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Odd primary analogs of real orientations
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We define, in Cp–equivariant homotopy theory for p >  2, a notion of p–orientation
analogous to a C2–equivariant Real orientation. The definition hinges on a Cp–space
C P  , which we prove to be homologically even, in a sense generalizing recent C2–
equivariant work on conjugation spaces.
We prove that the height p      1 Morava E–theory is p–oriented and that tmf.2/ is
3–oriented. We explain how a single equivariant map v1

p W S 2  !  † 1 C P
completely generates the homotopy of E p  1 and tmf.2/, expressing a height-shifting
phenomenon pervasive in equivariant chromatic homotopy theory.
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1 Introduction

The complex conjugation action on C P 1  gives rise to a C2–equivariant space, C P 1 ,
with fixed points R P 1 .  The subspace C P 1  is invariant and equivalent as a C2–space to
S ,  the one-point compactification of the real regular representation of C2. A  C2–
equivariant ring spectrum R  is Real oriented if it is equipped with a map

† 1  C P 1  !  † R
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such that the restriction

S  D  † 1  C P 1  !  † 1  C P 1  !  † R

is the †–suspension of the unit map S 0 !  R .  Such a Real orientation induces a
homotopy ring map

MUR !  R ;

with domain the spectrum of Real bordism; see Araki and Murayama [2] and Hu and
Kriz [22]. These orientations have proved invaluable to the study of 2–local chromatic
homotopy theory, leading to an explosion of progress surrounding the Hill–Hopkins–
Ravenel solution of the Kervaire invariant one problem; see Beaudry, Bobkova, Hill and
Stojanoska [3], Beaudry, Hill, Shi and Zeng [4], Greenlees and Meier [8], Hahn and
Shi [9], Heard, L i  and Shi [10], Hill and Meier [19], Hill, Hopkins and Ravenel [17],
Hill, Shi, Wang and Xu  [20], Kitchloo, Lorman and Wilson [23], Li ,  Lorman and
Quigley [25], Li,  Shi, Wang and Xu [26] and Meier, Shi and Zeng [28].

The above papers solve problems, at the prime p D  2, that admit clear but often
unapproachable analogs for odd primes. To give two examples, the 3 primary Kervaire
problem remains unresolved (see Hill, Hopkins and Ravenel [16]), and substantially
less precise information is known about odd primary Hopkins–Miller EO–theories
(see Bhattacharya and Chatham [5, Conjecture 1.12]).

To rectify affairs at p >  2, the starting point must be to find a Cp–equivariant space
playing the role of C P R  . This paper began as an attempt of the first two authors to
understand a space proposed by the third.

Construction 1.1 (Wilson) For any prime p, let C P
p  

denote the fiber of the Cp –
equivariant multiplication map

. C P 1 / p  !  C P 1 ;

where the codomain has trivial Cp–action and the domain has Cp–action cyclically
permuting the terms. In other words, a map of spaces X  !  C P

p  
consists of the data:

     A  p–tuple of complex line bundles .L1 ; L2 ; : : : ; Lp / on X .

A  trivialization of the tensor product L 1  ˝ L 2  ˝ ˝ L p .

The action on C P
p  

is given by

.L1 ; L2 ; : : : ; Lp / !  .Lp ; L1 ; : : : ; Lp  1/:

Geometry & Topology, Volume 27 (2023)
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Remark 1.2 There is an equivalence of C2–spaces C P      '  C P 1 .  In general, the
nonequivariant space underlying C P 1  is equivalent to . C P 1 / p  1. The fixed points

. C P
p  

/Cp  are equivalent to the classifying space B Cp ,  as can be seen by applying the
fixed-points functor .  / p  to the defining fiber sequence for C P  . The key point here is
that the Cp–fixed points of . C P 1 / p  consist of the diagonal copy of C P 1 ,  and B Cp

is the fiber of the pth tensor power map C P 1  !  C P 1 .

To formulate the notion of Real orientation, it is essential to understand the inclusion
of the bottom cell

S  D  C P 1  !  C P 1  :

At an arbitrary prime, the analog of this bottom cell is described as follows.

Notation 1.3 We let S  denote the cofiber of the unique nontrivial map of pointed Cp–
spaces from . Cp / C  to S 0 . This is the spoke sphere, and it is a wedge of p  1 copies
of S 1 , with action on reduced homology given by the augmentation ideal in the group
ring ZŒCp• . We denote the suspension † S  of the spoke sphere by either S 1 C  or C P

p  
,

and Remark 1.6 provides a natural inclusion

S 1 C  D  C P 1
p  

!  C P 1  :

We will often also use S 1 C  to denote † 1 S 1 C ,  and S  1  to denote its Spanier–
Whitehead dual.

With this bottom cell in hand, we propose the following generalization of Real orienta-
tion theory.

Definition 1.4 A  p–orientation of a Cp–equivariant ring R  is a map of spectra

† 1  C P 1  !  † 1 C R

such that the composite

S 1 C  D  † 1  C P 1
p  

!  † 1  C P 1  !  † 1 C R  is

the S 1C–suspension of the unit map S 0 !  R .

Remark 1.5 Applying the geometric fixed-point functor ˆ C p  to a p–orientation we
learn that the nonequivariant spectrum ˆ C p  R  has p D  0 in its homotopy groups.

Geometry & Topology, Volume 27 (2023)
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Remark 1.6 Let Z  WD H Z  denote the Cp–equivariant Eilenberg–Mac Lane spec-
trum associated to the constant Mackey functor. Then there is an equivalence of
Cp–equivariant spaces

• 1 † 1 C Z  '  C P 1  :

Indeed, suspending and rotating the defining cofiber sequence . Cp / C  !  S 0  !  S
gives rise to a cofiber sequence S 1 C  !  . Cp / C  ˝ S 2  !  S 2 . Tensoring with Z  and
applying • 1  yields the defining fiber sequence for C P

p  
.

Under this identification, the natural inclusion C P       !  C P       is simply adjoint to
the †1C–suspension of the unit map S 0 !  Z .  In particular, the identification

C P
p  

'  • 1 . † 1 C Z /  gives a canonical p–orientation of Z .  In contrast, Bredon
cohomology with coefficients in the Burnside Mackey functor cannot be p–oriented,
since p is nonzero in the geometric fixed points.

In this paper we explore the interaction between p–orientations and chromatic ho-
motopy theory in the simplest possible case: chromatic height p  1. Specifically, we
study the following height p  1 E 1– r ing  spectra.

Notation 1.7 We let E p  1 denote the height-.p 1/ Lubin–Tate theory associated to
the Honda formal group law over Fp p      1 , with Cp–action given by a choice of order-
p element in the Morava stabilizer group. At p D  3, we let tmf.2/ denote the 3–
localized connective ring of topological modular forms with full level-2 structure; see
Stojanoska [38]. The ring tmf.2/ naturally admits an action by † 3  Š  SL2 .F2 /, and
we restrict along an inclusion C3  † 3  to view tmf.2/ as a C3–equivariant ring
spectrum.

The underlying homotopy groups of these spectra are given respectively by
e . Ep  1/ Š  W . Fp p      1 /Ju1; u2; : : : ; up 2KŒu˙ • ;

.tmf.2// Š  Z.3/Œ1; 2• ;

jui j D  0; juj D   2;

ji j D  4:

We will review the Cp–actions on the homotopy groups in Section 5.

Theorem 1.8 For all primes p, there exists a p–orientation of the Cp–equivariant
Morava E–theory E p  1.

Theorem 1.9 The (3–localized ) C3–equivariant ring tmf.2/ of topological modular
forms with full level-2 structure admits a 3–orientation.

Geometry & Topology, Volume 27 (2023)
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Our second main result concerns the fact that, while

E p  1 Š  W . Fp p      1 /Ju1; u2; : : : ; up 2KŒu •̇

has p  1 distinct named generators, the conglomeration of them is generated under
the p–orientation by a single equivariant map v1

p .

Construction 1.10 In Section 6, we will construct a map of Cp–equivariant spectra

v1
p W S 2 !  † 1  C P 1  :

This map should be viewed as canonical only up to some indeterminacy, just as the
classical class v1 is only well-defined modulo p. As was pointed out to the authors by
Mike Hill, one choice of this map is given by norming a nonequivariant class in 2

C P
p  

.

Construction 1.11 Suppose a Cp–equivariant ring R  is p–oriented via a map

† 1  C P 1  !  † 1 C R ;

so that we may consider the composite

S 2  !  † 1  C P 1  !  † 1 C R :

Using the dualizability of S 1 C ,  this composite is equivalent to the data of a map

S 2 1  !  R :

The nonequivariant spectrum underlying S 2 1  is (noncanonically) equivalent to a
direct sum of p  1 copies of S 2 p  2. In particular, by applying e to the map
S 2 1  !  R ,  one obtains a map from a rank-.p 1/ free Z.p/–module to 2p  2 R.

Definition 1.12 Given a Cp–equivariant ring R  with a p–orientation, the span of v1 
p  will

refer to the subset of 2p  2 R  consisting of the image of the rank-.p 1/ free Z.p/–
module constructed above.

Theorem 1.13 For any 3–orientation of tmf.2/, the span of v1 
3  in 4 tmf.2/ is all of

4 tmf.2/.

Theorem 1.14 For any p–orientation of the height-.p 1/ Morava E–theory E p  1,
the span of v1 

p  inside 2p  2 Ep  1 maps surjectively onto 2p  2 Ep  1=.p; m2/.

Geometry & Topology, Volume 27 (2023)
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Remark 1.15 The map S 2 1  !  R  associated to a p–oriented R  has an inter-
pretation that may be more familiar to readers acquainted with the Hopkins–Miller
computation of the fixed points of E p  1. Specifically, by definition there is a cofiber

sequence
S 2 2 !  . Cp / C  ˝ S 2  2 !  S 2  1 ;

where tr is the transfer. It follows that the map S 2 1  !  R  determines a traceless
element in 2p  2 R,  and the existence of such a traceless element was a key tool in the
computations of Nave [32].

1.1 Homological and homotopical evenness

Nonequivariantly, complex orientation theory is intimately tied to the notion of evenness.
A  fundamental observation is that, since C P 1  has a cell decomposition with only
even-dimensional cells, any ring R  with 2 1 R  Š  0 must be complex orientable.

In C2–equivariant homotopy theory, a ring R  is called even if  1 R  Š  2 1 R  Š  0, and it
is a basic fact that any even ring is Real orientable; see for instance Hill and

Meier [19, Section 3.1].

In Cp–equivariant homotopy theory, we propose the appropriate notion of evenness to
be captured by the following definition, which we discuss in more detail in Section 3.

Definition 1.16 We say that a Cp–equivariant spectrum E  is homotopically even if
the following conditions hold for all n 2  Z :

(1) 2n 1 E  D  0.

(2) 2n 1 E  D  0.

(3) 2n 2 E  D  0.

Remark 1.17 In the presence of condition (1), condition (3) is equivalent to the
statement that the transfer is surjective in degree 2n   2. Conditions (1) and (3)
constrain certain slices of E ,  as we spell out in Remark 3.14.

Remark 1.18 A  C2–spectrum E  is homotopically even, according to our definition
above, if and only if it is even in the sense of [19, Section 3.1].

We prove the following theorem in Section 4.

Theorem 1.19 If a p–local Cp–ring spectrum R  is homotopically even, then it is also
p–orientable.

Geometry & Topology, Volume 27 (2023)



1

1

M

1

1
p

1

1

Odd primary analogs of real orientations 93

The key point here, as we explain in Section 4, is that C P
p      

admits a slice cell
decomposition with even slice cells. An even more fundamental fact, which turns out to

be equivalent to the slice cell decomposition, is a splitting of the homology of C P
p  

:

Definition 1.20 We say that a Cp–spectrum X  is homologically even if there is a
direct sum splitting

X  ˝ Z . p /  ' A k  ˝ Z . p /
k

where each A k  is equivalent, for some n 2  Z ,  to one of

. Cp / C  ˝ S 2 n ; S 2n; S 2 n C 1 C :

Theorem 1.21 The space C P
p  

is homologically even.

Remark 1.22 The notion of homological evenness we propose in this paper restricts,
when p D 2, to the notion studied by Hill in [13, Definition 3.2]. Notably, our definition
differs from Hill’s when p >  2.

Returning again to the group C2, work of Pitsch, Ricka and Scherer [33] relates a
version of homological evenness to the study of conjugation spaces. An interesting
example of a conjugation space, generalized by Hill and Hopkins in [15] and its in-
progress sequel, is BU R  D  • 1†BPh1i R .  It would be very interesting to develop a
Cp–equivariant version of conjugation space theory. Since tmf.2/ is a form of BPh1i3 (cf
Question 7), we wonder whether there is an interesting slice cell decomposition of
•1†1 C tmf.2/.

Remark 1.23 The slice cell structure on † 1  C P      has many interesting attaching
maps. The first nontrivial attaching map is a class ˛1

p  W S 2 1 !  S 1 C ,  with fixed
points the multiplication by p map on S  . This class was previously studied by the
third author [39, Section 3.2] and, independently, Mike Hill. The C2–equivariant ˛ 2  is
the familiar map W S  !  S 0 .

1.2 A  view to the future

The most natural next question, after those tackled in this paper, is the following.

Question 1 Let n 1, and fix a formal group € of height n.p  1/ over a perfect field k of
characteristic p. When is Ek ; € ,  the associated Lubin–Tate theory, p–orientable?

We have not fully answered this question even for n D  1, since we focus attention on
the Honda formal group.

Geometry & Topology, Volume 27 (2023)
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It seems likely that further progress on Question 1, at least for n 2, must wait for work-in-
progress of Hill, Hopkins and Ravenel, who have a program by which to understand the

Cp–action on Lubin–Tate theories. As the authors understand that work in progress,
it is to be expected that the height n.p 1/ Morava E–theory has homotopy generated

by n copies of the reduced regular representation, v p ; vp ; : : : ; vp . One expects to
be able to construct p  Morava K–theories, generated by a single vi 

p  , and we expect at
least these Morava K–theories to be homotopically even in the sense of this paper.

Question 2 Can one construct homotopically even p  Morava K–theories?

In light of the orientation theory of Section 2, it seems useful to know if p  Morava K–
theories admit norms. Indeed, at p D  2 the Real Morava K–theories all admit the
structure of E–algebras. Since the first 3 Morava K–theory should be TMF.2/=3, or
perhaps LK .2/ TMF.2/=3, it seems pertinent to answer the following question first.

Question 3 At the prime p D  3, what structure is carried by the C3–equivariant
spectrum LK .2/ TMF.2/=3? Is there an analog of the E  structure carried by KUR =2?

In another direction, one might ask about other finite subgroups of Morava stabilizer
groups:

Question 4 Is there an analog of the notion of p–orientation related to the Q8–actions
on Lubin–Tate theories at the prime 2?

One may also go beyond finite groups and ask for notions capturing other parts of the
Morava stabilizer group, such as the central Z  that acts on C P 1  '  B 2 Zp  after p–
completion.

To make full use of all these ideas, one would like not only an analog of C P R  , but
also an analog of at least one of MUR or BPR .  Attempts to construct such analogs
have consumed the authors for many years; we consider it one of the most intriguing
problems in stable homotopy theory today.

Question 5 (Hill–Hopkins–Ravenel [16]) Does there exist a natural Cp–ring spec-
trum, BPp  , with

     underlying nonequivariant spectrum the smash product of p 1 copies of BP,
and

     geometric fixed points ˆ C p  BPp  '  HFp ?

At p D  2, it should be the case that BP2  D  BPR .

Geometry & Topology, Volume 27 (2023)
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To the above we may add:

Question 6 Does such a natural BPp  orient all p–orientable Cp–ring spectra, or at
least all those that admit norms in the sense of Section 2?

Most of our attempts to build BPp  have proceeded via obstruction theory, while MUR is
naturally produced via geometry. It would be extremely interesting to see a geometric
definition of an object MUp . Alternatively, it would be very clarifying if one could
prove that a reasonable BPp  does not exist. As some evidence in that direction, the
authors doubt any variant of BPp  can be homotopically even.

Even if BPp  cannot be built, or cannot be built easily, it would be excellent to know
whether it is possible to build Cp–ring spectra BPh1ip .

Question 7 Does there exist, for each prime p, a Cp–ring BPh1ip satisfying the
following properties?

     BPh1i2 is the 2–localization of kuR , and BPh1i3 is the 3–localization of
tmf.2/.

     The homotopy groups are given by

BPh1ip Š  Z.p/Œ1; 2; : : : ; p 1• ; with ji j D  2p  2:

The Cp–action on these generators should make 2p  2BPh1ip into a copy of the
reduced regular representation.

     There is a Cp–ring map BPh1ip !  E p  1.

     BPh1ip is homotopically even, and in particular p–orientable.

     The underlying spectrum .BPh1ip /e additively splits into a wedge of suspen-
sions of BPhp  1i.

     We have ˆ C p  BPh1ip '  FpŒy• for a generator y  of degree 2p.

It is plausible that BPh1ip should come in many forms, in the sense of Morava’s forms of
K–theory [30]. A  natural E 1  form might be obtained by studying compactifications of
the Gorbounov–Hopkins–Mahowald stack [7; 12] of curves of the form

y p  1 D  x . x   1/.x  a1/ .x  ap  2/:

Studying the uncompactified stack, it is possible to construct a Cp–equivariant E 1  ring
E .1/ p  which is a p  analog of uncompleted Johnson–Wilson theory. The details of this
construction will appear in forthcoming work of the second author.

Geometry & Topology, Volume 27 (2023)
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Remark 1.24 The Cp–action on C P
p  

is naturally the restriction of an action by †p .
In fact, most objects in this paper admit actions of †p ,  or at least of Cp  1 Ë Cp ,  but
these are consistently ignored. The reader is encouraged to view this as an indication

that the theory remains in flux, and welcomes further refinement.

Remark 1.25 Since work of Quillen [34], the notion of a complex orientation has
been intimately tied to the notion of a formal group law. There are hints throughout

this paper, particularly in Sections 2 and 6, that the norm and diagonal maps on C P
p

lead to equivariant refinements of the p–series of a formal group. It may be interesting
to develop the purely algebraic theory underlying these constructions, particularly
if algebraically defined vi 

p  turn out to be of relevance to higher-height Morava E –
theories.

1.3 Notation and conventions

      If X  is a Cp–space, we use X e  to denote the underlying nonequivariant space, and
we use X C p  to denote the fixed-point space. If X  is a Cp–spectrum, we will use either
ˆ e X  or X e  to denote the underlying spectrum, and we use ˆ C p  X  to denote the
geometric fixed points.

     We fix a prime number p, and throughout the paper all spectra and all (nilpotent)
spaces are implicitly p–localized. In the Cp–equivariant setting, this means that we
implicitly p–localize both underlying and fixed-point spaces and spectra.

     If X  is a Cp–space or spectrum, we use e X  to denote the homotopy groups of X  ,
considered as a graded abelian group with Cp–action. If V is a Cp–representation, we
use V 

p  X  to denote the set of homotopy classes of equivariant maps from S V to X.

     We let S  denote the cofiber of the Cp–equivariant map . Cp / C  !  S  , and we also use
S  to refer to the suspension Cp–spectrum of this Cp–space. We let S   denote the
Spanier–Whitehead dual of the Cp–spectrum S  . Given a Cp–representation V and a Cp–
spectrum X,  we use  p        X  and  p to denote the set of homotopy classes of
equivariant maps from S V

 
C  WD S V ˝ S  and S V

 
  WD S V ˝ S   to X.

     We denote the fiber of the Cp–equivariant multiplication map . C P 1 / p  !  C P 1  by
C P

p  
.

     If R  is a classical commutative ring, we use xR  to denote the RŒCp• –module given
by the augmentation ideal ker.RŒCp• !  R /. This is a rank-.p 1/ R–module with

Geometry & Topology, Volume 27 (2023)
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generators permuted by the reduced regular representation of Cp . We similarly use 1R  to
denote the RŒCp• –module that is isomorphic to R  with trivial action. We sometimes use
R  to denote RŒCp• i tself, and write free to denote a sum of copies of R .
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2 Orientation theory

Nonequivariantly, one may study complex orientations of any unital spectrum R .
However, if R  is further equipped with a homotopy commutative multiplication, then
the theory takes on extra significance: in this case, a complex orientation of R  provides
an isomorphism R . C P 1 /  Š  RŒŒx•• .

In this section, we work out the analogous theory for p–orientations. In particular, we find
that the theory of p–orientations takes on special significance for Cp  homotopy ring
spectra R  that are equipped with a norm Ne 

p  R  !  R  refining the underlying
multiplication. Recall the following definition from the introduction:

Definition 2.1 A  p–orientation of a unital Cp–spectrum R  is a map

† 1  C P 1  !  † 1 C R
such that the composite

S 1 C  !  † 1  C P 1  !  † 1 C R

is equivalent to † 1 C  of the unit.

For any Cp  representation sphere S V, it is traditional to denote by S0ŒSV • the free

E1–ring spectrum

S0ŒSV • D  S 0  ˚ S V  ˚ S 2 V  ˚ S 3 V  ˚  :

Geometry & Topology, Volume 27 (2023)
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Below, we extend this construction to take input not only representation spheres S V,
but spoke spheres as well.

Definition 2.2 For integers n, let

S0ŒS2n 1 • WD NC p  .S0ŒS2np 2 • / ˝S 0ŒS 2 n     2 •  S 0 ;

where we consider Ne 
p  S0ŒS2np 2• as an S0ŒS2n 2 • –bimodule via the E1–map in-

duced by the composite

S 2n 2 !  . Cp / C  ˝ S 2 np  2 !  NC p  S0ŒS2np 2•:

In this composite, the first map is adjoint to the identity on S 2
n

p  2 and the second

map is the canonical inclusion. Note that S0ŒS2n 1 • is a unital left module over Ne 
p

S0ŒS2np 2• .

Furthermore, given a Cp–equivariant spectrum R ,  we set

RŒS2n 1 • WD R ˝ S 0ŒS 2n 1 •:

Construction 2.3 Suppose that R  is a homotopy ring in Cp–spectra, further equipped
with a genuine norm map

Ne 
p  R  !  R

which is unital and restricts on underlying spectra to the composite

. ˆ e R / ˝ p      i d ˝ ˝ ˝ !  . ˆ e R / ˝ p  m     ˆ e R ;

where  2  Cp  is the generator and m is the p–fold multiplication map.

If R  is p–oriented by a map

S  1  !  R C P p C

then we may produce a map

RŒS 1 • !  R C P p C

as follows. First, the composite

S  2 !  ˆ e . Cp C  ^ S  2/ !  ˆ e . S  1 / !  ˆ e . R C P p C / ;

where the map e is the inclusion of the factor of S  2 corresponding to the identity
in Cp , extends to a map

S0ŒS 2• !  ˆ e . R C P p C /

Geometry & Topology, Volume 27 (2023)
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since the target is a homotopy ring. Norming up, and combining the norm on R  with
the diagonal map C P

p  
!  Map.Cp ; C P

p  
/, we get a map

Ne
p .S0ŒS 2• / !  Ne

p . R C P p C /  !  R C P p C :

Finally, the extension of C p C  ^ S  2 !  R C P p C  over S  1  provides a nullhomotopy of
the composite

S  2 !  . Cp / C  ˝ S  2 !  R C P p C ;
producing a map

S0ŒS 1 • !  R C P p C :

We finish by extending scalars to R ,  using the assumption that R  is a homotopy ring.

Construction 2.4 If R  is p–oriented then so too is the Postnikov truncation Rn .
The construction above is natural, and so we may form a map

RŒŒS 1 •• WD li m RnŒS 1 • !  l i m .R n / C P p C  '  R C P p C :

Theorem 2.5 Suppose R  is a p–oriented homotopy Cp  ring, further equipped with a
unital homotopy Ne 

p  R–module structure such that the unit

Ne 
p  R  !  R

respects the underlying multiplication in the sense of Construction 2.3. Then, with
notation as above, the map

RŒŒS 1 •• !  R C P p C

is an equivalence.

Proof By construction, it suffices to prove that the map

RnŒS 1 • !  . R n / C P p C

is an equivalence for each n  0. This is clear on underlying spectra. On geometric
fixed points we can factor this map as

. ˆ C p  Rn/ŒS 1• !  . ˆ C p  R n / B C p C  !  ˆ C p  . .R n / C P p C / ;

being careful to interpret the source as a module (this is not a map of rings). Specifically,
the above composite is one of unital ˆ C p  N C p  S0ŒS 2• '  S 0ŒS 2• –modules and,
separately, one of ˆ C p  Rn–modules.
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The second map is an equivalence by Lemma 2.6 below, so we need only prove that
the first map is an equivalence. Since p D  0 in ˆ C p  R ,  the Atiyah–Hirzebruch spectral
sequence computing . ˆ C p  R n / B C p C  has E2–page given by

. ˆ C p  R n / ˝ F p  
ƒ F p  . x / ˝ F p  

FpŒy•:

The class x  is realized by applying geometric fixed points to the p–orientation. The
powers of y  are obtained from the unit of the unital S0ŒS 2• –module structure. Using
the ˆ C p  Rn–module structure, this implies that the spectral sequence degenerates and
moreover that the first map is an equivalence.

Lemma 2.6 If R  is bounded above, and X  is a Cp–space of finite type, then the map

. ˆ C p  R / X C p
 
!  ˆ C p  . R X C /

is an equivalence.

Proof Write X  D  colim Xn, where the X n  are skeleta for a Cp–CW–structure on X
with each X n  finite. Then the fiber of

ˆ C p  . R X C /  !  ˆ C p  . R X n C /

becomes increasingly coconnective, and hence the map

ˆ C p  . R X C /  !  l i m ˆ Cp  . R X n C /

is an equivalence. We are thus reduced to the case X  D  X n  finite, where the result
follows since ˆ C p  .  / is exact.

Remark 2.7 In practice, the conditions of Theorem 2.5 are often easy to check. For
example, any Cp–commutative ring R  in the homotopy category of Cp–spectra will be
equipped with a unital homotopy Ne p R–module structure respecting the multiplication
in the sense of Construction 2.3; see [14]. We choose to write Theorem 2.5 in generality
because, even nonequivariantly, one occasionally studies orientations of rings that are
not homotopy commutative (like Morava K–theory at the prime 2).

Since Z  is p–oriented by Remark 1.6 and truncated, we have the following corollary
of Theorem 2.5.

Corollary 2.8 There is a natural equivalence

ZŒS 1 • '  Z C P p C :
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3 Evenness

In this section, we will introduce a notion of evenness in Cp–equivariant homotopy
theory. This is a generalization of the notion of evenness in nonequivariant homotopy
theory. Evenness comes in two forms: homological evenness and homotopical evenness.
Homological evenness is a Cp–equivariant version of the condition that a spectrum
have homology concentrated in even degrees, and homotopical evenness corresponds
to the condition that a spectrum have homotopy concentrated in even degrees.

The main results in this section are Proposition 3.9, which shows that, under certain
conditions, a bounded below homologically even spectrum admits a cell decomposition
into even slice spheres (defined below), and Proposition 3.17, which shows that there
are no obstructions to mapping a bounded below homologically even spectrum to a
homotopically even spectrum.

3.1 Homological evenness

We begin our discussion of evenness with the definition of an even slice sphere.

Definition 3.1 We say that a Cp–equivariant spectrum is an even slice sphere if it is
equivalent to one of

. Cp / C  ˝ S 2 n ; S 2n; S 2 n C 1 C for some n 2  Z :

A  dual even slice sphere is the dual of an even slice sphere. The dimension of a (dual)
even slice sphere is the dimension of its underlying spectrum.

Remark 3.2 The phrase slice sphere is taken from [40, Definition 2.3], where a G–
equivariant slice sphere is defined to be a compact G–equivariant spectrum, each of
whose geometric fixed-point spectra is a finite direct sum of spheres of a given
dimension.

It is easy to check that the (dual) even slice spheres of Definition 3.1 are slice spheres
in this sense.

Remark 3.3 In the case p D  2, the even slice spheres are precisely those of the form

.C2 / C  ˝ S 2 n or S n for some n 2  Z :
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Definition 3.4 We say that a Cp–equivariant spectrum X  is homologically even if
there is an equivalence of Z.p/–modules

X  ˝ Z . p /  '  
M

S n  ˝ Z . p / ;
n

where Sn  is a direct sum of even slice spheres of dimension 2n.

Remark 3.5 When p D  2, this recovers the notion of homological purity given in
[13, Definition 3.2]. However, when p is odd, our definition of homological evenness
differs from Hill’s definition of homological purity. The most important difference is
that we allow the spoke spheres S 2 n C 1 C  to appear in our definition. This is necessary for
C P

p  
to be homologically even.

As in the nonequivariant case, homological evenness for a bounded below spectrum is
equivalent to the existence of an even cell structure. To prove this, we need to recall
the following definition from [40; 21].

Definition 3.6 A  Cp–equivariant spectrum X  is said to be regular slice n–connective if

(1) X e  is n–connective, and

(2) ˆ C p  X  is dn=pe–connective.

Furthermore, we say that X  is bounded below if it is regular slice n–connective for
some integer n.

Lemma 3.7 Let X  be a bounded below Cp–spectrum with the property that ˆ C p  X  is of
finite type. Then X  is regular slice n–connective if and only if X  ˝ Z . p /  is regular slice
n–connective.

Proof For the underlying spectrum, this follows from the fact that Z . p /  detects
connectivity of bounded below p–local spectra. For the geometric fixed points, we
use the fact that ˆ C p  Z . p /  D  FpŒy• with jyj D  2 detects connectivity of bounded below
p–local spectra which are of finite type, since a finitely generated Z.p/–module is
trivial if and only if it is trivial after tensoring with Fp .

Lemma 3.8 Let W denote an even slice sphere of dimension n, and suppose that X  is
regular slice n–connective. Then we have ŒW;†X • D  0.
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Proof If W is of dimension n, then its underlying spectrum W e is a direct sum
of n–spheres and ˆ C p  W is a dn=pe–sphere. It therefore follows that W is a regu-
lar slice n–sphere in the sense of [40, Section 2.1], so the conclusion follows from
[40, Proposition 2.22].

Proposition 3.9 Let X  be a bounded below, homologically even Cp–equivariant
spectrum with the property that ˆ C p  X  is of finite type, so that there exists a splitting

X  ˝ Z . p /  '  
M

S k  ˝ Z . p / ;
k n

where S k  is a direct sum of 2k–dimensional even slice spheres. Then X  admits a
filtration fXk gk n  such that X k = X k  1 '  S k  for each k  n.

Proof By assumption, we are given a splitting

X  ˝ Z . p /  '  
M

S k  ˝ Z . p / ;
k n

where S k  is a direct sum of 2k–dimensional even slice spheres. By induction on n, it
will suffice to show that the dashed lifting exists in the diagram

X

Sn  
M

S k  ˝ Z . p /  '  X  ˝ Z . p /
k n

since the cofiber of any such lift is a bounded below homologically even Cp–spectrum
with ˆ C p  X  of finite type and whose Z.p/–homology is k n C 1  S k  ˝ Z . p / .

Note that Lemma 3.7 implies that X  is regular slice 2n–connected. Let F  be the fiber of the
Hurewicz map S 0 !  Z . p / .  Then F  is easily seen to be regular slice 0–connective, so
that F  ˝ X  is regular slice 2n–connective. This implies that ŒSn; †F ˝ X •  D  0 by
Lemma 3.8. The result now follows from the cofiber sequence

X  !  Z . p /  ˝ X  !  † F  ˝ X :

Remark 3.10 It will follow from Example 3.16 and Proposition 3.18 that the following
converse of Proposition 3.9 holds: if X  is bounded below and admits an even slice cell
structure, then X  is homologically even.
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3.2 Homotopical evenness

We now introduce the homotopical version of evenness.

Definition 3.11 We say that a Cp–equivariant spectrum E  is homotopically even if,
for all n 2  Z ,

(1) 2n 1 E  D  0,

(2) 2n 1 E  D  0,

(3) 2n 2 E  D  0.

Remark 3.12 All  of the examples of homotopically even Cp–spectra that we will
encounter will also satisfy, for all n 2  Z ,

(4) 2 n C E  D  0.

We will say that a homotopically even Cp–spectrum satisfies condition (4) if this holds.

In fact, the examples which we study satisfy even stronger evenness properties. We
have chosen the weakest possible set of properties for which our theorems hold.

Remark 3.13 If we assume condition (1), then we may rewrite conditions (3) and (4) as:

(30) The transfer maps 2np 2 E  !  2n 2 E  are surjective for all n 2  Z .  (40)
The restriction maps 2

nE !  2np E  are injective for all n 2  Z .

This follows directly from the cofiber sequences defining S   and S :

S   !  S 0   !  . Cp / C  ˝ S 0 ; . Cp / C  ˝ S 0   !  S 0  !  S :

Remark 3.14 Conditions (1)–(4) have some implications for the slice tower of any
homotopically even E ,  which can be read off from [21]; cf [40, Theorem 3.5]. First,
conditions (1) and (2) together imply that slices in degrees 2np  1 are trivial. Secondly,
condition (4) implies that the .2np/th slice is the zero-slice determined by the Mackey
functor 2n. However, when p >  2, the implication of (3) for slices is obscure, and many
slices are unconstrained.

Remark 3.15 If p D  2, Definition 3.11 reduces to the requirement that, for all n 2  Z ,

(1) 2n 1 E  D  0, and

(2) n 1 E  D  0.

A  C2–equivariant spectrum is therefore homotopically even if and only if it is even in the
sense of [19, Definition 3.1]. Moreover, condition (4) is redundant in the C2–equivariant
setting.
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Example 3.16 The Eilenberg–Mac Lane spectra F p  and Z . p /  are examples of homo-
topically even Cp–spectra which satisfy condition (4). To verify this, we refer to the
reader to the appendix of third author’s thesis [39, Section A], where one may find a
computation of the spoke graded homotopy groups of F p  and Z . p / .

At the prime p D  2, there are many examples of homotopically even C2–spectra in the
literature, such as MUR ; BPR ; BPhniR ; E .n/R , K . n / R  and En ,  where E n  is equipped
with the Goerss–Hopkins C2–action [19; 9].

The main result of Section 5 is that the Cp–spectra E p  1 and the C3–spectrum tmf.2/
are homotopically even and satisfy condition (4).

When trying to map a bounded below homologically even Cp–spectrum into a homo-
topically even Cp–spectrum, there are no obstructions:

Proposition 3.17 Let E  be a homotopically even Cp–spectrum, and suppose that X
is a Cp–spectrum equipped with a bounded below filtration fXk gk n  such that each
S k  WD X k = X k  1 is a direct sum of 2k–dimensional even slice spheres.

Then, for any k  n, every Cp–equivariant map X k  !  E  extends to an equivariant map X
!  E .

Proof It suffices to prove by induction that any map X k  !  E  extends to a map
X k C 1  !  E .  Using the cofiber sequence

†  1 S k C 1  !  X k  !  X k C 1 ;

we just need to know that any map from the desuspension of an even slice sphere
into E  is nullhomotopic. This follows precisely from the definition of homotopical
evenness.

If E  further satisfies condition (4), we have the stronger result:

Proposition 3.18 Let E  be a homotopically even Cp–ring spectrum which satisfies
condition (4), and suppose that X  is a Cp–spectrum equipped with a bounded below
filtration fXk gk n  such that each S k  WD X k = X k  1 is a direct sum of 2k–dimensional
even slice spheres.

Then there is a splitting of the induced filtration on X  ˝ E  by E–modules :

X  ˝ E  '  
M

S k  ˝ E :
k n
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Proof We need to show that the filtration fXk gk n  splits upon smashing with E .
Working by induction, we see that it suffices to show that all maps

S k  !  † S m  ˝ E ;

where k >  m, are automatically null. Enumerating through all of the possible even
slice spheres that can appear in S k  and Sm , and making use of the (noncanonical)
equivalence

S  ˝ S   '  S 0  ˚ . . Cp / C  ˝ S 0 / ;
p  2

we find that this follows precisely from the hypothesis that E  is homotopically even
and satisfies condition (4).

4 The homological evenness of C P
p

The main goal of this section is to prove the following theorem.

Theorem 4.1 The Cp–spectrum † 1  C P
p  

is homologically even.

Noting that ˆ C p  † 1  C P
p  

D  † 1 B C p  is of finite type, we may apply Proposition 3.9
and so deduce the following corollary.

Corollary 4.2 There is a filtration f † 1  C P
p  

gn0 of † 1  C P
p  

with subquotients
8

S 2 m  ˚ . . Cp / C  ˝ S 2 n / if n D  mp;
† 1  C P n

p  = † 1  C P n  1 ' S 2 m C 1 C  ˚ . . Cp / C  ˝ S 2 n / if n D  mp C 1;
. . Cp / C  ˝ S      / otherwise:

Warning 4.3 We believe that there is a filtration f C P
p  

gn0 of the space C P
p  

that
recovers f † C P  gn0 upon applying †  , but we do not prove this here. As such, our
name † 1  C P n       must be regarded as an abuse of notation: we do not prove that
† 1  C P n

p  
is † 1  of a Cp–space C P n

p  
. In light of the Dold–Thom theorem, it seems

likely that the space C P
p  

could be defined as the nth symmetric power of S 1 C .

Remark 4.4 The identification of the particular even slice spheres appearing in this
decomposition is determined by the cohomology of C P

p  
as a Cp–representation, and in

particular from the combination of Corollary 2.8, Lemma 4.9 and Proposition 4.10.
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As an application, we obtain the following analog of the fact that any ring spectrum
with homotopy groups concentrated in even degrees admits a complex orientation.

Corollary 4.5 Let E  be a homotopically even Cp–ring spectrum. Then E  is p–
orientable.

Proof We wish to show that the .1 C /–suspension of the unit map factors as

S 1 C  !  † 1  C P 1  !  † 1 C E :

This is an immediate consequence of Corollary 4.2 and Proposition 3.17.

We devote the remainder of the section to the proof of Theorem 4.1. By Corollary 2.8,
there is an equivalence

ZŒS 1 • '  Z C P p C :

This is of finite type, so to prove Theorem 4.1 it will suffice to prove the following
theorem and dualize.

Theorem 4.6 As a Cp–equivariant spectrum, S0ŒS2n 1 • is a direct sum of dual
even slice spheres for all n 2  Z .

To prove this, we will construct a map from a wedge of dual even slice spheres which
is an equivalence on underlying spectra and geometric fixed points.

Construction 4.7 The composition

S 2n 2 !  . Cp / C  ˝ S 2 np  2 !  NC p  S0ŒS2np 2• !  S 0ŒS2n 1 • i s

canonically null, and hence induces a map

xzW S 2n 1  !  S0ŒS2n 1 •: On

the other hand, letting

xW S 2 np  2 !  S0ŒS2np

2• denote the canonical inclusion, there is the norm map

Nm.x/W S .2 np  2/ !  NC p  S0ŒS2np 2• !  S 0ŒS2n 1 •:
Since S0ŒS2n 1 • is a module over Ne p S0ŒS2np 2• , this implies the existence of
maps

Nm.x/k xz"W S k .2 np  2/C".2 n 1 / !  S0ŒS2n 1 •

for k 2  N  and " 2  f0; 1g.
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We first show that the sum of these maps induces an equivalence on geometric fixed
points.

Proposition 4.8 Let

‰W 
M  

S k .2 np  2/C".2 n 1 / !  S0ŒS2n 1 •
k 0;

"2f0;1g

denote the direct sum of the maps Nm.x/k xz" . Then ˆ C p  .‰/ is an equivalence.

Proof We have an identification

ˆ C p  S0ŒS2n 1 • ' S 0ŒS 2np 2 • ˝S 0ŒS 2 n      2 • S 0 ' S 0ŒS 2np 2 • ˝ .S 0 ˝S 0 ŒS 2 n      2 • S 0/:

Under this identification, the map

ˆ C p  .Nm.x//W S 2 np  2 !  ˆ C p  S0ŒS2n 1 •

corresponds to the inclusion of S 2
n

p  2 into the left factor.

There are equivalences

S 0 ˝S 0 ŒS 2 n      2 •  S 0  '  † 1 B a r . ; •†S 2 n  2; / '  † 1 S 2 n  1

and hence an isomorphism

He .S 0  ˝S 0 ŒS 2 n      2 •  S 0 I Z/ Š  ƒ Z . x 2 n  1/:

Furthermore, the map

ˆ C p  .xz/W S 2n 1 !  ˆ C p  S0ŒS2n 1 •

sends the fundamental class of S 2n 1 to x2n 1.

It follows that ˆ C p  .‰/ induces an isomorphism on homology, so is an equivalence.

Our next task is to extend ‰ to a map that also induces an equivalence on underlying
spectra. We will see that this can be accomplished by taking the direct sum with maps
from induced even spheres, which are easy to produce. The main input is a computation of
the homology of the underlying spectrum of S0ŒS2n 1 • as a Cp–representation.

Lemma 4.9 There is a Cp–equivariant isomorphism

H.S0ŒS2n 1 • I Z/ Š  Sym .x/;

where x lies in degree 2np  2.
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Proof There are equivariant isomorphisms

He .S0ŒS2n 2 • I Z/ Š  Sym .x /;

He .NC p  S0ŒS2np 2 • I Z/ Š  Sym ./;

where x  and  both lie in degree 2np 2. As S0ŒS2n 1 • is a unital Ne p S0ŒS2np 2• –
module, we obtain a map

Sym ./ !  He .S0ŒS2n 1 • I Z/

of SymZ./–modules. Since x  goes to zero in He .S0ŒS2n 1 • I Z/, it follows that
this factors through a map

SymZ .x/ Š  Sym Z ./ ˝S y m Z . x /  Z  !  He .S0ŒS2n 1 • I Z/:

Examining the Künneth spectral sequence, this map must be an isomorphism.

The following theorem in pure algebra determines the structure of the mod p reduction
SymF

p  
.x/ as a Cp–representation.

Proposition 4.10 [1, Propositions III.3.4–III.3.6] Let x  denote the reduced regular
representation of Cp  over Fp ,  and let e1; : : : ep 2  x denote generators which are cycli-

cally permuted by Cp  and satisfy e1 C C e p  D 0. We set Nm D e1 ep 2 Symp .x/.
Then the symmetric powers of x  decompose as

8
1fNm` g ˚ free if k D  ` p;

Symk
p 

.x/ Š      xfNm` e1; : : : ; Nm` ep g ˚ free if k D  ` p C 1;
free otherwise.

Proof of Theorem 4.6 Let ‰ be as in Proposition 4.8. By Lemma 4.9 and Proposition
4.10, the mod p homology of ̂ e .S 0ŒS 2n 1 • / splits as im.H.‰//˚free. Moreover, ‰ is
an equivalence on geometric fixed points by Proposition 4.8.

It therefore suffices to show that, given any summand of He .S0ŒS2n 1 • I Fp /
isomorphic to , there is a map . Cp / C  ˝ S 2 k  !  S0ŒS2n 1 • whose image is that
summand. Taking the direct sum of ‰ with an appropriate collection of such maps,
we obtain an Fp–homology equivalence. Since both sides have finitely generated free
Z–homology, this must in fact be a p–local equivalence, as desired.

To prove the remaining claim, it suffices to show that the mod p Hurewicz map

.S0ŒS2n 1 • / !  He .S0ŒS2n 1 • I Fp /
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is surjective in every degree. This follows from the square

.Ne 
p  S0ŒS2np 2• /

.S0ŒS2n 1 • /

H.Ne 
p  S0ŒS2np 2 • I Fp /

H.S0ŒS2n 1 • I Fp /

where the top horizontal arrow is a surjection because Ne p S0ŒS2np 2• i s a
nonequiv-ariant direct sum of spheres, and the right vertical arrow is a surjection by the
proof of Lemma 4.9.

5 Examples of homotopical evenness

In this section, we introduce our principal examples of homotopically even Cp–ring
spectra. By Corollary 4.5, they are also p–orientable.

Our first examples are the Morava E–theories E p  1 associated to the height p 1
Honda formal group. As we will recall in Section 5.1, E p  1 admits an essentially
unique Cp–action by E1–automorphisms. We use this action to view E p  1 as a Borel
Cp–equivariant E1–r ing.

Our second example is the connective E 1– r ing  tmf.2/ of topological modular forms
with full level 2 structure. The group GL 2 . Z = 2 Z / Š †3  acts on tmf.2/ via modification
of the level 2 structure, and we view tmf.2/ as a C3–equivariant E 1– r ing  via the
inclusion C3  †3 .  We will discuss this example in Section 5.2.

The main result of this section is the homotopical evenness of the above Cp–ring
spectra.

Theorem 5.1 The Borel Cp–equivariant height p 1 Morava E–theories E p  1 as-
sociated to the Honda formal group over Fp p      1  are homotopically even and satisfy
condition (4).

Theorem 5.2 The C3–ring spectrum tmf.2/ of connective topological modular forms
with full level 2 structure is homotopically even and satisfies condition (4).

Applying Corollary 4.5, we obtain the following corollary.

Corollary 5.3 The Cp–ring spectra E p  1 and tmf.2/ are p–orientable.
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5.1 Height p  1 Morava E –theory

To a pair .k; G/, where k is a perfect field of characteristic p >  0 and G  is a formal
group G  over k of finite height h, we may functorially associate an E1–r ing E .k ; G /,
the Lubin–Tate spectrum or Morava E–theory spectrum of .k; G/; see [6; 27]. There is
a noncanonical isomorphism

E .k ; G / Š  W .k/Ju1; : : : ; uh 1KŒu˙1• ;

where jui j D  0 and juj D   2.

Given a prime p and finite height h, a formal group particularly well-studied in
homotopy theory is the Honda formal group. The Honda formal group GHonda is
defined over Fp ,  so the Frobenius isogeny may be viewed as a endomorphism

F  W GHonda !  GHonda :

The Honda formal group is uniquely determined by the condition that F h  D  p in
End.GHonda/.

The endomorphism ring of the base change of GHonda to Fp h  is the maximal order Oh
in the division algebra Dh of Hasse invariant 1=h and center Qp .  By the functoriality
of the Lubin–Tate theory construction, the automorphism group Sh D  O  of GHonda

over Fp h  acts on E.Fp h ; G Honda /. To keep our notation from becoming too burdensome,
we set

E p  1 WD E . Fp p      1 ; GHonda/:

There is a subgroup Cp   Sp  1, which is unique up to conjugation. Indeed, such
subgroups correspond to embeddings Qp . p / Dp  1. Since Qp . p /  is of degree p  1 over
Qp ,  it follows from a general fact about division algebras over local fields that such

a subfield exists and is unique up to conjugation; see [36, application on page 138].
Using any such Cp , we may view E p  1 as a Borel Cp–equivariant E1–r ing spectrum.

Homotopical evenness of E p  1 will follow from the computation of the homotopy
fixed-point spectral sequence for E p

 1, which was first carried out by Hopkins and
Miller and has been written down in [32] and again reviewed in [11]. We recall this
computation below. The homotopy fixed-point spectral sequence takes the form

Hs .Cp ; t Ep  1/ )  t  s Ep
 1;

so the first step is to compute the action of Cp  on E p  1.

This action may be determined as follows. Abusing notation, let v1 2  2p  2 Ep  1

denote a lift of the canonically defined element v1 2  2p  2 Ep  1=p. The element v1
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is fixed modulo p by the Sp  1 and in particular the Cp–action on E p  1, so if we
fix a generator  2  Cp  we find that the element v1   v1 is divisible by p. Set v D  .v1

v1/=p. Then the two key properties of v are:

(1) v C v  C C p  1v D  0.

(2) v is a unit in E p  1. As a consequence, Nm.v/ D  v v p  1v is a unit in E p  1

which is fixed by the Cp–action [32, page 498].

The existence of an element v satisfying the above two conditions completely determines
the action of Cp  on E p  1, as follows. First, let wz 2   2 Ep  1 denote any unit, and set w D
v  Nm.wz/ 2   2 Ep  1. Then w continues to satisfy (1) and (2) above and determines
a map of Cp–representations

xW  . Fp p     
 
1 / !   2 Ep  1:

This determines a Cp–equivariant map

SymW
 
.
F

p

p
     1/.x/ŒNm.w/ 1• !  E p  1;

which identifies E p  1 with the graded completion of SymW
 
. F  p      1/.x/ŒNm.w/ 1• at

the graded ideal generated by the kernel of the essentially unique nonzero map of
W . F p p      1/ŒCp• –modules xW  . Fp p     

 
1 / !  1F p p      1  .

Remark 5.4 In Section 7, we will see that the element v is intimately related to the
p–orientability of E p  1. For later use, we note that it follows from the above analysis
that the map xFpp     

 
1  !  2p  2 Ep  1=.p; m2/ induced by v is an isomorphism.

Remark 5.5 As pointed out by the referee, the element v 2  2p  2 Ep  1 may also be
described in terms of BP–theory. The class t1 2  BP2p  2BP determines a function t1W
Sp  1 !  E 2 p  2, and it follows from the formula R .v1 / D  v1 C p t1 in BPBP that t1. 1/ D
.v1  v1/=p D  v. From this perspective, the crucial fact that v is a unit in E p  1 follows
from the calculations in [35, pages 438–439].

Using the above determination of the Cp–action on E p  1, as well as Proposition 4.10,
one may obtain with some work the following description of Hs .Cp ; t Ep  1/.

Proposition 5.6 (Hopkins–Miller; cf [11, Proposition 2.6]) There is an exact se-
quence

(5-1) E p  1  !  H.Cp ; Ep  1/ !  Fp p      1Œ˛ ; ˇ; ı ˙1 • =.˛2 / !  0;

where j˛ j  D  .1; 2p  2/, jˇ j D  .2; 2p2  2p/ and jı j D  .0; 2p/.
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Finally, we must recall the differentials in the homotopy fixed-point spectral sequence.
We let D  denote equality up to multiplication by an element of W . Fp p      1 /. Then, as

explained in [11, Section 2.4], the spectral sequence is determined multiplicatively by
the differentials

d2.p  1/C1 . ı / D  ˛ ˇ p  1 ı1 . p  1/2
;

d2.p  1 / 2 C 1 . ı . p  1/3
˛/ D  ˇ . p  1/2 C1 ;

along with the fact that all differentials vanish on the image of the transfer map.

In particular, on the E1–page of the homotopy fixed-point spectral sequence there are
no elements in positive filtration in total degrees 0,  1 or  2. Indeed, there are no
elements at all in the .  1/–stem.

We now have enough information to establish the homotopical evenness of E p  1.

Proof of Theorem 5.1 Let u 2  2 Ep  1 denote the periodicity element. Then Nm.u/ in 2
E p  1 is also invertible, so the RO.Cp /–graded equivariant homotopy of E p  1 is 2–
periodic.

Therefore, using Remark 3.13, we see that it suffices to show that:

(1)  1 Ep  1 D  0.

(2)  1 Ep
 1 D  0.

(3) The transfer map  2 Ep  1 !   2 Ep  1 is a surjection. (4)

The restriction map 0 Ep  1 !  0 Ep  1 is an injection.

Condition (1) is immediate from the fact that E p  1 is even periodic. Condition (2) is a
direct consequence of the above computation of the homotopy fixed-point spectral
sequence. Condition (3) follows from the following two facts:

     The short exact sequence (5-1) implies that H0 .Cp ;  2 Ep  1/ is spanned by the
image of the transfer.

     On the E1–page of the homotopy fixed-point spectral sequence, there are no
positive filtration elements in stem  2.

Condition (4) follows from the fact that on the E1–page of the homotopy fixed-point
spectral sequence, there are no positive filtration elements in the zero stem.

Geometry & Topology, Volume 27 (2023)



Z .3/

1

1 2 1 1 2 2
3 2

2 2 2

4 4

1

114 Jeremy Hahn, Andrew Senger and Dylan Wilson

5.2 The spectrum tmf.2/ as a form of BPh1i3

Recall from [38] or [18] the spectrum tmf.2/ of connective topological modular forms
with full level 2 structure.1 In this section we will consider tmf.2/ as implicitly 3–
localized. It is a genuine †3–equivariant E 1–r ing  spectrum with †3–fixed points
tmf.2/†3 D  tmf, the (3–localized) spectrum of connective topological modular forms.
We view tmf.2/ as a C3–spectrum via restriction along an inclusion C3  †3 .

This spectrum has been well-studied by Stojanoska [38]. In particular, Stojanoska
computes etmf.2/ D  Z.3/Œ1; 2• , where ji j D  4 and a generator  of C3 acts by 1 !  2

1 and 2 !   1. It follows that 1 and 2 span a copy of x, so that tmf.2/ Š
Sym .x/. The corresponding family of elliptic curves is cut out by the explicit
equation

y 2 D  x . x   1 /.x  2/:

For later use, we note down some facts about the associated formal group law.

Proposition 5.7 The 3–series of the formal group law associated to tmf.2/ is given by
the formula

Œ3•.x / D 3x C8.1 C 2/x 3 C24.2  21 2 C 2 /x 5 C 72.3  2
2  1

2 C 3 /x 7 C 8.274  7612

C 981
2  761

3 C 274 /x 9 C O .x 10 /:

It follows that we have the formulas

v1   1  2 mod 3 and v2  1  2 mod .3; v1/:

Proof This is an elementary computation using the method of [37, Section IV.1].

Remark 5.8

so that

Let v D   1  2, so that v  v1 mod p. Then we have

v  v D  ..1   2 / C 1 / C 1 C 2  D  31;

3 .v  v/ D  1:

This element generates tmf.2/ as a Z.3/–algebra with C3–action. In Section 7, we
will relate this element to the 3–orientation of tmf.2/.

1The spectrum tmf.2/ is obtained from the spectrum Tmf.2/ discussed in the references by taking the
†3–equivariant connective cover.
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In the third author’s thesis, the slices of tmf.2/ have been computed as follows;
cf [17, Section 4].

Proposition 5.9 [39, Corollary 3.2.1.10] Given a Cp–equivariant spectrum X ,  let
P n X  denote the nth slice of X .  The slices of tmf.2/ are of the form

M
P n  tmf.2/ '  Z.3/ŒS2 1 •: n

We now turn to the proof of Theorem 5.2. Given the computation of the slices of tmf.2/
in Proposition 5.9, this will follow from Theorem 4.6 and the following proposition.

Proposition 5.10 Suppose that X  is a Cp–spectrum whose slices are of the form Pn

X  '  Sn  ˝ Z . p / ,  where Sn  is a direct sum of dual even slice n–spheres. Then X  is
homotopically even and satisfies condition (4).

Using the slice spectral sequence, the proof of Proposition 5.10 reduces to the following
lemma:

Lemma 5.11 Let S  denote a dual even slice sphere. Then S  ˝ Z . p /  is homotopically
even and satisfies condition (4).

Proof If S  '  S 2n ˝ . Cp / C ,  then this follows from the fact that 2n 1 Z . p /  D  0 for
all n 2  Z .

If S  '  S 2n, then this follows from the fact that Z . p /  is homotopically even, since the
definition of homotopically even is invariant under 2–suspension.

If S  '  S 2n 1 , then condition (1) of Definition 3.11 is clearly satisfied, and condi-
tions (2)–(4) follow from the following statements for all n 2  Z ,  which may be read
off from [39, Section A.2]:

     2 n C Z . p /  D  0,      2n

1 Z . p /  D  0,

     2 n C 1 C Z . p /  D  0.

In the proofs of (3) and (4) we have implicitly used the existence of equivalences

S  ˝ S   '  S 0  ˚
M

. C p / C  ˝ S 0 ;  p
2

S  ˝ S  '  S  ˚ . Cp / C  ˝ S 2 :
p  2
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6 The class v1 
p  and a formula for its span

In this section, given a p–oriented Cp–ring spectrum R ,  we will define a class

v1 
p  2  2 . †

1 C R /  Š  2 1 R :

When p D  2, our construction agrees with the class v R  2   2 R  in the homotopy of
a Real oriented C2–ring spectrum. Just as v1 is well-defined modulo p, we will see
that v p  is well-defined modulo the transfer. We will also give a formula for the image of
v p in the underlying homotopy of R  in terms of the classical element v1 and the
Cp–action.

To define v , we first construct a class v p  2  C p  † 1  C P 1  , and then we take its
image along the p–orientation † 1  C P 1  !  † 1 C R .  To begin, we recall an
analogous construction of the classical element v1.

6.1 The nonequivariant v1 as a pth power

We recall some classical, nonequivariant theory that we will generalize to the equivariant
setting in the next section.

Notation 6.1 We let ˇW S 2 '  † 1  C P 1  !  † 1  C P 1  denote a generator of the stable
homotopy group 2 . † 1  C P 1 / .

Since C P 1  '  • 1 † 2 Z  is an infinite loop space, its suspension spectrum † 1  C P 1  is
a nonunital ring spectrum. This allows us to make sense of the following definition.

Definition 6.2 We define the class v1 2  2 p † 1  C P 1  to be ˇ p ,  the pth power of the
degree 2 generator.

There are at least two justifications for naming this class v1, which might more com-
monly be defined as the coefficient of x p  in the p–series of a complex-oriented ring.
The relationship is expressed in the following proposition.

Proposition 6.3 Let R  denote a (nonequivariant) homotopy ring spectrum equipped
with a complex orientation

†  2 † 1  C P 1  !  R ;

which can be viewed as a class x  2  R 2 . C P 1 / .  Then the composite

S 2 p  2  !  †  2 † 1  C P 1  !  R

records, up to addition of a multiple of p, the coefficient of x p  in the p–series Œp• F .x /.
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Proof Consider the p–fold multiplication map of infinite loop spaces

. C P 1 / p   !  C P 1  :

Applying R  to the above, we obtain a map

RJx K !  RJx1; x2; : : : ; xp K:

By the definition of the formal group law  C F    associated to the complex orientation,
the class x  2  R 2 . C P 1 /  is sent to the formal sum

f  .x1; x2; : : : ; xp / D  x1 C F  x2 C F  C F  xp :

The commutativity of the formal group law ensures that this power series is invariant
under cyclic permutation of the xi .

The composite

S 2 p  2 !  †  2 . † 1  C P 1 / ˝ p  !  †  2 † 1  C P 1  !  R

that we must compute can be read off as the coefficient of the product x1 x2 xp  in the
power series f  .x1; x2; : : : ; xp /. We may of course consider other degree p
monomials in the xi , such as x1 . The coefficient in f  .x1; x2; : : : ; xp / of any such
degree p monomial will be an element of 2p  2 R.  Summing these coefficients over all the
possible degree p monomials, we obtain the coefficient of x p  in the single-variable
power series Œp• F .x / D  f  .x; x; : : : ; x/.

Our claim is that this sum differs from the coefficient of x1 x2 xp  by a multiple
of p. The reason is that x1 x2 xp  is the unique monomial invariant under the cyclic

permutation of the xi . For example, the coefficients of x p ; x p ; : : : and x p  will all
be equal, so their sum is a multiple of p.

Remark 6.4 The integral homology H . C P 1 I Z . p / /  is a divided power ring on the
Hurewicz image of ˇ .  In particular, the Hurewicz image of v1 D  ˇ p  is a multiple
of p times a generator of H 2 p . C P 1 I Z . p / / .

Consider the ring spectrum M U together with its canonical complex orientation

†  2 † 1  C P 1  !  M U:

The integral homology H.M U I Z/ is the symmetric algebra on the image, un-
der this map, of H . C P 1 I Z / .  In particular, the Hurewicz image of v1 in the
group H 2 p .†  2 † 1  C P 1 I Z . p / /  is sent to p times an indecomposable generator
of H 2 p  2 .M U I Z.p/ /. By [29], this provides another justification for the name v1.
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Remark 6.5 One might wonder whether higher vi , with i  >  1, can be defined in
. † 1  C P 1 / .  A  classical argument with topological K–theory [31] shows that the
Hurewicz image of . † 1  C P 1 /  inside of H . † 1  C P 1 I Z . p / /  is generated as a Z.p/–
module by powers of ˇ .  For i  larger than 1, the power ˇ p i  is not simply p times a
generator of H 2 p i  . C P 1 I Z . p / / ,  so it is impossible to lift the corresponding
indecomposable generators of .M U / to . †  2 † 1  C P 1 / .  However, it may be
possible to lift multiples of such generators.

Finally, we record the following proposition for later use.

Proposition 6.6
with a map

Let A  denote a (nonequivariant) homotopy ring spectrum equipped

f  W † 1  C P 1  !  † 2 A

that induces the zero homomorphism on 2 (in particular, f  is not a complex orienta-
tion). Then the image of v1 in 2p  2 A is a multiple of p.

Proof Let C ˛ 1  denote the cofiber of 1̨W S 2 p  3 !  S 0 .

We recall first that, p–locally, the spectrum

† 1  C P p

admits a splitting as † 2 C ˛ 1  ˚  
L

k D 2  S
2k . Indeed, since ˛ 1  is the lowest positive-

degree element in the p–local stable stems, most of the attaching maps in the standard
cell structure for C P p  are automatically p–locally trivial. The only possibly nontrivial

attaching map is between the .2p/th cell and the bottom cell, and this attaching map is
detected by the P 1–action on H . C P 1 I F p / .

By cellular approximation, v1W S 2 p  !  † 1  C P 1  must factor through † 1  C P p ,  and
again the lack of elements in the p–local stable stems ensures a further factorization of
v1 through †2 C ˛1 .  Thus, to determine the image of v1 in 2p .†2 A/,  it suffices to
consider the composite

f  W † 2 C ˛ 1  !  † 1  C P p  !  † 1  C P 1  !  †2 A :

There is by definition a cofiber sequence S 2 !  † 2 C ˛ 1  !  S 2p . By the assumption
that f  is trivial on 2, f  must factor as a composite

† 2 C ˛ 1  !  S 2 p  !  †2 A :

We now finish by noting that the composite v1W S 2 p  !  † 2 C ˛ 1  !  S 2 p  must be a
multiple of p, because otherwise C ˛ 1  would split as S 2 p  ˚ S 2 .
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Remark 6.7 The argument used in the proof of Proposition 6.6 suggests yet another
interpretation of Proposition 6.3, as pointed out by the referee. Proposition 6.3 is true
because 2p  2 C ˛1  is generated by v1 in the Adams–Novikov spectral sequence.

6.2 The equivariant v1 
p  as a norm

As we defined the nonequivariant v1 2  2 p † 1  C P 1  to be the pth power of a degree 2
class, we similarly define an equivariant v1 

p  2  2 †
1  C P

p  
to be the norm of a

degree 2 class. We thank Mike Hill for suggesting this conceptual way of construct-
ing v p . To see that † 1  C P

p  
is equipped with norms, we will make use of the

following proposition.

Proposition 6.8 There is an equivalence of Cp–equivariant spaces

• 1 † 1 C Z  '  C P 1  ;

where Z  denotes the Cp–equivariant Eilenberg–Mac Lane spectrum associated to the
constant Mackey functor.

Proof This is Remark 1.6.

Construction 6.9
meaning a map

The above proposition equips the space C P
p  

with a natural norm,

Ne 
p  . . C P 1  /e/ !  C P 1  :

Indeed, any Cp–equivariant infinite loop space • 1 Y  , like • 1 S 1 C Z ,  is equipped
with a norm

Ne 
p  . • 1 Y  /e !  • 1 Y :

This norm is • 1  applied to the Cp–spectrum map

. Cp / C  ˝ Y  !  Y

that is induced from the identity on Y e.

Convention 6.10 For the remainder of this section we fix a (noncanonical) equivalence

. C P
p  

/e '  . C P 1 / p  1:

The natural map of Cp–spaces

S 1 C  D  C P 1
p  

!  C P
p
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then induces an (again, noncanonical) equivalence

.S 1 C /e  '  p  1 S 2 ;

giving p  1 classes
ˇ1; ˇ2 ; : : : ; ˇp 1 2  e . C P 1  /:

Choosing our noncanonical equivalence appropriately, we may take the Cp–action on

2 .C P
p  

I Z.p / / to be given by the rules

(1) .ˇ i /  D  ˇ i C 1  if 1  i   p  2, and (2)

. ˇp  1/ D   ˇ1   ˇ2    ˇp  1.

Definition 6.11 We let
v1 

p  W S 2 !  † 1  C P 1

denote the norm of ˇ1 . Explicitly, norming the nonequivariant ˇ1  map yields a map

S 2 '  Ne 
p  S 2  !  Ne 

p  . ˆ e . † 1  C P 1  //;

and we may compose this with the norm map of Construction 6.9 to make the class

v1 
p  2  2 . †

1  C P 1  /:

Remark 6.12 Of course, the choice of the class ˇ1  above is not canonical. We
view this as a mild indeterminacy in the definition of v1 

p  , related to the fact that the
classical v1 should only be well-defined modulo p. As we will see later, many formulas we
write for v1 

p  will similarly be well-defined only modulo transfers.

6.3 A  formula for v1 
p  in terms of v1

Our next aim will be to give an explicit formula for the image of v1 
p  in the underlying

homotopy of a p–oriented cohomology theory. Our formula is stated as Theorem 6.21.
To begin its derivation, our first order of business is to give a different formula for v1 

p

modulo transfers.

Proposition 6.13 In 2 p . † 1  C P 1  /, the class pv1 
p  and the class Tr.ˇ1 / differ by p

times a transferred class. In particular, Tr .ˇ  / is divisible by p, and the class Tr.ˇ1

/=p is the restriction of a class in 2 †
1  C P 1  .
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Proof Identifying 2 . † 1  C P
p  

/ with xZ . p /  and using the nonunital E1–r ing struc-ture
on † C P

p  
, we obtain a map

SymZ.
p /

.xZ . p / /  !  e p . † 1  C P 1  /;

under which the norm class Nm maps to the image of v1 
p  . The conclusion of the

proposition then follows from Lemma 6.14 below.

Lemma 6.14 Let xZ . p /  denote the reduced regular representation of Cp  over Z . p / ,
and let e1; : : : ; ep 2  xZ . p /  denote generators which are cyclically permuted by Cp  and
satisfy e1 C C e p  D  0. We set Nm D  e1 ep 2  SymZ .

p
/
.xZ . p / / .

Then Tr.e1 / is divisible by p, and Nm and Tr.e1
 /=p differ by a transferred class in

SymZ . p /
.xZ . p / / .

Proof To see that Tr.e1
 / is divisible by p, we expand it out in terms of the basis

e1; : : : ; ep 1 of xZ . p / ,  as

Tr.e1
 / D  e1 C C e p  1 C .  e1  e2   ep  1/p :

It is clear from linearity of the Frobenius modulo p that Tr.e1 / is divisible by p. Our
next goal is to show that Nm  Tr.e1

 /=p is a transferred class. It is clearly fixed by the
Cp–action, so we wish to show that its image in

.SymZ . p /
.xZ . p / //Cp

Tr.SymZ . p /
.xZ . p / //

is zero. Since p times any fixed point of Cp  is the transfer of an element, there is an
isomorphism

.SymZ . p /
.xZ . p / //Cp              .Symp

p  
. xFp  //C

p

Tr.SymZ . p /
.xZ . p / //        Tr.SymF

p  
. xFp  //

By Proposition 4.10, there is an isomorphism of Cp–representations

SymF
p  

. xFp  / Š  1Fp  fNmg ˚ free;

so that any choice of Cp–equivariant map SymF . xFp  / !  1Fp  which is nonzero on Nm
restricts to an isomorphism

.SymF
p  

. xFp  //C
p

Tr.Sympp
 
. xFp  // p
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A  choice of such a map may be made as follows. First, let f  W xFp  !  1Fp  denote the
equivariant map sending each ei to 1. This induces a map

Sympp
 
. f  /W SymF

p  
. xFp  / !  SymF

p  
.1Fp  / Š  1Fp

which sends Nm to 1. We now need to show that the image of Tr.e1
 /=p under

SymF
p  

. f  / is also equal to 1. Writing

Tr.e1 / e1 C C e p  1 C .  e1  e2   ep  1/p p

p

we find that its image under SymF
p  

. f  / is equal to

p  1  .p  1/p 
D  

p  1  .  1 C O.p2// 
 1 mod p;

as desired.

Proposition 6.13 can be read as the statement that Tr.ˇ1 /=p is a formula for the class v1
p  2  2 † C P

p  
, if one is only interested in v1 

p  modulo transfers. We often find this
formula for v1 

p  to be more useful in computational contexts.

Convention 6.15
a p–orientation

For the remainder of this section, we fix a Cp–ring R  together with

† 1  C P 1  !  † 1 C R :

Definition 6.16 The p–orientation of R  gives rise to a map

. † 1  C P 1  /e !  .†1 C R / e ;

which under our fixed identification of . C P  /e is given by a map

† 1 . C P 1 / p  1 !  
M

† 2 R :
p  1

By mapping in the first of the p  1 copies of C P 1 ,  and then projecting to the first of
the p  1 copies of R ,  we obtain the underlying complex orientation of R .

Warning 6.17 While it is convenient to give formulas in terms of the underlying
complex orientation of Definition 6.16, we stress once again that this is noncanonical,
depending on Convention 6.10. There is no canonical classical complex orientation
associated to a p–oriented Cp–ring.
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Notation 6.18 Using Definition 6.2, the underlying complex orientation of R  gives
rise to a class v1 D  ˇ1  2  2p  2 R.

Notation 6.19 Recall our fixed noncanonical identification .S 1 C /e  '  
L

p  1 S 2 . Let
y i  2  2 S 1 C  correspond to the i th copy of S 2 , so that we have

(1) .yi / D  y i C 1  if 1  i   p  2, and (2)

.yp  1/ D   y1   yp  1.

Then a generic class

r 2  e p .† 1 C R /  Š  e S 1 C  ˝ e
p  2 R  may be

written as

r D  y1 ˝ r 1  C y 2  ˝ r 2  C C y p  1 ˝ r   1;

where ri 2  2p  2 R.

The key relationship between the equivariant v1 
p  and nonequivariant v1 is expressed

in the following lemma.

Lemma 6.20 The class v1 D  ˇ p  2  e † 1  C P      maps to y1 ˝  v1 plus a multiple of
p in 2 p .†1 C R / .

Proof The class ˇ1  maps to y1 ̋ r 1  C y 2  ̋ r 2  C C y p  1 ̋ r   1 for some collection of
elements r1; r2; : : : ; r  1 2  2p  2 R.

By Definition 6.2, r1 D  v1, so it suffices to show that each of r2; : : : ; r  1 is divisible
by p. These statements in turn each follow by application of Proposition 6.6.

At last, we are ready to state the main result of this section.

Theorem 6.21 Suppose that the underlying homotopy groups R  are torsion-free.
Then the class v1 

p  2  2 p .† 1 C R /  is given, modulo transfers, by the class

y1 ˝  
v1  p  1v1 C y 2  ˝  

v1  v1 C C y p  1 ˝  
p  2v1  p  3v1 :

Proof By Proposition 6.13, it is equivalent to show that the above formula determines
Tr.ˇ1 /=p 2  2 p .† 1 C R /  modulo transfers. But this may be computed directly from
Lemma 6.20.
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Remark 6.22 Consider the class

y1 ˝  
v1   

p 

 1v1 C y 2  ˝  
v1  v1 C C y p  1 ˝  

p  2v1  p  3v1

of Theorem 6.21. If in this formula we replace v1 by v1 D  v1 C p x  for an arbitrary
class x  2  2p  2 R,  the resulting expression differs from the original by

y1 ˝ . x   p  1 x / C y2  ˝ . x   x / C C yp  1 ˝ . p  2 x  p  3x/:

This is exactly the transfer, in 2 p .†1 C R / ,  of y1 ˝  x . Therefore, altering v1 by a
multiple of p does not change the class v1 

p  modulo transfers.

7 The span of v1 
p  in height p  1 theories

In this section, we use the formula of Theorem 6.21 to compute the span of v1 
p  in the

height p 1 theories E p  1 and tmf.2/, which we verified were p–orientable in
Section 5. Our main result, stated in Theorems 7.3 and 7.4, proves that the span
of v1 

p  generates the homotopy of these theories in a suitable sense. This demonstrates a
height-shifting phenomenon in equivariant homotopy theory: though these theories are
height p  1 classically, the fact that their homotopy is generated by v p indicates
that they should be regarded as height 1 objects in Cp–equivariant homotopy theory.

Notation 7.1 Let R  denote a Cp–ring spectrum, equipped with a p–orientation

† 1  C P 1  !  † 1 C R :

Precomposition with v1 
p  then yields a map

S 2 !  † 1 C R ;

which by the dualizability of S 1 C  is equivalent to a map of Cp–spectra

S 2 1  !  R :

Engaging in a slight abuse of notation, we will throughout this section denote this
map by

v1 
p  W S 2 1  !  R :

Definition 7.2 Given a p–oriented Cp–ring R ,  applying 2
p

 2 gives a homo-
morphism of Z.p/ŒCp • –modules

2p  2v1 
p  W 2p  2S 2 1  !  2p  2 R :
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The main theorems of this section are as follows.

Theorem 7.3 Suppose that

† 1  C P 1  !  †1Ctmf.2/

is any 3–orientation of tmf.2/. Then the map 4v1 
p  W 4 S 2 1  !  4 tmf.2/ is an

isomorphism of Z.3/–modules , and thus also of Z.3/ŒC3• –modules.

Theorem 7.4 Suppose that

† 1  C P 1  !  † 1 C E p  1

is any p–orientation of E p  1. Then the image of 2p  2v1 
p  in 2p  2 Ep  1 maps

surjectively onto the degree 2p 2 component of . E p  1/=.p; m /.

Remark 7.5 The map 4 S 2 1  !  4 tmf.2/ of Theorem 7.3 is a map of rank 2 free
Z.3/–modules. Thus, it is an isomorphism if and only if its mod 3 reduction is, which
is a map of rank 2 vector spaces over F3.

Similarly, the degree 2p 2 component . E p  1/=.p; m2/ is a rank p 1 vector space
over Fp ,  generated by up  1; u1up 1; u2up 1; : : : ; up 2up 1. The map

2p  2S 2 1  !  2p  2 . Ep  1=.p; m2//

of Theorem 7.4 factors through the mod p reduction of its domain, after which it
becomes a map of rank p 1 vector spaces over Fp .

Both Theorems 7.3 and 7.4 thus reduce to a question of whether maps of rank p 1 vector
spaces over F p  are isomorphisms. These maps are furthermore equivariant, or maps of
FpŒCp• –modules, with the actions of Cp  given by reduced regular representations. We
will therefore find Lemma 7.7 below particularly useful. First, we recall some basic
facts from representation theory.

Recollection 7.6 Given two FpŒCp• –modules V and W, the space HomFp .V; W /
inherits the structure of a Cp–module via conjugation, where  2  Cp  sends F  W V !  W to
ı F  ı  1. Then there is an identification

HomFp .V; W /Cp  D  HomFpŒCp • .V; W /;

so that the transfer determines a linear map

TrW HomFp .V; W / !  HomFpŒCp • .V; W /:
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Lemma 7.7 Let x  denote the FpŒCp• –module corresponding to the reduced regular
representation of Cp . Then a homomorphism

 2  HomFpŒCp • .x; x/

is an isomorphism if and only if C Tr .  / is for any transferred homomorphism Tr. /.
More precisely, HomFpŒCp • .x; x/ is a local FpŒCp• –algebra, with maximal ideal the
ideal of transferred homomorphisms.

Proof Note that x is a uniserial FpŒCp• –module, ie its submodules are totally ordered
by inclusion. Since the endomorphism ring of a uniserial module over a Noetherian
ring is local [24, Proposition 20.20], the ring HomFpŒCp • .x; x/ is local.

There is an identification xCp  D  1, so we obtain a ring homomorphism

HomFpŒCp • .x; x/ !  HomFpŒCp • .xCp ; xCp  / D  HomFpŒCp • .1; 1/ D  Fp :

Since this homomorphism is clearly surjective, we learn that its kernel must be equal
to the maximal ideal of HomFpŒCp • .x; x/.

On the other hand, for any x  2  xCp  and 2  HomFp .x; x/, we have

p  1

Tr. /.x / D i

i D 0

p  1

.  i x / D i       .x / D  Tr. .x // D  0;
i D 0

where the last equality follows from the fact that the transfer is zero on x. It follows
that Tr. / lies in the maximal ideal of HomFpŒCp • .x; x/.

Finally, the equivalence

HomFp .x; x/ Š  1fidxg ˚ free

shows that the maximal ideal is equal to the image of Tr for dimension reasons.

Proof of Theorem 7.3 Recall that 4 tmf.2/ is a free Z.3/–module with basis 1 and 2.
In light of Remark 7.5, it suffices to analyze the image of v1 

3  in its mod 3 reduction,
which is a free F3–module generated by the reductions of 1 and 2. By combining
Lemma 7.7 with Theorem 6.21, it suffices to show that a basis for this rank 2
F3–module is given by the mod 3 reduction of classes

3 .v1  2v1/; 3 .v1  v1/ 2  e tmf.2/:

Here, v1 2  4 tmf.2/ refers to the class of Notation 6.18, which depends on the chosen
3–orientation. By combining Remark 6.22 and Proposition 5.7, we may as well

Geometry & Topology, Volume 27 (2023)



1 1

e

p p p
e

e

e

e 2

Odd primary analogs of real orientations 127

set v1 to be  1  2. Using the formulas of [38, Lemma 7.3] (cf Remark 5.8), we
calculate

3 .v1  2v1/   2 mod 3 and 3 .v1  v1/  1 mod 3:

These clearly generate all of 4 tmf.2/ modulo 3, as desired.

Proof of Theorem 7.4 By arguments analogous to those in the previous proof, it
suffices to check that

v1  p  1v1 ; 
v1  v1 ; : : : ; 

p  2v1  p  3v1 2  2p  2 Ep  1

reduce to generators of the degree 2p 2 component of . E p  1/=.p; m2/. By
Remark 6.22, we may assume that .v1   v1/=p in 2

p
 2 Ep  1 is the element v defined

in Section 5.1. Under this assumption, the p 1 classes of interest become v
and its translates under the Cp–action on 2p  2 Ep  1. As noted in Remark 5.4, these
span 2p  2 Ep  1=.p; m /.
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