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Redshift and multiplication for truncated

Brown–Peterson spectra

By Jeremy Hahn and Dylan Wilson

Abstract

We equip BP〈n〉 with an E3-BP-algebra structure for each prime p and

height n. The algebraic K-theory of this ring is of chromatic height exactly

n + 1, and the map K(BP〈n〉)(p) → Lf
n+1K(BP〈n〉)(p) has bounded above

fiber.
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1. Introduction

Our main aim here is to prove the following:

Theorem. For each prime p and height n, there exists an E3-BP-algebra

structure on BP〈n〉. The algebraic K-theory of the p-completion of this ring

has finitely presented cohomology over the mod p Steenrod algebra, and it is of

fp-type n+ 1 after p-completion.
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The principal connective theories in the chromatic approach to stable

homotopy theory are thus more structured than previously known, and they

satisfy higher height analogs of the Lichtenbaum–Quillen conjecture. The E3

forms of BP〈n〉 constructed here give the first known examples, for n > 1, of

chromatic height n theories with algebraic K-theory provably of height n+ 1.

The redshift philosophy. In his 1974 ICM address, Quillen [Qui75] stated

as a “hope” the now proven Lichtenbaum–Quillen conjecture [Voe03], [Voe11].

His hope was that the algebraic K-theory of regular noetherian rings could be

well approximated by étale cohomology, at least in large degrees. Ten years

later, Waldhausen [Wal84] investigated interactions between his K-theory of

spaces and the chromatic filtration. He observed that, in the presence of a

descent theorem of Thomason [Tho82], the Lichtenbaum–Quillen conjecture

could be restated in terms of localization at complex K-theory. Let Lf
1 de-

note the localization that annihilates those finite spectra with vanishing p-adic

complex K-theory; for suitable rings R, the Lichtenbaum–Quillen conjecture

is equivalent to the statement that

π∗K(R)(p) → π∗L
f
1K(R)(p)

is an isomorphism for ∗ � 0.

Algebraic K-theory is defined not only on rings, but (crucially for ap-

plications to smooth manifold theory) on ring spectra. One of the deepest

computations of the algebraic K-theory of ring spectra to date is by Ausoni

and Rognes [AR02], who for primes p ≥ 5 computed the mod (p, v1) K-theory

of the p-completed Adams summand `∧p . Their computations imply that

K(`∧p )(p) → Lf
2K(`∧p )(p)

is a π∗-isomorphism for ∗ � 0. Here Lf
2 is the next localization in a hierarchy

of chromatic localizations Lf
n for each n ≥ 0 (at an implicit prime p). This of

course suggests a higher height analog of the Lichtenbaum–Quillen conjecture.

In the Oberwolfach lecture [Rog00], Rognes laid out a far-reaching vision of

how this higher height analog might go, which is now known as the chromatic

redshift philosophy. The name redshift refers to the hypothesis that algebraic

K-theory should raise the chromatic height of ring spectra by exactly 1.

To give a more precise statement, we will need the notion of fp-type,

due to Mahowald–Rezk [MR99]: A p-complete, bounded below spectrum X is

of fp-type n if the thick subcategory of p-local finite complexes F such that

|π∗(F ⊗X)| <∞ is generated by a type (n+1) complex (i.e., a complex with

a vn+1 self-map).

With this definition, Ausoni–Rognes conjecture that

Conjecture. For suitable E1-rings R of fp-type n, K(R)∧p is of fp-type n+1.
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As we review below (see Theorem 3.1.3), this statement also implies that

K(R) → Lf
n+1K(R) is a p-local equivalence in large degrees, so we can think

of it as a higher height analog of the Lichtenbaum–Quillen conjecture.

In the years since the Ausoni–Rognes computations, redshift has been

verified for additional height 1 ring spectra, including ku∧p , KU∧
p , and ku/p

at primes p ≥ 5 [BM08], [Aus10], [AR12a], and evidence for redshift has ac-

cumulated in general [BDR04], [Rog14], [Wes17], [Vee18], [AK21], [AKQ21a],

[CSY21]. Recent conceptual advances show that the algebraic K-theories of

many height n rings are of height at most n+1 [LMMT22], [CMNN20]. Here,

we give the first arbitrary height examples of ring spectra for which redshift

provably occurs.

Main Results. The truncated Brown–Peterson spectra, BP〈n〉, are among

the simplest and most important cohomology theories in algebraic topology.

There is one such spectrum for every prime p and height n ≥ 0, though we will

follow tradition by localizing at the prime and omitting it from notation.1 The

height 1 spectrum BP〈1〉 is the Adams summand `, while BP〈2〉 is a summand

of either topological modular forms (at p ≥ 5), or topological modular forms

with level structure (at p = 2, 3).

Both ` and tmf are extraordinarily structured: they are E∞-ring spectra,

inducing power operations on the cohomology of spaces. Our first main result,

proven in Section 2, is a construction of part of this structure at an arbitrary

height n. To make sense of the statement, we remind the reader that BP

admits the structure of an E4-ring by [BM13].

Theorem A (Multiplication). For an appropriate choice of indecompos-

able generators

vn+1, vn+2, . . . ∈ π∗BP,

the quotient map

BP→ BP/(vn+1, . . .) = BP〈n〉

is the unit of an E3-BP-algebra structure on BP〈n〉.

Our second main theorem establishes the above conjecture for R=BP〈n〉∧p .

Theorem B (Redshift). Let BP〈n〉 denote any E3-BP-algebra such that

the unit BP→ BP〈n〉 is obtained by modding out a sequence of indecomposable

generators vn+1, vn+2, . . . . Then K(BP〈n〉∧p )
∧
p is of fp-type n+ 1.

1At each prime p and height n ≥ 0, BP〈n〉 is conjectured to be unique as a p-local

spectrum. For n > 1, uniqueness is only proved up to p-completion, by work of Angeltveit

and Lind [AL17].
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Corollary. For BP〈n〉 any E3-BP-algebra as above, both maps

K(BP〈n〉∧p )(p) → Lf
n+1K(BP〈n〉∧p )(p),

K(BP〈n〉)(p) → Lf
n+1K(BP〈n〉)(p)

induce isomorphisms on π∗ for ∗ � 0.

To prove Theorem B by trace methods, the critical thing to show is that

π∗(V ⊗ TC(BP〈n〉)) is bounded above for some type (n + 2) complex V . We

recall [NS18] that the p-completed topological cyclic homology of BP〈n〉 can

be computed as the fiber

TC(BP〈n〉) ' fib

(Ä
THH(BP〈n〉)hS

1
ä∧
p

ϕhS1
−can

−−−−−−−−−→
Ä
THH(BP〈n〉)tS

1
ä∧
p

)
,

where the map

ϕ : THH(BP〈n〉)→ THH(BP〈n〉)tCp

is the cyclotomic Frobenius. (See Section 3.2 for our conventions on cyclotomic

spectra.)

One would like to argue that (ϕhS1
−can) is an equivalence in large degrees

after tensoring with a type (n + 2) complex. We will deduce this from the

following two theorems:

Theorem C (Segal conjecture). Let F be any type n+ 1 complex. Then

the cyclotomic Frobenius THH(BP〈n〉)→ THH(BP〈n〉)tCp induces an isomor-

phism

F∗THH(BP〈n〉) ∼= F∗(THH(BP〈n〉)
tCp)

in all sufficiently large degrees ∗ � 0.

Theorem D (Canonical vanishing). Let F be any type n + 2 complex.

There exists an integer d ≥ 0 (depending on F ) such that, for all 0 ≤ k ≤ ∞,

the composite

τ≥d(F ⊗THH(BP〈n〉)
hC

pk )→ F ⊗THH(BP〈n〉)
hC

pk
can
−→ F ⊗THH(BP〈n〉)

tC
pk

is nullhomotopic.

We note that the first theorem involves only the cyclotomic Frobenius

map, and the second theorem only the canonical map. We use different tech-

niques to analyze each one.

In order to prove Theorem C, we use a filtration on BP〈n〉 to reduce the

statement to a graded version of the Segal conjecture for polynomial algebras

over Fp, which we then prove directly. This is done in Section 4.

To prove Theorem D, we investigate the S1-spectrum THH(BP〈n〉/MU)

of Hochschild homology relative to MU. This spectrum is much simpler to

understand because of the following analog of Bökstedt’s periodicity theorem:
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Theorem E (Polynomial THH). The ring THH(BP〈n〉/MU)∗ is polyno-

mial over π∗BP〈n〉 on even-degree generators, one of which can be chosen to

be the double-suspension class σ2vn+1. (For the definition of double-suspension

classes, see A.2.4.)

We may take advantage of the circle action on THH to shift the class

σ2vn+1 down to a class detecting vn+1. More precisely, we prove

Theorem F (Detection). There is an isomorphism of Z(p)[v1, . . . , vn]-

algebras

π∗(THH(BP〈n〉/MU)hS
1
) ∼= (π∗THH(BP〈n〉/MU)) JtK,

where |t| = −2. This isomorphism can be chosen such that, under the unit map

π∗(MUhS1

(p) )→ π∗(THH(BP〈n〉/MU)hS
1
),

the canonical complex orientation maps to t and vn+1 is sent to t(σ2vn+1).

Theorem F already implies the following weak form of redshift:

Corollary (Corollary 5.0.2). LK(n+1)K(BP〈n〉) is non-zero.

Finally, in order to prove Theorem D, we must descend information along

the S1-equivariant map

THH(BP〈n〉)→ THH(BP〈n〉/MU).

In Section 6, we study this descent spectral sequence after tensoring with a

type n+1 complex. Using this information we are able to understand enough

about the homotopy and Tate fixed point spectral sequences associated to

THH(BP〈n〉) to prove a weak form of the Canonical Vanishing Theorem. As

explained to us by an anonymous referee, and proven in Section 3, this weak

form of canonical vanishing together with the Segal conjecture is enough to

prove the strong form of canonical vanishing as well as the main theorem. In

fact, we establish the following result, which is equivalent to the combination

of Theorems C and D and also directly implies Theorem B.

Theorem G (Bounded TR). For any type n+2 complex F , the spectrum

F ⊗ TR(BP〈n〉) is bounded.

For a review of the functor TR, see Section 3.2.

Remarks on the Multiplication Theorem. As pointed out by Morava, BP〈n〉

may be equipped with different homotopy ring structures [Mor89]. Our redshift

arguments only apply to forms of BP〈n〉 that are E3-BP-algebras, which we

guarantee to exist by Theorem A. To check whether previously studied forms

of BP〈n〉 admit such structure, there is a convenient criterion due to Basterra

and Mandell:
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Remark 1.0.1. Suppose that a form of BP〈n〉 is equipped with an E4-

algebra structure. Then there are no obstructions to producing an E4-ring

map from BP to BP〈n〉 [BM13, Cor. 4.4 and Lemma 5.1]. Any such E4-map

is the unit of an E3-BP-algebra structure, allowing us to apply Theorem B.

Example 1.0.2. At p = 2, connective complex K-theory is an E∞ form of

BP〈1〉, and it follows that K(ku∧2 )
∧
2 is of fp-type 2. Even the non-vanishing of

LK(2)K(ku) was previously known only for p ≥ 5 [AR02].

Similarly, we can deduce at p = 2 that K(tmf1(3)
∧
2 )

∧
2 is of fp-type 3,

since tmf1(3) is the Lawson–Naumann E∞ form of BP〈2〉 [LN12]. Applying

algebraic K-theory to the E∞-ring map tmf → tmf1(3), we conclude that

LK(3)K(tmf) 6= 0.

Remark 1.0.3. Our methods may help to prove that the algebraic K-

theories of many other height n rings are not K(n + 1)-acyclic, especially

when combined with the descent and purity results of [CMNN20], [LMMT22].

For example, at the prime 3 these results imply that the non-vanishing of

LK(2)K(ku) is equivalent to the non-vanishing of LK(2)K(ko) (cf. [Aus05]),

and the latter follows from the fact that 3-localized ko is an E∞ form of BP〈1〉.

To give context to Theorem A, the question of whether BP〈n〉 can be

made E∞ was once a major open problem in algebraic topology [May75]. In

breakthrough work, Tyler Lawson [Law18] and Andrew Senger [Sen22] showed

this to be impossible whenever n ≥ 4.

While the non-existence of structure is of great theoretical interest, it is

the presence of structure that powers additional computations. For example,

in this work we use the E3-algebra structure guaranteed by Theorem A in order

to prove the Polynomial THH Theorem (2.5.3), which is the key computational

input to many of the remaining results of the paper. Our proof of Theorem A

relies on a number of ideas that we have not discussed so far; see Section 2.1

for an outline of the proof of Theorem A.

Remark 1.0.4. Prior to our work, other authors had succeeded in equip-

ping BP〈n〉 with additional structure. Notably, Baker and Jeanneret produced

E1-ring structures [BJ02] (cf. [Laz01], [Ang08]), and Richter produced Robin-

son (2p−1)-stage structures on related Johnson–Wilson theories [Ric06]. Law-

son and Naumann equipped BP〈2〉 with E∞-structure at the prime 2 [LN12],

and Hill and Lawson produced an E∞ form of BP〈2〉 at p = 3 [HL10].

Remark 1.0.5. Basterra and Mandell proved that BP admits a unique

E4-algebra structure, a fact that is necessary to make sense of E3-BP-algebras

[BM13]. They also show that BP is an E4-algebra retract of MU(p), so a p-local

E3-MU-algebra inherits an E3-BP-algebra structure. Our proof of Theorem A
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most naturally produces an E3-MU-algebra structure on BP〈n〉. In fact, if one

also formulates Theorem B in terms of E3-MU-algebra structures, then none

of the statements or proofs in this paper rely on [BM13].

Remark 1.0.6. It is not surprising that E3-algebra structure on BP〈n〉 is

useful in the proof of redshift. As far back as 2000, Ausoni and Rognes observed

that redshift could be proved whenever BP〈n〉 is E∞ and the Smith–Toda

complex V (n) exists as a homotopy ring spectrum [Rog00]. Unfortunately,

both of these hypotheses are known to generically fail [Nav10], [Law18].

Open Questions. Our work leaves open many natural questions, chief

of which is to determine the homotopy type of K(BP〈n〉). Since we show

this homotopy type to be closely related to its localization Lf
n+1K(BP〈n〉),

one might hope to assemble an understanding via chromatic fracture squares

(cf. [AR12b]). We would also like to highlight the following:

Question 1.0.7. For what ring spectra R, other than R = BP〈n〉, is it

possible to prove a version of the Segal conjecture?

Question 1.0.8. For what ring spectra R, other than R = BP〈n〉, is it

possible to prove a version of the Canonical Vanishing Theorem?

While variants of the Segal conjecture have received much study (see Sec-

tion 4 for some history), the Canonical Vanishing result does not seem as widely

analyzed. It seems plausible that a ring R might satisfy Canonical Vanishing

but not the Segal conjecture, or vice versa.

Question 1.0.9. What ring spectra R, other than R = BP〈n〉, satisfy

redshift, or various less precise forms of the Lichtenbaum–Quillen conjecture?

For an arbitrary BP〈n〉-algebra R satisfying the Segal conjecture, Akhil

Mathew has deduced (given our work here) various Lichtenbaum–Quillen state-

ments. He has graciously allowed us to reproduce his results at the end of

Section 3.3.

Remark 1.0.10. Redshift for E1-rings that are far from complex oriented

remains mysterious. For some intriguing results in this direction, see the work

of Angelini-Knoll and Quigley [AKQ21a] on the family of spectra y(n).

One would also like to make many of the above results effective, rather

than asserting an isomorphism in degrees above an unspecified dimension. Es-

pecially the following question is interesting, since it does not depend on a

choice of a finite complex:

Question 1.0.11. In precisely what range of degrees is the map

K(BP〈n〉)(p) → Lf
n+1K(BP〈n〉)(p)

a π∗-isomorphism?
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Theorem A proves that some form of BP〈n〉 admits an E3-BP-algebra

structure, and it remains an interesting open question to determine exactly

which forms admit such structure.

Question 1.0.12. Which forms of BP〈n〉 admit an E3-BP-algebra struc-

ture? Which of these can be built by the procedure in Section 2?

The subtleties behind Question 1.0.12 are indicated by work of Strickland

[Str99, Rem. 6.5], who observed at p = 2 that neither the Hazewinkel or Araki

generators may be used as generators in Theorem A.

Remark 1.0.13. We suspect that our E3-algebra structure will be of use

in additional computations. For example, Ausoni and Richter give an elegant

formula for the THH of a height 2 Johnson–Wilson theory, under the assump-

tion that the theory can be made E3 [AR20]. Our result does not directly feed

into their work, for the simple reason that they use a form of BP〈2〉[v−1
2 ] spec-

ified by the Honda formal group. It seems unlikely that their theorem relies

essentially on this choice.

Remark 1.0.14. By imitating our construction of an E3-MU-algebra struc-

ture on BP〈n〉, we suspect one could produce an E2σ+1-MUR-algebra structure

on BP〈n〉R. As a result, the fixed points BP〈n〉C2
R would acquire an E1-ring

structure. At the moment, these fixed points are not even known to be homo-

topy associative [KLW18].
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Conventions and notation.

• We work in the setting of ∞-categories as used in [Lur17]. We will say cat-

egory and groupoid instead of ∞-category and ∞-groupoid. We will denote

by MapC(X,Y ) the mapping space between objects X,Y ∈ C.

• We let Sp denote the category of spectra.

• If C is enriched over a category A, we denote by mapC(X,Y ) the morphism

object associated to a pair of objects X,Y ∈ C. For example, if C is stable,

then it is canonically enriched over Sp, and we use mapC(X,Y ) to denote the

internal mapping spectrum. In cases below where C is stable and canonically

enriched over ModR for some E∞-ring, no confusion should arise because the

underlying spectrum of the morphism object in R-modules will agree with

the morphism object in spectra.

• We do not distinguish between a space and its corresponding groupoid; in

particular, we will speak about functors X → C, where X is a space and C

is a category.

• If M is a (discrete) module over a (discrete) ring R with elements x, y ∈M ,

then we write x
.
= y to mean that x = λy where λ is a unit in R.

• If C is a category and G is a (possibly topological) group, then the category

of objects of C with G-action is the functor category Fun(BG,C). When

C = Sp, we will sometimes refer to these objects as G-spectra. The theory

of “genuine G-spectra” is not used in this paper, so there should be no

confusion.

• Our conventions on grading spectral sequences associated to towers differs

from the usual one, since we prefer to begin our spectral sequences at the

second page. See Section C.1.

• If C is a stable category equipped with a t-structure, we say that an object

X ∈ C is bounded above if X = τ≤dX for some d ∈ Z. We say that X is

bounded below if X = τ≥dX for some d ∈ Z. We say that a map f : X → Y

is truncated if the fiber of f is bounded above.

• If A is an E1-R-algebra where R is an E∞-ring, we denote by THH(A/R)

the R-module A⊗A⊗Aop A.

• Our conventions on cyclotomic spectra differ somewhat from those in [NS18]

since we are only interested in constructions with p-complete spectra. See

Section 3.2 for a discussion.

2. The Multiplication Theorem

We begin by giving a more precise formulation of Theorem A. Recall that

there is a canonical inclusion [Qui69],

BP∗ → (MU(p))∗,
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classifying the p-typification of the universal formal group law. We will write

{xi}i≥0 for a choice of indecomposable polynomial generators of (MU(p))∗,

with |xi|=2i, such that the classes {xpj−1}j≥1 form polynomial generators for

BP∗ over Z(p). It will be convenient, at times, to change these generators, so

we do not fix such a choice. We write vj for the generator xpj−1. By convention

we agree that v0 = p. The following definition may be compared with [LN12,

3.1, 3.2].

Definition 2.0.1. Let 1 ≤ k ≤ ∞ and n ≥ 0. Let B be a p-local Ek-MU-

algebra. We say that B is an Ek-MU-algebra form of BP〈n〉 if the composite

Z(p)[v1, . . . , vn] ⊆ BP∗ ⊆ (MU(p))∗ → B∗

is an isomorphism. By convention, we consider Fp as the unique Ek-MU-algebra

form of BP〈−1〉.

Remark 2.0.2. The subring

Z(p)[v1, . . . , vn] ⊆ BP∗

is equal to the subring generated by all elements of degree at most 2pn − 2,

and hence is independent of our choice of polynomial generators. It follows

that the definition of an Ek-MU-algebra form of BP〈n〉 also does not depend

on this choice.

Example 2.0.3. For any k ≥ 1, there is a unique Ek-MU-algebra form of

BP〈0〉, which is the p-local integers Z(p). The Adams summand ` of ku(p)
can be equipped with an E∞-MU-algebra structure, which makes ` into an

E∞-MU-algebra form of BP〈1〉.

We will now relate the notion of a form of BP〈n〉 to the quotients in

Theorem A.

Notation 2.0.4. Let J ⊆ Z≥0 be an indexing set, and {zj}j∈J a sequence

of elements in π∗MU(p). Define

MU(p)/(zj : j ∈ J) := colim
m

⊗

j∈J,j≤m

MU(p)/zj ,

where the tensor product is taken over MU(p), and MU(p)/zj is defined by the

cofiber sequence

Σ|zj |MU(p)
zj
→ MU(p) → MU(p)/zj .

Lemma 2.0.5. If B is an E1-MU-algebra form of BP〈n〉, then there is a

choice of indecomposable generators xj ∈ π2jMU(p), j ≥ 1, and there is an

extension of the unit map ι : MU(p) → B to an equivalence of MU-modules

(
MU(p)/(xj : j 6= pi − 1, 1 ≤ i ≤ n)

)
' B.
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Proof. Let x′j be any choice of indecomposable generators such that

(x′p−1, x
′
p2−1, . . . , x

′
pn−1) = (v1, . . . , vn).

By definition, if j 6= pi − 1 for 1 ≤ i ≤ n, then ι(x′j) = fj(v1, . . . , vn) for some

polynomial fj with coefficients in Z(p). Define

xj :=

{
x′j j = pi − 1, 1 ≤ i ≤ n,

x′j − fj(xp−1, . . . , xpn−1) else.

Then {xj} gives a new set of indecomposable generators for π∗MU(p) with the

property that ι(xj) = 0 when j 6= pi − 1 for some 1 ≤ i ≤ n. We may then

construct maps
⊗

j≤m,j 6=pi−1,1≤i≤n

MU(p)/xj →
⊗

j≤m,j 6=pi−1,1≤i≤n

B → B,

where the second map is the multiplication on B. Passing to the colimit gives

the desired equivalence

MU(p)/(xj : j 6= pi − 1, 1 ≤ i ≤ n)→ B. �

It follows from the above lemma and Remark 1.0.5 that Theorem A is a

consequence of the following theorem, which will be the main result of this

section:

Theorem 2.0.6. For all n ≥ −1, there exists an E3-MU-algebra form

of BP〈n〉.

Remark 2.0.7. There are only a few results from Section 2 that will be

needed later in the paper. In addition to Theorem 2.0.6, the reader interested

in redshift need only understand Proposition 2.5.3 and Theorem 2.5.4.

2.1. Outline of the proof. For ease of exposition, we will not take care

in this outline to distinguish between different forms of BP〈n〉. Our proof of

Theorem 2.0.6 proceeds by induction on n: assuming that BP〈n〉 is an E3-MU-

algebra, we will construct BP〈n+ 1〉 as an E3-MU-algebra.

Consider the tower of MU-modules

BP〈n+ 1〉 → · · · → BP〈n+ 1〉/(vkn+1)→ · · · → BP〈n〉.

By our inductive hypothesis, the base of the tower, BP〈n〉, has been refined

to an E3-MU-algebra. One possible way to proceed would be to inductively

equip each BP〈n+1〉/(vkn+1) with an E3-MU-algebra structure. Unfortunately,

this would involve understanding the E3-MU-algebra cotangent complex of

BP〈n+ 1〉/(vkn+1), which becomes increasingly difficult to control as k grows.

Instead, we will make a stronger inductive hypothesis. As we review

in Section 2.6, there are E∞-MU-algebras MU[y]/(yk) refining the truncated
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polynomial algebras MU∗[y]/(y
k), where |y| = 2pn+1 − 2. We will induct on

k to build BP〈n+ 1〉/(vkn+1) as an E3-MU[y]/(yk)-algebra. Taking a limit, we

produce BP〈n+ 1〉 as an E3-MU[y]-algebra, where y acts by vn+1.

In Sections 2.2 and 2.3 we review some background in deformation theory.

In Sections 2.4 and 2.5 we make the key non-formal computations of envelop-

ing algebras and cotangent complexes, which ultimately rest on Steinberger’s

computation of the action of Dyer–Lashof operations on the dual Steenrod al-

gebra and on Kochman’s computation of the action of Dyer–Lashof operations

on the homology of BU. Finally, in Section 2.6, we put the pieces together and

prove Theorem 2.0.6.

Remark 2.1.1. Our original argument, appearing in a preprint version

of this paper, relied on the theory of centers and some manipulations with

Koszul duality. We are extremely grateful to the first referee for explaining

how our two uses of Koszul duality “cancel each other out,” suggesting the

more intuitive argument sketched above.

Remark 2.1.2. Our argument constructs BP〈n+1〉 as an E3-MU[y]-algebra,

where y acts by vn+1, but we remember BP〈n+ 1〉 only as an E3-MU-algebra

when constructing BP〈n + 2〉. One might wonder whether, with more care,

it is possible to construct BP〈n〉 as an E3-MU[y0, y1, . . . , yn]-algebra, where yi
acts as vi. In fact, this is not possible, even when n = 1. If ` were an E3-

MU[y0]-algebra, tensoring over MU[y0] with the augmentation MU[y0]→ MU

would construct `/p = k(1) as an E3-algebra. However, any E2-algebra with

p = 0 in its homotopy groups must be an Fp-module [MNN15, Th. 4.18].

2.2. Background : Operadic modules and enveloping algebras. Fix an En+1-

algebra k, and let C = LModk. If A ∈ AlgEn
(C) is an En-algebra, then we can

define an En-monoidal category, ModEn
A (C), of En-A-modules ([Lur17, 3.3.3.9]).

The relevance of this category in our case is the equivalence of ModEn
A (C)

([Lur17, 7.3.4.14]) with the tangent category Sp(AlgEn
(C)/A) controlling defor-

mations of A (see Recollection 2.3.1).

It follows from [Lur17, 7.1.2.1] that we have an equivalence

ModEn
A (C) ' LMod

U(n)(A),

where U(n)(A), the En-k-enveloping algebra of A, is the endomorphism algebra

spectrum of the free En-A-module on k.

Remark 2.2.1. It follows from [Lur17, 4.8.5.11] that the assignment B 7→

U(n−j)(B) is a lax Ej-monoidal functor of B. In particular, if A is an En-algebra

in C, then U(n−j)(A) has a canonical Ej+1-algebra structure.

We will need the following standard fact:
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Proposition 2.2.2. There is a canonical equivalence of algebras

U
(n)(A) ' A⊗

U(n−1)(A) A
op,

where Aop denotes A regarded as an E1-U
(n−1)(A)-algebra with its opposite

multiplication.

Proof. The enveloping algebra is obtained by taking the endomorphism

algebra of a free object. So it suffices, by [Lur17, 4.8.5.11, 4.8.5.16], to provide

an equivalence

ModEn
A (C) ' LModA(C)⊗

Mod
En−1
A (C)

RModA(C).

By [Lur17, 4.8.4.6,4.3.2.7], we may identify the right-hand side as a category

of bimodules

LModA(C)⊗
Mod

En−1
A (C)

RModA(C) ' BModA(Mod
En−1

A (C)).

The result now follows from [HNP19, 1.0.4] by taking tangent categories at A

of the equivalence ([Lur17, 5.1.2.2]):

AlgEn
(C) ' AlgE1

(AlgEn−1
(C)). �

Remark 2.2.3. One can use this result and induction on n to prove that

there is an equivalence

U
(n)(A) '

∫

Rn−{0}

A

of the enveloping algebra with the factorization homology of A over Rn −{0}.

2.3. Background : Deformation theory. In this section we will review the

obstruction theory for deforming an algebra over a square-zero extension.

Throughout, if f : S → S′ is a map of E∞-rings, we will denote by f∗ the

induced functor S′ ⊗S (−) and by f∗ the restriction of scalars along f , to

emphasize the dependence on f .

In this section we will be using the cotangent complex formalism as in

[Lur17, §7.3], which we briefly review now.

Recollection 2.3.1. If C is a presentable category, then there is a cocarte-

sian fibration TC → C whose fiber over A ∈ C is given by the stabilization

Sp(C/A). If M ∈ Sp(C/A), then we will denote by A⊕M the image of M under

the functor Ω∞ : Sp(C/A)→ C/A, and we will refer to this object as the trivial

square-zero extension of A by M . The cotangent complex of A, denoted LA,

is the image of idA under the adjoint Σ∞
+ : C/A → Sp(C/A), so that

MapSp(C/A)(LA,M) ' MapC/A
(A,A⊕M).



1290 JEREMY HAHN and DYLAN WILSON

Given η : LA → M we will refer to the adjoint map dη : A → A ⊕M as the

derivation classified by η. Given such a derivation, we may form the pullback

Aη //

��

A

d0
��

A
dη

// A⊕M,

where d0 is classified by the zero map 0 : LA → M . We refer to Aη as the

square-zero extension classified by η.

In the special case C = AlgEm
(D), where D is a stable and presentably

Em-monoidal category, there is a canonical equivalence [Lur17, Th. 7.3.4.13]

Sp(AlgEm
(D)/A) ' ModEm

A (D) with the category of Em-A-modules. (When

m =∞, this is equivalent to the ordinary category of A-modules.) We denote

LA by LEm
A and further decorate it as LEm

A/R in the setting where D = ModR

for an E∞-ring R.

We now turn to the problem of classifying algebras over square-zero ex-

tensions. Let R be a connective E∞-ring and I a connective R-module. Let

η : LR → ΣI be a map of R-modules from the E∞-cotangent complex of R to

ΣI, and denote by Rη the corresponding square-zero extension. By definition,

this sits in a pullback diagram

Rη //

��

R

d0
��

R
d

// R⊕ ΣI,

where d is adjoint to η and d0 is the trivial derivation.

Recollection 2.3.2. If S is a connective E∞-ring, we will denote by ModcnS
the category of connective S-modules. By [Lur18, Th. 16.2.0.2], the pullback

diagram above induces a symmetric monoidal equivalence

ModcnRη
'
−→ ModcnR ×ModcnR⊕ΣI

ModcnR ,

and hence an equivalence upon taking categories of Em-algebras

AlgEm
(ModcnRη)

'
−→ AlgEm

(ModcnR )×Alg
Em

(ModcnR⊕ΣI)
AlgEm

(ModcnR ).

Denoting an element in the target by (A,B, α : d∗A ' d∗0B), the inverse to

this equivalence is implemented by the functor (A,B, α) 7→ A×d∗A B.

Lemma 2.3.3. Suppose η = 0 classifies the trivial derivation, so that

Rη = R ⊕ I and d = d0. Then AlgEm
(ModcnRη) is equivalent to the category

of pairs (A, ρ : LEm

A/R → A ⊗R ΣI) where A is a connective Em-R-algebra

and ρ is a map of Em-A-modules. Under this equivalence, the Em-Rη-algebra

corresponding to (A, ρ) has underlying Em-R-algebra given by the square-zero

extension classified by ρ.
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Proof. By Recollection 2.3.2, the category of connective Em-Rη-algebras is

equivalent to the category of triples (A,B, α : A⊗R (R⊕ΣI) ' B⊗R (R⊕ΣI)),

where A and B are connective Em-R-algebras and α is an equivalence. Since d0
is a section of the projection p : R⊕ΣI → R, we have a canonical equivalence

p∗d∗0A = A. It follows that this category of triples is equivalent to the subcat-

egory where A = B, so we are left with understanding automorphisms of the

Em-(R⊕ΣI)-algebra A⊗R (R⊕ΣI) = d∗0A. By adjunction, this is equivalent

to understanding the space of Em-R-algebra sections of the projection

(d0)∗d
∗
0A = A⊗R (R⊕ ΣI)→ (d0)∗p∗p

∗d∗0A = A.

If A is an Em-R-algebra, then A ⊗R (R ⊕ ΣI) is canonically a spectrum

object in AlgEm
(ModR)/A with deloopings given by A⊗R (R⊕Σj+1I). In other

words, A⊗R (R⊕ΣI) is a trivial square-zero extension of A by A⊗R ΣI. The

result now follows by the universal property of the cotangent complex. �

Construction 2.3.4. Returning to the case of a general square-zero exten-

sion Rη, suppose that A is an Em-R-algebra. Then d∗A is an Em-(R ⊕ ΣI)-

algebra. Moreover, since d is a section of the projection map, base changing

d∗A along R ⊕ ΣI → R recovers A. By the previous lemma (applied to the

trivial square-zero extension R ⊕ ΣI rather than R ⊕ I), the Em-(R ⊕ ΣI)-

algebra d∗A is determined by a pair (A, o(A) : LEm

A/R → A ⊗R Σ2I). We refer

to o(A) as the obstruction class for deforming A. Though it is not indicated

in the notation, this class also depends on η.

Definition 2.3.5. Let R and Rη be as above, and let A be a connective

Em-R-algebra. Define the category of lifts of A by the pullback

Lifts(A) //

��

{A}

��

AlgEm
(ModcnRη) // AlgEm

(ModcnR ).

Proposition 2.3.6. The category Lifts(A) is a groupoid equivalent to the

space of nullhomotopies of the Em-A-module map o(A) : LEm

A/R → A ⊗R Σ2I .

In particular,

(i) there exists an Em-Rη-algebra Ã such that Ã ⊗Rη R ' A if and only if

o(A) is nullhomotopic;

(ii) if o(A) is nullhomotopic then the space Lifts(A) is equivalent to

Map
Mod

Em
A (ModR)

(LEm

A/R, A⊗R ΣI).
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Proof. By Recollection 2.3.2 and the definition of the category of lifts,

each square in the rectangle

Lifts(A) //

��

{A}

��

AlgEm
(ModcnRη) //

��

AlgEm
(ModcnR )

��

AlgEm
(ModcnR ) // AlgEm

(ModcnR⊕ΣI)

is a pullback. Thus Lifts(A) is equivalent to the category of pairs (B, d∗B '

d∗0A), where B is a connective Em-R-algebra, d is the derivation classified by η,

and d0 is the trivial derivation. Let p : R⊕ ΣI → R be the projection so that

p ◦ d = p ◦ d0 = idR. By Lemma 2.3.3, an equivalence d∗B ' d∗0A corresponds

to an equivalence B = p∗d∗B ' p∗d∗0A = A together with a homotopy between

the two resulting maps LEm

A/R → A ⊗R ΣI. Again, we may restrict to the

equivalent subcategory with A = B, and we have arrived at an equivalence

between Lifts(A) and the category of homotopies between o(A), which yields

d∗A, and the zero map, which yields d∗0A. This completes the proof. �

2.4. Grounding the induction. The purpose of this section is to compute

the higher MU-enveloping algebras of Fp. This will allow us to resolve extension

problems when computing the E3-MU-cotangent complex of BP〈n〉 during the

inductive step.

In the course of this computation we will make use of the Kudo-Araki-

Dyer–Lashof operations [BMMS86], which are natural maps of spectra (see,

e.g., [GL20]) for any E∞-Fp-algebra, A,{
Qi : A→ Σ−2i(p−1)A p > 2,

Qi : A→ Σ−iA p = 2.

We will also use the suspension operation σ discussed in Section A.

Lemma 2.4.1. The E1-MU-enveloping algebra of Fp has homotopy given by

π∗U
(1)
MU(Fp) ' Λ(σvi : i ≥ 0)⊗Fp Λ(σxj : j 6= pk − 1).

When regarded as an E∞-Fp-algebra via the map2 idFp ⊗ 1 : Fp → Fp ⊗MU Fp,

we have the identities

Qpiσvi
.
= σvi+1, p > 2,

Q2i+1
σvi

.
= σvi+1 p = 2,

2We make this choice for definiteness, but it does not have a significant effect on our

computations. Indeed, once k ≥ 2, there is a canonical E∞-Fp-algebra structure on

U
(k)
MU(Fp) =

∫
Rk−{0}

Fp up to equivalence, since Rk − {0} is connected.
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Qj+1σxj
.
= σxjp+p−1,mod decomposables p > 2,

Q2j+2σxj
.
= σxjp+p−1,mod decomposables p = 2.

Proof. The algebra structure follows from [Ang08, Prop. 3.6]. To compute

the action of the operations we use the two E∞-maps:

Fp ⊗ Fp
f
→ Fp ⊗MU Fp

g
→ Fp ⊗Fp⊗MU Fp

We have f(τ i)
.
= σvi (independently of our choice of vi) and g(σxj) = σbj ,

where bj is the Hurewicz image of xj (for j 6= pk − 1). The first identity now

follows from Steinberger’s calculation [BMMS86, III.2] that

Qpiτ i = τ i+1,

(and the analogous result at p = 2). For the second identity, first recall that

the Thom isomorphism is an equivalence

Fp ⊗MU ' Fp ⊗ BU+

of E∞-Fp-algebras, and hence we have an equivalence

Fp ⊗Fp⊗MU Fp ' Fp ⊗Fp⊗BU+ Fp ' Fp ⊗ B2U+.

of E∞-Fp-algebras.

Since Σ∞
+ is symmetric monoidal, the canonical map Σ∞

+ (ΩX)→ ΩΣ∞
+ X

is a map of non-unital E∞-algebras for any E∞-space X. In particular, taking

X = B2U , we see that the homology suspension H∗(BU;Fp)→ H∗+1(B
2U ;Fp)

preserves Dyer–Lashof operations. The result now follows from Kochman’s

computation [Koc73, Th. 6] of the action of Dyer–Lashof operations onH∗(BU).

�

Lemma 2.4.1 implies that the Künneth spectral sequence for U
(2)
MU(Fp)

collapses at the E2 term, which is a divided power algebra:

E2=E∞=Γ{σ2vi, σ
2xj : i ≥ 0, j 6= pk−1} ⇒ π∗(Fp⊗

U
(1)
MU(Fp)

Fp)=π∗U
(2)
MU(Fp).

Here we recall that, in the bar complex computing TorΛ(z)(Fp,Fp), the

class γpi(σz), where i ≥ 0, is represented by the element

z ⊗ z ⊗ · · · ⊗ z ∈ Λ(z)⊗pi .

Proposition 2.4.2. There are non-trivial multiplicative extensions in the

bar spectral sequence for U
(2)
MU(Fp) as follows :

(i) If w0,i ∈ π∗U
(2)
MU(Fp) is detected by the divided power γpi(σ

2v0), then wpj

0,i

is detected by γpi(σ
2vj), up to a unit.

(ii) If yj,i ∈ π∗U
(2)
MU(Fp) is detected by the divided power γpi(σ

2xj), then ypj,i
is detected by γpi(σ

2xjp+p−1), up to a unit.
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In particular, the homotopy groups of U
(2)
MU(Fp) are polynomial on even

dimensional classes, one of which can be chosen to be σ2v0.

Proof. This follows from the computation of power operations in the pre-

vious lemma by applying [BM13, Th. 3.6] to the standard representatives of

divided powers in the bar complex. �

Remark 2.4.3. From the equivalence U
(2)
MU(Fp) ' THH(Fp/MU), we de-

duce the crucial fact that the homotopy groups of THH(Fp/MU) are polyno-

mial. An anonymous referee points out that one may also deduce this from

Bökstedt’s perioidicity theorem, as we now sketch. We have THH(Fp/MU) '

THH(Fp) ⊗THH(MU) MU. By Bökstedt’s theorem, π∗THH(Fp) is polynomial,

and one is reduced to proving that Fp ⊗THH(MU) MU has polynomial homo-

topy. By a Thom spectrum argument [BCS10], this spectrum is equivalent to

Fp ⊗ BSU+, which is known to have polynomial homotopy groups.

Proposition 2.4.4. The E3-MU-enveloping algebra of Fp has homotopy

given by an exterior algebra on odd dimensional generators, one of which can

be chosen to be σ3v0.

Proof. The proof is immediate from [Ang08, Prop. 3.6]. �

The spectral sequence

Ext
π∗U

(3)
MU(Fp)

(Fp,Fp)⇒ π∗map
U
(3)
MU(Fp)

(Fp,Fp)

then immediately collapses with no possible Fp-algebra extensions, and so

proves

Theorem 2.4.5. The spectrum map
U
(3)
MU(Fp)

(Fp,Fp) has homotopy given

by a polynomial algebra on even degree generators.

2.5. Computation at the inductive step. In this section, we will assume

that we have constructed an E3-MU-algebra form of BP〈n〉, and simply denote

it by BP〈n〉. We will also choose our polynomial generators for π∗(MU(p)) in

such a way that ker((MU∗)(p) → BP〈n〉∗) is generated by the vi with i ≥ n+1

and by the xj with j 6= pk − 1.

Remark 2.5.1. If R is a p-local Ek-MU-algebra, then, with notation as

in Section A,
∫
M R, for any non-empty k-manifold M , can be computed in

MU(p)-modules instead of MU-modules. We may therefore make sense of the

suspension operations from Section A for elements in π∗(cofib(MU(p) → R)),

rather than just elements of π∗(cofib(MU→ R)).

Lemma 2.5.2. The E1-MU-enveloping algebra of BP〈n〉 has homotopy

given, as a BP〈n〉∗-algebra, by

π∗U
(1)
MU(BP〈n〉) ' ΛBP〈n〉∗(σvi : i ≥ n+ 1)⊗BP〈n〉∗ ΛBP〈n〉∗(σxj : j 6= pk − 1).
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Proof. The proof is immediate from [Ang08, Prop. 3.6]. �

It follows that the bar spectral sequence for π∗U
(2)
MU(BP〈n〉) collapses to a

divided power algebra on even classes:

E2 = E∞ = ΓBP〈n〉∗(σ
2vi : i ≥ n+ 1)⊗BP〈n〉∗ ΓBP〈n〉∗(σ

2xj : j 6= pk − 1).

Proposition 2.5.3. For i ≥ 0, choose any lift wn+1,i of the divided

power class γpi(σ
2vn+1). For j 6≡ −1 mod p and i ≥ 0, choose any lift yj,i

of γpi(σ
2xj). The E2-MU-enveloping algebra of BP〈n〉 has homotopy given, as

a BP〈n〉∗-algebra, by

π∗U
(2)
MU(BP〈n〉)

' BP〈n〉∗[wn+1,i : i ≥ 0]⊗BP〈n〉∗ BP〈n〉∗[yj,i : j 6≡ −1 mod p, i ≥ 0, j ≥ 1].

Moreover, we may choose wn+1,0 = σ2vn+1.

Proof. The enveloping algebra U
(2)
MU(BP〈n〉) is an E2-algebra (see Re-

mark 2.2.1) and, in particular, its homotopy groups are a graded commutative

algebra. Thus, our choice of elements wn+1,i and yj,i extends to a map

f : BP〈n〉∗[wn+1,i : i ≥ 0]⊗BP〈n〉∗ BP〈n〉∗[yj,i : j 6≡ −1 mod p, i ≥ 0, j ≥ 1]

→ π∗U
(2)
MU(BP〈n〉),

which we would like to be an isomorphism. From the bar spectral sequence we

already know that π∗U
(2)
MU(BP〈n〉) is a connective, free BP〈n〉∗-module with

finitely many generators in each degree. It suffices from this and a dimension

count to prove that f is injective modulo (p, v1, . . . , vn).

But now observe that the map

π∗U
(2)
MU(BP〈n〉)/(p, v1, . . . , vn) −→ π∗U

(2)
MU(Fp)

is injective by our previous calculation of the target and naturality of the bar

spectral sequence, since it is so on the E∞-page of the bar spectral sequence.

The result now follows by Proposition 2.4.2. �

Since U
(2)
MU(BP〈n〉) coincides with THH(BP〈n〉/MU) as an E1-algebra, this

is also the computation of Hochschild homology given in the introduction:

Theorem 2.5.4 (Polynomial THH). There is an isomorphism of BP〈n〉∗-

algebras

THH(BP〈n〉/MU)∗

' BP〈n〉∗[wn+1,i : i ≥ 0]⊗BP〈n〉∗ BP〈n〉∗[yj,i : j 6≡ −1 mod p, i ≥ 0, j ≥ 1].

Moreover, we may take wn+1,0 = σ2vn+1.



1296 JEREMY HAHN and DYLAN WILSON

Again, it follows from [Ang08, Prop. 3.6] that the E3-MU-enveloping al-

gebra has homotopy given by an exterior algebra, and hence that the spectral

sequence

Ext
π∗U

(3)
MU(BP〈n〉)

(BP〈n〉∗,BP〈n〉∗)⇒ π∗map
U
(3)
MU(BP〈n〉)

(BP〈n〉,BP〈n〉)

collapses at the E2 page. This proves

Theorem 2.5.5. The spectrum map
U
(3)
MU(BP〈n〉)

(BP〈n〉,BP〈n〉) has homo-

topy groups isomorphic to a polynomial algebra over Z(p)[v1, . . . , vn] on even

degree generators. In particular, the homotopy groups are concentrated in even

degrees.

For the purposes of our obstruction theory argument, we will require the

following closely related statement:

Proposition 2.5.6. Let LE3

BP〈n〉/MU denote the E3-MU-algebra cotangent

complex of BP〈n〉. Let I denote the fiber fib(MU(p) → BP〈n〉).

(i) The groups π−2kmap
U
(3)
MU(BP〈n〉)

(LE3

BP〈n〉/MU,BP〈n〉) vanish for k ≥ 0.

(ii) Let δvn+1 ∈ π∗mapMU(BP〈n〉,BP〈n〉) denote the BP〈n〉∗-linear dual of

the element σvn+1 with respect to the standard monomial basis of

π∗(BP〈n〉 ⊗MU BP〈n〉) ' Λ(σvi : i ≥ n+ 1)⊗Fp Λ(σxj : j 6= pk − 1).

Identifying π∗mapMU(ΣI,BP〈n〉) with the BP〈n〉∗-module summand of

π∗mapMU(BP〈n〉,BP〈n〉) complementary to the unit, the class δvn+1 lies

in the image of the forgetful map

π∗map
U
(3)
MU(BP〈n〉)

(LE3

BP〈n〉/MU,BP〈n〉) −→ π∗mapMU(ΣI,BP〈n〉).

Proof. By [Lur17, Th. 7.3.5.1], we have a cofiber sequence of U
(3)
MU(BP〈n〉)-

modules

U
(3)
MU(BP〈n〉)→ BP〈n〉 → Σ3LE3

BP〈n〉/MU.

Claim (i) then follows by applying the functor map
U
(3)
MU(BP〈n〉)

(−,BP〈n〉) and

the previous theorem. The same reasoning also shows that the spectral se-

quence

Ext
π∗U

(3)
MU(BP〈n〉)

(π∗L
E3

BP〈n〉/MU, π∗BP〈n〉)

⇒ π∗map
U
(3)
MU(BP〈n〉)

(LE3

BP〈n〉/MU,BP〈n〉)

collapses at the E2-page. It will therefore suffice to show that δvn+1 lies in

the image of the following map (which arises from the forgetful functor from

E3-algebras to E0-algebras):

Hom
π∗U

(3)
MU(BP〈n〉)

(π∗L
E3

BP〈n〉/MU, π∗BP〈n〉)→ HomMU∗(π∗ΣI, π∗BP〈n〉).
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So we must study the MU∗-module map

π∗ΣI → π∗L
E3

BP〈n〉/MU.

The homotopy groups of the source are given by the suspension of I∗ =

ker(MU∗ → BP〈n〉∗) while the homotopy groups of the target are given by

Σ4J∗, where J∗ = ker(U
(3)
MU(BP〈n〉)∗ → BP〈n〉∗). Under these identifications,

Lemma A.3.2 implies that xj 7→ σ3xj for those xj lying in I∗. By our computa-

tion of U
(3)
MU(BP〈n〉)∗, the subset of non-zero classes of the form {σ3xj} spans

an MU∗-module summand of U
(3)
MU(BP〈n〉)∗. Among these is the non-zero class

σ3vn+1, and the result follows. �

2.6. Proof of Theorem A. We will now prove Theorem 2.0.6, and hence

Theorem A. We will deduce the theorem as a consequence of a more precise

assertion. In order to state it we will need to recall a construction.

Construction 2.6.1. Recall that we have an E∞-map of spaces

JC : BU× Z→ Pic(Sp)

where the target denotes the Picard space of the category of spectra. Left Kan

extension then yields a symmetric monoidal functor

BU× Z //

��

Pic(Sp) // Sp.

Z
MU[z±1]

44

We interpret MU[z±1] as a graded E∞-ring. Here the notation is justified by

the fact that the homotopy groups of the underlying spectrum (i.e., the direct

sum of the graded components) are given by MU∗[z
±1], where z is a class in

degree 2. For any j ∈ Z, we may then construct a (non-negatively) graded

E∞-ring

MU[y] : Z≥0 → Z
·j
→ Z

MU[z±1]
→ Sp.

Here, the homotopy groups of the underlying spectrum of MU[y] are given by

MU∗[y] where |y| = 2j. By Lemma B.0.6, we may write MU[y] as the limit of

a tower of E∞-MU-algebra square-zero extensions

MU[y]→ · · · → MU[y]/(yk)→ MU[y]/(yk−1)→ · · · → MU.

When j > 0, this is also a limit diagram of underlying E∞-MU-algebras and

square-zero extensions thereof. In our work below, we regard MU[y] and

MU[y]/(yk) as ungraded E∞-MU-algebras.
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Proposition 2.6.2. Fix n ≥ −1, and let B be any E3-MU-algebra form

of BP〈n〉. Then there exists a sequence of maps

· · · → Bk → Bk−1 → · · ·B1 = B

where

(a) Bk is given the structure of an E3-MU[y]/(yk)-algebra, where |y|=2pn+1−2.

(b) each map Bk → Bk−1 is given the structure of a map of E3-MU[y]/(yk)-

algebras,

and such that the following properties are satisfied :

(i) Each map Bk → Bk−1 induces an equivalence of E3-MU[y]/(yk)-algebras

MU[y]/(yk−1)⊗MU[y]/(yk) Bk
'
→ Bk−1.

(ii) The map

B = B1 → cofib(B2 → B1) ' Σ|y|+1B

is detected by δvn+1 in

E2 = E∞ = Ext∗MU∗
(B∗, B∗)⇒ π∗mapMU(B,B).

Proof. First we prove that we can build B2 satisfying (ii). Observe that

MU[y]/(y2) is a trivial square-zero extension of MU by Σ|y|MU. According to

Lemma 2.3.3, it suffices to supply a map

LE3

B/MU → Σ|y|+1BP〈n〉

in ModE3
B (ModMU) whose image under the forgetful map

π∗map
U
(3)
MU(BP〈n〉)

(LE3

BP〈n〉/MU,BP〈n〉)

−→ π∗mapMU(fib(MU(p) → BP〈n〉),BP〈n〉)

detects δvn+1. But this is precisely the content of Proposition 2.5.6(ii).

Suppose by induction that we have constructed the algebras Bj for j ≤ k

as in (a) and (b), satisfying (i) and (ii). By Proposition 2.3.6, the obstruction

to building Bk+1 is a map

o(Bk) : L
E3

Bk/(MU[y]/(yk))
→ Bk ⊗MU[y]/(yk) Σ

(k+1)|y|+2MU

in ModE3
Bk

(ModMU[y]/(yk)). Base change along the augmentation MU[y]/(yk)→

MU gives rise to a functor

ε∗ : ModE3
Bk

(ModMU[y]/(yk)) −→ ModE3
B (ModMU),

where we have used (i) to identify ε∗Bk ' B. So the obstruction o(Bk) is

adjoint to a map

LE3

B/MU → Σ(k+1)|y|+2B

in ModE3
B (ModMU). By Proposition 2.5.6(i), any such map is nullhomotopic.

This completes the proof. �
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Proof of Theorem 2.0.6. We prove the claim by induction on n ≥ 1, the

cases n = −1, 0 being trivial. By induction, suppose there exists an E3-MU-

algebra form of BP〈n〉, say B, and construct a tower as in the previous propo-

sition.

Let ‹B := limBk be the E3-MU[y]-algebra at the limit of the tower. We

claim that ‹B is an E3-MU-algebra form of BP〈n+ 1〉.

By (i), the associated graded tower is a sum of shifts of B, and we see

that
gr(π∗‹B) ' B∗[y].

By (ii), the exact sequence of MU∗-modules

0→ Σ|y|B∗
·y
→ π∗B2 → B∗ → 0

corresponds to the class δvn+1, so that y acts by vn+1 on B2. Combining these

observations we see that the composite

Z(p)[v1, . . . , vn+1]→ (MU∗)(p) → ‹B∗

is an isomorphism, which is what we wanted to show. �

3. Unraveling Lichtenbaum–Quillen

Having constructed an E3-MU-algebra form of BP〈n〉, we aim in the re-

mainder of the paper to study its p-localized algebraic K-theory spectrum

K(BP〈n〉)(p). The philosophy of chromatic homotopy theory, together with the

vanishing results of [CMNN20], suggests that we should study K(BP〈n〉)(p) by

computing its chromatic localizations LT (i)K(BP〈n〉)(p) for 0 ≤ i ≤ n+1, which

assemble into the smashing localization Lf
n+1K(BP〈n〉)(p). One wants to know

whether the localization Lf
n+1K(BP〈n〉)(p) faithfully reproduces K(BP〈n〉)(p).

This is far from assured: for example, Quillen proved that K(Fp)(p) ∼= Z(p),

but Lf
0Z(p) = Q.

It turns out, however, that the difference between K(BP〈n〉)(p) and its

Lf
n+1 localization is entirely concentrated in low degrees. In short, in the re-

mainder of the paper we aim to prove that the localization map K(BP〈n〉)(p) →

Lf
n+1K(BP〈n〉)(p) is truncated.

In the case n = 0, this becomes the classical Lichtenbaum–Quillen conjec-

ture for Z(p), which is a celebrated theorem of Voevodsky and Rost [Voe03],

[Voe11]. Our goal is to reduce the general case to the Voevodsky–Rost theorem.

We accomplish this first by leaning on the Dundas–Goodwillie–McCarthy theo-

rem [DGM13, Th. 0.0.2], which relates K to the more computable (p-completed)

TC invariant that we review in Section 3.2. The purpose of this section is to

discuss a general strategy for proving, for any connective E1-ring spectrum R,

that

TC(R)→ Lf
n+1TC(R)
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is truncated. Future sections of the paper then implement the strategy in the

case of R = BP〈n〉.

In broad outline, our strategy proceeds as follows. First, following Ausoni

and Rognes, we apply work of Mahowald and Rezk to reduce to proving that

π∗(F ⊗ TC(R)) is finite for some type n + 2 complex F [MR99]. As we will

review, TC(R) is constructed from the simpler invariant THH(R) together

with two pieces of structure, a cyclotomic Frobenius and a circle action. One

of the main observations of this paper is that, while the definition of TC mixes

these structures by taking S1 fixed points of the Frobenius, it actually suffices

to study the two structures independently.

We reduce the problem of checking that π∗(F ⊗ TC(R)) is bounded to

checking that THH(R) satisfies the Segal conjecture, which is purely about

the Frobenius, and that THH(R) satisfies canonical vanishing, which is purely

about the S1 action.

These two properties of THH(R) together imply that F⊗TR(R) is bounded

above, and we thank the third referee for pointing out that they are in fact

equivalent to the statement that F ⊗TR(R) is bounded above. After checking

that the homotopy groups πiR are finitely generated, the statement that F ⊗

TR(R) is bounded above implies that π∗(F ⊗ TC(R)) is finite.

The remainder of this section fixes conventions and makes precise the re-

ductions to canonical vanishing and the Segal conjecture. Section 4 verifies the

Segal conjecture for THH(BP〈n〉), while Section 6 verifies canonical vanishing

via entirely different means.

3.1. The work of Mahowald–Rezk.

Definition 3.1.1. A p-complete, bounded below spectrum X is said to be

fp if H∗(X;Fp) is finitely presented over the mod p Steenrod algebra.

Theorem 3.1.2 (Mahowald–Rezk). Suppose that X is an fp spectrum.

Then there exists a non-zero p-local finite complex F such that π∗(X ⊗ F ) is

finite. In other words, X ⊗ F has finitely many non-zero homotopy groups,

and πi(X ⊗ F ) is finite for each i.

On the other hand, suppose Y is any bounded below p-complete spectrum.

If there exists a non-zero p-local finite complex F such that π∗(Y ⊗F ) is finite,

then Y is an fp spectrum.

Proof. The proof follows from [MR99, Prop. 3.2]. �

The collection of F such that π∗(X ⊗ F ) is finite is obviously a thick

subcategory. One says that an fp spectrum X is of fp-type n if π∗(X ⊗ F ) is

infinite when F has type n, but finite when F has type n+1. Our key interest

in fp spectra comes from the following result of Mahowald and Rezk:
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Theorem 3.1.3 (Mahowald–Rezk). If Y is a spectrum of fp-type n, then

the localization map Y → Lf
nY is an equivalence on homotopy in large degrees.

Proof. Mahowald and Rezk [MR99, Th. 8.2(2)] prove that the fiber C of

the map Y → Lf
nY has Brown–Comenetz dual IC that is bounded below. It

follows that C is bounded above (since for any abelian groupN, if Hom(N,Q/Z)
= 0, then N = 0), whence the claim. �

3.2. Background and conventions on cyclotomic spectra.

Definition 3.2.1. A p-typical cyclotomic spectrum X is a p-complete object

X ∈ Fun(BS1, Sp) equipped with an S1-equivariant map ϕ : X → XtCp , where

the action on the target is via the equivalence S1 ∼= S1/Cp. If X is a bounded

below p-typical cyclotomic spectrum, so that (XtCp)
hC

pk ' X
tC

pk+1 by [NS18,

II.4.1], then we define invariants

TRj(X) := X ×XtCp XhCp ×
X

tC
p2

XhCp2 ×
X

tC
p3
· · · ×

X
tC

pj
XhC

pj

using the maps ϕ
hC

pk and the canonical maps from homotopy fixed points to

the Tate fixed points. We define TR(X) = limj TR
j(X) where the connecting

maps

R : TRj(X)→ TRj−1(X)

are projection away from the last factor. Observe that each object TRj(X)

and the limit TR(X) has a residual S1-action.

Remark 3.2.2. This is slightly different than the notion of a “p-cyclotomic

spectrum” considered in [NS18]. However, when restricting attention to

bounded below and p-complete objects, as we do here, the two notions co-

incide (see [NS18, Rem. II.1.3]). The definition above is the same as in [AN21]

except that we have added the hypothesis that X be p-complete.

Definition 3.2.3. If X is a bounded below, p-typical cyclotomic spectrum,

then we define

TC(X) := fib(ϕhS1
− can : XhS1

→ XtS1
).

Remark 3.2.4. There are maps F : TRn(X) → TRn−1(X) corresponding

to projecting away from the first factor and then using the inclusion of each Cpk

homotopy fixed points into the Cpk−1 homotopy fixed points. These assemble to

a map F : TR(X)→ TR(X), and the original definition of (p-adic) topological

cyclic homology was as the fiber:

fib(1− F : TR(X)→ TR(X)).

It is shown in [NS18, Th. II.4.10] that this agrees with the definition above.
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Remark 3.2.5. Antieau–Nikolaus construct [AN21, Ex. 3.4] an S1-equi-

variant map V : TR(X)hCp → TR(X) that fits into a cofiber sequence

TR(X)hCp

V
→ TR(X)→ X

of S1-spectra. Thus, one can recover both TC(X) and X from knowledge of

TR(X).

Definition 3.2.6. Suppose that A is a connective E1-ring spectrum. Then

THH(A)∧p is a bounded below p-typical cyclotomic spectrum. We will in

this circumstance abbreviate TRj(THH(A)∧p ) by TRj(A), and similarly for

TR(THH(A)∧p ) and TC(THH(A)∧p ).

3.3. Bounds on TR and related conditions on cyclotomic spectra.

Definition 3.3.1. Let X be a bounded below p-typical cyclotomic spec-

trum. We will be interested in the following conditions on X, which may or

may not hold:

• Bounded TR The spectrum TR(X) is bounded.

• Segal Conjecture The Frobenius ϕ : X → XtCp is truncated.

• Canonical Vanishing There is an integer d ≥ 0 such that the compos-

ite

τ≥d(X
hC

pk )→ X
hC

pk
can
→ X

tC
pk

is nullhomotopic for all 0 ≤ k ≤ ∞.

• Weak Canonical Vanishing There is an integer d ≥ 0 such that, for

∗ ≥ d, the map

π∗(can) : π∗X
hC

pk → π∗X
tC

pk

is zero for all 0 ≤ k ≤ ∞.

• Tate Nilpotence XtCp lies in the thick tensor ideal of Fun(BS1, Sp)

generated by DS1
+, the Spanier–Whitehead dual of S1

+.

• Fp Nilpotence TR(X) ∈ Fun(BS1, Sp) lies in the thick tensor ideal

generated by Fp, where Fp is considered to have trivial S1 action.

• Finiteness For each i ∈ Z and 0 ≤ k ≤ ∞, the groups πiX
hC

pk and

πiX
tC

pk are finite, and hence so too are the groups πiTC(X).

As suggested by its name, the Segal Conjecture condition holds particu-

lar historical significance, some of which we recall in Section 4. It turns out that

there are many non-trivial implications between the conditions, summarized

by the following theorem:

Theorem 3.3.2. Let X be a bounded below, p-power torsion p-typical

cyclotomic spectrum. That is, we assume there is some N ≥ 0 for which
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pN : X → X is nullhomotopic as a map of p-typical cyclotomic spectra. Then

the following implications hold :

(a) (Antieau–Nikolaus) Bounded TR ⇒ Segal Conjecture .

(b) Bounded TR ⇒ Fp Nilpotence .

(c) (Mathew) Fp Nilpotence ⇒ Tate Nilpotence .

(d) If each homotopy group πiX is finite, then Bounded TR ⇒ Finiteness .

(e) Segal Conjecture + Tate Nilpotence ⇒ Canonical Vanishing .

(f) Segal Conjecture + Weak Canonical Vanishing ⇒ Bounded TR .

Remark 3.3.3. We thank the anonymous referee for suggesting both the

formulations and proofs of several of the statements in the above Theorem 3.3.2.

Of the statements, (a) appeared in previous work of Antieau and Nikolaus

[AN21, Prop. 2.25], and (c) was communicated to us by Akhil Mathew. We

thank both the referee and Mathew for suggesting that we present their work

within this paper.

We postpone the proof of Theorem 3.3.2 to Section 3.5. Let us now

describe how we apply it. The main theorem of the remainder of the paper,

stated as Theorem G in the introduction, is the following:

Theorem 3.3.4. Let BP〈n〉 denote any E3-MU-algebra form of BP〈n〉,

and suppose that F is a type n+ 2 complex. Then F ⊗ THH(BP〈n〉) satisfies

Bounded TR .

By the thick subcategory theorem of Hopkins and Smith [HS98], Theo-

rem 3.3.4 holds for an arbitrary type n + 2 complex F if and only if it holds

for some type n+2 complex F . Thus, given Theorem 3.3.2(d,f), we can prove

Theorem 3.3.4 by checking the following two results independently:

Theorem 3.3.5 (see Theorem 4.0.1). For all type n + 2 complexes F ,

F ⊗ THH(BP〈n〉) satisfies the Segal conjecture.

Theorem 3.3.6 (see Theorem 6.3.1). For some type n + 2 complex F ,

F ⊗ THH(BP〈n〉) satisfies weak canonical vanishing.

While it is convenient for our proof of Theorem 3.3.6 that we pick a

particularly nice F , it follows from Theorem 3.3.2(a,b) that it holds for all

choices of F . As Akhil Mathew explained to us, we may also use Theorem 3.3.2

to deduce results about general E1-BP〈n〉-algebras:

Proposition 3.3.7 (Mathew). Suppose that A is a connective E1-BP〈n〉-

algebra and that F is a type n+2 complex. Then, if F ⊗THH(A) satisfies the

Segal conjecture, F ⊗ TR(A) is bounded.
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Proof. It suffices to show that F ⊗TR(A) satisfies Fp Nilpotence . How-

ever, F ⊗TR(A) is a retract of F ⊗TR(BP〈n〉)⊗TR(A), so it suffices to check

that F⊗TR(BP〈n〉) satisfies Fp Nilpotence . This follows from Theorem 3.3.4

and Theorem 3.3.2(b). �

3.4. Lichtenbaum–Quillen and bounded TR.

Theorem 3.4.1. Let A be a connective E1-ring and F a type n+ 2 com-

plex. Suppose that

(i) F ⊗ TR(A) is bounded ;

(ii) πi(A
∧
p ) is a finitely generated Zp-module for all i.

Then TC(A) is an fp-spectrum of fp-type at most n + 1. In particular, this

implies that
TC(A)→ Lf

n+1TC(A)

is truncated.

Proof. Since TC is calculated as the fiber of a self-map of TR, we know

by assumption (i) that π∗(F ⊗ TC(A)) is bounded. It remains only to check

that each πi(F ⊗ TC(A)) is finite. By Theorem 3.3.2(e), it suffices to show

that each homotopy group πi(F ⊗THH(A)) is finite. Recall that THH(A) can

be computed as the geometric realization of the cyclic bar construction • 7→

A⊗•+1. Since A is connective, it therefore suffices to prove πi−k(F ⊗ A⊗k+1)

is finite for each i and k. The p-completion of the tensor product A⊗k+1 will

have finitely generated homotopy groups, by connectivity and (ii). Since F is

not type 0, the result follows. �

Theorem 3.4.2. Let A be a connective E1-ring and F a type n+ 2 com-

plex. Suppose that

(i) F ⊗ TR(A) is bounded ;

(ii) πi(A
∧
p ) is a finitely generated Zp-module for all i;

(iii) F ⊗ TR(π0A) is bounded/

Then,

(a) if π∗(F ⊗ K(π0A)) is finite, then K(A)∧p is an fp-spectrum of fp-type at

most n+ 1;

(b) if the map K(π0A)(p) → Lf
n+1K(π0A)(p) is truncated, then the map

K(A)(p) → Lf
n+1K(A)(p)

is truncated.

Remark 3.4.3. The condition in (a) of the above theorem is that K(π0A)∧p
is fp of fp type at most n + 1. Mitchell’s theorem [Mit90] ensures that, if

K(π0A)∧p is fp, then it will be of fp type at most 1. Similarly, Mitchell’s

theorem implies that the spectrum Lf
n+1K(π0A) appearing in (b) is equivalent

to Lf
1K(π0A).
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Proof. By p-completing the pullback square in the Dundas–Goodwillie–

McCarthy theorem [DGM13, Ch. VII, Th. 0.0.2], we obtain a pullback square

K(A)∧p TC(A)

K(π0A)∧p TC(π0(A)).

Here we note that the symbol TC above agrees, by our conventions, with the

p-completion of what the authors of [DGM13] denote by TC.

The assumption that each homotopy group πiA
∧
p is finitely generated en-

sures additionally that (π0A)
∧
p , by which we mean the p-completion of the

Eilenberg–MacLane spectrum π0A, also has finitely generated homotopy

groups. By Theorem 3.4.1, we know that TC(π0A) and TC(A) are fp-spectra

of type at most n + 1. We then observe that the condition of being an fp-

spectrum of type at most n + 1 is preserved under fiber sequences and finite

coproducts, proving (a).

Similarly, to prove (b) we observe that the collection of spectraX such that

X(p) → Lf
n+1X(p)

is truncated is also closed under fiber sequences and finite coproducts. This

class of spectra includes all rational spectra. The claim (b) now follows from

Theorems 3.1.3 and 3.4.1, the Dundas–Goodwillie–McCarthy square above,

and the arithmetic pullback square

X(p)
//

��

X∧
p

��

X(p)[p
−1] // X∧

p [p
−1]. �

As a corollary of these results, we deduce the main theorems of the intro-

duction.

Corollary 3.4.4.Let A denote any E3-MU-algebra form of BP〈n〉. Then

• TC(A) is fp of fp-type at most n+ 1, as is K(A∧
p )

∧
p ;

• the map
K(A)(p) → Lf

n+1K(A)(p)

is an equivalence in large degrees.

Proof. We observe that the Zp-module

π∗(BP〈n〉
∧
p )
∼= Zp[v1, v2, . . . , vn]

is finitely generated in each degree. If we let F denote any type n+2 complex,

our main Theorem 3.3.4 states that F ⊗ TR(A) is bounded. We also observe

that F ⊗TR(π0A) ' F ⊗TR(Z(p)) is bounded, for example by our work here
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and the fact that Z(p) is an E∞-MU-algebra form of BP〈0〉 (cf. [BM94] and

[Rog99] for more explicit proofs of this fact). It remains to check only that

K(Z(p))(p) → Lf
n+1K(Z(p))(p) ' Lf

1K(Z(p))(p)

is an equivalence in large degrees. But this is exactly Waldhausen’s reformu-

lation [Wal84, §4] of the Lichtenbaum–Quillen conjecture for Z(p), which is

proven by the celebrated work of Voevodsky and Rost [Voe03], [Voe11]. �

Remark 3.4.5. In fact, in the notation of the above corollary, TC(A) is of

fp-type exactly n+ 1, as follows from Corollary 5.0.2.

3.5. Proof of Theorem 3.3.2. In this section we supply the proof of The-

orem 3.3.2. The statements and proofs will rely on the following notion of

nilpotence, which goes back at least to Bousfield [Bou79]. For an excellent

survey of modern uses of this notion, we recommend [Mat18].

Definition 3.5.1. Let C be a stable, symmetric monoidal category, and let

A be an E1-algebra object. We say that M ∈ C is A-nilpotent if M lies in the

thick tensor subcategory generated by A. Equivalently, we can ask that M

lies in the thick subcategory generated by those objects of C that admit the

structure of a left A-module.

Definition 3.5.2. Let G be a compact Lie group. We say that a (Borel)

G-spectrum Y is G-nilpotent if it is DG+-nilpotent, where DG+ denotes the

Spanier–Whitehead dual of G+.

Lemma 3.5.3. Let F : C → D be a lax symmetric monoidal functor be-

tween stable, symmetric monoidal categories, and let A ∈ Alg(C) and B ∈

Alg(D) be algebra objects. If F (A) is B-nilpotent, then F (M) is B-nilpotent

for any A-nilpotent object M .

Proof. The subcategory E ⊆ C of objectsM such that F (M) isB-nilpotent

is thick so we need only show that it contains all A-modules. If M is an

A-module, then F (M) is an F (A)-module and hence a retract of F (A)⊗F (M).

But F (A) is B-nilpotent and hence so is F (A)⊗F (M) and the retract F (M).

�

Lemma 3.5.4. If Y ∈ Fun(BS1, Sp) is Fp-nilpotent, where Fp is given the

trivial action, then YhCp , Y
hCp , and Y tCp are also Fp-nilpotent, where we give

each the residual S1/Cp ' S1 action.

Proof. From the cofiber sequence YhCp → Y hCp → Y tCp it is enough to

prove the claim for Y hCp and Y tCp . By Lemma 3.5.3 it is enough to check that

F
hCp
p and F

tCp
p are Fp-nilpotent. Both are modules over F

hCp
p and hence also,

by restriction, modules over Fp, hence Fp-nilpotent. �
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Lemma 3.5.5. If Y ∈Fun(BS1, Sp) is Fp-nilpotent, Y
tCp is S1-nilpotent.

Proof. First we claim that (F
hCp
p )tS

1
= 0. One can check this by direct

calculation, or else argue as follows. Since F
hCp
p is a module over Fp, we have

that (F
hCp
p )tS

1
is p-complete and (F

hCp
p )tS

1
/p = (F

hCp
p )tCp , by [NS18, Lemma

IV.4.12]. But (F
hCp
p )tCp = 0 by [NS18, Lemma I.2.2], whence the claim. It now

follows from [MNN17, Th. 4.19] that F
hCp
p is S1-nilpotent. The lemma now

follows from Lemma 3.5.3. �

Lemma 3.5.6. If Y ∈ Fun(BG, Sp) is G-nilpotent, there is a d ≥ 0 such

that, for all integers n, the map τ≥d+nY → τ≥nY factors through a G-nilpotent

spectrum.

Proof. Choose an N so that the map Y → map(skN (EG)+, Y ) has a

retract r. Let d be the dimension of the finite complex skN (EG)+. Then,

for all n ∈ Z, the spectrum map(skN (EG)+, τ≥d+nY ) is n-connective, so the

composite

map(skN (EG)+, τ≥d+nY )→ map(skN (EG)+, Y )
r
→ Y

factors through τ≥nY . The map τ≥d+nY → τ≥nY then factors through the

diagonal

τ≥d+nY → map(skN (EG)+, τ≥d+nY ),

the target of which is G-nilpotent. �

Lemma 3.5.7. Let X be an S1-spectrum, and suppose we have a map of

S1-spectra f : X → Y , where Y is S1-nilpotent, which induces an equivalence

τ≥mX ' τ≥mY for some m ≥ 0. Then there is a d ≥ 0 such that the map

τ≥dX → X factors through an S1-nilpotent spectrum.

Proof. By the previous lemma there is a d′ ≥ 0 such that τ≥d′+nY → τ≥nY

factors through an S1-nilpotent spectrum for all integers n. Set d = d′ + m.

Then τ≥dX ' τ≥d′+mY → τ≥mY ' τ≥mX factors through an S1-nilpotent

spectrum and hence so does the composite τ≥dX → τ≥mX → X. �

Lemma 3.5.8. Let X and d be as in Lemma 3.5.7. Then, for all 0≤k≤∞,

(i) (τ≥dX)
tC

pk → X
tC

pk is nullhomotopic;

(ii) τ≥d(X
hC

pk )→ X
tC

pk is nullhomotopic;

(iii) the map X
tC

pk → (τ<dX)
tC

pk has a retract.

Proof. The Tate construction (−)
tC

pk annihilates all S1-nilpotent spectra,

so (i) is immediate from the previous lemma. The map in (ii) factors as

τ≥d(X
hC

pk )→ (τ≥dX)
hC

pk → (τ≥dX)
tC

pk → X
tC

pk
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and so is nullhomotopic by (i). The claim (iii) follows from (i) and the cofiber

sequence

(τ≥dX)
tC

pk → X
tC

pk → (τ<dX)
tC

pk . �

Proof of Theorem 3.3.2. Claim (a) is [AN21, Prop. 2.25].

We now prove (b). By assumption, there is some N for which pN : X → X

is nullhomotopic as a map in CycSpp. It follows that pN annihilates each

homotopy group πiTR(X). It follows that each object πiTR(X) admits the

structure of a Z/pN -module in S1-spectra, and hence that each object πiTR(X)

is Fp-nilpotent. If TR(X) is bounded, then we conclude that TR(X) is also

Fp-nilpotent, as an S1-spectrum.

Now we prove (c). Assume that TR(X) is Fp-nilpotent. By Lemma 3.5.4,

we deduce that TR(X)hCp is Fp-nilpotent as well and, from the S1-equivariant

cofiber sequence

TR(X)hCp

V
→ TR(X)→ X,

we deduce that X is Fp-nilpotent. By Lemma 3.5.5, we deduce that XtCp is

S1-nilpotent, which completes the proof of (c).

Claim (e) is immediate from Lemma 3.5.8(ii).

For claim (d), first observe that (a), (b), (c), and Lemma 3.5.8(iii) imply

that X
tC

pk is a retract of (τ<dX)
tC

pk . The finiteness assumption on X ensures

that the homotopy groups of (τ<dX)
tC

pk are finite and hence so are the homo-

topy groups of X
tC

pk . The homotopy groups of X being finite also implies that

the homotopy groups of XhC
pk

are finite, since X was assumed bounded below.

The claim (d) now follows from the cofiber sequence XhC
pk
→ X

hC
pk → X

tC
pk .

We are left with establishing the claim (f), for which we argue as in

[Mat21]. Recall that we have pullback squares

TRk(X)
R

//

��

TRk−1(X)

��

X
hC

pk

can
// X

tC
pk .

The right vertical map is an equivalence in large degrees, independent of k, by

Tsalidis’s theorem [NS18, II.4.9] and the assumption that Segal Conjecture

holds. The bottom horizontal map is zero in in large degrees by the assumption

that Weak Canonical Vanishing holds. It follows that the top horizontal map

is zero in large degrees, and hence that the limit TR(X) is bounded above.

Since X was assumed bounded below, TR(X) is bounded below, and hence

TR(X) is bounded. �
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4. The Segal conjecture

We fix throughout this section an E3-MU-algebra form of BP〈n〉. Our

purpose is to prove the Segal conjecture (Theorem C), which we restate here

for convenience.

Theorem 4.0.1. Let F denote any type n+1 finite complex. Then the cy-

clotomic Frobenius THH(BP〈n〉)→ THH(BP〈n〉)tCp induces an isomorphism

F∗THH(BP〈n〉) ∼= F∗(THH(BP〈n〉)
tCp)

in all sufficiently large degrees ∗ � 0.

Remark 4.0.2. This theorem implies the corresponding statement for F a

type n + 2 complex, which is all that is used in deducing the Lichtenbaum–

Quillen statements as in the previous section.

The idea of the proof is to use (the décalage of) the Adams filtration on

BP〈n〉 to reduce the claim to a much simpler one about graded polynomial

algebras over Fp.

Remark 4.0.3. There are several antecedents to the Segal conjecture. First,

the classical Segal conjecture for the group Cp states that the map

S0 = THH(S0)→ THH(S0)tCp = (S0)tCp

is p-completion; this is a theorem of Lin [Lin80] (at p = 2) and Gunawardena

[AGM85] (for p odd). For various classes of ordinary commutative rings R, the

map

ϕ : THH(R)→ THH(R)tCp

is a p-adic equivalence in large degrees: this is the case for DVRs of mixed

characteristic with perfect residue field in odd characteristic [HM03], [HM04]

for smooth algebras in positive characteristic [Hes18, Prop. 6.6], and for p-

torsionfree excellent noetherian rings R with R/p finitely generated over its

pth powers [Mat21, Cor. 5.3].

When R = ` is the Adams summand, it is proved in [AR02, Th. 5.5] for

p ≥ 5 that

ϕ : THH(`)/(p, v1)→ THH(`)tCp/(p, v1)

is an equivalence in degrees larger than 2(p− 1) (cf. [LN05]). When R = MU,

Lunøe-Nielsen and Rognes show [LNR11] that

ϕ : THH(MU)→ THH(MU)tCp

is a p-adic equivalence. In another direction, Angelini-Knoll and Quigley

[AKQ21b] have shown that ϕ is an equivalence for Ravenel’s X(n) spectra.
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4.1. Polynomial rings over the sphere. First we record some facts about

polynomial rings over the sphere spectrum, starting with their construction.

Construction 4.1.1. For r, w ∈ Z, we will denote by S2r(w) the graded

spectrum that is S2r in weight w and zero elsewhere. Recall (see, e.g., [Lur15,

3.4.1,3.4.2]) that there is a graded E2-ring S0[y−2,−1] equipped with a class

y−2,−1 : S−2(−1) → S0[y−2,−1] that exhibits the target as the free graded

E1-algebra on S−2(−1). This graded E2-ring corresponds to an E2-monoidal

functor
S0[y−2,−1] : Z

ds → Sp

that factors through the subcategory Pic(Sp) of invertible spectra. When r ≤ 0

we define the graded E2-ring S0[y2r,−1] as the composite

Zds ·r
→ Zds S0[y−2,−1]

−→ Pic(Sp)→ Sp.

When r ≥ 0 we define the graded E2-ring S0[y2r,−1] as the composite

Zds ·(−r)
→ Zds S0[y−2,−1]

−→ Pic(Sp)
D
→ Pic(Sp)→ Sp,

where D denotes the duality functor. Finally, we define S0[y2r,w] for arbitrary

r, w ∈ Z by left Kan extending S0[y2r,−1] along the map (−w) : Zds → Zds.

Thus, for each r, w ∈ Z, we have constructed a graded E2-ring S0[a] equipped

with a class a : S2r(w) → S0[a] which exhibits the target as the free graded

E1-ring on S2r(w).

Next we establish an important finiteness property for THH(S0[a]). But

first we recall a definition.

Definition 4.1.2. If G is a (topological) group, we will say that a spectrum

with G-action, X ∈ Fun(BG, Sp), is finite if it lies in the thick subcategory

generated by the objects G/H+, where H ⊆ G is a closed subgroup and G/H+

denotes Σ∞
+ (G/H).

Lemma 4.1.3. The graded E1-ring map

S0[a]→ THH(S0[a])

induces on Fp-homology the ring map

Fp[a]→ Fp[a]⊗ ΛFp(σa).

Here, the weights of a and σa are both w. Furthermore, if w 6= 0, then, as a

graded Cp-spectrum, THH(S0[a]) is pointwise finite. That is, at each weight j,

the Cp-spectrum THH(S0[a])j lies in the thick subcategory generated by S0

and Cp+.

Proof. We have that Fp ⊗ THH(−) = THH(Fp ⊗ (−)/Fp), so the induced

map on homology is given by

Fp[a]→ THH(Fp[a]/Fp)∗.
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This map depends only on the E1-algebra structure of Fp[a], which is free, so

this is equivalent to the classical calculation of THH(Fp[a]/Fp)∗ (i.e., ordinary

Hochschild homology over Fp).

We now show that THH(S0[a]) is pointwise finite as a graded Cp-spectrum.

This statement only depends on the graded E1-algebra structure on S0[a],

which is free. The Hochschild homology of free E1-algebras is well known (see,

e.g., the argument in [Mat21, Th. 3.8], which applies verbatim to the graded

case), and in this case specializes to

THH(S0[a]) '
⊕

k≥0

IndS
1

Ck
(S2rk(wk)).

Here IndS
1

Ck
denotes the induction functor, given by left Kan extension along

the functor BCk → BS1, and Ck acts by permuting the factors in (S2r(w))⊗k =

S2rk(wk). Observe that, since w 6= 0, there is at most one non-zero summand in

each fixed weight. To complete the proof we need to show that each summand

is finite as a Cp-spectrum.

The property of finiteness is always preserved by induction. In this case,

the restriction functor Fun(BS1, Sp)→ Fun(BCp, Sp) also preserves finiteness.

Indeed, when k = mp, the object S1/Ck+ is equivalent to S1
+ = Σ(Cp/Cp)+ as

a Cp-spectrum, and when k is coprime to p, then we have a cofiber sequence

Cp+ → S1/Ck+ → ΣCp+.

So it suffices to show that (S2r)⊗k is finite as a Ck-spectrum. After possibly

dualizing we may assume that r ≥ 0, and then this is the suspension spectrum

of the one-point compactification of 2r copies of the regular representation

of Ck, which admits a finite Cp-CW-structure. �

We now prove the Segal conjecture for these graded polynomial rings over

the sphere. For the statement, recall that the cyclotomic Frobenius on filtered

objects multiplies filtrations by p; we review the formalism for this using the

functor Lp in Section C.5.

Proposition 4.1.4. Suppose w 6= 0. Then the cyclotomic Frobenius

LpTHH(S0[a])→ THH(S0[a])tCp

witnesses the target as the p-completion of the source.

Proof. As in the previous proposition, we may compute

THH(S0[a]) '
⊕

k≥0

IndS
1

Ck
(S2rk(wk)).

Since there is at most one non-zero summand in each fixed weight, taking the

Tate fixed points (in the category of graded spectra) commutes with this sum,
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so that we have

THH(S0[a])tCp '
⊕

k≥0

(IndS
1

Ck
(S2rk(wk)))tCp .

When k is not divisible by p, the restriction of IndS
1

Ck
(S2rk) to a Cp-spectrum

lies in the thick subcategory generated by Cp+, and so is annihilated by (−)tCp .

When k = mp is divisible by p, then the restriction of IndS
1

Ck
(S2rk) is equivalent

to S1
+ ⊗ (S2rm)⊗p, where Cp acts trivially on the first term and by cyclic

permutations on the second. Thus

THH(S0[a])tCp '
⊕

m≥0

((S2rm)⊗p(wmp))tCp ⊕ Σ((S2rm)⊗p(wmp))tCp .

To compute what the cyclotomic Frobenius does, recall that, directly from the

construction of the cyclotomic Frobenius, we have a commutative diagram for

any graded E1-ring A:

LpA
⊗m //

��

(A⊗mp)tCp

��

LpTHH(A) // THH(A)tCp .

The bottom arrow is S1 ∼= S1/Cp-equivariant, so we may induce up the targets

of the vertical maps to get a diagram

S1
+ ⊗ LpA

⊗m //

��

S1
+ ⊗ (A⊗mp)tCp

��

LpTHH(A) // THH(A)tCp .

If we now take A = S0[a] and restrict to the summand corresponding to am,

then we learn that the cyclotomic Frobenius map in weight mp is given by

tensoring the Tate diagonal

S2rm → ((S2rm)⊗p)tCp

with S1
+. The Tate diagonal here witnesses the target as the p-completion of

the source by the classical Segal conjecture. �

4.2. The Segal conjecture for polynomial Fp-algebras. In this section we

consider a graded E2-Fp-algebra R, with homotopy groups a polynomial ring

π∗(R) ∼= Fp[a1, a2, . . . , an].

Each ai will have non-negative even degree |ai| and positive weight wt(ai),

though we suppress the weights from the notation. In fact, there is a unique

ring R with the above description:
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Proposition 4.2.1. As a graded E2-Fp-algebra, the ring R above must

be equivalent to

Fp ⊗ S0[a1]⊗ S0[a2]⊗ · · · ⊗ S0[an],

where S0[ai] is the ring constructed in Construction 4.1.1 with 2r = |ai| and

w = wt(ai).

Proof. Let us denote Fp ⊗ S0[a1] ⊗ S0[a2] ⊗ · · · ⊗ S0[an] by A. We first

claim that A has a graded E2-Fp-algebra cell structure with cells in even de-

grees. Indeed, this algebra is canonically augmented over Fp, so we may apply

[GKRW21, Th. 11.21,Th. 13.7] which, together, show that, if

Fp ⊗Fp⊗AFp Fp

has homotopy groups in even degrees, then A has a minimal cell structure as

a graded E2-Fp-algebra with cells in even degrees.3 But the Künneth spec-

tral sequence computing these homotopy groups collapses at the E2-page as a

divided power algebra on even degree classes, so the claim follows.

There is then no obstruction to constructing an E2-map A → R sending

ai to ai, since the homotopy groups of R are concentrated in even degrees. The

result follows. �

Our main theorem about this E2-Fp-algebra R is as follows:

Proposition 4.2.2. The cyclotomic Frobenius

LpTHH(R)→ THH(R)tCp

induces on homotopy groups the ring map

Fp[x, a1, a2, . . . , an]⊗ Λ(σa1, σa2, · · · , σan)

→ Fp[x
±1, a1, a2, . . . , an]⊗ Λ(σa1, σa2, · · · , σan)

that inverts x. Here, x is in degree 2 and weight 0. The degree of σai is one

more than the degree of ai, and the weight of σai is the same as the weight of ai.

A version of the above is well known in the case that all ai are in degree

0 and weight zero, so R is a classical commutative ring. (See, e.g., [Hes18, 6.6]

for a much stronger result.) Our main observation is that the result extends

to the case where not all ai are in degree 0, in which case R is not discrete.

Since an exterior algebra on classes of degree |ai|+ 1 has no homotopy above

degree n+
∑
|ai|, we obtain the following result:

3Here it is important that we are considering E2-algebras: the iterated bar construction

is related to the Ek-cotangent complex up to a shift by k. Since k = 2, the property of being

concentrated in even degrees is insensitive to this shift.
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Corollary 4.2.3 (Segal conjecture for graded polynomial Fp-algebras).

The map

π∗(THH(R)/(a1, . . . , an))→ π∗(THH(R)tCp/(a1, . . . , an))

is an equivalence in degrees ∗ > n+
∑n

i=1 |ai|.

Proof of Propostion 4.2.2. For convenience, we will omit the grading shear,

Lp, from the notation throughout.

By Proposition 4.2.1, we may assume that R is a tensor product of graded

E2-rings

R ' Fp ⊗ S0[a1]⊗ · · · ⊗ S0[an].

Since THH is symmetric monoidal as a functor to cyclotomic spectra [NS18,

p.341], we may compute

THH(R) ' THH(Fp)⊗ THH(S0[a1])⊗ · · · ⊗ THH(S0[an])

as a Cp-equivariant E1-ring spectrum. We next compute the cyclotomic Frobe-

nius on each component of the above tensor product. It follows from Bökstedt’s

unpublished computation of THH(Fp) (see [NS18, §IV.4] for a modern refer-

ence) that the map

ϕ : THH(Fp)→ THH(Fp)
tCp

induces, on homotopy groups, the map

Fp[x]→ Fp[x
±1],

which inverts x. Here x = σ2v0 is in degree 2 and weight zero. We have already

seen (Proposition 4.1.4) that each map

ϕ : THH(S0[ai])→ THH(S0[ai])
tCp

is an equivalence after p-completion. It follows that the map

THH(Fp)⊗
⊗

i

THH(S0[ai])→ THH(Fp)
tCp ⊗

⊗

i

THH(S0[ai])
tCp

has the desired effect on homotopy groups. To finish the proof we need to show

that the lax monoidal structure map

THH(Fp)
tCp ⊗

⊗

i

THH(S0[ai])
tCp →

(
THH(Fp)⊗

⊗

i

THH(S0[a1])

)tCp

is an equivalence. By Lemma 4.1.3 it suffices to prove the following more

general statement: if X and Y are non-negatively graded Cp-spectra, and, for

each weight j the Cp-spectrum Yj lies in the thick subcategory generated by

Cp+ and S0, then the map

α : XtCp ⊗ Y tCp → (X ⊗ Y )tCp

is an equivalence after p-completion.



REDSHIFT 1315

The Tate construction on graded Cp-spectra is computed pointwise, so we

need to prove that
⊕

i+j=w

X
tCp

i ⊗ Y
tCp

j →
Ä⊕

Xi ⊗ Yj
ätCp

is a p-adic equivalence. Since X and Y are non-negatively graded, these sums

are finite. We are therefore reduced to proving the analogous ungraded state-

ment: that α is a p-adic equivalence, whereX and Y are (ungraded) Cp-spectra

and where we assume that Y belongs to the thick subcategory generated by

S0 and Cp+. Since the Tate construction is exact, the category of Cp-spectra

Y for which α an equivalence after p-completion is a thick subcategory. So we

need only prove the claim for Y = S0 and Y = Cp+. When Y = Cp+, both

sides vanish. When Y = S0, we may identify Y tCp with the p-complete sphere,

(S0)∧p , by the Segal conjecture, so this map becomes the canonical one

XtCp ⊗ (S0)∧p → XtCp ,

which is indeed an equivalence after p-completion. �

4.3. The Segal conjecture for BP〈n〉. The key to the proof of Theorem C

is the following:

Theorem 4.3.1. The map of BP-algebras

THH(BP〈n〉)/(p, v1, v2, . . . , vn)→ THH(BP〈n〉)tCp/(p, v1, v2, . . . , vn)

is an equivalence in large degrees. Here we regard p, v1, . . . , vn as elements in

the homotopy of the right-hand side via the ring map ϕ.

Before proving it, we need to recall a few things about the Adams spectral

sequence for BP〈n〉.

Recollection 4.3.2. Recall the descent tower desc≥•
Fp

(BP〈n〉) discussed in

Section C. We claim that the associated graded object has homotopy groups

given by

π∗(gr(desc
≥•
Fp

BP〈n〉)) ' Fp[v0, v1, . . . , vn],

where each vi lies in weight 2pi − 1. (Recall that the weight of a class in Es,t
2

is t; see Convention C.1.1.) Indeed, from the definition of the descent tower,

these homotopy groups agree with

Ext∗,∗
A∗

(Fp,H∗(BP〈n〉;Fp)).

Recall that the homology of BP〈n〉 as a comodule is coextended from the

quotient Hopf algebra Λ(τ0, . . . , τn) (where we write τj for ζj+1 at the prime 2):4

H∗(BP〈n〉;Fp) = A∗�Λ(τ0,...,τn)Fp.

4Here we use the convention of [Mil58] for the definition of ζj .
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(This goes back to the construction of BP〈n〉; see [Wil75, Prop. 1.7].) By the

change of rings isomorphism [Rav86, A1.3.13], we have

Ext∗,∗
A∗

(Fp,H∗(BP〈n〉;Fp)) ∼= Ext∗,∗Λ(τ0,...,τn)
(Fp,Fp) ∼= Fp[v0, . . . , vn],

where the vi are represented by [τi] in the cobar complex. The classes are

so-named because they detect the corresponding classes in π∗BP〈n〉, and v0
detects p. For i > 0, we denote by ṽi chosen lifts of each vi to elements in

π∗desc
≥2pi−1
Fp

(BP〈n〉), and we observe that v0 admits a unique lift to an element

in π∗descFp(BP〈n〉), which we denote by the same symbol.

Proof of Theorem 4.3.1. For convenience, in this proof we will suppress

the functor Lp from the notation when discussing the cyclotomic Frobenius for

filtered and graded objects.

First observe that we may reformulate this claim as saying that the map

Fp ⊗BP〈n〉 ϕ : Fp ⊗BP〈n〉 THH(BP〈n〉)→ Fp ⊗BP〈n〉 THH(BP〈n〉)
tCp

is an equivalence in large degrees, since

BP〈n〉/(p, v1, . . . , vn) ' Fp.

To define this map, we are using that THH(BP〈n〉) is an E1-BP〈n〉-

algebra, and the map ϕ is an E2-algebra map, and hence ϕ in particular has

the structure of a map of modules over BP〈n〉 (where the module structure on

the target is defined using the map ϕ).

The E2-algebra BP〈n〉 refines to a filtered E2-algebra desc≥•
Fp

(BP〈n〉), and

desc≥•
Fp

(Fp) = Fp is a module over this algebra, where the right-hand side is the

tower with 0 in positive filtration and Fp in non-positive filtration. Moreover,

THH inherits a filtration, and so we can ask whether the map

Fp ⊗desc≥•
Fp

(BP〈n〉)
THH(desc≥•

Fp
(BP〈n〉))

→ Fp ⊗desc≥•
Fp

(BP〈n〉)
THH(desc≥•

Fp
(BP〈n〉))tCp

is an equivalence in large degrees on homotopy groups.

We would like to reduce this to a claim on the associated graded, but

in order to do so we need to know that the towers on both sides are con-

ditionally convergent. By Proposition C.5.4, the towers THH(desc≥•
Fp

BP〈n〉)

and THH(desc≥•
Fp

BP〈n〉)tCp are conditionally convergent, after v0-completion.

Using the notation in Recollection 4.3.2, it suffices by a thick subcategory

argument to prove that

desc≥•
Fp

(BP〈n〉)/(v0, ṽ1, . . . , ṽn) ' Fp
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as filtered modules over desc≥•
Fp

(BP〈n〉). Again, since desc≥•
Fp

(BP〈n〉) is con-

ditionally convergent after v0-completion, it suffices to check this equivalence

upon taking the associated graded, where it is clear from Recollection 4.3.2.

We are now reduced to checking that the associated graded of the map

Fp ⊗desc≥•
Fp

(BP〈n〉)
THH(desc≥•

Fp
(BP〈n〉))

→ Fp ⊗desc≥•
Fp

(BP〈n〉)
THH(desc≥•

Fp
(BP〈n〉))tCp

is an equivalence in high enough degrees.

Upon taking associated graded, we may, by Recollection 4.3.2, identify

this map with

THH(Fp[v0, v1, . . . , vn])/(v0, . . . , vn)→THH(Fp[v0, v1, . . . , vn])
tCp/(v0, . . . , vn),

and it follows from Corollary 4.2.3 that this map is an equivalence in large

degrees. This completes the proof. �

From a thick subcategory argument in BP-modules, we then learn the

following:

Corollary 4.3.3. For any positive integers i0, i1, . . . , in, the map of BP-

algebras

THH(BP〈n〉)/(pi0 , vi11 , vi22 , . . . , vinn )→ THH(BP〈n〉)tCp/(pi0 , vi11 , vi22 , . . . , vinn )

is an equivalence in large degrees.

In particular, if we let S/I denote a generalized Moore spectrum of the

form S0/(pi0 , vi11 , . . . , vinn ), then

(S/I)∗THH(BP〈n〉)→ (S/I)∗THH(BP〈n〉)
tCp

is an equivalence in large degrees.

The Segal conjecture (Theorem C) now follows by a thick subcategory

argument in spectra, since any S/I generates the thick subcategory of type

n+ 1 spectra.

5. The Detection Theorem

Throughout this section, we will use BP〈n〉 to denote a fixed E3-MU-

algebra form BP〈n〉. By vn+1 ∈ π2pn+1−2MU(p) we will refer to a specific

indecomposable generator, with

• trivial mod p Hurewicz image, and

• the key property that the unit map MU(p) → BP〈n〉 sends vn+1 to 0 in

homotopy.
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This last assumption ensures that vn+1 admits a unique lift to an element in the

homotopy of the fiber of the unit map MU(p) → BP〈n〉. Our main aim will be

to prove Theorem F from the introduction, which we restate for convenience:

Theorem 5.0.1 (Detection). There is an isomorphism of Z(p)[v1, . . . , vn]-

algebras

π∗(THH(BP〈n〉/MU)hS
1
) ∼= (π∗THH(BP〈n〉/MU)) JtK,

where |t| = −2. This isomorphism can be chosen such that, under the unit

map

π∗(MUhS1

(p) )→ π∗(THH(BP〈n〉/MU)hS
1
),

the canonical complex orientation maps to t and vn+1 is sent to t(σ2vn+1).

Before turning to the proof, we observe that the Detection Theorem im-

plies a weak form of redshift.

Corollary 5.0.2. For each 0 ≤ m ≤ n + 1, LK(m)K(BP〈n〉) 6= 0. In

particular, LK(n+1)K(BP〈n〉) 6= 0.

Proof. By [BGT14], the cyclotomic trace map

K(−)→ TC(−)

is a lax symmetric monoidal natural transformation. It follows that the trace

K(BP〈n〉)→ TC(BP〈n〉) is a map of E2-rings. Recall that there is a canonical

map TC(−) → THH(−)hS
1
, to negative cyclic homology. Thus we have a

sequence of E2-ring maps,

K(BP〈n〉)→ TC(BP〈n〉)→ THH(BP〈n〉)hS
1
→ THH(BP〈n〉/MU)hS

1
,

and hence an E2-ring map

LK(m)K(BP〈n〉)→ LK(m)THH(BP〈n〉/MU)hS
1

for each height m ≤ n+1. If the source of this map were zero, then the target

would be zero as well, since this is a map of rings. The relative negative cyclic

homology THH(BP〈n〉/MU)hS
1
has the structure of an MU-module. It follows

from [Hov95, Th. 1.9] and [Hov97, Th. 1.5.4] that

LK(m)THH(BP〈n〉/MU)hS
1
= (THH(BP〈n〉/MU)hS

1
)[v−1

m ]∧(p,v1,...,vm−1)
.

By Theorems 5.0.1 and 2.5.4, this completion and localization can be computed

algebraically, and the result is non-zero. �

Remark 5.0.3. In the statement and proof of the theorem we have used

that the S1-action on THH(BP〈n〉/MU) is compatible with the algebra struc-

ture. One way to see this is to use the generality in which THH is defined.
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Recall that for any symmetric monoidal category C with tensor product com-

patible with sifted colimits, Hochschild homology gives a functor

HHC : AlgE1
(C)→ Fun(BS1,C).

For a reference, one could observe that the construction of THH with its circle

action in [NS18, §III.2] works just the same for C in place of Sp. Alternatively,

one can use the identification of THH with factorization homology over S1,

which is defined in this generality ([Lur17, §5.5.2], [AF15]). Now apply this

in the case C = AlgE2
(ModMU) to see that THH(BP〈n〉/MU) has a canonical

enhancement to an object in Fun(BS1,AlgE2
(ModMU)).

Let us now proceed with the proof of Theorem 5.0.1. First we com-

pute THH(BP〈n〉/MU)hS
1
. Recall that we computed the homotopy groups

of THH(BP〈n〉/MU) in Theorem 2.5.4. An immediate consequence of that

calculation is the following proposition:

Proposition 5.0.4. The homotopy fixed point spectral sequence for

THH(BP〈n〉/MU)hS
1

collapses at the E2-page, with

E∞ = THH(BP〈n〉/MU)∗[t],

where t ∈ H2(CP∞) is the standard generator.

Proof. The homotopy fixed point spectral sequence computing

THH(BP〈n〉/MU)hS
1

is concentrated in even degrees by Theorem 2.5.4, and hence collapses as indi-

cated. �

As we will shortly explain, the remainder of the argument for Theo-

rem 5.0.1 is a formal consequence of the relationship between the suspension

map σ2 and the circle action. We explore this relationship in Section A.

Proof of 5.0.1. The image of the canonical complex orientation under the

unit map

π∗MUhS1

(p) → π∗THH(BP〈n〉/MU)hS
1

will be detected by t in the homotopy fixed point spectral sequence. We recall

that π∗THH(BP〈n〉/MU) is a polynomial Z(p)[v1, . . . , vn]-algebra generated by

classes wn+1,i (for i ≥ 0) and yj,i (for i ≥ 0, j ≥ 1, and j 6≡ −1 modulo p).

Furthermore, we may set wn+1,0 equal to σ2vn+1.

Since polynomial algebras are free commutative algebras, an isomorphism

π∗THH(BP〈n〉/MU)hS
1 ∼= (π∗THH(BP〈n〉/MU)) JtK
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is determined by a choice of elements w̃n+1,i,›yj,i ∈ π∗THH(BP〈n〉/MU)hS
1

detecting the similarly named classes in the homotopy fixed point spectral

sequence.

If we make any such choice, then Lemma A.4.1 ensures that tw̃n+1,0 will

be vn+1 modulo t2, say tw̃n+1,0 = vn+1 + t2y. We may then replace w̃n+1,0 by

w̃n+1,0 − ty, which also lifts the class wn+1,0, and so guarantee that tw̃n+1,0 =

vn+1. �

Remark 5.0.5. Rognes has sketched an alternative proof that vn+1 is de-

tected in the homotopy of THH(BP〈n〉/MU)hS
1
. The strategy is to consider

the exact sequence in mod p homology:

H∗(lim
CP 1

THH(BP〈n〉/MU))→ H∗(THH(BP〈n〉/MU))

B
→ H∗+1(THH(BP〈n〉/MU)).

One computes that Bτn+1 is non-zero and hence does not lie in the kernel, i.e.,

does not arise in the first term. It follows from an Adams spectral sequence

argument that vn+1 must be detected in π∗ limCP 1 THH(BP〈n〉/MU).

6. Canonical vanishing

Fix an E3-MU-algebra form of BP〈n〉. In this section, we will study the

canonical map

can : THH(BP〈n〉)hS
1
−→ THH(BP〈n〉)tS

1
.

Our goal will be to establish Theorem D, which by the results of Section 3 can

be reduced to weak canonical vanishing (Theorem 6.3.1).

To be specific, we will choose a convenient type n + 1 complex M , with

vn+1 self map v, and consider the map

1⊗ can : M/v ⊗ THH(BP〈n〉)hS
1
→M/v ⊗ THH(BP〈n〉)tS

1
,

where 1 is the identity map of the type n + 2 complex M/v. We will prove

that the π∗(1⊗ can) map is zero for all sufficiently large degrees ∗.

As a prototype for the result and its proof, consider the case n = −1,

where the statement is that

can/p : THH(Fp)
hS1

/p −→ THH(Fp)
tS1

/p

induces the zero map on homotopy groups in large degrees.

We may compute THH(Fp)
hS1

via the homotopy fixed point spectral se-

quence

E2 = Fp[σ
2v0, t] =⇒ π∗THH(Fp)

hS1
.

Here, σ2v0 is in homotopy dimension 2 and filtration 0, while t is in homotopy

dimension −2 and filtration 2.
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We may also understand THH(Fp)
tS1

via the Tate fixed point spectral

sequence, with E2 page Fp[σ
2v0, t

±1]. The canonical map is compatible with

homotopy and Tate fixed point spectral sequences, and at the level of E2-pages

it is approximated by the map

Fp[σ
2v0, t] −→ Fp[σ

2v0, t
±1]

that inverts t.

The element p ∈ π∗THH(Fp)
hS1

is detected by tσ2v0, which lives in filtra-

tion 2 in both spectral sequences. By killing a filtration 2 lift of p, we build a

map between a (modified) homotopy fixed point spectral sequence converging

to π∗
Ä
THH(Fp)

hS1
/p
ä
and a (modified) Tate fixed point spectral sequence con-

verging to π∗
Ä
THH(Fp)

tS1
/p
ä
. At the level of E2 pages, the mod p canonical

map is approximated by

E2 = Fp[σ
2v0, t]/(tσ

2v0)→ E2 = Fp[t
±1].

This map of E2 pages is trivial in positive homotopy dimension, and we would

like to conclude that the mod p canonical map is zero in positive degrees. We

might be worried about filtration jumps, but in fact this is no issue. The source

spectral sequence is concentrated in non-negative filtration, while the target

spectral sequence, in positive homotopy dimension, is concentrated in negative

filtration.

Our strategy for proving Theorem 6.3.1 is to mimic the above argument

at a general height. The main challenge in carrying this out (especially in the

absence of Smith–Toda complexes) is to find and name an appropriate class

in the homotopy fixed point spectral sequence for M ⊗ THH(BP〈n〉)hS
1
that

detects the vn+1 self map v. We address this issue by descending informa-

tion from THH(BP〈n〉/MU), which we understand well thanks to the previous

section.

6.1. Descent. We will need to know that THH(BP〈n〉) is well approxi-

mated by THH(BP〈n〉/MU) in a way made precise in the below proposition.

We will use notation as in Section C.2 (also note Remark C.2.2).

Proposition 6.1.1. For any type (n+1)-complex F , the spectral sequence

computing π∗(F ⊗ THH(BP〈n〉)) by descent along the map

THH(BP〈n〉)→ THH(BP〈n〉/MU)

collapses at a finite page with a horizontal vanishing line. In particular, if F

is equipped with a homotopy ring structure, then the kernel of the map

π∗(F ⊗ THH(BP〈n〉))→ π∗(F ⊗ THH(BP〈n〉/MU))

is nilpotent.
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Remark 6.1.2. It is possible to obtain much stronger results about hori-

zontal vanishing lines in these and related descent spectral sequences by further

developing the methods used below. We hope to return to this in future work.

In the proof we will use Hochschild homology with coefficients in a bimod-

ule, which we now recall.

Definition 6.1.3. If M is a bimodule over an E1-algebra A in C, then we

define

HH(A;M) := M ⊗A⊗Aop A.

Remark 6.1.4. (Compare [AHL10, §2].) If A admits the structure of an

E2-algebra, so that HH(A) has the structure of a module over A, and M is a

right A-module viewed as an A-bimodule by restriction along A ⊗ Aop → A,

then we have a canonical equivalence

HH(A;M) = M ⊗A⊗Aop A 'M ⊗A (A⊗A⊗Aop A) 'M ⊗A HH(A).

If, moreover, the bimodule structure on M arises from an E1-algebra map

A→M , then we have an equivalence

HH(A;M) = M ⊗A⊗Aop A 'M ⊗M⊗Aop M ⊗Aop ⊗A⊗Aop A 'M ⊗M⊗Aop M.

Construction 6.1.5. By the previous remark we have an equivalence

THH(BP〈n〉;Fp) ' Fp ⊗Fp⊗BP〈n〉 Fp.

Recall that

π∗(Fp ⊗ BP〈n〉) ' Λ(τ i : i ≥ n+ 1)⊗Fp Fp[t1, . . . , tn+1],

where the ti come from the homology of BP. Thus we have well-defined ele-

ments στn+1 and σt1, . . . , σtn+1 in π∗THH(BP〈n〉;Fp). We will write στn+1

as σ2vn+1 since this is its image inside THH(BP〈n〉/MU;Fp).

Proposition 6.1.6. The descent spectral sequence for

THH(BP〈n〉;Fp)→ THH(BP〈n〉/MU;Fp)

collapses at the E2-page as

E2 = F2[σ
2vn+1]⊗ Λ(σt1, . . . , σtn+1).

Here σ2vn+1 has filtration 0 and homotopy dimension 2pn+1, and each σti has

filtration 1 and homotopy dimension 2pi − 1.

Proof of Proposition 6.1.1 from Proposition 6.1.6. By a thick subcategory

argument (using [HPS99]) it suffices to establish the claim for a generalized

Moore complex F = S0/(pi0 , . . . , vinn ). Observe that

F ⊗ THH(BP〈n〉) ' (F ⊗ BP〈n〉)⊗BP〈n〉 THH(BP〈n〉).
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The BP〈n〉-module F ⊗ BP〈n〉 lies in the thick subcategory generated by the

BP〈n〉-module Fp, so we are reduced to the statement in Proposition 6.1.6. �

Proof of Proposition 6.1.6. For this proof, we will abbreviate

A := THH(BP〈n〉;Fp), B := THH(BP〈n〉/MU;Fp).

It follows from [AR05, Th. 5.12] that

π∗A = Fp[σ
2vn+1]⊗ Λ(σt1, . . . , σtn+1).

We will see shortly that Σ := π∗(B ⊗A B) is flat over π∗B. The proposi-

tion will follow if we can show that Ext∗Σ(π∗B, π∗B) already has the correct

size. We will prove this by constructing a further spectral sequence computing

Ext∗Σ(π∗B, π∗B) whose E2-term has the same size as π∗A.

Regard A and B as filtered algebras via the Whitehead filtrations {τ≥jA}

and {τ≥jB}, so that the map A → B is a map of filtered algebras. We may

then regard the cosimplicial object

[n] 7→ B⊗A(n+1)

as a cosimplicial filtered spectrum. The associated graded cosimplicial object

is then given by

[n] 7→ (π∗B)⊗
L

π∗A
(n+1)

(where we have used ⊗L to remind the reader that the tensor products are

derived). Since π∗B is concentrated in even degrees, the exterior classes must

vanish under the map π∗A→ π∗B. It follows that

Σ := π∗
Ä
π∗B ⊗

L
π∗A π∗B

ä
' π∗B ⊗Fp P ⊗Fp Γ,

where Γ = Γ{σ2t1, . . . , σ
2tn+1} is a divided power algebra on the indicated

generators and P is a polynomial algebra on even degree classes.

Since Σ is concentrated in even degrees, we learn that each of the spectral

sequences

π∗
Ä
(π∗B)⊗

L

π∗A
(n+1)

ä
⇒ π∗(B

⊗A(n+1))

collapses at the E2-page. In other words, we have a filtration on each group

π∗(B
⊗A(n+1)) whose associated graded is given by π∗

Ä
(π∗B)⊗

L

π∗A
(n+1)

ä
. This,

in particular, implies that Σ is flat over π∗B as we claimed earlier.

Using this filtration on homotopy groups, we may then extract a spectral

sequence ([Rav86, Th. A.1.3.9]):

Ext∗
Σ
(π∗B, π∗B)⇒ Ext∗Σ(π∗B, π∗B).

It will now suffice to prove that Ext∗
Σ
(π∗B, π∗B) has the same size as π∗A.

The map π∗A→ π∗B can be written as a tensor product (over Fp) of the three

maps

Fp[σ
2vn+1]

id
→ Fp[σ

2vn+1], Fp → P, Λ(σt1, . . . , σtn+1)→ Fp.
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The descent Hopf algebroid for the first map is just the pair

(Fp[σ
2vn+1],Fp[σ

2vn+1]),

which has cohomology Fp[σ
2vn+1], concentrated in cohomological dimension

zero. The descent Hopf algebroid for the second map is (P, P ⊗Fp P ), which

has cohomology Fp concentrated in cohomological dimension zero. The de-

scent Hopf algebroid for the last map is the divided power Hopf algebra

(Fp,Γ{σ
2t1, . . . , σ

2tn+1}).

It follows that we may compute our Ext as

Ext∗
Σ
(π∗B, π∗B) ' Fp[σ

2vn+1]⊗ Ext∗Γ{σ2t1,...,σ2tn+1}
(Fp,Fp)

' Fp[σ
2vn+1]⊗ Λ(σt1, . . . , σtn+1),

which completes the proof. �

6.2. Recollection on Hopkins–Smith. It will be convenient for our argu-

ment to use a type n + 1 complex with a vn+1-element that has as high an

Adams filtration as possible. We do not know whether it is possible to do this

and also equip our complex with a homotopy commutative ring structure, but

the below proposition will suffice for our purposes.

Proposition 6.2.1. There is a finite p-local E1-ring spectrum M with

the following properties :

(i) M admits a non-nilpotent vn+1-element, v ∈ π∗M .

(ii) The element v is central.

(iii) BP〈n〉 ⊗ M splits, as a BP〈n〉-module, as a direct sum of suspensions

of Fp.

(iv) Let fil(v) denote the Adams filtration of v, and |v| the dimension. Then
|v|

fil(v)
= 2pn+1 − 2.

(v) The map MU∗(M)→ BP〈n〉∗(M) is surjective.

Proof. We may take M = End(X), where X is the type (n + 1) spec-

trum constructed by Jeff Smith in [Rav92, §6.4]. The claims (i), (ii), and

(iv) are shown in the course of the proof of [HS98, Th. 4.12]. Since the Mar-

golis homology of H∗(X;Fp) vanishes with respect to each Qi with i ≤ n,

[MW81, Prop. 2.7] shows that H∗(X;Fp) is a finitely generated free module

over Λ(Q0, . . . , Qn), so the same is true of M . Choosing a basis of H∗(M ;Fp)

as a Λ(Q0, . . . , Qn)-module gives a map M → V into a direct sum of suspen-

sions of Fp. After extending scalars of the source to BP〈n〉 this becomes an

equivalence on Fp-cohomology, and hence an equivalence, proving (iii).

We now turn to the proof of (v). It will suffice to prove the statement

for BP in place of MU. We will use descent along BP → BP〈n〉 to study the
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BP-modules BP⊗M and BP/(p, . . . , vn)⊗M . We have a map between descent

spectral sequences:

ExtΛBP〈n〉∗ (σvn+1,..)(BP〈n〉∗,BP〈n〉∗(M)) +3

��

BP∗(M)

��

ExtΛBP〈n〉∗ (σvn+1,..)(BP〈n〉, H∗(M ;Fp)) +3 (BP/(p, . . . , vn))∗(M).

Here we have used that BP〈n〉 ⊗BP BP/(p, . . . , vn) ' Fp.

Since BP〈n〉 ⊗M and Fp ⊗M are Fp-modules, by (iii), we may rewrite

the map of Ext groups as

ExtΛFp (τn+1,...)(Fp,BP〈n〉∗(M))→ ExtΛFp (τn+1,...)(Fp, H∗(M ;Fp)).

As argued above, the map BP〈n〉 ⊗M → Fp ⊗M has a retract, so the map

BP〈n〉∗(M) → H∗(M ;Fp) is injective. Finally, H∗(M ;Fp) is a trivial comod-

ule over the Hopf algebra Λ(τn+1, . . .) ' Λ(σvn+1, . . .), and hence so too is

BP〈n〉∗(M). It follows that the map on E2-terms above is an injection, and

that every class in BP〈n〉∗(M) has a representative on the 0-line of the spec-

tral sequence computing BP∗(M). It remains to show that these representative

classes survive to the E∞-page. By the above injectivity, it will suffice to prove

that the spectral sequence

ExtΛFp (τn+1,...)(Fp, H∗(M ;Fp)) +3 (BP/(p, . . . , vn))∗(M)

collapses at the E2-page.

Observe that the property of a descent spectral sequence collapsing at

the E2-page is closed under direct sums, suspensions, and retracts. Since the

descent spectral sequence for BP/(p, . . . , vn) collapses at the E2-page, it will

suffice to prove that BP/(p, . . . , vn)⊗M is a direct summand of a finite direct

sum of suspensions of BP/(p, . . . , vn).

Recall [Rav92, Lemma 6.2.6, Th. C.3.2] that Smith’s complex X is ob-

tained as a summand of a tensor power of a finite complex Y with cells in

dimensions 2 through 2pn+1. It follows that H∗(Y ;Fp) is a trivial comodule

over Λ(τn+1, . . .) and that, for dimension reasons, the Adams spectral sequence

ExtΛ(τn+1,...)(Fp, H∗(Y ;Fp)) ' H∗(Y ;Fp)[vn+1, . . .]⇒ (BP/(p, . . . , vn))∗(Y )

collapses at the E2-page. The E2-page is a finite free module over Fp[vn+1, . . .].

Using any homotopy ring structure on BP/(p, . . . , vn) as a BP-module, we may

then lift a basis to construct an equivalence between BP/(p, . . . , vn) ⊗ Y and

a finite direct sum of suspensions of BP/(p, . . . , vn).

Similarly, using any homotopy ring structure on BP/(p, . . . , vn), we deduce

that both

BP/(p, . . . , vn)⊗ (Y ⊗j), and BP/(p, . . . , vn)⊗ ((DY )⊗j)
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are equivalent to finite direct sums of suspensions of BP/(p, . . . , vn), as BP-

modules. So we conclude that BP/(p, . . . , vn) ⊗M is a summand of a finite

direct sum of suspensions of BP/(p, . . . , vn). This completes the proof. �

We will, several times, use the following elementary lemma found in

[HS98], which we recall for the reader’s convenience.

Lemma 6.2.2 ([HS98, Lemma 3.4]). Suppose that x and y are commuting

elements of a Z(p)-algebra. If x − y is both torsion and nilpotent, then for

N � 0,

xp
N
= yp

N
.

Proof. Expand (y+(x− y))p
N
and use that pk(x− y) = 0 for some k. �

From Proposition 6.2.1(iii), we see that THH(BP〈n〉;Fp) is a summand of

M ⊗ THH(BP〈n〉) ' (M ⊗ BP〈n〉)⊗BP〈n〉 THH(BP〈n〉),

arising from the unit map. In particular, there is a class that lifts σ2vn+1

from M ⊗ THH(BP〈n〉/MU). We will need the following result ensuring the

uniqueness and centrality of such lifts, up to taking large powers.

Lemma 6.2.3. If x ∈ π∗(M⊗THH(BP〈n〉)) is a lift of a power of σ2vn+1 ∈

π∗(M ⊗THH(BP〈n〉/MU)), then there is some k ≥ 0 for which xp
k
is central.

Moreover, if y is another such lift, then there are j, j′ ≥ 0 such that xp
j
= yp

j′

and both elements are central.

Proof. Let F = End(M), and denote by Lx and Rx the elements in homo-

topy corresponding to left and right multiplication by x, respectively. These

elements commute, and their difference is nilpotent by Proposition 6.1.6. It

follows from Lemma 6.2.2 that Lpk
x = Rpk

x for some k ≥ 0, and hence that

xp
k
is central. For the second claim, first replace x and y by xp

k
and yp

k′

so

that xp
k
is central and both elements map to the same power of σ2vn+1 inside

π∗(M ⊗THH(BP〈n〉/MU)). Then x and y are commuting elements and x− y

maps to zero in π∗(M ⊗ THH(BP〈n〉/MU)). By Proposition 6.1.6, x − y is

nilpotent and again Lemma 6.2.2 implies that xp
j
= yp

j
for some j ≥ 0. This

completes the proof. �

6.3. Proof of canonical vanishing.

Theorem 6.3.1. There are a vn+1-element v ∈ π∗M and an integer d ≥ 0

such that, for all 0 ≤ k ≤ ∞, the map

π∗(M/v⊗ can) : π∗(M/v ⊗THH(BP〈n〉)
hC

pk )→ π∗(M/v ⊗THH(BP〈n〉)
tC

pk )

is zero when ∗ ≥ d.
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Remark 6.3.2. In the proof of the theorem and the lemmas below we

will make use of the homotopy fixed point spectral sequence. If a group G

acts on a spectrum X, then we will take the homotopy fixed point spectral

sequence computing π∗(X
hG) to be the one associated to the tower {(τ≥jX)hG}

according to our conventions in Section C. However, it will be convenient to

know that, for fixed s, an element x ∈ π∗(X
hG) is detected by a class in Es′,t

2 for

some s′ > s if and only if x vanishes when restricted to map(sks(EG)+, X)hG.

This follows from [GM95, Th. B.8].

Lemma 6.3.3. Let v ∈ π∗M be the vn+1-element from Proposition 6.2.1.

Then v is detected in the homotopy fixed point spectral sequence for M ⊗

THH(BP〈n〉)hS
1
in filtration at least

|v|
pn+1−1

.

Proof. Set m = |v|
2pn+1−2

. We need to prove that the image of v vanishes

inside

Y := lim
CPm−1

M ⊗ THH(BP〈n〉).

Since

M ⊗ THH(BP〈n〉) ' (M ⊗ BP〈n〉)⊗BP〈n〉 THH(BP〈n〉)

is a direct sum of shifts of Fp, the skeletal filtration on CPm−1 gives rise

to an Adams resolution of Y of length m − 1. The claim now follows from

Proposition 6.2.1(iv). �

Lemma 6.3.4. The homotopy fixed point spectral sequence converging to

π∗(M⊗ THH(BP〈n〉/MU)hS
1
) collapses at the E2-page.

Proof. The E2-page can be described as

BP〈n〉∗(M)⊗BP〈n〉∗ THH(BP〈n〉/MU)∗[t]

By Proposition 6.2.1(v), the images of the equivariant maps

MU⊗M → M⊗ THH(BP〈n〉/MU),

THH(BP〈n〉/MU)→ M⊗ THH(BP〈n〉/MU)

induce maps of spectral sequences whose images generate the E2-page of the

target as a ring. Every element in the homotopy fixed point spectral sequence

for both MUhS1
⊗M and THH(BP〈n〉/MU) is a permanent cycle, so the claim

follows. �

Lemma 6.3.5. There is an element z ∈ π∗(M ⊗ THH(BP〈n〉)) with the

following properties :

(i) z is central ;

(ii) z maps to a power of σ2vn+1 inside π∗(M ⊗ THH(BP〈n〉/MU));
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(iii) for some m > 0, tmz, in the E2-term of the homotopy fixed point spectral

sequence, detects the image of a central vn+1-element from π∗(M) inside

π∗(M ⊗ THH(BP〈n〉)hS
1
);

(iv) π∗(M ⊗ THH(BP〈n〉)) is a finitely generated Z(p)[z]-module.

Proof. First observe that each of these properties is preserved after replac-

ing z by any power of itself, so we may do this at any time in the argument.

By Proposition 6.1.6 and Proposition 6.2.1(iii), we may choose z ∈ π∗(M⊗

THH(BP〈n〉)) that lifts σ2vn+1 and for which π∗(M⊗THH(BP〈n〉)) is a finitely

generated Z(p)[z]-module. By Lemma 6.2.3, after replacing z by a power, we

may assume that z is central as well. So we have chosen a z that satisfies (i),

(ii), and (iv).

Let

f : M ⊗ THH(BP〈n〉)→M ⊗ THH(BP〈n〉/MU)

be the canonical map. Let us denote by {E′
r} the homotopy fixed point spec-

tral sequence computing π∗THH(BP〈n〉)
hS1

and by {E
′′

r } the homotopy fixed

point spectral sequence computing π∗THH(BP〈n〉/MU)hS
1
. We will denote by

Er(f) : E
′
r → E

′′

r the map induced by f .

By Theorem 5.0.1, we know that vn+1 is detected in E
′′

2 by t(σ2vn+1). Let

v denote a central vn+1-element in π∗(M), projected to π∗(M ⊗THH(BP〈n〉).

By the definition of a vn+1-element, there is an m > 0 such that f(v) = vmn+1

modulo the ideal (p, . . . , vn). Property (iii) in Proposition 6.2.1 guarantees

that M ⊗ THH(BP〈n〉/MU) has (p, . . . , vn) = 0, and hence that v is detected

by tm(σ2vn+1)
m in E

′′

2 = E
′′

∞.

It follows that v cannot be detected in E
′

2 in filtration higher than 2m.

By Lemma 6.3.3, v must be detected in E
′

2 by a class in filtration at least 2m.

Say that v is detected by tmz′, where z′ ∈ π∗(M ⊗ THH(BP〈n〉).

Then, since E2(f)(t
mz′) = tm(σ2vn+1)

m, and E′′
2 = E′′

∞, we must have

that f(z′) = (σ2vn+1)
m.

After replacing z and v by suitable powers, the result now follows from

Lemma 6.2.3 applied to the elements z and z′. �

Remark 6.3.6. At height one and primes p≥5 a version of Lemma 6.3.5(iii)

was obtained by Ausoni–Rognes in [AR02, Prop. 4.8].

Proof of Theorem 6.3.1. Fix v, z, and m as in the previous lemma. Let

X = {τ≥j(M ⊗ THH(BP〈n〉))}

denote the filtered spectrum corresponding to taking connective covers of M ⊗

THH(BP〈n〉). We can choose a lift ṽ ∈ π∗(X
≥2mpn+1

)hS
1
of v and form the

cofibers in filtered spectra:

Y := X
hC

pk/ṽ, Z := X
tC

pk/ṽ.
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The filtered spectra Y and Z give spectral sequences converging to M/v ⊗

THH(BP〈n〉)
hC

pk and M/v ⊗ THH(BP〈n〉)
tC

pk respectively, and the canoni-

cal map Y → Z converges to the canonical map between these two spectra.

Observe that the E2-page of the spectral sequence for Y is concentrated in non-

negative filtration (with our grading conventions). It will therefore suffice to

prove that the E2-page of the spectral for Z is eventually concentrated in neg-

ative filtration (uniformly in k). From the cofiber sequence (with suspensions

and grading shifts omitted)

gr(X)
tC

pk
tmz
→ gr(X)

tC
pk → gr(Z),

it is enough to show that multiplication by z on π∗(gr(X)
tC

pk ) is eventually an

isomorphism in non-negative filtration. By [NS18, Lemma IV.4.12], we have

gr(X)
tC

pk = gr(X)tS
1
/pk. So it suffices to prove that multiplication by z is

eventually an isomorphism in non-negative filtration for the group

π∗(M ⊗ THH(BP〈n〉))[t±1].

But, more generally, if L is any finitely generated Z(p)[z]-module, then the

analogous claim is true for L[t±1]. �

Appendix A. Suspension maps

Suppose R is an augmented (discrete) algebra over a field k with augmen-

tation ideal I. Then there is a homomorphism of abelian groups

σ : I → TorR1 (k, k),

where σx is represented by the class [x] in the bar complex. At various points

in the paper we use a generalization of this construction to the spectrum level.

Specifically, it is used in Section 2 to provide canonical lifts of elements in

Künneth spectral sequences and, more crucially, in Section 5 in order to prove

the Detection Theorem (Theorem 5.0.1). We make no claim of originality for

the material in this appendix, though we were not able to find the Detection

Lemma (Lemma A.4.1) in the literature.

Convention A.0.1. Throughout this section C will denote a stable, pre-

sentably symmetric monoidal category with unit object 1.

A.1. Construction of suspension maps. For the purposes of functoriality,

it is convenient to construct our suspension maps in the setting of factor-

ization homology. Let Mfldfrn denote the category of framed n-manifolds as

constructed in [AF15], equipped with its symmetric monoidal structure under

disjoint unions. Let Diskfrn be the full subcategory spanned by n-manifolds

equivalent to disjoint unions of copies of Rn. This category is equivalent to
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the symmetric monoidal envelope of the En-operad. Factorization homology is

then given by a functor

∫
: AlgEn

(C) ' Fun⊗(Diskfrn ,C) −→ Fun⊗(Mfldfrn ,C)

that is left adjoint to restriction. Here Fun⊗(−,−) denotes the category of

symmetric monoidal functors.

Construction A.1.1 (Unreduced suspension). Since factorization homol-

ogy is functorial on Mfldfrn , we always have an (unpointed) map of spaces:

MapMfldfrn
(N,M)→ MapC

Å∫
N

A,

∫

M

A

ã
.

If we set N = Rn, then
∫
N A = A, and the above is adjoint to a map

sM : MapMfldfrn
(Rn,M)+ ⊗A = M+ ⊗A→

∫

M

A

that is functorial in M and A. Here we have used X+ ⊗ (−) to denote the

tensoring of C over the category of unpointed spaces.

We observe that, when A = 1, this map is canonically identified with the

collapse

M+ ⊗ 1→ 1 '

∫

M

1.

Construction A.1.2 (Suspension). LetM be a framed n-manifold equipped

with a basepoint. From the previous construction, we have a functorial dia-

gram

M+ ⊗ 1
sM

//

��

1

��

M+ ⊗A
sM

//
∫
M A.

The choice of basepoint provides a splitting of the top map and hence a com-

mutative square (functorial in A and basepoint preserving maps in M):

M ⊗ 1 //

��

0

��

M ⊗A //
∫
M A.

Thus we get a map from the pushout of the diagram with the lower right vertex

deleted:

σM : M ⊗ (A/1)→

∫

M

A,

where A/1 denotes the cofiber of the unit map for A.
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Remark A.1.3. If one instead used the transposed diagram

M ⊗ 1 //

��

M ⊗A

��

0 //
∫
M A,

then this would alter the definition of σM by −1. Since neither choice seems

canonical, and we will often find ourselves rotating distinguishing triangles in

the arguments below, we will mostly make and prove statements about σM

only up to a factor of ±1. For convenience and for the purposes of this paper,

we will, in Section A.4, fix a choice so as to make a certain equation true on

the nose rather than up to a factor of ±1.

A.2. Examples of suspension maps.

Example A.2.1 (Dimension 0). If A is an E0-algebra, then we denote σS0

by σ, which is a map

σ : (A/1)→

∫

S0

A = A⊗A.

From the construction, σ comes as the induced map from the square

1 //

��

0

��

A
id⊗1−1⊗id

// A⊗A.

Equivalently, we can describe this map (up to sign) as arising from the large

square in the diagram

Σ−1(A/1)

��

//

%%

0

��

1 //

��

A

1⊗id
��

0 // A
id⊗1

// A⊗A.

Variant A.2.2. Recall that the category AlgE1
(C) carries an action of C2

given informally by sending an E1-algebra B to the algebra Bop equipped with

the opposite multiplication.

Let R ∈ AlgE1
(C)hC2 be an object in the fixed points so that, in partic-

ular, R comes equipped with an equivalence τ : R ' Rop. This induces an

equivalence

(−)τ : LModR(C),→ RModR(C)

which is the identity on underlying objects. Now let k be a left R-module

equipped with a map 1 → k in C. We can extend this to a left R-module
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map 1k : R → k and to a right R-module map 1τk : R → kτ . Since τ is an

equivalence, there is a canonical identification between the fibers

fib(1k) ' fib(1τk),

and we denote either by I.

This is enough to make sense of the following diagram in C:

I

��

//

��

0

��

R
1k

//

1τk
��

k

1τk⊗id

��

0 // k
id⊗1k

// kτ ⊗R k.

Thus we may extend the definition of σ in this case to

σ : ΣI → kτ ⊗R k.

Lemma A.2.3 (Compatibility with Künneth spectral sequence). Take C =

Sp and adopt notation as in Variant A.2.2. Let i : I → R denote the fiber of

R→ k. Suppose that the map

1k : π∗R→ π∗k

is surjective. Then, for any x ∈ π∗I , σ(x) ∈ π∗+1(k
τ ⊗R k) is detected in the

Künneth spectral sequence in filtration 1 by the class

[1⊗ i(x)⊗ 1] ∈ Torπ∗R
1 (π∗k, π∗k),

up to sign.

Proof. First we claim that the composite

ΣI
σ
−→ kτ ⊗R k → kτ ⊗R ΣI

is homotopic, up to sign, to the map 1τk ⊗ id. Indeed, consider the following

diagram:

I //

��

��

0

��

��

R //

��

k

��

0 // k //

��

k qR k //

��

kτ ⊗R k

��

0 // ΣI // kτ ⊗R ΣI.
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The vertices of the large trapezoid form the commutative square

I //

��

0

��

0 // kτ ⊗R k

used to define σ, and hence the induced map on the pushout of (0 ← I → 0)

gives the desired factorization.

It follows from naturality of the Künneth spectral sequence that the map

R⊗R I = ΣI → kτ ⊗R I induces, on E2-terms, the projection map

π∗I → Torπ∗R
0 (π∗k, π∗I) = π∗I/(π∗I)

2.

Finally, recall the construction of the Künneth spectral sequence for M ⊗R N

proceeds by lifting a (graded) free π∗R-resolution of N to a filtration by left

R-modules [Til18], and that this construction is natural in the resolution. Since

0→ π∗I → π∗R→ π∗k → 0

is exact, we may choose a resolution C∗ of π∗k that begins with C0 = R and

with the property that

π∗I ← C1 ← C2 ← · · ·

is a resolution of π∗I. Considering π∗R as a complex concentrated in de-

gree zero, the quotient map C∗ → (C∗/R) can then be lifted to a map of

filtered objects and then we may apply kτ ⊗R (−) to this map. This gives

a map of spectral sequences that, on the E2-page, gives the boundary map

∂ : Torπ∗R
1 (π∗k, π∗k) → ΣTorπ∗R

0 (π∗k, π∗I), which is an isomorphism. The

result follows. �

Example A.2.4 (Dimension 1). The circle acts on itself by framed maps,

where we use the Lie group framing, and hence the map to Hochschild homol-

ogy

sS
1
: S1

+ ⊗A→

∫

S1

A = HH(A)

is circle equivariant. Since the source of sS
1
is induced, the map must be

induced from its restriction along the identity; i.e., sS
1
is adjoint to the non-

equivariant map A→ HH(A) corresponding to the identity element in S1. We

abbreviate the reduced suspension map by σ2 : Σ(A/1)→ HH(A).

A.3. Relationship with the cotangent complex. Let A be an En-algebra

in C. We will abbreviate by L
(n)
A the En-algebra cotangent complex of A,

which is an En-A-module. Recall [Lur17, Th. 7.3.5.1] that we have a functorial

cofiber sequence of En-A-modules:

U
(n)(A)→ A→ ΣnL

(n)
A .
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Example A.3.1. When n = 0, this is the cofiber sequence

1→ A→ (A/1).

If k ≤ n, we may apply A ⊗
U(k−1) (−) to the cofiber sequence computing

the Ek−1-cotangent complex and get a cofiber sequence in C:

A→ A⊗
U(k−1)(A) A ' U

(k)(A)→ A⊗
U(k−1)(A) Σ

k−1L
(k−1)
A .

This gives a functorial splitting of objects in C,

A⊕ Σk−1L
(k)
A 'C U

(k)(A),

and an identification

L
(k)
A 'C A⊗

U(k−1)(A) L
(k−1)
A .

(Here we have places a subscript on the equivalence to emphasize that this

equivalence is not one of Ek-A-modules).

Lemma A.3.2. For k ≤ n, the following diagram commutes (up to sign):

Σk−1A/1

σk

��

Σk−1L
(0)
A

��

U(k)(A) // Σk−1L
(k)
A .

Proof. We prove this by induction on k, the base case being trivial. For

the inductive step, observe that, by functoriality of of σM in M , we have a

diagram

0

��

(Rk)⊗ (A/1)

��

Σk−1(A/1) //oo

σk

��

(Rk)⊗ (A/1)

��

0

��

A
∫
Rk A

∫
Rk−{0}A

oo //
∫
Rk A A.

The induced map on the pushout is, on the one hand, given by σk+1 and, on

the other hand, by the inductive hypothesis, given by the composite

Σk(A/1)
σk

→ ΣU(k)(A)→ ΣkL
(k)
A

σ
→ U

k+1(A),

where σ is constructed as in Variant A.2.2.5 On the other hand, as explained

in the beginning of the proof of Lemma A.2.3, the composite

ΣkL
(k)
A

σ
→ U

(k+1)(A)→ ΣkL
(k+1)
A ' A⊗

U(k)(A) Σ
kL

(k)
A

is given by the map 1⊗ id. This completes the proof. �

5Notice that, in this inductive step, k < n, so U
(k)(A) is at least an E2-algebra, and hence

the involution τ is trivial.
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A.4. Undoing suspension in Hochschild homology. If X ∈ Fun(BS1,C) is

an object equipped with an S1-action, then we may compute the limit over

CP 1 ⊆ BS1 using the fiber sequence

lim
CP 1

X → X → Σ−1X,

where X → Σ−1X is adjoint to the (reduced) action map ΣX → S1
+⊗X → X.

We denote the connecting homomorphism by

t : Σ−2X → lim
CP 1

X.

Our goal in this section is to prove the following lemma, which allows us

to use the circle action on Hochschild homology to “undo” the suspension.

Lemma A.4.1 (Detection Lemma). There is a functorial diagram6

Σ−1(A/1) //

σ2

��

1

��

Σ−2HH(A)
t

// limCP 1 HH(A).

Here, the map 1 → limCP 1 HH(A) arises from the S1-equivariant map 1 →

HH(A) where 1 has the trivial action.

Proof. We have a diagram, functorial in A,

1 //

��

0

��

A

��

HH(A) // Σ−1HH(A).

We can left Kan extend to a diagram:

1 0

A A

0

HH(A) Σ−1HH(A).

6Recall that the definition of the suspension map requires a choice, and that altering this

choice multiplies the map by (−1). For the purposes of this paper, we will fix this choice so

that the diagram in this lemma commutes.
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The map A→ Σ−1HH(A) is adjoint to σ : ΣA→ HH(A), since this latter

map was constructed as the induced map on the pushout of the diagram

Σ1 //

��

0

��

ΣA // HH(A).

Now we may further right Kan extend to a diagram:

1 0

A A

limCP 1 HH(A) 0

HH(A) Σ−1HH(A).

Here, the map 1→ limCP 1 HH(A) arises from the canonical trivialization

of the S1-action S1
+ ⊗ 1→ 1 ' HH(1).

We may view the above cube as a map of fiber sequences

1 //

��

A //

��

A

��

limCP 1 HH(A) // HH(A) // Σ−1HH(A),

which then yields the desired diagram:

Σ−1A

σ2

��

// 1

��

Σ−2HH(A)
t

// limCP 1 HH(A). �

Appendix B. Recollections on graded objects

In this section we briefly review some facts about graded rings used in the

body of the paper.

Definition B.0.1. Let k be an E∞-ring. The category of graded k-modules

is defined by

grModk := Fun(Zds,Modk),
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where Zds denotes the integers viewed as a 0-category. The category grModk
is a presentably symmetric monoidal category under Day convolution. If M

is a graded k-module, we will denote by Mi its values at i, and by M(n) the

precomposition with addition by −n (so that M(n)i = Mi−n). We will refer

to the grading as the weight throughout.

We will need various (co)connectivity conditions and finiteness conditions.

Definition B.0.2.

• Let A be an augmented, graded En-k-algebra. We say that A is weight-

connected (resp. weight-coconnected) if the fiber of the augmentation A→ k

is concentrated in positive grading (resp. negative grading). We denote the

corresponding categories with superscripts wt-cn and wt-ccn, respectively.

• We denote by grMod
wt≥n
k (resp. grMod

wt≤n
k ) the full subcategory of graded

k-modules concentrated in weights at least n (resp. at most n). We will write

M ≥ n (resp. M ≤ n) to indicate that M belongs to this subcategory.

Remark B.0.3. Observe that the map −1 : Zds → Zds is a symmetric

monoidal equivalence, and hence induces a symmetric monoidal equivalence on

the category of graded k-modules, algebras, etc. It follows that any result about

weight-connected algebras, or modules of weight bounded below by n, has a

counterpart for weight-coconnected algebras or modules of weight bounded

above by −n.

Lemma B.0.4. Let A be an augmented, graded k-algebra, and denote by

A the fiber of the augmentation. Let M ∈ LModA and N ∈ RModA. Then

there is a filtration on M ⊗A N ,

M ⊗N = F0 → F1 → · · · → colimFi = M ⊗A N,

such that

gri(M ⊗A N) ' ΣiM ⊗A
⊗i
⊗N.

Proof. The relative tensor product is computed by the geometric realiza-

tion of the standard simplicial object with nth term M ⊗ A⊗n ⊗ N ([Lur17,

4.4.2.8]). Hence, by the Dold–Kan correspondence ([Lur17, 1.2.4.1]), it is also

computed as the colimit of a filtered object with associated graded correspond-

ing to the normalized complex (which can be computed in the homotopy cat-

egory), as indicated. �

Corollary B.0.5. Let A be a weight connected algebra L,N ∈ LModA
and M ∈RModA. If M≥α and N≥β, then M⊗AN≥α+β and (M⊗AN)α+β=

Mα⊗Nβ .
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We will now study a natural filtration on the category of graded modules

over a weight-connected algebra. If A is weight-connected, we denote by

LMod
wt≥j
A , LMod

wt≤j
A ⊆ LModA

the full subcategories spanned by those modules that are concentrated in

weights at least j and at most j, respectively.

Lemma B.0.6. Let A be a weight-connected En-k-algebra for some 1 ≤

n ≤ ∞.

(i) The inclusion LMod
wt≥j
A → LModA admits a right adjoint, (−)≥j , com-

puted as

(M≥j)i =

{
Mi i ≥ j,

0 else.

(ii) The inclusion LMod
wt≤j
A → LModA admits a left adjoint, (−)≤j , com-

puted as M 7→M/M≥j+1. In particular,

(M≤j)i =

{
Mi i ≤ j,

0 else.

(iii) The subcategory LMod
wt≥0
A inherits an En−1-monoidal structure.

(iv) The localizations (−)≤m are compatible with the En−1-monoidal structure

on LMod
wt≥0
A .

(v) The tower

A→ · · · → A≤m → A≤m−1 → · · · → k

of En-k-algebras is a tower of square-zero extensions ; i.e., we have pull-

back diagrams of En-k-algebras :

A≤m
//

��

k

��

A≤m−1
// k ⊕ ΣAm(m).

Proof. The existence of these adjoints is immediate since the inclusions

preserve all limits and colimits. To compute M≥j , observe that, for i ≥ j, the

A-module A(i) is in weights at least j, since A is weight-connected. The homo-

geneous component (M≥j)i is computed as the spectrum of maps of A-modules

from A(i) to M≥j which, by the adjunction, is the same as the spectrum of

maps from A(i) to M , which is Mi. This proves (i).

Claim (ii) follows formally from the observation that, if M ≥ m + 1 and

N ≤ m, then every map M → N is zero.

Claim (iii) follows, using [Lur17, 2.2.1.1], from the fact that LMod
wt≥0
A

contains the unit and is closed under tensor products, by Corollary B.0.5.
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For claim (iv), we must show that if M →M ′ is an equivalence in weights

at most m, then so is Z⊗AM → Z⊗AM ′ and M ⊗AZ →M ⊗AZ ′ for Z ≥ 0.

Let F be the fiber of M → M ′ so that F ≥ m + 1. Then the result follows

from Corollary B.0.5 applied to Z ⊗A F and F ⊗A Z.

For the final claim, we need to produce a derivation, i.e., a map,

L
(n)
A≤m−1

→ ΣAm(m)

refining the map A≤m−1 → cofib(A≤m → A≤m−1) = Am(m). Here L(n) de-

notes the En-cotangent complex. We will produce this refinement as a com-

posite

L
(n)
A≤m−1

→ L
(n)
A≤m−1/A≤m

→ ΣAm(m),

where the first map is the canonical one to the relative cotangent complex and

the second is projection onto the first non-zero weight. By [Lur17, 7.5.3.1]

applied to the En-monoidal category ModEn
A≤m

of En-A≤m-modules, we can

compute the relative cotangent complex using the cofiber sequence

U
(n)
A≤m

(A≤m−1)→ A≤m−1 → ΣnL
(n)
A≤m−1/A≤m

of En-A≤m−1-modules. Using the recursive construction of the enveloping al-

gebra, we are reduced to proving the following claim:

(∗) If A → B is a map of weight-connected E1-algebras with cofiber C ≥ j,

denote by C ′ the cofiber of B ⊗A B → B. Then C ′ ≥ j and C ′
j = ΣCj .

To prove (∗), observe that the multiplication map admits a section so that

C ′ ' ΣB ⊗A C. The result now follows from Corollary B.0.5. �

Appendix C. Spectral sequences

In the body of the paper, we use various spectral sequences and maps of

spectral sequences obtained by applying certain functors and natural transfor-

mations to towers. The purpose of this appendix is to check that these maneu-

vers produce convergent spectral sequences under certain conditions satisfied

in the cases of interest.

Convention C.0.1. Throughout this section, C will denote a presentably

symmetric monoidal stable category with a t-structure. We will assume that

C satisfies the following properties (all of which are satisfied, for example, by

modules over a connective E∞-ring, equipped with an action of a group):

(i) The t-structure is compatible with filtered colimits; i.e., C≤0 is closed

under filtered colimits.

(ii) The t-structure is left and right complete, which in this case is equivalent

to saying that

colim
n→−∞

τ≤nX = 0 = lim
n→∞

τ≥nX.
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(iii) The t-structure is compatible with the symmetric monoidal structure;

i.e., 1 ∈ C≥0 and X ⊗ Y ∈ C≥n+m whenever X ∈ C≥n and Y ∈ C≥m.

C.1. Towers and convergence.

Convention C.1.1. Given a tower {X≥s} ∈ Fun(Zop,C), we index the as-

sociated spectral sequence so that

Es,t
2 = πt−sgr

tX = πt−s(cofib(X
≥t+1 → X≥t)).

We write X−∞ := colimX≥s.

Warning C.1.2. There is not a typo here: we mean πt−sgr
t and not

πt−sgr
s. The latter would have differentials as in the E1-term of a spectral

sequence, whereas the former will behave as an E2-term.

Definition C.1.3. Suppose that {X≥s} is a tower with associated spec-

tral sequence {Es,t
r }. We say that Er converges conditionally to π∗X

−∞ if

limX≥s=0. We say that Er converges strongly if the associated filtration

F s(πt−sX
−∞) := im(πt−sX

≥2t−s → πt−sX
−∞) satisfies

holim
s

F sπnX
−∞ = 0.

We will content ourselves below with establishing general conditions under

which conditional convergence holds. In the body of the paper, when we claim

that some spectral sequence actually converges strongly, it is because it also

satisfies the conditions of Boardman’s theorem [Boa99, Th. 7.1] for spectral

sequences with entering differentials:

Theorem C.1.4 (Boardman). Suppose that Er converges conditionally

and that, for each fixed (s, t), there are only finitely many non-trivial dif-

ferentials entering with target in the (s, t) spot. Thus, we eventually have

Es,t
r ⊇ Es,t

r+1. Suppose further that lim1
rE

s,t
r = 0 for each (s, t). Then Er

converges strongly to π∗X .

C.2. Descent towers. Let B be a connective, commutative algebra object

in C. Then we may form the descent tower functor (see, e.g., [BHS20, §B-C])

descB : C→ Fun(Zop,C),

which is lax symmetric monoidal and is specified by

desc≥j
B (X) := lim

∆
(τ≥j(X ⊗B⊗•+1)).

When X is bounded below, this yields a conditionally convergent spectral

sequence

Es,t
2 = Hs(πt(X)→ πt(X ⊗B)→ · · · )⇒ πt−sX

∧
B,

where X∧
B = lim(X ⊗B⊗•). When π∗(B ⊗B) is flat over π∗B, we can further

identify the E2-term with Ext in the category of comodules over the Hopf

algebroid (π∗B, π∗(B ⊗B)).
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Remark C.2.1. When C = ModA and B is regarded as a commutative

algebra object through a map A → B of commutative algebras, we will often

refer to the above procedure as “descent along the map A→ B.”

Remark C.2.2. It is possible to make this construction with much weaker

hypotheses (at the cost of losing some multiplicative structure). For example,

the cobar construction and construction of the descent tower makes sense when

C = ModA for a connective E2-ring A and B a connective E1-A-algebra.

Remark C.2.3. The tower desc≥∗
B (X) is not the usual Adams tower, but

rather its décalage (compare [Del71, 1.3.3, 1.3.4] and [Hed20, §II]), which is

why its associated graded has homotopy groups corresponding to the E2-page

of the Adams spectral sequence rather than the E1-page.

Warning C.2.4. The descent tower shears the filtration in the Adams

spectral sequence. If we fix t− s = n, then contributions to Adams filtration s

come from desc≥s+n. So, for example, a horizontal vanishing line on, say, the

E2-term of the Adams spectral sequence would correspond to behavior in the

descent filtration that is more like a vanishing line of slope 1. Of course, if one

is only interested in a finite range of values of n, there is no difference.

This story is especially well behaved when fib(1→ B) is 1-connective.

Proposition C.2.5. Suppose that I = fib(1 → B) lies in τ≥1C. Then,

for any d-connective object X , the descent tower has the following properties :

(a) The natural map X → X∧
B is an equivalence.

(b) Es,t
2 vanishes when 2s− t ≥ d.

(c) πndesc
≥j
B (X) = 0 whenever j ≥ d+ 2n.

(d) For each k, there exists an N such that desc≥j
B (X) is k-connective for

j ≥ N .

Proof. Since limj desc
≥j
B (X) = 0, we can study the vanishing of the homo-

topy groups of each desc≥j
B (X) by establishing a vanishing range in the associ-

ated graded. Thus (b)⇒ (c)⇒ (d), so we need only establish (a) and (b). But

these claims can be proven using the usual construction of the descent spectral

sequence, via the tower {Tot≤s(B•+1 ⊗X)}, where the result is clear. �

C.3. Classical Adams spectral sequence. The classical Adams spectral se-

quence, given by descent along S0 → Fp, has slightly more involved conver-

gence issues since the fiber of the unit map S0 → Fp is not 1-connective. We

review the classical approach to getting around this issue and leverage this to

understand the convergence behavior of the Tate fixed point spectral sequence

below.

Throughout this section desc(−) = descFp(−).
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Construction C.3.1. Since desc(−) is lax symmetric monoidal, every de-

scent tower is a module over desc(S0). Recall that the element p ∈ π0(S
0) is

detected in Adams filtration 1, and hence lifts to an element v0 ∈ π0desc
≥1(S0).

Thus, given any spectrum X, we have a natural map

v0 : desc(X)(1)→ desc(X),

where, for a filtered spectrum Y , Y (j) refers to the filtered spectrum with

Y (j)≥s = Y ≥s−j .

Remark C.3.2. The composite of the shift operator with v0 is multiplica-

tion by p. It follows that v0 induces multiplication by p on both colimX and

limX.

Remark C.3.3. There is a canonical identification desc(X)/v0'desc(X/p).

However, when k ≥ 2, desc(X)/vk0 and desc(X/pk) differ. The former tower

has E2-term computed by the homotopy groups of an object of the derived

category of A∗-comodules that does not lie in the heart.

Proposition C.3.4. Let X be d-connective. Then desc(X)/vm0 has the

property that, for each k, there is an N such that, for all j ≥ N , desc≥j(X)/vm0
is k-connective. Moreover, each term desc≥j(X)/vm0 is d-connective.

Proof. The conclusion about the tower is stable under extensions, so we

are reduced to the case when m = 1 and desc(X)/v0 = desc(X/p). Since the

tower is conditionally convergent, it suffices to establish a vanishing line on the

E2-page, and to show this is concentrated in stems starting in dimension d.

The E2-page is computed by Exts,t
A∗

(H∗(X)⊗Λ(τ0)), which classically has the

desired vanishing line. (See [Ada66, Th. 2.1] at the prime 2, and [Liu63,

Prop. 2] at odd primes.) �

C.4. Fixed point spectral sequences. Given a tower X in the category of

spectra with an action of a group G, we can take homotopy fixed points,

orbits, or Tate fixed points levelwise and produce a new tower. In this section

we establish some criteria for the conditional convergence of this tower.

Proposition C.4.1. Suppose X ∈ Fun(Zop,Fun(BG,C)) is conditionally

convergent (i.e., limX = 0). Then so is XhG.

Proof. Limits commute with limits. �

The analogous result for Tate fixed points requires a proposition. We are

grateful to the referee for pointing out the following result, which simplifies

our earlier treatment of convergence in this section and the next.

Proposition C.4.2. Let Y be a filtered G-spectrum that is uniformly

bounded below. Then

(limY )tG → lim(Y tG)

is an equivalence.
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Proof. Without loss of generality we may assume that Y is uniformly

0-connective, and hence that limY is (−1)-connective. If Z is a G-spectrum,

then ZhG is computed as colim∆op(G⊗•
+ ⊗ Z). Denote by skr(ZhG) the colimit

over ∆op
≤r. If Z is (−1)-connective, then the cofiber (ZhG)/(skrZhG) is (r− 1)-

connective. We learn that, in the diagram

skr(limY )hG //

��

lim skrYhG

��

(limY )hG // lim(YhG),

the vertical arrows are an equivalence in a range increasing with r, and the

upper horizontal arrow is always an equivalence since lim(−) commutes with

finite colimits. It follows that

(limY )hG → lim(YhG)

is an equivalence, and hence so is (limY )tG → lim(Y tG). �

Corollary C.4.3. If Y is a uniformly bounded below, conditionally con-

vergent tower, then Y tG is also conditionally convergent.

C.5. Hochschild homology of filtered rings. If A is a filtered E1-ring, one

can construct a corresponding filtration of THH(A) and spectral sequence (see

[AKS18]). We will need to understand how this spectral sequence interacts with

the Tate-valued Frobenius, and for this we need a construction of THH(A) as

a filtered cyclotomic object. We refer the reader to [AMMN21, §A] for details

and review the relevant definitions here.

Definition C.5.1. Let Lp : Fun(Zop, Sp) → Fun(Zop, Sp) denote left Kan

extension along multiplication by p.

Proposition C.5.2 ([AMMN21, §A]). LetA be a filtered or graded E1-ring.

Then THH(A) admits a natural Lp-twisted diagonal, that is, an S1-equivariant

map

ϕ : LpTHH(A)→ THH(A)tCp .

In the filtered case, this map is compatible with passage to the associated graded

and, in both cases, the map is compatible with forgetting to underlying objects.

Remark C.5.3. Since Lp is adjoint to restriction along multiplication by p,

the Frobenius gives S1-equivariant maps

ϕ : THH(A)≥j → (THH(A)tCp)≥jp

for all j, and similarly for the graded case.

In particular, this produces maps of spectral sequences (which shear the

gradings). We will be using these spectral sequences in the case when we
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are filtering A by its descent tower for S0 → Fp. The following proposition

guarantees convergence (after p-completion) when A is connective.

Proposition C.5.4. Let A be a connective E1-ring. Then, for each 1≤m

≤∞, the tower THH(descFp(A))tCpm converges conditionally to THH(A)tCpm .

The tower THH(descFp(A))∧v0 converges conditionally to THH(A)∧p.

Proof. Since THH(desc(A)) is uniformly bounded below, we have

limTHH(desc(A))tCpm = (limTHH(desc(A)))tCpm

by virtue of Proposition C.4.2.

On bounded below Cpk -spectra Z we have that Z
tC

pk = (Z∧
p )

tC
pk (see

[NS18, Lemma I.2.9, Lemma II.4.9]). So to prove conditional convergence it

will suffice to show that

(limTHH(desc(A)))∧p = 0.

We have

(limTHH(desc(A)))/p = lim(THH(desc(A))/v0),

so it suffices to show that this vanishes. This, in turn, will prove the second

claim that THH(desc(A))∧v0 converges to THH(A)∧p .

We recall that THH(desc(A)) is defined as the geometric realization of

a simplicial object with terms desc(A)⊗•+1, and therefore THH(descA)/v0
is computed as the geometric realization of a simplicial object with terms

desc(A)/v0 ⊗ desc(A)⊗•. Observe that, if Z• is any simplicial spectrum with

each Zi connective, then, by the Dold–Kan correspondence, skr|Z•|/skr−1|Z•|

is a summand of ΣrZr and hence must be r-connective. Thus, to check that

limTHH(desc(A))/v0 = 0 we need only check that lim skrTHH(desc(A))/v0=0

for all r. Since this skeleton is a finite colimit, we are reduced to checking that

lim(desc(A)/v0⊗ desc(A)⊗n) = 0 for all n. In fact, the terms in this tower be-

come increasingly connective by Proposition C.3.4, so the result is proved. �
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