € mTHH(BP(n) /MU)"S!
detecting the similarly named classes in the homotopy fixed point spectral
sequence.

If we make any such choice, then Lemma A.4.1 ensures that tqm will
be vy+1 modulo t2, say tzm = Unt1+ t2y. We may then replace zm by
Wn 11,0 — ty, which also lifts the class wy 1,0, and so guarantee that tw, 110 =
Un+1- [l

Remark 5.0.5. Rognes has sketched an alternative proof that v, is de-
tected in the homotopy of THH(BP(n)/MU)"" . The strategy is to consider
the exact sequence in mod p homology:

H. (lim THH(BP(n)/MU)) — H.(THH(BP (n)/MU))

5 H, . (THH(BP(n)/MU)).

One computes that BT, 1 is non-zero and hence does not lie in the kernel, i.e.,
does not arise in the first term. It follows from an Adams spectral sequence
argument that v,41 must be detected in m, lim¢pr THH(BP (n)/MU).

6. Canonical vanishing

Fix an E3-MU-algebra form of BP(n). In this section, we will study the
canonical map

can : THH(BP(n))"*" — THH(BP(n))*".

Our goal will be to establish Theorem D, which by the results of Section 3 can
be reduced to weak canonical vanishing (Theorem 6.3.1).

To be specific, we will choose a convenient type n + 1 complex M, with
Un+1 self map v, and consider the map

1® can : M /v ® THH(BP(n))"S" — M/v @ THH(BP(n))*S

where 1 is the identity map of the type n + 2 complex M /v. We will prove
that the 7, (1 ® can) map is zero for all sufficiently large degrees .

As a prototype for the result and its proof, consider the case n = —1,
where the statement is that

can/p : THH(F,)"S" /p — THH(F,)**" /p

induces the zero map on homotopy groups in large degrees.
We may compute THH(IFp)hS ' via the homotopy fixed point spectral se-
quence
_ 2 hSt
Es = ]Fp[O' ’Uo,ﬂ - W*THHGFP) .

299 is in homotopy dimension 2 and filtration 0, while ¢ is in homotopy

Here, o
dimension —2 and filtration 2.
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We may also understand THH(IE‘p)’tS1 via the Tate fixed point spectral
sequence, with Fo page Fp[azvo,til]. The canonical map is compatible with
homotopy and Tate fixed point spectral sequences, and at the level of Fa-pages

it is approximated by the map
F,[0%vo, t] — Fplo2vg, t]

that inverts t.

The element p € W*THH(FP)hsl is detected by to?vg, which lives in filtra-
tion 2 in both spectral sequences. By Kkilling a filtration 2 lift of p, we build a
map between a (modified) homotopy fixed point spectral sequence converging
to (THH(Fp)hS '/ p) and a (modified) Tate fixed point spectral sequence con-

verging to (THH(Fp)tS ' / p). At the level of E5 pages, the mod p canonical
map is approximated by

Ey = Fp[0'2110, t]/(t0'2’£)0) — By = Fp[til].

This map of Fs pages is trivial in positive homotopy dimension, and we would
like to conclude that the mod p canonical map is zero in positive degrees. We
might be worried about filtration jumps, but in fact this is no issue. The source
spectral sequence is concentrated in non-negative filtration, while the target
spectral sequence, in positive homotopy dimension, is concentrated in negative
filtration.

Our strategy for proving Theorem 6.3.1 is to mimic the above argument
at a general height. The main challenge in carrying this out (especially in the
absence of Smith—Toda complexes) is to find and name an appropriate class
in the homotopy fixed point spectral sequence for M @ THH(BP(n))"S" that
detects the v, self map v. We address this issue by descending informa-
tion from THH(BP(n)/MU), which we understand well thanks to the previous
section.

6.1. Descent. We will need to know that THH(BP(n)) is well approxi-
mated by THH(BP(n)/MU) in a way made precise in the below proposition.
We will use notation as in Section C.2 (also note Remark C.2.2).

PROPOSITION 6.1.1. For any type (n+1)-complex F, the spectral sequence
computing 7.(F @ THH(BP(n))) by descent along the map

THH(BP(n)) — THH(BP(n)/MU)

collapses at a finite page with a horizontal vanishing line. In particular, if F
1s equipped with a homotopy ring structure, then the kernel of the map

m.(F @ THH(BP(n))) — m(F @ THH(BP(n)/MU))

1 nilpotent.
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Remark 6.1.2. Tt is possible to obtain much stronger results about hori-
zontal vanishing lines in these and related descent spectral sequences by further
developing the methods used below. We hope to return to this in future work.

In the proof we will use Hochschild homology with coefficients in a bimod-
ule, which we now recall.

Definition 6.1.3. If M is a bimodule over an Ej-algebra A in C, then we
define

HH(A, M) =M ®A®A0P A.

Remark 6.1.4. (Compare [AHL10, §2].) If A admits the structure of an
Eq-algebra, so that HH(A) has the structure of a module over A, and M is a
right A-module viewed as an A-bimodule by restriction along A ® A°P — A,
then we have a canonical equivalence

HH(A,M) =M @agar A~ M R4 (A®A®A0p A) ~M®a HH(A)

If, moreover, the bimodule structure on M arises from an [E;-algebra map
A — M, then we have an equivalence

HH(A; M) = M ®@aga00 A =~ M Qprga00 M @ A% @ aga00 A =~ M @ ppga00 M.
Construction 6.1.5. By the previous remark we have an equivalence
THH(BP(n); ) ~ F) ©F,eppn) Fp-

Recall that
T(Fp @ BP(n)) ~ A(Ti 1 i > n+1) @, Fplt1,. .., tai1],

where the t; come from the homology of BP. Thus we have well-defined ele-
ments 07p41 and oty,...,otp41 in T, THH(BP(n);F,). We will write 07,41
as 02vy,11 since this is its image inside THH(BP(n)/MU;F,,).

PROPOSITION 6.1.6. The descent spectral sequence for
THH(BP(n);F,) — THH(BP(n)/MU; F))
collapses at the Es-page as

Ey = Fa[0*vpq1] ® A(oty, ..., otny1).

n+1

Here 0?v,41 has filtration 0 and homotopy dimension 2p"*', and each ot; has

ltration 1 and homotopy dimension 2p* — 1.
fi DY P

Proof of Proposition 6.1.1 from Proposition 6.1.6. By a thick subcategory
argument (using [HPS99]) it suffices to establish the claim for a generalized
Moore complex F' = SY/(p%, ... vin). Observe that

F @ THH(BP(n)) =~ (F @ BP(n)) ®pp/,y THH(BP(n)).
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The BP(n)-module F' ® BP(n) lies in the thick subcategory generated by the
BP (n)-module [F,,, so we are reduced to the statement in Proposition 6.1.6. [

Proof of Proposition 6.1.6. For this proof, we will abbreviate
A := THH(BP(n);F,), B := THH(BP(n)/MU;F)).
It follows from [ARO5, Th. 5.12] that
meA = Fp[02vn+1] ® A(ot1,...,0tnt1).

We will see shortly that ¥ := m.(B ®4 B) is flat over m,B. The proposi-
tion will follow if we can show that Ext3,(m.B,m.B) already has the correct
size. We will prove this by constructing a further spectral sequence computing
Ext%, (7B, . B) whose Ea-term has the same size as m,A.

Regard A and B as filtered algebras via the Whitehead filtrations {7>;A}
and {7>;B}, so that the map A — B is a map of filtered algebras. We may
then regard the cosimplicial object

[’I”L] — B®A(n+1)

as a cosimplicial filtered spectrum. The associated graded cosimplicial object
is then given by

[n] > (7, B)Zreanth)
(where we have used ®“ to remind the reader that the tensor products are
derived). Since 7, B is concentrated in even degrees, the exterior classes must
vanish under the map m,A — m,B. It follows that

Y=, (W*B ®%*A W*B) ~ . B ®F, P ®F, T,

where I' = I'{0?t1,...,0%t,11} is a divided power algebra on the indicated
generators and P is a polynomial algebra on even degree classes.

Since Y is concentrated in even degrees, we learn that each of the spectral
sequences

- ((W*B)®&*A(n+1)) — 7T*(B®A(”+1))

collapses at the Es-page. In other words, we have a filtration on each group
7, (B®A( 1)) whose associated graded is given by ((71* B)®]7Lr*A("+1)). This,
in particular, implies that ¥ is flat over 7, B as we claimed earlier.

Using this filtration on homotopy groups, we may then extract a spectral
sequence ([Rav86, Th. A.1.3.9]):

Ext(m. B, 1. B) = Ext3; (1B, m B).

It will now suffice to prove that EXt%(?T*B,ﬂ'*B) has the same size as 74 A.
The map 7, A — 7. B can be written as a tensor product (over ) of the three
maps

id
Fylo%vn11] = Fplo?vnsi], Fp — P, A(oty,...,0tny1) — Fp.
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The descent Hopf algebroid for the first map is just the pair

(Fp [‘72”71—&-1] , Fp [‘72”71—&-1])7

which has cohomology Fp[02vn+1], concentrated in cohomological dimension
zero. The descent Hopf algebroid for the second map is (P, P ®p, P), which
has cohomology IF,, concentrated in cohomological dimension zero. The de-
scent Hopf algebroid for the last map is the divided power Hopf algebra
(]Fp7 F{Uztlv s 702tn+1})‘
It follows that we may compute our Ext as
Exts(m B, m:B) = Fp[0°0n11] @ BExtigor, o2, 3 (Fp, Fp)

-----

~ Fplo?vni1] @ Aloty,. .., otni1),
which completes the proof. ([

6.2. Recollection on Hopkins—Smith. It will be convenient for our argu-
ment to use a type n + 1 complex with a v,41-element that has as high an
Adams filtration as possible. We do not know whether it is possible to do this
and also equip our complex with a homotopy commutative ring structure, but
the below proposition will suffice for our purposes.

PROPOSITION 6.2.1. There is a finite p-local Eq-ring spectrum M with
the following properties:

(i) M admits a non-nilpotent vy41-element, v € m M.
(ii) The element v is central.
(iii) BP(n) ® M splits, as a BP(n)-module, as a direct sum of suspensions

of Fp.
(iv) Let fil(v) denote the Adams filtration of v, and |v| the dimension. Then
[l
=2p"tt —2.
fl(v) "

(v) The map MU, (M) — BP(n).(M) is surjective.

Proof. We may take M = End(X), where X is the type (n + 1) spec-
trum constructed by Jeff Smith in [Rav92, §6.4]. The claims (i), (ii), and
(iv) are shown in the course of the proof of [HS98, Th. 4.12]. Since the Mar-
golis homology of H*(X;F,) vanishes with respect to each Q; with i < n,
[MW81, Prop. 2.7] shows that H*(X;F,) is a finitely generated free module
over A(Qo, ..., Qn), so the same is true of M. Choosing a basis of H*(M;F,)
as a A(Qo, ..., Qn)-module gives a map M — V into a direct sum of suspen-
sions of [F,. After extending scalars of the source to BP(n) this becomes an
equivalence on [F)-cohomology, and hence an equivalence, proving (iii).

We now turn to the proof of (v). It will suffice to prove the statement
for BP in place of MU. We will use descent along BP — BP(n) to study the
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BP-modules BP® M and BP/(p,...,v,)®@M. We have a map between descent
spectral sequences:

EXCApp . (0vms 1) (BP (1), BP() (M) === BP..(M)

|

Extayp . (rensa,) (BP(0), Ho (M F,)) —— (BP/(p, .., 0,))(M).

Here we have used that BP(n) ®@gp BP/(p,...,v,) > F).
Since BP(n) ® M and F, ® M are F,-modules, by (iii), we may rewrite
the map of Ext groups as

ExtAFp( )(Fp,BP<n>*(M)) — ExtAFp( Fp, Ho(M;F)p)).

T4l ?n+17~~)(

As argued above, the map BP(n) ® M — F, ® M has a retract, so the map
BP(n).(M) — H.(M;F,) is injective. Finally, H.(M;F,) is a trivial comod-
ule over the Hopf algebra A(7T,+1,...) =~ A(ovp41,...), and hence so too is
BP(n).(M). It follows that the map on FEs-terms above is an injection, and
that every class in BP(n).(M) has a representative on the 0-line of the spec-
tral sequence computing BP, (M ). It remains to show that these representative
classes survive to the F.-page. By the above injectivity, it will suffice to prove
that the spectral sequence

EXtA]Fp( )(FI” H*(MaFP)) — (BP/(pa ce ,’Un))*(M)

?n-'rlv“'

collapses at the Es-page.

Observe that the property of a descent spectral sequence collapsing at
the Fs-page is closed under direct sums, suspensions, and retracts. Since the
descent spectral sequence for BP/(p,...,v,) collapses at the Es-page, it will
suffice to prove that BP/(p,...,v,) ® M is a direct summand of a finite direct
sum of suspensions of BP/(p, ..., v,).

Recall [Rav92, Lemma 6.2.6, Th. C.3.2] that Smith’s complex X is ob-
tained as a summand of a tensor power of a finite complex Y with cells in
dimensions 2 through 2p"*!. It follows that H.(Y;F,) is a trivial comodule
over A(Tp41,-..) and that, for dimension reasons, the Adams spectral sequence

EXtA(?nH,...)(Fpa H(Y;Fp)) =~ Hi(Y;Fp)[vnt1,...] = (BP/(p, ..., v0))«(Y)

collapses at the Eo-page. The Ez-page is a finite free module over Fp[vp41, .. ].

Using any homotopy ring structure on BP/(p, ..., v,) as a BP-module, we may
then lift a basis to construct an equivalence between BP/(p,...,v,) ® Y and
a finite direct sum of suspensions of BP/(p, ..., v,).

Similarly, using any homotopy ring structure on BP/(p, ..., v,), we deduce
that both

BP/(p,...,v,) ® (Y®), and BP/(p,...,v,) ® ((DY)®?)
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are equivalent to finite direct sums of suspensions of BP/(p,...,v,), as BP-
modules. So we conclude that BP/(p,...,v,) ® M is a summand of a finite
direct sum of suspensions of BP/(p,...,v,). This completes the proof. O

We will, several times, use the following elementary lemma found in
[HS98], which we recall for the reader’s convenience.

LEMMA 6.2.2 ([HS98, Lemma 3.4]). Suppose that x and y are commuting
elements of a Zy-algebra. If x —y is both torsion and nilpotent, then for
N >0,

N N
2 =yP .

Proof. Expand (y+ (z —y))P" and use that p*(z —y) = 0 for some k. [

From Proposition 6.2.1(iii), we see that THH(BP(n); F,) is a summand of
M @ THH(BP(n)) ~ (M & BP(n)) @gp/, THH(BP(n)),

arising from the unit map. In particular, there is a class that lifts o2v, 1
from M ® THH(BP(n)/MU). We will need the following result ensuring the
uniqueness and centrality of such lifts, up to taking large powers.

LEMMA 6.2.3. Ifz € m.(M®@THH(BP(n))) is a lift of a power of 0?v,11 €
(M @ THH(BP(n)/MU)), then there is some k > 0 for which a?" is central.

Moreover, if y is another such lift, then there are j,j > 0 such that 2P = ypj
and both elements are central.

Proof. Let FF = End(M), and denote by L, and R, the elements in homo-
topy corresponding to left and right multiplication by x, respectively. These
elements commute, and their difference is nilpotent by Proposition 6.1.6. It
follows from Lemma 6.2.2 that L’;k = Rﬁk for some & > 0, and hence that
2P" is central. For the second claim, first replace = and y by 2P and ypk/ SO
that 27" is central and both elements map to the same power of o%v,, 1 inside
(M @ THH(BP(n)/MU)). Then x and y are commuting elements and = —y
maps to zero in m.(M ® THH(BP(n)/MU)). By Proposition 6.1.6, z — y is
nilpotent and again Lemma 6.2.2 implies that 2P = ypj for some j > 0. This
completes the proof. O

6.3. Proof of canonical vanishing.

THEOREM 6.3.1. There are a vp41-element v € w, M and an integer d > 0
such that, for all 0 < k < oo, the map

(M /v ® can) : m (M /v ®@ THH(BP (n))"“»*) — 7, (M /v ® THH(BP(n))"“»*)

1s zero when x > d.
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Remark 6.3.2. In the proof of the theorem and the lemmas below we
will make use of the homotopy fixed point spectral sequence. If a group G
acts on a spectrum X, then we will take the homotopy fixed point spectral
sequence computing 7. (X") to be the one associated to the tower {(7>;X)"“}
according to our conventions in Section C. However, it will be convenient to
know that, for fixed s, an element € 7,(X"%) is detected by a class in E;l’t for
some s > s if and only if = vanishes when restricted to map(sks(EG)4, X)"C.

This follows from [GM95, Th. B.8§].

LEMMA 6.3.3. Let v € meM be the v,41-element from Proposition 6.2.1.
Then v is detected in the homotopy fixed point spectral sequence for M ®
THH(BP (n))*S" in filtration at least 1%'

Proof. Set m = %,L#_Q. We need to prove that the image of v vanishes
inside

Y := lim M @ THH(BP(n)).
cpm—1

Since
M @ THH(BP(n)) ~ (M ® BP(n)) ®gp(,y THH(BP(n))
is a direct sum of shifts of IF,, the skeletal filtration on CP™ ! gives rise

to an Adams resolution of Y of length m — 1. The claim now follows from
Proposition 6.2.1(iv). O

LEMMA 6.3.4. The homotopy fixed point spectral sequence converging to
(M ® THH(BP(n) /MU)"S") collapses at the Ey-page.

Proof. The Es-page can be described as
BP (1), (M) ©pp(ny. THH(BP (n) /MU).[1
By Proposition 6.2.1(v), the images of the equivariant maps

MU ® M — M @ THH(BP(n)/MU),

THH(BP(n)/MU) — M ® THH(BP(n)/MU)
induce maps of spectral sequences whose images generate the Fs-page of the
target as a ring. Every element in the homotopy fixed point spectral sequence

for both MU"S" @ M and THH(BP(n)/MU) is a permanent cycle, so the claim
follows. O

LEMMA 6.3.5. There is an element z € m.(M @ THH(BP(n))) with the
following properties:

(i) z is central;
(ii) z maps to a power of 0>v,y1 inside w,(M ® THH(BP(n)/MU));
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(iii) for some m > 0, t"z, in the Ea-term of the homotopy fixed point spectral
sequence, detects the image of a central vy41-element from m.(M) inside
(M ® THH(BP(n))h5");

(iv) m(M ® THH(BP(n))) is a finitely generated Zy[z]-module.

Proof. First observe that each of these properties is preserved after replac-
ing z by any power of itself, so we may do this at any time in the argument.

By Proposition 6.1.6 and Proposition 6.2.1(iii), we may choose z € m,(M ®
THH(BP(n))) that lifts 0%v,, ;1 and for which m, (M @THH(BP(n))) is a finitely
generated Z,) [z]-module. By Lemma 6.2.3, after replacing z by a power, we
may assume that z is central as well. So we have chosen a z that satisfies (i),
(ii), and (iv).

Let

f: M ®THH(BP(n)) - M ® THH(BP(n)/MU)

be the canonical map. Let us denote by {E!} the homotopy fixed point spec-
tral sequence computing 7, THH(BP(n))"S" and by {E/'} the homotopy fixed
point spectral sequence computing 7, THH(BP (n) /MU)"S" . We will denote by
E,.(f): E. — E, the map induced by f.

By Theorem 5.0.1, we know that v, 41 is detected in Ey by t(c%v,41). Let
v denote a central v, i-element in (M), projected to m.(M @ THH(BP(n)).
By the definition of a v, y1-element, there is an m > 0 such that f(v) = v},
modulo the ideal (p,...,v,). Property (iii) in Proposition 6.2.1 guarantees
that M ® THH(BP(n)/MU) has (p,...,v,) = 0, and hence that v is detected
by t"(0%vp41)™ in Ey = E..

It follows that v cannot be detected in F, in filtration higher than 2m.
By Lemma 6.3.3, v must be detected in Eé by a class in filtration at least 2m.
Say that v is detected by t™2’, where 2’ € m,(M @ THH(BP(n)).

Then, since Es(f)(#™2') = t™(0%v,41)™, and EY = E” | we must have
that f(2') = (02vpe1)™.

After replacing z and v by suitable powers, the result now follows from
Lemma 6.2.3 applied to the elements z and 2’. O

Remark 6.3.6. At height one and primes p >5 a version of Lemma 6.3.5(iii)
was obtained by Ausoni-Rognes in [AR02, Prop. 4.8].

Proof of Theorem 6.3.1. Fix v, z, and m as in the previous lemma. Let
X = {m>;(M ® THH(BP(n)))}

denote the filtered spectrum corresponding to taking connective covers of M ®
THH(BP(n)). We can choose a lift § € m,(X22m"")hS" of 4 and form the
cofibers in filtered spectra:

Y o= X"k 5, 7= X .
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The filtered spectra Y and Z give spectral sequences converging to M/v ®
THH(BP (n))"“* and M /v @ THH(BP(n))'“»* respectively, and the canoni-
cal map Y — Z converges to the canonical map between these two spectra.
Observe that the Fs-page of the spectral sequence for Y is concentrated in non-
negative filtration (with our grading conventions). It will therefore suffice to
prove that the Fo-page of the spectral for Z is eventually concentrated in neg-
ative filtration (uniformly in k). From the cofiber sequence (with suspensions
and grading shifts omitted)

ar(X)'% I gr(X)' - gr(2),

it is enough to show that multiplication by z on 7, (gr(X )tcp’“) is eventually an
isomorphism in non-negative filtration. By [NS18, Lemma IV.4.12], we have
gr(X )tcpk = gr(X )ts1 /p*. So it suffices to prove that multiplication by z is
eventually an isomorphism in non-negative filtration for the group

7.(M ® THH(BP (n)))[tT1].

But, more generally, if L is any finitely generated Z,[z]-module, then the
analogous claim is true for L[t*1]. O

Appendix A. Suspension maps

Suppose R is an augmented (discrete) algebra over a field k& with augmen-
tation ideal I. Then there is a homomorphism of abelian groups

o : I — Torf(k, k),

where oz is represented by the class [z] in the bar complex. At various points
in the paper we use a generalization of this construction to the spectrum level.
Specifically, it is used in Section 2 to provide canonical lifts of elements in
Kiinneth spectral sequences and, more crucially, in Section 5 in order to prove
the Detection Theorem (Theorem 5.0.1). We make no claim of originality for
the material in this appendix, though we were not able to find the Detection
Lemma (Lemma A.4.1) in the literature.

Convention A.0.1. Throughout this section € will denote a stable, pre-
sentably symmetric monoidal category with unit object 1.

A.1. Construction of suspension maps. For the purposes of functoriality,
it is convenient to construct our suspension maps in the setting of factor-
ization homology. Let Mﬂdflr denote the category of framed n-manifolds as
constructed in [AF15], equipped with its symmetric monoidal structure under
disjoint unions. Let Diskflr be the full subcategory spanned by n-manifolds
equivalent to disjoint unions of copies of R™. This category is equivalent to
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the symmetric monoidal envelope of the E,-operad. Factorization homology is
then given by a functor

/ : Algg, (€) =~ Fun®(Disky;, €) — Fun® (Mfidy}, €)

that is left adjoint to restriction. Here Fun®(—, —) denotes the category of
symmetric monoidal functors.

Construction A.1.1 (Unreduced suspension). Since factorization homol-
ogy is functorial on Mﬂdf{, we always have an (unpointed) map of spaces:

" N M

If we set N = R"”, then fN A = A, and the above is adjoint to a map
sM MapMﬂdg(Rn, M);®A=M;®A— /MA

that is functorial in M and A. Here we have used X; ® (—) to denote the
tensoring of € over the category of unpointed spaces.

We observe that, when A = 1, this map is canonically identified with the
collapse

Mi®1—=1~ / 1.
M

Construction A.1.2 (Suspension). Let M be a framed n-manifold equipped
with a basepoint. From the previous construction, we have a functorial dia-
gram

SM
M,®1———>1

The choice of basepoint provides a splitting of the top map and hence a com-
mutative square (functorial in A and basepoint preserving maps in M ):

M®1 0
M®A—- [, A

Thus we get a map from the pushout of the diagram with the lower right vertex
deleted:

UM:M®(A/1)—>/ A,
M

where A/1 denotes the cofiber of the unit map for A.
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Remark A.1.3. If one instead used the transposed diagram

M®1l—M®®A

| l

0 S A

then this would alter the definition of o™ by —1. Since neither choice seems
canonical, and we will often find ourselves rotating distinguishing triangles in
the arguments below, we will mostly make and prove statements about o™
only up to a factor of +1. For convenience and for the purposes of this paper,
we will, in Section A.4, fix a choice so as to make a certain equation true on
the nose rather than up to a factor of +1.

A.2. Examples of suspension maps.
Ezample A.2.1 (Dimension 0). If A is an Eg-algebra, then we denote o5’
by o, which is a map

o:(A/1) — A=A®A.

S0
From the construction, o comes as the induced map from the square
1 0
A A® A

_—
id®1-1®id
Equivalently, we can describe this map (up to sign) as arising from the large
square in the diagram

»1(A/1) 0
I
l l@id

0 A - A® A.
id®1

Variant A.2.2. Recall that the category Algg, (C) carries an action of Co
given informally by sending an E;-algebra B to the algebra B°P equipped with
the opposite multiplication.

Let R € Alg]El(C’)hC2 be an object in the fixed points so that, in partic-
ular, R comes equipped with an equivalence 7 : R ~ R°P. This induces an
equivalence

(=)" : LModr(€),— RModr(C)

which is the identity on underlying objects. Now let k£ be a left R-module
equipped with a map 1 — k£ in €. We can extend this to a left R-module



1332 JEREMY HAHN and DYLAN WILSON

map 1 : R — k and to a right R-module map 17 : R — k7. Since 7 is an
equivalence, there is a canonical identification between the fibers

fib(1x) ~ fib(17),

and we denote either by I.
This is enough to make sense of the following diagram in C:

I 0

N
o s

0 k id®1y K ®r k.

Thus we may extend the definition of ¢ in this case to
o:2] - kK Qrk.

LEMMA A.2.3 (Compatibility with Kiinneth spectral sequence). Take C =
Sp and adopt notation as in Variant A.2.2. Leti: I — R denote the fiber of
R — k. Suppose that the map

1 : me R — ok

is surjective. Then, for any x € w1, o(x) € me1(k™ @p k) is detected in the
Kinneth spectral sequence in filtration 1 by the class

[1®i(z) ®1] € TorT*(mk, k),
up to sign.
Proof. First we claim that the composite
YISk @pk — kT @p I

is homotopic, up to sign, to the map 17 ® id. Indeed, consider the following
diagram:

I—0

R k

0——=k——=Fkllgk——=k"®grk

0 I kT @g XI.
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The vertices of the large trapezoid form the commutative square

I ——0

L

00—k ®@rk

used to define o, and hence the induced map on the pushout of (0 «— I — 0)
gives the desired factorization.

It follows from naturality of the Kiinneth spectral sequence that the map
R®pI =3I — k™ ®p I induces, on E%-terms, the projection map

mo I — Torg*R(w*k,w*I) = F*I/(W*I)Q.

Finally, recall the construction of the Kiinneth spectral sequence for M @z N
proceeds by lifting a (graded) free 7, R-resolution of N to a filtration by left
R-modules [Til18], and that this construction is natural in the resolution. Since

0— mel > mR— ek —0

is exact, we may choose a resolution C, of m,k that begins with Cy = R and
with the property that
Tl — C1 = Coy -+

is a resolution of m,I. Considering m.,R as a complex concentrated in de-
gree zero, the quotient map C, — (C./R) can then be lifted to a map of
filtered objects and then we may apply k™ ®g (—) to this map. This gives
a map of spectral sequences that, on the E2-page, gives the boundary map
0 : TorTf*R(ﬂ*k,mk:) — ETorg*R(mk‘,W*I), which is an isomorphism. The
result follows. O

Ezample A.2.4 (Dimension 1). The circle acts on itself by framed maps,

where we use the Lie group framing, and hence the map to Hochschild homol-
ogy
s Sl @A A=HH(4)
S
is circle equivariant. Since the source of 5 s induced, the map must be
induced from its restriction along the identity; i.e., s° b is adjoint to the non-
equivariant map A — HH(A) corresponding to the identity element in S!. We

abbreviate the reduced suspension map by o2 : ¥(A4/1) — HH(A).

A.3. Relationship with the cotangent complex. Let A be an E,-algebra
in €. We will abbreviate by Lff) the E,-algebra cotangent complex of A,
which is an E,,- A-module. Recall [Lurl7, Th. 7.3.5.1] that we have a functorial
cofiber sequence of [E,- A-modules:

UM (A) = A — "L,
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Ezxample A.3.1. When n = 0, this is the cofiber sequence
1—-A—(A/1).
If k& < n, we may apply A ®yx-1) (—) to the cofiber sequence computing
the E;_1-cotangent complex and get a cofiber sequence in C:
A= Aye-ng A= UP(A) > A @y 4 LY
This gives a functorial splitting of objects in C,
A SFILE) ~o UM (4),

k1)

and an identification
k k—1
LY ~¢ A@yo-n(ay LY
(Here we have places a subscript on the equivalence to emphasize that this
equivalence is not one of Ex-A-modules).

LEMMA A.3.2. For k < n, the following diagram commutes (up to sign):

—_ — 0
$k14/1 —— sk-1Y)
— k
UM (4) — k=1L

Proof. We prove this by induction on k, the base case being trivial. For
the inductive step, observe that, by functoriality of of o™ in M, we have a

diagram
I (R*) ® (4/1) =— Z*1(A/1) — (R") @ (4/1) I
A— ka A m A — A

The induced map on the pushout is, on the one hand, given by ¢**! and, on
the other hand, by the inductive hypothesis, given by the composite

SE(A/1) T sU® (4) - SFLE %k (a),

where ¢ is constructed as in Variant A.2.2.° On the other hand, as explained
in the beginning of the proof of Lemma A.2.3, the composite

SFLY % Ut (4) - SPLETY > A @y 4 SFLY
is given by the map 1 ® id. This completes the proof. U

5Notice that, in this inductive step, k < n, so U(k)(A) is at least an [Eq-algebra, and hence
the involution 7 is trivial.
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A.4. Undoing suspension in Hochschild homology. If X € Fun(BS!, @) is
an object equipped with an S'-action, then we may compute the limit over
CP!' C BS! using the fiber sequence

limX - X —» 271X,
CP?

where X — ©71X is adjoint to the (reduced) action map X — S! @ X — X.
We denote the connecting homomorphism by

t:¥72X — lim X.
cpt

Our goal in this section is to prove the following lemma, which allows us
to use the circle action on Hochschild homology to “undo” the suspension.

LEMMA A.4.1 (Detection Lemma). There is a functorial diagram®

Y1(A/1) 1

.

S-2HH(A) — > limgpr HH(A).

Here, the map 1 — limgpi HH(A) arises from the S'-equivariant map 1 —
HH(A) where 1 has the trivial action.

Proof. We have a diagram, functorial in A,

1——0

l

A

l

HH(A) —— Z~'HH(A).

We can left Kan extend to a diagram:

—

7 Z
: h

HH(A) —— L71HH(A).

1—0

5Recall that the definition of the suspension map requires a choice, and that altering this
choice multiplies the map by (—1). For the purposes of this paper, we will fix this choice so
that the diagram in this lemma commutes.
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The map A — X ~'HH(A) is adjoint to o : XA — HH(A), since this latter
map was constructed as the induced map on the pushout of the diagram

X1 ——0

.

SA — HH(A).

Now we may further right Kan extend to a diagram:

A\ 1
limgpt HH(A) —— 0

Here, the map 1 — limgp1t HH(A) arises from the canonical trivialization
of the S'-action S1 ® 1 — 1 ~ HH(1).
We may view the above cube as a map of fiber sequences

1 0

HH(A) —— S-1HH(A).

1 A A

| | |

limgpr HH(A) —— HH(A) —— Y~HH(A),

which then yields the desired diagram:

»1A 1
Y 2HH(A) — > limgp HH(A). O

Appendix B. Recollections on graded objects

In this section we briefly review some facts about graded rings used in the
body of the paper.

Definition B.0.1. Let k be an E-ring. The category of graded k-modules
is defined by
grMod,, := Fun(Z%, Mod},),
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where Z% denotes the integers viewed as a 0-category. The category grMod,,
is a presentably symmetric monoidal category under Day convolution. If M
is a graded k-module, we will denote by M; its values at i, and by M (n) the
precomposition with addition by —n (so that M(n); = M;_,). We will refer
to the grading as the weight throughout.

We will need various (co)connectivity conditions and finiteness conditions.
Definition B.0.2.

e Let A be an augmented, graded E,-k-algebra. We say that A is weight-
connected (resp. weight-coconnected) if the fiber of the augmentation A — k
is concentrated in positive grading (resp. negative grading). We denote the
corresponding categories with superscripts wt-cn and wt-ccn, respectively.

e We denote by ngodXtZ" (resp. grl\/lod}ftgn) the full subcategory of graded
k-modules concentrated in weights at least n (resp. at most n). We will write
M > n (resp. M < n) to indicate that M belongs to this subcategory.

Remark B.0.3. Observe that the map —1 : Z% — Z is a symmetric
monoidal equivalence, and hence induces a symmetric monoidal equivalence on
the category of graded k-modules, algebras, etc. It follows that any result about
weight-connected algebras, or modules of weight bounded below by n, has a
counterpart for weight-coconnected algebras or modules of weight bounded
above by —n.

LEMMA B.0.4. Let A be an augmented, graded k-algebra, and denote by
A the fiber of the augmentation. Let M € LMody and N € RMods. Then
there is a filtration on M ®4 N,

MRN=Fy—F, —---—=colimF;=M®4 N,

such that
gr,(M ®4 N) =~ Y'M @A @ N.

Proof. The relative tensor product is computed by the geometric realiza-
tion of the standard simplicial object with nth term M ® A®™ @ N ([Lurl?,
4.4.2.8]). Hence, by the Dold-Kan correspondence ([Lurl7, 1.2.4.1]), it is also
computed as the colimit of a filtered object with associated graded correspond-
ing to the normalized complex (which can be computed in the homotopy cat-
egory), as indicated. O

COROLLARY B.0.5. Let A be a weight connected algebra L, N € LMod4
and M €RMod . If M >« and N >3, then M&aN > o483 and (M @aN)a+p=
My®Ng.
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We will now study a natural filtration on the category of graded modules
over a weight-connected algebra. If A is weight-connected, we denote by

LMod%"=?, LMod""~/ C LMod 4

the full subcategories spanned by those modules that are concentrated in
weights at least j and at most j, respectively.

LEMMA B.0.6. Let A be a weight-connected E,,-k-algebra for some 1 <
n < 00.
(i) The inclusion LModXth — LMod 4 admits a right adjoint, (—)>;, com-
puted as
M>;); =
(M) {O else.
(ii) The inclusion LModZtSj — LMod 4 admits a left adjoint, (—)<;, com-
puted as M — M/M>;i1. In particular,

0 else.

(M<j)i = {

(iii) The subcategory LModXDZO inherits an E,_1-monoidal structure.

(iv) The localizations (—)<m, are compatible with the E,_1-monoidal structure
on LMod*'=°.

(v) The tower

A—)-‘~—)A§m—>A§m_1—>'-‘—)k

of En-k-algebras is a tower of square-zero extensions; i.e., we have pull-
back diagrams of E,-k-algebras:

Acm k

| |

Agm—l ——k D ZAm(m)

Proof. The existence of these adjoints is immediate since the inclusions
preserve all limits and colimits. To compute M>;, observe that, for ¢ > j, the
A-module A(7) is in weights at least j, since A is weight-connected. The homo-
geneous component (M>;); is computed as the spectrum of maps of A-modules
from A(i) to M>; which, by the adjunction, is the same as the spectrum of
maps from A(i) to M, which is M;. This proves (i).

Claim (ii) follows formally from the observation that, if M > m + 1 and
N <'m, then every map M — N is zero.

Claim (iii) follows, using [Lurl7, 2.2.1.1], from the fact that LModXtZO
contains the unit and is closed under tensor products, by Corollary B.0.5.
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For claim (iv), we must show that if M — M’ is an equivalence in weights
at most m, then sois Z@s4 M — Z@s M and M @4 Z — M ®4 Z' for Z > 0.
Let F be the fiber of M — M’ so that ' > m + 1. Then the result follows
from Corollary B.0.5 applied to Z ® 4 F and F ® 4 Z.

For the final claim, we need to produce a derivation, i.e., a map,

L™ 54, (m)

Agm—l
refining the map A<,,—1 — cofib(A<,, = A<pm—1) = Ap(m). Here L™ de-
notes the E,-cotangent complex. We will produce this refinement as a com-
posite

(n)

where the first map is the canonical one to the relative cotangent complex and

Agm—l

the second is projection onto the first non-zero weight. By [Lurl7, 7.5.3.1]
applied to the E,-monoidal category MOdEZm of E,-A<;,-modules, we can
compute the relative cotangent complex using the cofiber sequence

gbﬁ)m(ASm—l) — A<m-1 = EHL(me—l/ASm

of Ep-A<;,—1-modules. Using the recursive construction of the enveloping al-
gebra, we are reduced to proving the following claim:

(x) If A — B is a map of weight-connected E;-algebras with cofiber C' > j,
denote by C’ the cofiber of B ®4 B — B. Then C' > j and C} = XCj.

To prove (x), observe that the multiplication map admits a section so that
C' ~Y¥B®4 C. The result now follows from Corollary B.0.5. O

Appendix C. Spectral sequences

In the body of the paper, we use various spectral sequences and maps of
spectral sequences obtained by applying certain functors and natural transfor-
mations to towers. The purpose of this appendix is to check that these maneu-
vers produce convergent spectral sequences under certain conditions satisfied
in the cases of interest.

Convention C.0.1. Throughout this section, € will denote a presentably
symmetric monoidal stable category with a t-structure. We will assume that
C satisfies the following properties (all of which are satisfied, for example, by
modules over a connective Eo-ring, equipped with an action of a group):

(i) The t-structure is compatible with filtered colimits; i.e., C<¢ is closed
under filtered colimits.

(ii) The t-structure is left and right complete, which in this case is equivalent
to saying that

colim 7<, X =0 = lim 7>,X.
n——oo n—,oo
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(iii) The t-structure is compatible with the symmetric monoidal structure;
ie.,1€Cspand X ®Y € C>pqym whenever X € €5y, and Y € C>ypy.

C.1. Towers and convergence.

Convention C.1.1. Given a tower {X=°} € Fun(Z°?,C), we index the as-
sociated spectral sequence so that

Eyt = m_sgrtX = 1 (cofib( X2 = X 2t),
We write X~ := colim X=5.

Warning C.1.2. There is not a typo here: we mean m;_sgr’ and not
m_sgr®. The latter would have differentials as in the Fq-term of a spectral
sequence, whereas the former will behave as an FEs-term.

Definition C.1.3. Suppose that {X=%} is a tower with associated spec-
tral sequence {E;?t} We say that E, converges conditionally to m, X~ if
lim XZ°=0. We say that E, converges strongly if the associated filtration
F3(m_ s X ™) i= im(m_ s X 2275 = m;_ (X ~°°) satisfies

holim Fém, X~ = 0.
S

We will content ourselves below with establishing general conditions under
which conditional convergence holds. In the body of the paper, when we claim
that some spectral sequence actually converges strongly, it is because it also
satisfies the conditions of Boardman’s theorem [Boa99, Th. 7.1] for spectral
sequences with entering differentials:

THEOREM C.1.4 (Boardman). Suppose that E, converges conditionally
and that, for each fized (s,t), there are only finitely many non-trivial dif-
ferentials entering with target in the (s,t) spot. Thus, we eventually have
E D Ef_il Suppose further that im!ES" = 0 for each (s,t). Then E,
converges strongly to m.X.

C.2. Descent towers. Let B be a connective, commutative algebra object
in €. Then we may form the descent tower functor (see, e.g., [BHS20, §B-C])

descp : € — Fun(Z°?, C),
which is lax symmetric monoidal and is specified by

desc%j (X) = hin(»]—zj (X ® B®0+1))'

When X is bounded below, this yields a conditionally convergent spectral
sequence

Eyt = H¥(my(X) = m(X @ B) — -+ ) = m_s X5,
where X3 = lim(X ® B®®*). When 7.(B ® B) is flat over B, we can further

identify the FEs-term with Ext in the category of comodules over the Hopf
algebroid (m. B, m.(B ® B)).
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Remark C.2.1. When € = Mod4 and B is regarded as a commutative
algebra object through a map A — B of commutative algebras, we will often
refer to the above procedure as “descent along the map A — B.”

Remark C.2.2. It is possible to make this construction with much weaker
hypotheses (at the cost of losing some multiplicative structure). For example,
the cobar construction and construction of the descent tower makes sense when
€ = Mody4 for a connective Eo-ring A and B a connective E;-A-algebra.

Remark C.2.3. The tower desc%,*(X ) is not the usual Adams tower, but
rather its décalage (compare [Del71, 1.3.3, 1.3.4] and [Hed20, §II]), which is
why its associated graded has homotopy groups corresponding to the Es-page
of the Adams spectral sequence rather than the Eq-page.

Warning C.2.4. The descent tower shears the filtration in the Adams
spectral sequence. If we fix t — s = n, then contributions to Adams filtration s
come from desc=**". So, for example, a horizontal vanishing line on, say, the
Es-term of the Adams spectral sequence would correspond to behavior in the
descent filtration that is more like a vanishing line of slope 1. Of course, if one

is only interested in a finite range of values of n, there is no difference.
This story is especially well behaved when fib(1 — B) is 1-connective.

ProprosITION C.2.5. Suppose that I = fib(1 — B) lies in 7>1C. Then,
for any d-connective object X, the descent tower has the following properties:

(a) The natural map X — X} is an equivalence.

(b) E3* vanishes when 25 —t > d.

(c) ﬂndesc]%j(X) = 0 whenever j > d + 2n.

(d) For each k, there exists an N such that desc%,j (X) is k-connective for
J=N.

Proof. Since lim; desc%j (X) = 0, we can study the vanishing of the homo-
topy groups of each desc%,j (X) by establishing a vanishing range in the associ-
ated graded. Thus (b) = (¢) = (d), so we need only establish (a) and (b). But
these claims can be proven using the usual construction of the descent spectral
sequence, via the tower {Tot=*(B**! ® X)}, where the result is clear. O

C.3. Classical Adams spectral sequence. The classical Adams spectral se-
quence, given by descent along S — Fp, has slightly more involved conver-
gence issues since the fiber of the unit map S° — ), is not 1-connective. We
review the classical approach to getting around this issue and leverage this to
understand the convergence behavior of the Tate fixed point spectral sequence
below.

Throughout this section desc(—) = descp, (—).
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Construction C.3.1. Since desc(—) is lax symmetric monoidal, every de-
scent tower is a module over desc(S°). Recall that the element p € m(S?) is
detected in Adams filtration 1, and hence lifts to an element vy € modesc=1(S0).
Thus, given any spectrum X, we have a natural map

v : desc(X)(1) — desc(X),
where, for a filtered spectrum Y, Y (j) refers to the filtered spectrum with
Y (i) =y,
Remark C.3.2. The composite of the shift operator with vg is multiplica-

tion by p. It follows that vy induces multiplication by p on both colim X and
lim X.

Remark C.3.3. There is a canonical identification desc(X)/vg~desc(X/p).
However, when k > 2, desc(X)/vf and desc(X/p¥) differ. The former tower
has FEs-term computed by the homotopy groups of an object of the derived
category of A,-comodules that does not lie in the heart.

PRrROPOSITION C.3.4. Let X be d-connective. Then desc(X)/vi" has the
property that, for each k, there is an N such that, for all j > N, desc=? (X) /vl
is k-connective. Moreover, each term desc=?(X) /vl is d-connective.

Proof. The conclusion about the tower is stable under extensions, so we
are reduced to the case when m = 1 and desc(X)/vg = desc(X/p). Since the
tower is conditionally convergent, it suffices to establish a vanishing line on the
Fs-page, and to show this is concentrated in stems starting in dimension d.
The Es-page is computed by Extj{i (H.(X) ® A(79)), which classically has the
desired vanishing line. (See [Ada66, Th. 2.1] at the prime 2, and [Liu63,
Prop. 2] at odd primes.) O

C.4. Fized point spectral sequences. Given a tower X in the category of
spectra with an action of a group G, we can take homotopy fixed points,
orbits, or Tate fixed points levelwise and produce a new tower. In this section
we establish some criteria for the conditional convergence of this tower.

ProprOSITION C.4.1. Suppose X € Fun(Z°?, Fun(BG, C)) is conditionally
convergent (i.e., lim X = 0). Then so is X"¢.

Proof. Limits commute with limits. O

The analogous result for Tate fixed points requires a proposition. We are

grateful to the referee for pointing out the following result, which simplifies
our earlier treatment of convergence in this section and the next.

ProPOSITION C.4.2. Let Y be a filtered G-spectrum that is uniformly
bounded below. Then
(lim Y)!¢ — 1lim(Y'%)

1$ an equivalence.
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Proof. Without loss of generality we may assume that Y is uniformly
O-connective, and hence that imY is (—1)-connective. If Z is a G-spectrum,
then Zj,¢ is computed as colimpaer (G$®* ® Z). Denote by sk, (Zs) the colimit
over A2 . If Z is (—1)-connective, then the cofiber (Z¢)/(sk, Zng) is (r — 1)-
connective. We learn that, in the diagram

sk, (imY)pg¢ — lim sk, ;¢

| |

(hm Y)hG lim(th),

the vertical arrows are an equivalence in a range increasing with r, and the
upper horizontal arrow is always an equivalence since lim(—) commutes with
finite colimits. It follows that

(lim Y)hG — lim(th)

is an equivalence, and hence so is (lim Y)/¢ — lim(Y*%). O

COROLLARY C.4.3. IfY is a uniformly bounded below, conditionally con-
vergent tower, then Y is also conditionally convergent.

C.5. Hochschild homology of filtered rings. If A is a filtered E;-ring, one
can construct a corresponding filtration of THH(A) and spectral sequence (see
[AKS18]). We will need to understand how this spectral sequence interacts with
the Tate-valued Frobenius, and for this we need a construction of THH(A) as
a filtered cyclotomic object. We refer the reader to [AMMN21, §A] for details
and review the relevant definitions here.

Definition C.5.1. Let Ly, : Fun(Z°P,Sp) — Fun(Z°P,Sp) denote left Kan
extension along multiplication by p.

PROPOSITION C.5.2 (JAMMN21, §A)). Let A be a filtered or graded Eq -ring.
Then THH(A) admits a natural L,-twisted diagonal, that is, an St -equivariant
map

¢ : L, THH(A) — THH(A)!".
In the filtered case, this map is compatible with passage to the associated graded
and, in both cases, the map is compatible with forgetting to underlying objects.

Remark C.5.3. Since L, is adjoint to restriction along multiplication by p,
the Frobenius gives S'-equivariant maps

¢ : THH(A)Z — (THH(A)!%%)=IP
for all j, and similarly for the graded case.

In particular, this produces maps of spectral sequences (which shear the
gradings). We will be using these spectral sequences in the case when we
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are filtering A by its descent tower for S° — F,. The following proposition
guarantees convergence (after p-completion) when A is connective.

ProrosiTION C.5.4. Let A be a connective Ei-ring. Then, for each 1<m
< oo, the tower THH(descr, (A4))!C»™ converges conditionally to THH(A)C»™.
The tower THH(descr, (A))y, converges conditionally to THH(A);).

Vo

Proof. Since THH(desc(A)) is uniformly bounded below, we have
lim THH (desc(A))!»™ = (lim THH(desc(A))) ™

by virtue of Proposition C.4.2.

On bounded below Cx-spectra Z we have that 710k = (ZZQ\)'ECP’C (see
[NS18, Lemma I1.2.9, Lemma I1.4.9]). So to prove conditional convergence it
will suffice to show that

N=0.

(lim THH(desc(A))),,

We have
(lim THH(desc(A)))/p = lim(THH(desc(A)) /vo),

so it suffices to show that this vanishes. This, in turn, will prove the second
claim that THH(desc(A));, converges to THH(A);).

We recall that THH(desc(A)) is defined as the geometric realization of
a simplicial object with terms desc(A4)®**!  and therefore THH(descA)/vg
is computed as the geometric realization of a simplicial object with terms
desc(A) /vy @ desc(A)®®. Observe that, if Z, is any simplicial spectrum with
each Z; connective, then, by the Dold—Kan correspondence, sk, |Ze|/sk,—1|Z|
is a summand of X"Z, and hence must be r-connective. Thus, to check that
lim THH(desc(A))/vo = 0 we need only check that lim sk, THH(desc(A))/vo=0
for all r. Since this skeleton is a finite colimit, we are reduced to checking that
lim(desc(A)/vo @ desc(A)®™) = 0 for all n. In fact, the terms in this tower be-
come increasingly connective by Proposition C.3.4, so the result is proved. [
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