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We define, in Cp—equivariant homotopy theory for p > 2, a notion of p—orientation
analogous to a Cx—equivariant Real orientation. The definition hinges on a C,—space
C P 1, which we prove to be homologically even, in a sense generalizing recent Co—
equivariant work on conjugation spaces.

We prove that the height p 1 Morava E—theory is p—oriented and that tmf.2/ is
3—oriented. We explain how a single equivariant map le w21 ticp 1
completely generates the homotopy of E, 1 and tmf.2/, expressing a height—shiftin%
phenomenon pervasive in equivariant chromatic homotopy theory.
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1 Introduction

The complex conjugation action on C P 1 gives rise to a C,—equivariant space, CP !,
with fixed points RP 1. The subspace CP 1Ris invariant and equivalent as a C;—space to
S, the one-point compactification of the real regular representation of C5. A Cy—
equivariant ring spectrum R is Real oriented if it is equipped with a map

tlcpg! tR
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88 Jeremy Hahn, Andrew Senger and Dylan Wilson

such that the restriction
spttcptl ttcpll tR

is the T—suspension of the unit map S® ! R. Such a Real orientation induces a
homotopy ring map
MUg ! R;

with domain the spectrum of Real bordism; see Araki and Murayama [2] and Hu and
Kriz [22]. These orientations have proved invaluable to the study of 2—local chromatic
homotopy theory, leading to an explosion of progress surrounding the Hill-Hopkins—
Ravenel solution of the Kervaire invariant one problem; see Beaudry, Bobkova, Hill and
Stojanoska [3], Beaudry, Hill, Shi and Zeng [4], Greenlees and Meier [8], Hahn and
Shi [9], Heard, Li and Shi [10], Hill and Meier [19], Hill, Hopkins and Ravenel [17],
Hill, Shi, Wang and Xu [20], Kitchloo, Lorman and Wilson [23], Li, Lorman and
Quigley [25], Li, Shi, Wang and Xu [26] and Meier, Shi and Zeng [28].

The above papers solve problems, at the prime p D 2, that admit clear but often
unapproachable analogs for odd primes. To give two examples, the 3 primary Kervaire
problem remains unresolved (see Hill, Hopkins and Ravenel [16]), and substantially
less precise information is known about odd primary Hopkins—Miller EO—theories
(see Bhattacharya and Chatham [5, Conjecture 1.12]).

To rectify affairs at p > 2, the starting point must be to find a C,—equivariant space
playing the role of CP % . This paper began as an attempt of the first two authors to

understand a space proposed by the third.

Construction 1.1 (Wilson) For any prime p, let CP pl denote the fiber of the C,—
equivariant multiplication map

.cpl/p1 cpl;

where the codomain has trivial C,—action and the domain has C,—action cyclically
permuting the terms. In other words, a map of spaces X | C P1p consists of the data:

A trivialization of the tensor product L1 “ Lo “ “ L, .

The action on CP pl is given by
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Remark 1.2 There is an equivalence of C;—spacesCR ' CP

. . In general, the
nonequivariant space underlying C P 1 is equivalentto .CP /P

. The fixed points
.CP F}/CP are equivalent to the cIassinying space BCp, as can be seen by applying the
fixed-points functor . / » t&the defining fiber sequence for CP . Th& key point here is
that the C,—fixed points of . CP 1 /P consist of the diagonal copy of CP !, and BC,
is the fiber of the pt" tensor powermapCP * | CcP 1.

1
R
1

To formulate the notion of Real orientation, it is essential to understand the inclusion
of the bottom cell

1 1,
SDCP ! CP:
At an arbitrary prime, the analog of this bottom cell is described as follows.
Notation 1.3 We letS denote the cofiber of the unique nontrivial map of pointed C,—
spaces from .C, /¢ to SO. This is the spoke sphere, and it is a wedge of p 1 copies

of S, with action on reduced homology given by the augmentation ideal in the group
ring ZEG,*. We denote the suspension t S of the spoke sphere by either S1¢ or CP o

and Retark 1.6 provides a natural inclusion
s¢pcpt 1 cp?t:
P p
We will often also use S 1€ to denote t1S1C, andS 1 to denote its Spanier—

Whitehead dual.

With this bottom cell in hand, we propose the following generalization of Real orienta-
tion theory.

Definition 1.4 A ,—orientation of a C,—equivariant ring R is a map of spectra
ttept 1 +10R
such that the composite
stcopttcpt L ttcpt L t1CRIs

the S1¢—suspension of the unit map S° ! R.

Remark 1.5 Applying the geometric fixed-point functor " ¢ to a ,—orientation we
learn that the nonequivariant spectrum ~€» R has p D 0 in its homotopy groups.

Geometry & Topology, Volume 27 (2023)



90 Jeremy Hahn, Andrew Senger and Dylan Wilson

Remark 1.6 Let Z WDHZ denote the C,—equivariant Eilenberg—Mac Lane spec-
trum associated to the constant Mackey functor. Then there is an equivalence of
Co—equivariant spaces

eltiCz cpt

Indeed, suspending and rotating the defining cofiber sequence .C,/c ! S° 1! S

gives rise to a cofiber sequence S1¢ ! .C,/c “S?2 ! S2. Tensoring with Z and

applying ¢ 1 yields the defining fiber sequence for CP pl.

Under this identification, the natural inclusion CP1 | CP 1lis simply adjointto
the +1C—suspension of the unit map S® ! Z. In particular, the identification

CP& ' 1. +1CZ/ gives a canonical p—orientation of Z. In contrast, Bredon

cohomology with coefficients in the Burnside Mackey functor cannot be y—oriented,
since p is nonzero in the geometric fixed points.

In this paper we explore the interaction between p—orientations and chromatic ho-
motopy theory in the simplest possible case: chromatic height p 1. Specifically, we
study the following height p 1 E;—ring spectra.

Notation 1.7 We let E, 1 denote the height-.p 1/ Lubin—Tate theory associated to
the Honda formal group law over F» 1, with Cy—action given by a choice of order-

p element in the Morava stabilizer group. At p D 3, we let tmf.2/ denote the 3—
localized connective ring of topological modular forms with full level-2 structure; see
Stojanoska [38]. The ring tmf.2/ naturally admits an action by t3 S SL».F»/, and
we restrict along an inclusion C3 13 to view tmf.2/ as a Cz—equivariant ring
spectrum.

The underlying homotopy groups of these spectra are given respectively by
©.E, 1/S W.F,e 1/Jug;uz;:iii;up oKEu'e; juijD 0; jujD 2;
tnf.2//S Z3/q;2e; jij D 4:

We will review the C,—actions on the homotopy groups in Section 5.

Theorem 1.8 For all primes p, there exists a ,—orientation of the C,—equivariant
Morava E-theory Ep, 1.

Theorem 1.9 The (3—localized) Cz—equivariant ring tmf.2/ of topological modular
forms with full level-2 structure admits a 3—orientation.

Geometry & Topology, Volume 27 (2023)
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Our second main result concerns the fact that, while

has p 1 distinct named generators, the conglomeration of them is generated under
the p,—orientation by a single equivariant map v, *.
Construction 1.10 In Section 6, we will construct a map of C,—equivariant spectra
v,Pvg2l ttcpt
p
This map should be viewed as canonical only up to some indeterminacy, just as the

classical class v; is only well-defined modulo p. As was pointed out to the authors by
Mike Hill, one choice of this map is given by norming a nonequivariant class in ,

ch . !
p

Construction 1.11 Suppose a C,—equivariant ring R is p—oriented via a map

trtcpt 1 t1CR;

p

so that we may consider the composite

v, P

szt ttcpt 1 t1CR:
P
Using the dualizability of S1C, this composite is equivalent to the data of a map
s2 1 1 R:

The nonequivariant spectrum underlying S2 1 is (noncanonically) equivalent to a
direct sum of p 1 copies of S2P 2. |n particular, by applying © 2p 2 to the map
S2 1 1 R, oneobtains a map from a rank-.p 1/ free Z ,/—module to 20 sR.

Definition 1.12 Given a Gy—equivariantring R with a p—orientation, the span of v, * will
refer to the subset of 20 2R consisting of the image of the rank-.p 1/ free Z ,,—

module constructed above.

Theorem 1.13 For any 3—orientation of tmf.2/, the span of v, * in ,tm§.2/ is all of
gtmfe2/.

Theorem 1.14 For any p—orientation of the height-.p 1/ Morava E-theory E, 1,
the span of v, ® inside , ¢ , E; 1 maps surjectively onto , , $Ep 1=.p; m2/.
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Remark 1.15 Themap S2 ! | R associated to a ,—oriented R has an inter-
pretation that may be more familiar to readers acquainted with the Hopkins—Miiller
computation of the fixed points of E,, 1. Specifically, by definition there is a cofiber
sequence

g2 thr.Cp/c”Sz 2) g2 1.
where tr is the transfer. It follows that the map S2 1 | R determines a traceless
element in 20 2 R, and the existence of such a traceless element was a key tool in the
computations of Nave [32].

1.1 Homological and homotopical evenness

Nonequivariantly, complex orientation theory is intimately tied to the notion of evenness.
A fundamental observation is that, since C P ! has a cell decomposition with only
even-dimensional cells, any ring R with , 1R S 0 must be complex orientable.
In C2—equivariant homotopy theory, a ring R is called evenif SRS , ,ReS 0,and it
is a basic fact that any even ring is Real orientable; see for instance Hill and
Meier [19, Section 3.1].
In C,—equivariant homotopy theory, we propose the appropriate notion of evenness to
be captured by the following definition, which we discuss in more detail in Section 3.
Definition 1.16 We say that a C,—equivariant spectrum E is homotopically even if
the following conditions hold foralln2 Z:
(1) ,°,EDO.
(2) ,. *EDO.
C
(3) ,,% EDO.
Remark 1.17 In the presence of condition (1), condition (3) is equivalent to the

statement that the transfer is surjective in degree 2n 2. Conditions (1) and (3)
constrain certain slices of E, as we spell out in Remark 3.14.

Remark 1.18 A Cy—spectrum E is homotopically even, according to our definition
above, if and only if it is even in the sense of [19, Section 3.1].

We prove the following theorem in Section 4.
Theorem 1.19 If a p—local C,—ring spectrum R is homotopically even, then it is also

p—orientable.
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The key point here, as we explain in Section 4, is that Cljp admits a slice cell
decomposition with even slice cells. An even more fundamental fact, which turns out to
be equivalent to the slice cell decomposition, is a splitting of the homology of CP pl:

Definition 1.20 We say that a C,—spectrum X is homologically even if there is a
direct sum splitting M
X“Zo/' A Zyy
k
where each A is equivalent, for some n 2 Z, to one of

Cp/C ”SZn. SZI‘\. SZnClC.
Theorem 1.21 The space CP pl is homologically even.

Remark 1.22 The notion of homological evenness we propose in this paper restricts,
when p D 2, to the notion studied by Hill in [13, Definition 3.2]. Notably, our definition
differs from Hill’s when p > 2.

Returning again to the group C,, work of Pitsch, Ricka and Scherer [33] relates a
version of homological evenness to the study of conjugation spaces. An interesting
example of a conjugation space, generalized by Hill and Hopkins in [15] and its in-
progress sequel, is BUr D ¢1tBPh1ig. It would be very interesting to develop a
Cpo—equivariant version of conjugation space theory. Since tmf.2/ is a form of BPh1i, (cf
Question 7), we wonder whether there is an interesting slice cell decomposition of
e1+1Ctmf.2/.

Remark 1.23 The slice cell structure on t 1 CP! has many interesting attaching
maps. The first nontrivial attaching map is a cIassp‘1 PWs2 11 S1C with fixed

points the multiplication by p map on S 1. This class was previously studied by the
third author [39, Section 3.2] and, independently, Mike Hill. The Co—equivariant _ 2 is
the familiar map V@ | SO. 1

1.2 A view to the future
The most natural next question, after those tackled in this paper, is the following.

Question 1 Let n1, and fix a formal group € of height n.p 1/ over a perfect field k of
characteristic p. When is Ey.¢, the associated Lubin—Tate theory, ,—orientable?

We have not fully answered this question even for n D 1, since we focus attention on
the Honda formal group.
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It seems likely that further progress on Question 1, at least for n 2, must wait for work-in-
progress of Hill, Hopkins and Ravenel, who have a program by which to understand the
Cpo—action on Lubin-Tate theories. As the authors understand that work in progress,
it is to be expected that the height n.p 1/ Morava E—theory has homotopy generated

2 n
be able to construct , Morava K-theories, generated be a single v; *, and we expect at
least these Morava K—theories to be homotopically even in the sense of this paper.

Question 2 Can one construct homotopically even , Morava K-theories?

In light of the orientation theory of Section 2, it seems useful to know if , Morava K-
theories admit norms. Indeed, at p D 2 the Real Morava K—theories all admit the
structure of E—algebras. Since the first 3 Morava K—theory should be TMF.2/=3, or
perhaps Lx 5, TMF.2/=3, it seems pertinent to answer the following question first.

Question 3 At the prime p D 3, what structure is carried by the Cs—equivariant
spectrum Lg 2, TMF.2/=3? Is there an analog of the E structure carried by KUg=27?

In another direction, one might ask about other finite subgroups of Morava stabilizer
groups:

Question 4 Is there an analog of the notion of ,—orientation related to the Qg—actions
on Lubin—Tate theories at the prime 2?

One may also go beyond finite groups and ask for notions capturing other parts of the
Morava stabilizer group, such as the central Z thgt actsonCP 1" BZZp after p—
completion.

To make full use of all these ideas, one would like not only an analog of CP % , but

also an analog of at least one of MUpR or BPg. Attempts to construct such analogs
have consumed the authors for many years; we consider it one of the most intriguing

problems in stable homotopy theory today.
Question 5 (Hill-Hopkins—Ravenel [16]) Does there exist a natural C,—ring spec-
trum, BP, with

underlying nonequivariant spectrum the smash product of p 1 copies of BP,
and

geometric fixed points ~ € BP, " HF,?

At p D 2, it should be the case that BP, D BPg.

Geometry & Topology, Volume 27 (2023)



Odd primary analogs of real orientations 95

To the above we may add:

Question 6 Does such a natural BP orient all ,—orientable Cy—ring spectra, or at
least all those that admit norms in the sense of Section 2?

Most of our attempts to build BP, have proceeded via obstruction theory, while MUfr is
naturally produced via geometry. It would be extremely interesting to see a geometric
definition of an object MU_ . Alternatively, it would be very clarifying if one could
prove that a reasonable BP  does not exist. As some evidence in that direction, the
authors doubt any variant of BP  can be homotopically even.

Even if BP, cannot be built, or cannot be built easily, it would be excellent to know
whether it is possible to build Co—ring spectra BPh1i,.

Question 7 Does there exist, for each prime p, a C,—ring BPh1li, satisfying the
following properties?

BPh1i, is the 2—localization of kug, and BPh1i, is the 3—localization of
tmf.2/.

The homotopy groups are given by
BPh1i, S Zo/E1;2;:55p 1% with jijD 2p 2:
The Cp—action on these generators should make 20 ,BPhli_into a copy of the
reduced regular representation.
There is a C,—ring map BPhli, ! E, 1.
BPhli, is homotopically even, and in particular p—orientable.

The underlying spectrum .BPh1i_ /¢ additively splits into a wedge of suspen-
sions of BPhp  1i.

We have " C» BPhli, ' F,(Eye for a generator y of degree 2p.

It is plausible that BPh1i  should come in many forms, in the sense of Morava’s forms of
K—theory [30]. A natural E 1 form might be obtained by studying compactifications of
the Gorbounov—Hopkins—Mahowald stack [7; 12] of curves of the form

yP 1D x.x 1/.x ai/.x ap 2f:

Studying the uncompactified stack, it is possible to construct a Co—equivariant E 1 ring
E.1/, whichis a, analog of uncompleted Johnson-Wilson theory. The details of this
construction will appear in forthcoming work of the second author.
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Remark 1.24 The Cy,—action on C P1p is naturally the restriction of an action by .

In fact, most objects in this paper admit actions of *,, or at least of C, 1 E Cp, but
these are consistently ignored. The reader is encouraged to view this as an indication

that the theory remains in flux, and welcomes further refinement.

Remark 1.25 Since work of Quillen [34], the notion of a complex orientation has
been intimately tied to the notion of a formal group law. There are hints throughout

this paper, particularly in Sections 2 and 6, that the norm and diagonal maps on C Fﬂp
lead to equivariant refinements of the p—series of a formal group. It may be interesting
to develop the purely algebraic theory underlying these constructions, particularly
if algebraically defined v; * turn out to be of relevance to higher-height Morava E -
theories.

1.3 Notation and conventions

If X is a Cy,—space, we use X © to denote the underlying nonequivariant space, and
we use X ¢» to denote the fixed-point space. If X is a Co—spectrum, we will use either
"eX or X© to denote the underlying spectrum, and we use “Cr X to denote the
geometric fixed points.

We fix a prime number p, and throughout the paper all spectra and all (nilpotent)
spaces are implicitly p—localized. In the C,—equivariant setting, this means that we
implicitly p—localize both underlying and fixed-point spaces and spectra.

If X is a Co—space or spectrum, we use ¢X to denote the homotopy groups of X €,
considered as a graded abelian group with C,—action. If V is a C,—representation, we
use V’CX to denote the set of homotopy classes of equivariant maps from SV to X.

We let S denote the cofiber of the C,—equivariant map .C,/c ! S , afd we also use
S to refer to the suspension Cy—spectrum of this C,—space. We let S denote the
Spanier-Whitehead dual of the C,—spectrum S . Given a C,—representation V and a C,—
spectrum X, weuse P X énd ° C  to denote the set of homotopy classes of
equivariant maps from SV ciDSY 7 s YndSY WDSY “'S  toX.

We denote the fiber of the C,—equivariant multiplication map .CP /P 1 CP ! by
CP . 1

If R is a classical commutative ring, we use xg to denote the RCEG, *—module given
by the augmentation ideal ker.RGEGC,®! R /. This is a rank-.p 1/ R—-module with
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generators permuted by the reduced regular representation of C,. We similarly use 1 to
denote the RCEG, *—module that is isomorphic to R with trivial action. We sometimes use
r to denote RCEG,4 tself, and write free to denote a sum of copies of .
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2 Orientation theory

Nonequivariantly, one may study complex orientations of any unital spectrum R.
However, if R is further equipped with a homotopy commutative multiplication, then
the theory takes on extra significance: in this case, a complex orientation of R provides
an isomorphism R.CP 1/ S REPe .

In this section, we work out the analogous theory for y—orientations. In particular, we find
that the theory of ,—orientations takes on special significance for C, homotopy ring
spectra R that are equipped with a norm N “R 1 R refining the underlying
multiplication. Recall the following definition from the introduction:

Definition 2.1 A ,—orientation of a unital C,—spectrum R is a map

ttcpt 1 t1CR
such that the composite '
st ticptl tICR

is equivalent to T 1€ of the unit.

For any C, representation sphere SV, it is traditional to denote by S ESY ¢ the free

E1—ring spectrum

SOV s 0° sV cg2V sg3V e
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Below, we extend this construction to take input not only representation spheres SV,
but spoke spheres as well.
Definition 2.2 For integers n, let

SOES®™ 1 WD N2 SOES?™ 2e/ oz 2.5°;

where we consider N$? SOES2™ 26 35 an SOES2" 2e—bimodule via the E;—map in-
duced by the composite

SZn 2| Cp/C "San 2| NCgSOCESan 2'.

In this composite, the first map is adjoint to the identity on Sznp 2 and the second

map is the canonical inclusion. Note that S°CES2" 1 4s a unital left module over Ng?
sSEs2m 2.,

Furthermore, given a C,—equivariant spectrum R, we set
RES®™ ' DR “SP@ES2" 1 »
Construction 2.3 Suppose that R is a homotopy ring in Cy—spectra, further equipped

with a genuine norm map
NSPR IR
which is unital and restricts on underlying spectra to the composite
.AeR/"p id”"” P 1! .neR/"p m AeR;

|
where 2 C, is the generator and m is the p—fold multiplication map.

If R is ,—oriented by a map

then we may produce a map
RES 1 4 R CPuc
as follows. First, the composite
S 2Ff " CocAS 2/1 "e.s 11 e RCPLC/

where the map e is the inclusion of the factor of S 2 corresponding to the identity
in Cp, extends to a map
SOs 24 “e RCPhcy
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since the target is a homotopy ring. Norming up, and combining the norm on R with
the diagonal map CP pl | Map.Cp; CPP]‘, we get a map
NE? SOES 2e/1 Ne?.RCPoc/1 RCPoc:
1

Finally, the extensionof Coc S 2! R CPocovers 1 provides a nullhomotopy of
the composite

1

S 21 .Cp/c”S 21 RSPec;
producing a map
SOESs T d R CPec:

We finish by extending scalars to R, using the assumption that R is a homotopy ring.

Construction 2.4 If R is p—oriented then so too is the Postnikov truncation Ry,.
The construction above is natural, and so we may form a map

1

1
RES ' @#\Dli mR,@ES * o li m.Ry/FPec® RPoc:
Theorem 2.5 Suppose R is a p—oriented homotopy C, ring, further equipped with a
unital homotopy Necp R—module structure such that the unit
NePR IR

respects the underlying multiplication in the sense of Construction 2.3. Then, with
notation as above, the map

RES 14 R CPoc
is an equivalence.
Proof By construction, it suffices to prove that the map
R\GES L & .R ,/CPec’

is an equivalence for each n 0. This is clear on underlying spectra. On geometric
fixed points we can factor this map as

.ACpRn/ES 14‘ . ’\CpRn/BCpC ! ACp..Rn/CPpC/,‘l

being careful to interpret the source as a module (this is not a map of rings). Specifically,
the above composite is one of unital " C» N Sp SOGES 2¢' S OES 2e—modules and,
separately, one of ~ ¢» R,—modules.
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The second map is an equivalence by Lemma 2.6 below, so we need only prove that
the first map is an equivalence. Since p D 0in " €» R, the Atiyah—Hirzebruch spectral
sequence computing .~ ©» R, /BCrc has Ep—page given by

PRy ", fE, X/ "F, FoCEy®

The class x is realized by applying geometric fixed points to the ,—orientation. The
powers of y are obtained from the unit of the unital S°CES 2e—module structure. Using
the "~ C» R,—module structure, this implies that the spectral sequence degenerates and
moreover that the first map is an equivalence. O

Lemma 2.6 If R is bounded above, and X is a Cy—space of finite type, then the map
e R/XEp 1 " Ce RXey
is an equivalence.
Proof Write X D colim X,,, where the X, are skeleta for a C,—CW-structure on X
with each X, finite. Then the fiber of
“Co RXc/ 1 ~Co R¥ncy
becomes increasingly coconnective, and hence the map
~Co RXc/ 1 lim " R¥ncy
is an equivalence. We are thus reduced to the case X D X, finite, where the result

follows since “€r . /is exact. O

Remark 2.7 In practice, the conditions of Theorem 2.5 are often easy to check. For
example, any C,—commutative ring R in the homotopy category of C,—spectra will be
equipped with a unital homotopy NeC p R—module structure respecting the multiplication
in the sense of Construction 2.3; see [14]. We choose to write Theorem 2.5 in generality
because, even nonequivariantly, one occasionally studies orientations of rings that are
not homotopy commutative (like Morava K—theory at the prime 2).

Since Z is p—oriented by Remark 1.6 and truncated, we have the following corollary
of Theorem 2.5.

Corollary 2.8 There is a natural equivalence

2as 1oz CPec:
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3 Evenness

In this section, we will introduce a notion of evenness in Cy,—equivariant homotopy
theory. This is a generalization of the notion of evenness in nonequivariant homotopy
theory. Evenness comes in two forms: homological evenness and homotopical evenness.
Homological evenness is a C;—equivariant version of the condition that a spectrum
have homology concentrated in even degrees, and homotopical evenness corresponds
to the condition that a spectrum have homotopy concentrated in even degrees.

The main results in this section are Proposition 3.9, which shows that, under certain
conditions, a bounded below homologically even spectrum admits a cell decomposition
into even slice spheres (defined below), and Proposition 3.17, which shows that there
are no obstructions to mapping a bounded below homologically even spectrum to a
homotopically even spectrum.

3.1 Homological evenness

We begin our discussion of evenness with the definition of an even slice sphere.
Definition 3.1 We say that a C,—equivariant spectrum is an even slice sphere if it is
equivalent to one of

.Cp/c”S2%";, 2 s2ncic for some n2 Z:
A dual even slice sphere is the dual of an even slice sphere. The dimension of a (dual)

even slice sphere is the dimension of its underlying spectrum.

Remark 3.2 The phrase slice sphere is taken from [40, Definition 2.3], where a G—
equivariant slice sphere is defined to be a compact G—equivariant spectrum, each of
whose geometric fixed-point spectra is a finite direct sum of spheres of a given
dimension.

It is easy to check that the (dual) even slice spheres of Definition 3.1 are slice spheres
in this sense.

Remark 3.3 In the case p D 2, the even slice spheres are precisely those of the form

.Ca/c”S?™ or S" forsome n2Z:
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Definition 3.4 We say that a Co,—equivariant spectrum X is homologically even if
there is an equivalence of Z ,/—modules

X”L.p/' Sn”;.p/;

n

where Sy, is a direct sum of even slice spheres of dimension 2n.

Remark 3.5 When p D 2, this recovers the notion of homological purity given in
[13, Definition 3.2]. However, when p is odd, our definition of homological evenness
differs from Hill’s definition of homological purity. The most important difference is
that we allow the spoke spheres S 2"C1C to appear in our definition. This is necessary for
CP, tolbe homologically even.

As in the nonequivariant case, homological evenness for a bounded below spectrum is
equivalent to the existence of an even cell structure. To prove this, we need to recall
the following definition from [40; 21].

Definition 3.6 A C,—equivariant spectrum X is said to be regular slice n—connective if

(1) X¢© is n—connective, and

(2) ~Ce X is dn=pe—connective.

Furthermore, we say that X is bounded below if it is regular slice n—connective for
some integer n.

Lemma 3.7 Let X be a bounded below C,—spectrum with the property that " € X is of
finite type. Then X is regular slice n—connective if and only if X “ Z , , is regular slice
n—connective.

Proof For the underlying spectrum, this follows from the fact that Z ,, detects
connectivity of bounded below p—local spectra. For the geometric fixed points, we
use the fact that "©» Z ,, D F,(Eye with jyj D 2 detects connectivity of bounded below
p-local spectra which are of finite type, since a finitely generated Z ,,—module is
trivial if and only if it is trivial after tensoring with Fp. O

Lemma 3.8 Let W denote an even slice sphere of dimension n, and suppose that X is
regular slice n—connective. Then we have EW; tXD 0.
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Proof If W is of dimension n, then its underlying spectrum W € is a direct sum
of n—spheres and "~ €» W is a dn=pe—sphere. It therefore follows that W is a regu-
lar slice n—sphere in the sense of [40, Section 2.1], so the conclusion follows from
[40, Proposition 2.22]. O

Proposition 3.9 Let X be a bounded below, homologically even C,—equivariant

spectrum with the property that “ Ce X is of finite type, so that there exists a splitting

r” M Y
X" Zpy Sk "L/

kn
where S| is a direct sum of 2k—dimensional even slice spheres. Then X admits a
filtration X, gx such that X, =X, ' Sy foreachk n.

Proof By assumption, we are given a splitting

r” M r”
X"Zyy Sk "Ly

kn
where S| is a direct sum of 2k—dimensional even slice spheres. By induction on n, it
will suffice to show that the dashed lifting exists in the diagram

]

Sh —— Sk "Z.,,' X" Z,y
kn

since the cofiber of any such lift is a bounded below homologically even C,—spectrum
with " e X of finite type and whose Z ,,~homology is ~ |\ ,c1 Sk " Z.p/-

Note that Lemma 3.7 implies that X is regular slice 2n—connected. Let F be the fiber of the
Hurewicz map SO ! Z /. Then F s easily seen to be regular slice 0—connective, so

that F “ X is regular slice 2n—connective. This implies that GES,; tF “ X eD 0 by
Lemma 3.8. The result now follows from the cofiber sequence

X1 Zy,7X 1 tF7X: ad
Remark 3.10 It will follow from Example 3.16 and Proposition 3.18 that the following

converse of Proposition 3.9 holds: if X is bounded below and admits an even slice cell
structure, then X is homologically even.
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3.2 Homotopical evenness
We now introduce the homotopical version of evenness.

Definition 3.11 We say that a C,—equivariant spectrum E is homotopically even if,
foralln2 2z,

(1) ,°,EDO,

(2) ,SEDO,

(3) ,%, EDO.
Remark 3.12 All of the examples of homotopically even C,—spectra that we will
encounter will also satisfy, foralln2 Z,

(4) ,SEDO.
We will say that a homotopically even Cy—spectrum satisfies condition (4) if this holds.

In fact, the examples which we study satisfy even stronger evenness properties. We
have chosen the weakest possible set of properties for which our theorems hold.

Remark 3.13 If we assume condition (1), then we may rewrite conditions (3) and (4) as:
(39 The transfer maps 25 2Bl 5, SE aresurjective foralln2 z. (49)
The restriction maps ,"E ! Czpnp E are injective foralln2 Z.

This follows directly from the cofiber sequences defining S and S:
S 1 s " .cy/c”S%  .Cp/c SO ™ sO1 s

Remark 3.14 Conditions (1)—(4) have some implications for the slice tower of any
homotopically even E, which can be read off from [21]; cf [40, Theorem 3.5]. First,
conditions (1) and (2) together imply that slices in degrees 2np 1 are trivial. Secondly,
condition (4) implies that the .2np/t" slice is the zero-slice determined by the Mackey
functor ;.. However, when p > 2, the implication of (3) for slices is obscure, and many
slices are unconstrained.

Remark 3.15 If p D 2, Definition 3.11 reduces to the requirement that, foralln2 Z,
(1) ,°,EDO,and
(2) ,GEDO.

A Cy—equivariant spectrum is therefore homotopically even if and only if it is even in the
sense of [19, Definition 3.1]. Moreover, condition (4) is redundant in the C;—equivariant
setting.
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Example 3.16 The Eilenberg—Mac Lane spectra F, and Z ,, are examples of homo-
topically even C,—spectra which satisfy condition (4). To verify this, we refer to the
reader to the appendix of third author’s thesis [39, Section A], where one may find a
computation of the spoke graded homotopy groups of F, and Z ;.

At the prime p D 2, there are many examples of homotopically even Cy—spectra in the
literature, such as MUg; BPgr; BPhnig; E.n/g, K.n/g and E, where E, is equipped
with the Goerss—Hopkins Cy—action [19; 9].

The main result of Section 5 is that the Co—spectra E,, 1 and the C3—spectrum tmf.2/
are homotopically even and satisfy condition (4).

When trying to map a bounded below homologically even C,—spectrum into a homo-
topically even C,—spectrum, there are no obstructions:

Proposition 3.17 Let E be a homotopically even C,—spectrum, and suppose that X
is a Co—spectrum equipped with a bounded below filtration fXy gy, such that each
Sk WDX, =X\ 1 is adirect sum of 2k—dimensional even slice spheres.

Then, for any k n, every Co—equivariant map X ! E extends to an equivariant map X
| E.

Proof It suffices to prove by induction that any map X, ! E extends to a map
Xkc1 ! E. Using the cofiber sequence

1
t “Skcr! X! Xgeas

we just need to know that any map from the desuspension of an even slice sphere
into E is nullhomotopic. This follows precisely from the definition of homotopical
evenness. a

If E further satisfies condition (4), we have the stronger result:

Proposition 3.18 Let E be a homotopically even Co—ring spectrum which satisfies
condition (4), and suppose that X is a C;—spectrum equipped with a bounded below
filtration X, g, such that each Sy WDX, =X, 1 is a direct sum of 2k—dimensional
even slice spheres.

Then there is a splitting of the induced filtration on X “ E by E-modules:

M
X“E' Sy “E:
kn
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Proof We need to show that the filtration X, g\, splits upon smashing with E.
Working by induction, we see that it suffices to show that all maps

S ! tSm ”E;

where k > m, are automatically null. Enumerating through all of the possible even
slice spheres that can appear in S and S.,, and making use of the (noncanonical)
equivalence M
S”s ' sO° ..Colc”S°/;

p 2
we find that this follows precisely from the hypothesis that E is homotopically even
and satisfies condition (4). O

4 The homological evenness of CP pl
The main goal of this section is to prove the following theorem.
Theorem 4.1 The C,—spectrum t 1 CP pl is homologically even.

Noting that “Ce + 1 CP pl D 1B C, is of finite type, we may apply Proposition 3.9
and so deduce the following corollary.

Corollary 4.2 Thereis afiltrationft1 CP Ngno of lcp , With subquotients

8
S2m’ L ..CL,,/C”SZ”/ if nD mp;
TlCP”p=1‘1CP”p1' o §2mcice ..Cp/c”S2"/ ifnD mpC1;
..Co/c” S2n/ otherwise:

Warning 4.3 We believe that there is a filtration fCP , 8no of the space CP . that
recovers f 1 CP ng,o upon applying T, but we do not prove this here. As such, our
namet 1 CP" must be regarded as an abuse of notation: we do not prove that

t1cpn Jis T 1 ofaC,—space CP" - In light of the Dold-Thom theorem, it seems
likely that the space CP p” could be defined as the nt" symmetric power of S 1€,

Remark 4.4 The identification of the particular even slice spheres appearing in this

decomposition is determined by the cohomology of CP pl as a C,—representation, and in
particular from the combination of Corollary 2.8, Lemma 4.9 and Proposition 4.10.
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As an application, we obtain the following analog of the fact that any ring spectrum
with homotopy groups concentrated in even degrees admits a complex orientation.

Corollary 4.5 Let E be a homotopically even Co—ring spectrum. Then E is ,—
orientable.

Proof We wish to show that the .1 C /—suspension of the unit map factors as
stc¢1 +tcpt 1 +1CE:
P
This is an immediate consequence of Corollary 4.2 and Proposition 3.17. O

We devote the remainder of the section to the proof of Theorem 4.1. By Corollary 2.8,
there is an equivalence
@S 1 4 7 CPot,

This is of finite type, so to prove Theorem 4.1 it will suffice to prove the following
theorem and dualize.

Theorem 4.6 As a Co—equivariant spectrum, SOES?" 1 ds a direct sum of dual
even slice spheres foralln2 Z.

To prove this, we will construct a map from a wedge of dual even slice spheres which
is an equivalence on underlying spectra and geometric fixed points.

Construction 4.7 The composition
S 21 .Cp/c”S?™ 21 NpSP@ES®™ 2d s @S ! s
canonically null, and hence induces a map
aws?" 1 1 s9xs?" 1 s On
the other hand, letting
XWS2MP 2| gOEg2mp
2 denote the canonical inclusion, there is the norm map

Nmx/WS-2"P 2/ 1 NCSOES2™ 24 5 OEs?" 1 »
Since SOES2" 1 &s a module over N FSOES2™ 26, this implies the existence of
maps

me/kzé'WSanp 2/C".2n 1 /I SOCESZn 1 °

fork 2 N and " 2 f0; 1g.

Geometry & Topology, Volume 27 (2023)



108 Jeremy Hahn, Andrew Senger and Dylan Wilson

We first show that the sum of these maps induces an equivalence on geometric fixed
points.

Proposition 4.8 Let
%W M Sk2np Z/C".ZI’\ 1 /! SOCESZn 1 °
kO;
"2f0;1g

denote the direct sum of the maps Nm.x/% x". Then " €r %o/ is an equivalence.

Proof We have an identification
~CpSOES2M 1 45 OES2™ 24”4 rn 2,50 SOES2™ 207 507 o0 5,50/
Under this identification, the map

“Co Nmx//WS2"P 21 ~CogOgsan 1 .
corresponds to the inclusion of S2 P 2 into the left factor.
There are equivalences

SO “sogsan 2,50 " tiBar,;ets2" %/t lgan 1
and hence an isomorphism
H®.SO “cogsan 2.5°%12/8 fz.x20n 1/
Furthermore, the map
~Cp gWs2n 1| ~CrgOgs2n 1 ,

sends the fundamental class of S2™ 1to X2, 1.

It follows that " ©» %o/ induces an isomorphism on homology, so is an equivalence. 0O

Our next task is to extend %oto a map that also induces an equivalence on underlying
spectra. We will see that this can be accomplished by taking the direct sum with maps
from induced even spheres, which are easy to produce. The main input is a computation of
the homology of the underlying spectrum of SOGES2" 1 e as a C,—representation.
Lemma 4.9 There is a C;—equivariant isomorphism

HSO@ES? 1 «1Z/ 3 Sym .x/;

where x lies in degree 2np 2.
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Proof There are equivariant isomorphisms
He.SO@ES?" 2e1Z/5 Sym x/;
He.NSP SCES?™ 2e1Z/3 Sym,./;

where x and both lie in degree 2np 2. As SOES2" 1 e s a unital Ne p §0ES2 2e—
module, we obtain a map

Sym,/! He.SC@ES®" ! e1Z/

of Sym,./-modules. Since x goes to zero in H®.SOES?" 1 17/, it follows that
this factors through a map

Sym,.x/ S Symy./“sym,x/Z ! He .SOES?" 1 e17/:

Examining the Kiinneth spectral sequence, this map must be an isomorphism. O

The following theorem in pure algebra determines the structure of the mod p reduction
SymFp .x/ as a Cy—representation.

Proposition 4.10 [1, Propositions 111.3.4—111.3.6] Let x denote the reduced regular
representation of C, over F,, and let eq;:::e, 2 x denote generators which are cycli-
cally permuted by C, and satisfye;CCe, D0O. Weset NmDej e, 2 Symp X/

Then the symmetric powers of x decompose as

8
< 1fNm g°free if kD 'p;

SymL‘p.x/§ xfNmey;:::;Nmepg free if kD "pCl;
’ free otherwise.

Proof of Theorem 4.6 Let %obe as in Proposition 4.8. By Lemma 4.9 and Proposition
4.10, the mod p homology of "¢.SCES2" 1 e/ splitsasim.H.%d// free. Moreover, %ois
an equivalence on geometric fixed points by Proposition 4.8.

It therefore suffices to show that, given any summand of 4° SOES2" 1 el F,/
isomorphic to , there is a map .Cp/c “ S2k 1 SOES2" 1 e whose image is that
summand. Taking the direct sum of %owith an appropriate collection of such maps,
we obtain an F,—homology equivalence. Since both sides have finitely generated free
Z—homology, this must in fact be a p—local equivalence, as desired.

To prove the remaining claim, it suffices to show that the mod p Hurewicz map

SPES?™ 1 e/ HESOES?" ! oelF,/
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is surjective in every degree. This follows from the square

NP SOES2™ 2¢/ 5 HENPSOES2™ 26| F,/

| |

SOES2 1 e/, HSOES2" 1 e|F,/

where the top horizontal arrow is a surjection because NSpSP@ES2™ 24 s a
nonequiv-ariant direct sum of spheres, and the right vertical arrow is a surjection by the
proof of Lemma 4.9. O

5 Examples of homotopical evenness

In this section, we introduce our principal examples of homotopically even C,—ring
spectra. By Corollary 4.5, they are also p,—orientable.

Our first examples are the Morava E—theories E, 1 associated to the height p 1
Honda formal group. As we will recall in Section 5.1, E, 1 admits an essentially
unique Cy—action by E;—automorphisms. We use this action to view E, 1 as a Borel
Co—equivariant E;—ring.

Our second example is the connective E;—ring tmf.2/ of topological modular forms
with full level 2 structure. The group GL,.Z2=2Z/S t3 acts on tmf.2/ via modification
of the level 2 structure, and we view tmf.2/ as a C3—equivariant E;—ring via the
inclusion C3 T3. We will discuss this example in Section 5.2.

The main result of this section is the homotopical evenness of the above C,—ring
spectra.

Theorem 5.1 The Borel C,—equivariant height p 1 Morava E-theories E, 1 as-
sociated to the Honda formal group over F,, 1 are homotopically even and satisfy
condition (4).

Theorem 5.2 The C3-ring spectrum tmf.2/ of connective topological modular forms
with full level 2 structure is homotopically even and satisfies condition (4).

Applying Corollary 4.5, we obtain the following corollary.

Corollary 5.3 The C,—ring spectra E, 1 and tmf.2/ are ,—orientable.
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5.1 Heightp 1 Morava E-theory

To a pair .k; G/, where k is a perfect field of characteristic p > 0 and G is a formal
group G over k of finite height h, we may functorially associate an E;—ring E.k; G/,
the Lubin—Tate spectrum or Morava E—theory spectrum of .k; G/; see [6; 27]. There is
a noncanonical isomorphism

where ju;jD Oand jujD 2.

Given a prime p and finite height h, a formal group particularly well-studied in
homotopy theory is the Honda formal group. The Honda formal group G';°”da is
defined over Fy, so the Frobenius isogeny may be viewed as a endomorphism

Honda | Honda .
F WgHionda | ghlonda,

The Honda formal group is uniquely determined by the condition that F" D p in
End GHonda/
.G’y .

The endomorphism ring of the base change of G':f"da to F,n is the maximal order Oy,
in the division algebra Dy, of Hasse invariant 1=h and center Q,. By the functoriality
of the Lubin—Tate theory construction, the automorphism group Sy, D O hof GH°£da
over Fyn actson E.Fyn; G H;’“da/. To keep our notation from becoming too burdensome,
we set

Ep 1WDE.Fyp 1;GEO"/:

There is a subgroup C, S, 1, which is unique up to conjugation. Indeed, such
subgroups correspond to embeddings Qp .,/ Dy 1. Since Qp.p/ is of degree p 1 over
Qp, it follows from a general fact about division algebras over local fields that such

a subfield exists and is unique up to conjugation; see [36, application on page 138].
Using any such C,, we may view E, 1 as a Borel C,—equivariant E;—ring spectrum.

Homotopical evenness of E, 1 will follow from the computation of the homotopy
fixed-point spectral sequence for Eicpl, which was first carried out by Hopkins and
Miller and has been written down in [32] and again reviewed in [11]. We recall this
computation below. The homotopy fixed-point spectral sequence takes the form
hc
HS-Cp;tEp 1/) t sEP 17 :
so the first step is to compute the action of C, on Ep 1.

This action may be determined as follows. Abusing notation, let v4 2 2, 2Ep 1
denote a lift of the canonically defined element v1 2 5, 2E, 1=p. The element v,
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is fixed modulo p by the Sy, 1 and in particular the C,—action on E, 1, so if we
fix a generator 2 C, we find that the element v1 v is divisible by p. SetvD .vi
v1/=p. Then the two key properties of v are:

(1) vcvccre lvDo.
(2) visaunitinEp 1. As aconsequence, Nm.v/D vvP lyisaunitin Ep 1
which is fixed by the C,—action [32, page 498].

The existence of an element v satisfying the above two conditions completely determines
the action of C, on E, 1, as follows. First, letw 2 5 E, 1 denote any unit, and set w D
v Nm.w/2 ,E, 1. Then w continues to satisfy (1) and (2) above and determines
a map of C,—representations

Xw.f, 1/ 2B 1
This determines a C,—equivariant map
SymW'Fpp X CENm.w/ ' B, g

which identifies E; 1 with the graded completion of Sym,,, ., X/GENm.w/ e at
! p
the graded ideal generated by the kernel of the essentially unique nonzero map of
W .Fpr 1/CEC,e—modules xy Foo 1/ P lep o

Remark 5.4 In Section 7, we will see that the element v is intimately related to the
p—orientability of E, 1. For later use, we note that it follows from the above analysis

that the map XFp ' 2p 2Ep 1=.p; m2/ induced by v is an isomorphism.

Remark 5.5 As pointed out by the referee, the element v 2 ,, 2E, 1 may also be
described in terms of BP-theory. The class t1 2 BP,, >BP determines a function 4W
Sp 1! Ea2p 2,anditfollows from the formulag.v1/ D v1Cpty in BPBP thatt;. 1/D

.v1 Vv1/=p D v. From this perspective, the crucial fact that v is a unitin E, 1 follows
from the calculations in [35, pages 438-439].

Using the above determination of the C,—actionon E, 1, as well as Proposition 4.10,
one may obtain with some work the following description of H®.Cp; tEp 1/.

Proposition 5.6 (Hopkins—Miiller; cf [11, Proposition 2.6]) There is an exact se-
quence

(5-1) Ep 1 ! "H.Co;Ep 1/! Fpo 1,71 e=2/1 0;

where j.jD .1;2p 2/,j°iD .2;2p2 2p/and jijD .0;2p/.
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Finally, we must recall the differentials in the homotopy fixed-point spectral sequence.
We let'D denote equality up to multiplication by an element of W . Foe 1/. Then, as

explained in [11, Section 2.4], the spectral sequence is determined multiplicatively by
the differentials

dap 1/c11/D 7P Lt ep 1,

d2.p 1/2c1-"p 1/3‘/D' vP 1/2C1;

along with the fact that all differentials vanish on the image of the transfer map.

In particular, on the E;—page of the homotopy fixed-point spectral sequence there are
no elements in positive filtration in total degrees 0, 1 or 2. Indeed, there are no
elements at all in the . 1/—stem.

We now have enough information to establish the homotopical evenness of E,, 1.

Proof of Theorem 5.1 Letu2 , E% ; denote the periodicity element. Then Nm.u/in 2

Ep Seis also invertible, so the RO.C,/—graded equivariant homotopy of E, 1is 2—
periodic.

Therefore, using Remark 3.13, we see that it suffices to show that:

(1) °,E, 1D O.

hCp
(2) 1EP . DoO.

hc
(3) The transfermap JE, 1! 2 E, 4 is a surjection. (4)
The restriction map ¢ Eﬁ" 1! o Ep 1 isaninjection.
Condition (1) is immediate from the fact that E, 1 is even periodic. Condition (2) is a

direct consequence of the above computation of the homotopy fixed-point spectral
sequence. Condition (3) follows from the following two facts:

The short exact sequence (5-1) implies that HO.Cp; 2Ep 1/ is spanned by the
image of the transfer.

On the E;—page of the homotopy fixed-point spectral sequence, there are no
positive filtration elements in stem 2.

Condition (4) follows from the fact that on the E;—page of the homotopy fixed-point
spectral sequence, there are no positive filtration elements in the zero stem. O
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5.2 The spectrum tmf.2/ as a form of BPh1i,

Recall from [38] or [18] the spectrum tmf.2/ of connective topological modular forms
with full level 2 structure.l In this section we will consider tmf.2/ as implicitly 3—
localized. It is a genuine t3—equivariant E;—ring spectrum with t3—fixed points
tmf.2/%3 D tmf, the (3—localized) spectrum of connective topological modular forms.
We view tmf.2/ as a C3—spectrum via restriction along an inclusion C3 t3.

This spectrum has been well-studied by Stojanoska [38]. In particular, Stojanoska
computes ¢tmf.2/ D Z3/(E;; 2, where jij D 4 and a generator of C3 actsby 1! »

1and » ! 1. It follows that 1 and » span a copy of x, so that tmf.2/ S
Sym X/ 'I;hse/ corresponding family of elliptic curves is cut out by the explicit
equation '

vZD x.x 1/.Xx of:

For later use, we note down some facts about the associated formal group law.

Proposition 5.7 The 3—series of the formal group law associated to tmf.2/ is given by
the formula

(E3sx /D3xC8.1C,/x3C24.2 21,C%/x>C72.2 2, 3C3/x7C8.27} 16>
€98,2 ,76:3C27%/x° coOx*?/: 5
It follows that we have the formulas

vi 1 2mod3 and v ; ,’mod B;v/:
Proof This is an elementary computation using the method of [37, Section IV.1]. O

Remark 5.8 LetvD 1 3,sothatv vi modp. Then we have

v vD ..1 2/C1/C1C2D31}
so that
%.v v/D 1:

This element generates tmf.2/ as a Z 3,—algebra with C3—action. In Section 7, we
will relate this element to the 3—orientation of tmf.2/.

*The spectrum tmf.2/ is obtained from the spectrum Tmf.2/ discussed in the references by taking the
T3—equivariant connective cover.
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In the third author’s thesis, the slices of tmf.2/ have been computed as follows;
cf [17, Section 4].

Proposition 5.9 [39, Corollary 3.2.1.10] Given a C,—equivariant spectrum X, let
P : X denote the nt slice of X . The slices of tmf.2/ are of the form

P "tmf.2/" Z3/@ES? ! s n

We now turn to the proof of Theorem 5.2. Given the computation of the slices of tmf.2/
in Proposition 5.9, this will follow from Theorem 4.6 and the following proposition.

Proposition 5.10 Suppose that X is a C;—spectrum whose slices are of the form P,
X™ Sy “Z ./, where Sy is a direct sum of dual even slice n—spheres. Then X is
homotopically even and satisfies condition (4).

Using the slice spectral sequence, the proof of Proposition 5.10 reduces to the following
lemma:

Lemma 5.11 LetS denote a dual even slice sphere. Then S “ Z ,, is homotopically
even and satisfies condition (4).

Proof IfS ' S§2n~ .Cp/c, then this follows from the fact that 25, 1Z.,, D Ofor
alln2 Z.

If S ' S2n, then this follows from the fact that Z ,/ is homotopically even, since the
definition of homotopically even is invariant under 2—suspension.

IfS' S2m 1 then condition (1) of Definition 3.11 is clearly satisfied, and condi-
tions (2)—(4) follow from the following statements for all n 2 Z, which may be read
off from [39, Section A.2]:

C
2nCZ~p/ DO, 2n

1Z£,/D 0,

CP
2nc1ct

In the proofs of (3) and (4) we have implicitly used the existence of equivalences

o/ DO.

M
S”s 'SP Cc,/c”S%0
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6 The class v, * and a formula for its span

In this section, given a ,—oriented C,—ring spectrum R, we will define a class
Ko

When p D 2, our construction agrees with the class v;‘ 2 2R in the homotopy of

a Real oriented Co—ring spectrum. Just as v1 is well-defined modulo p, we will see
that v® is well-defined modulo the transfer. We will also give a formula for the image of
v® inthe underlying homotopy of R in terms of the classical element v4 and the

Co—dction.

CplCpy &
v,;P2, %" "R/S ,

To define v,/ we first construct a class VP 2 Co 1‘21 cpl, gnd then we take its

image along the p—orientation ¥ 1 CPp! ! t1CR. To begin, we recall an
analogous construction of the classical element vj.

6.1 The nonequivariant v; as a pt" power

We recall some classical, nonequivariant theory that we will generalize to the equivariant
setting in the next section.

Notation 6.1 Welet"WS2' +1 CP11 +1 CP ! denotea generator of the stable
homotopy group » . t1 CP /.

SinceCP ! ' 1127 jsaninfinite loop space, its suspension spectrum T 1 CP ! is
a nonunital ring spectrum. This allows us to make sense of the following definition.

Definition 6.2 We define the class v1 2 2, T2 CP ! to be “P, the p' power of the
degree 2 generator.

There are at least two justifications for naming this class v1, which might more com-
monly be defined as the coefficient of xP in the p—series of a complex-oriented ring.

The relationship is expressed in the following proposition.

Proposition 6.3 Let R denote a (nonequivariant) homotopy ring spectrum equipped

with a complex orientation
t 2ttcptl R;

which can be viewed as a class x 2 R2.CP /. Then the composite
s2P 2V ¢+ 2+lcply R

records, up to addition of a multiple of p, the coefficient of xP in the p—series (Epeg.x/.
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Proof Consider the p—fold multiplication map of infinite loop spaces
.cpt/p Mcpt:
Applying R to the above, we obtain a map
RIXK ! RIxg;x2;:::;%K:

By the definition of the formal group law C ¢  associated to the complex orientation,
the class x 2 R2.CP 1/ is sent to the formal sum

The commutativity of the formal group law ensures that this power series is invariant
under cyclic permutation of the x;.

The composite
s 21 f 2. t+tcpl/ Pt 2tlcPt IR

that we must compute can be read off as the coefficient of the product x1 x> x,, in the

degree p monomial will be an element of ,, 2 R. Summing these coefficients over all the
possible degree p monomials, we obtain the coefficient of xP in the single-variable

Our claim is that this sum differs from the coefficient of x1x2 x, by a multiple

of p. The reason is that x1x2 X, is the unique monomial invariant under the cyclic
permutation of the x;. For example, the coefficients of xi; x‘;; 111 and xr‘: will all

be equal, so their sum is a multiple of p. O
Remark 6.4 The integral homology H.CP | Z ,,/ is a divided power ring on the

Hurewicz image of “. In particular, the Hurewicz image of v4 D " P is a multiple
of p times a generator of Hp, .CP 11 Z,o/l.

Consider the ring spectrum M U together with its canonical complex orientation
t 2+lcpl1l MU

The integral homology H.M U | Z/ is the symmetric algebra on the image, un-
der this map, of H.CP'1Z/. In particular, the Hurewicz image of vy in the
group Hap.t 211 CP L Z ,,/ is sent to p times an indecomposable generator
of Hzp 2.MUIZ,,/. By [29], this provides another justification for the name v;.
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Remark 6.5 One might wonder whether higher v;, with i > 1, can be defined in
.t1 cPl/. A classical argument with topological K—theory [31] shows that the
Hurewicz image of . T 1 CP 1/ inside of H.t1 CP | Z o/ is generated as a Zo/—

module by powers of “. For i larger than 1, the power ~ ' is not simply p times a
generator of H,,: .CP 1 Z,//, so it is impossible to lift the corresponding

indecomposable generators of MU /to.T 211 CP1/. However, it may be
possible to lift multiples of such generators.

Finally, we record the following proposition for later use.

Proposition 6.6 Let A denote a (nonequivariant) homotopy ring spectrum equipped

with a map
fwicprlt +2a

that induces the zero homomorphism on , (in particular, f is not a complex orienta-
tion). Then the image of v1 in 2, 2A is a multiple of p.
Proof Let C_1 denote the cofiber of ;WS2P 31 SO,
We recall first that, p—locally, the spectrum
t1cpP

L
admits a splitting as t2C ¢ ° kazz S2k. Indeed, since _; is the lowest positive-
degree element in the p—local stable stems, most of the attaching maps in the standard
cell structure for CP P are automatically p—locally trivial. The only possibly nontrivial
attaching map is between the .2p/t" cell and the bottom cell, and this attaching map is
detected by the P—actionon H.CP I F,/.

By cellular approximation, wWS2P | +1 CP ! must factor through t * CPP, and
again the lack of elements in the p—local stable stems ensures a further factorization of
v through t2C 1. Thus, to determine the image of vi in 2,.12A/, it suffices to
consider the composite

fzw2c ! ttcpPl vl cpll t2A:
There is by definition a cofiber sequence S2! t2C_; ! S2P. By the assumption
that f is trivial on ,, f #nust factor as a composite
t2C.1 1 S?P 1 2A:

We now finish by noting that the composite wWS2P | +2C_; ! S2P must be a
multiple of p, because otherwise C _1 would splitas S2P ° S 2, O
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Remark 6.7 The argument used in the proof of Proposition 6.6 suggests yet another
interpretation of Proposition 6.3, as pointed out by the referee. Proposition 6.3 is true
because 5, 2C .1 is generated by v1 in the Adams—Novikov spectral sequence.

6.2 The equivariant v,? asanorm

As we defined the nonequivariantv, 2 , ¥1 CP ! to be the p™ power of a degree 2
class, we similarly define an equivariant v,» 2 , ¥+! CP , 1o be the norm of a

degree 2 class. We thank Mike Hill for suggesting this conceptual way of construct-
ing vP. Toseethatt 1 CP . 1is equipped with norms, we will make use of the

foIIov&ing proposition.
Proposition 6.8 There is an equivalence of C,—equivariant spaces
° 1 + 1C Z' CP 1 ;
- p
where Z denotes the C,—equivariant Eilenberg—Mac Lane spectrum associated to the
constant Mackey functor.

Proof This is Remark 1.6. O

Construction 6.9 The above proposition equips the space CP pl with a natural norm,
meaning a map
Cp 1 e 1 .
NeP?..CP p//! cP )

Indeed, any Co—equivariant infinite loop space ¢1Y , like 1S 1¢Z, is equipped
with a norm
NP, ely /o1 oly:

This norm is » 1 applied to the C,—spectrum map
Colc”Y LY

that is induced from the identity on Y &.

Convention 6.10 For the remainder of this section we fix a (noncanonical) equivalence
.CPl/r cpi/P t:
The natural map of C,—spaces

si¢p cplp! CPpl
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then induces an (again, noncanonical) equivalence
w
1C e 2,
.S / l p 1 S ’

giving p 1 classes

Choosing our noncanonical equivalence appropriately, we may take the C,—action on
, CP fZ ,,/ to be given by the rules

(1) .vi/Dvic;Lifli o] 2,and(2)
o 1/D T T2 b1
Definition 6.11 We let
v.Pv21 tlcpl?
1 p
denote the norm of “1. Explicitly, norming the nonequivariant “; map yields a map
S2' Nefs21 NeF.mettcpltyy
and we may compose this with the norm map of Construction 6.9 to make the class

Cgp 1 1 .
v,;P2, % CP /.p

Remark 6.12 Of course, the choice of the class "1 above is not canonical. We
view this as a mild indeterminacy in the definition of v, *, related to the fact that the

classical v1 should only be well-defined modulo p. As we will see later, many formulas we
write for v, will similarly be well-defined only modulo transfers.

6.3 A formula for v, ° in terms of v,

Our next aim will be to give an explicit formula for the image of v, * in the underlying
homotopy of a p—oriented cohomology theory. Our formula is stated as Theorem 6.21.
To begin its derivation, our first order of business is to give a different formula for v, °
modulo transfers.

Proposition 6.13 In , ¢ ticp! /,pthe class pv,* and the class Tr.”, / dfffer by p
times a transferred class. In particular, Tr.” /is qivisible by p, and the class Tr.”;

/=p fs the restriction of a class in >t 1 cpt .
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Proof Identifying , et CP . A with Xz ,, and using the nonunital E;—ring struc-ture
ont 1 CPF},We obtain a map

sym. xz, /! en.’r1CP1/'

p/ 4

under which the norm class Nm maps to the image of v, . The conclusion of the
proposition then follows from Lemma 6.14 below. O

Lemma 6.14 Let xz , denote the reduced regular representation of Cp over Z /,

satisfye1 C Cep, D 0. Weset NmD eje, 2 Symzlp /sz_p//.

Then Tr.ef /s divisible by p, and Nm and Tr.eP/=p differ by a transferred class in
Symb, .xz,/.
.p/

Proof To see that Tr.ef/ is divisible by p, we expand it out in terms of the basis

Tref/DefCCe, C. e1 e e 1/

It is clear from linearity of the Frobenius modulo p that Tr.e / is divisible by p. Our

next goal is to show that Nm Tr.elf=p is a transferred class. It is clearly fixed by the
Co—action, so we wish to show that its image in

.Syr’rf’ZAp/.lep///Cp
Tr.Sym"Z_p/.szp///

is zero. Since p times any fixed point of C,, is the transfer of an element, there is an
isomorphism

p
'Symozp/-XZ-p///cpg 'Syme'XFp//c”.

5 :
Tr.Syrrf’z'p/.szp/// Tr.Sym p.pr//

By Proposition 4.10, there is an isomorphism of Cy—representations
Sym""p.x;p/§ 1r, fNmg* free;

so that any choice of C,—equivariant map Sym? .xg /! 1g which is nonzero on Nm
restricts to an isomorphism "
.Sym"p.x;p//cp 3
S 1q,:
Tr.SymEp X, /] Fe
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A choice of such a map may be made as follows. First, let f W ! 1, denote the
equivariant map sending each e; to 1. This induces a map

SymPp . f WSyMRF .xe, /1 SyRF .1g /3 1g
P P

which sends Nm to 1. We now need to show that the image of Tr.e/=p under
Sym“’p.f / is also equal to 1. Writing

Tref/ efCCe, 7C. e1 e & 1/°p
p ’
we find that its image under Sym® .f /is equal to

p

1 .p 1/P 1 . 1C0.p2
P p 1P P P/l

P p
as desired. O

mod p;

Proposition 6.13 can be read as the statement that Tr. ", P=p is a formula for the class vy
P2,T G 1 CP r}, if one is only interested in v, * modulo transfers. We often find this
formula for v, ? to be more useful in computational contexts.

Convention 6.15 For the remainder of this section, we fix a C,—ring R together with
a p—orientation
ttcpt 1 f1CR:
P

Definition 6.16 The ,—orientation of R gives rise to a map
1 1 e 1C e,
.t CPp/! B VA
which under our fixed identification of . CP 1/¢ is given by a map
p
M
tt.cpt/P 1 t2R:
p 1

By mapping in the first of the p 1 copies of CP 1, and then projecting to the first of
the p 1 copies of R, we obtain the underlying complex orientation of R.

Warning 6.17 While it is convenient to give formulas in terms of the underlying
complex orientation of Definition 6.16, we stress once again that this is noncanonical,
depending on Convention 6.10. There is no canonical classical complex orientation
associated to a p—oriented C,—ring.
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Notation 6.18 Using Definition 6.2, the underlying complex orientation of R gives

H v p e
risetoaclassvi D “ 22p >R.

L
Notation 6.19 Recall our fixed noncanonical identification .S1¢/¢ - S2. Let
yi 2 ,81€ correspond to the ith copy of S2, so that we have

(1) .yi/Dyic1ifli p 2,and(2)
.Yp 1/D y1 Yp 1.
Then a generic class
r2 em.TlcR/é es1S” ¢ 2R pay be
written as
rDy1 " r1Cy2"r2CCyp 171
where r; 2 zpe >R.

The key relationship between the equivariant v, * and nonequivariant vy is expressed
in the following lemma.

Lemma 6.20 The classvi D “‘; 2¢€ 21;) 1 CP Mapstoy; ” vi plus a multiple of
pin zp.W‘elcR/. ’

Proof The class ”1'° mapstoys “ri1Cy> “rCCyp 17r ;Bfor some collection of

elements rq;ro;:::;r 52 20 SR.

by p. These statements in turn each follow by application of Proposition 6.6. O
At last, we are ready to state the main result of this section.

Theorem 6.21 Suppose that the underlying homotopy groups R €are torsion-free.
Then the class v, 2 28 t1CR/ is given, modulo transfers, by the class

2
P2y, P 3y

p

L.ovp P 1V1 . V1 V1 ”
Y1 —p€V2 —pGCyp 1

Proof By Proposition 6.13, it is equivalent to show that the above formula determines
Tr.”P /=p 2 % .11CR/ modulo transfers. But this may be computed directly from

Lemma 6.20. |
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Remark 6.22 Consider the class

1 p 2 p 3
. Vi1 P tvp . V1 V1 ” Vi Vi
yi? ———Cy2 " ——€Cyp 1
P P p

of Theorem 6.21. If in this formula we replace vy by v{ D v1 C px for an arbitrary
class x 2 28 2R the resulting expression differs from the original by
vi“.x P Ix/Cya” .x x/CCyp 17.°P 2x P 3y/:

This is exactly the transfer, in 2p9.+1CR/, of y1 “ x. Therefore, altering v; by a
multiple of p does not change the class v, * modulo transfers.

7 The spanofv * in heightp 1 theories

In this section, we use the formula of Theorem 6.21 to compute the span of v, * in the

height p 1 theories Ep, 1 and tmf.2/, which we verified were ,—orientable in
Section 5. Our main result, stated in Theorems 7.3 and 7.4, proves that the span
of v, generates the homotopy of these theories in a suitable sense. This demonstrates a

height-shifting phenomenon in equivariant homotopy theory: though these theories are
height p 1 classically, the fact that their homotopy is generated by v® indicates

that they should be regarded as height 1 objects in Cy,—equivariant homotépy theory.
Notation 7.1 Let R denote a C,—ring spectrum, equipped with a p—orientation
thept 1 F10R:
Precomposition with v, * then yields a map
s?1 t1°R;
which by the dualizability of S 1€ is equivalent to a map of Cy—spectra
s 1 1 R:

Engaging in a slight abuse of notation, we will throughout this section denote this
map by
v,°” w2t 1 R:

Definition 7.2 Given a ,—oriented C,—ring R, applying ,P ¢ gives a homo-
morphism of Z ,,EGC, *—modules

e p ec2 1 e
2p 2V1° W, S ooy 2R:
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The main theorems of this section are as follows.

Theorem 7.3 Suppose that
ttcpl 1 t¥mf.2/
P

is any 3—orientation of tmf.2/. Then the map ,v,¢ WS2 & | ,tmf.2/isan
isomorphism of Z 3,—modules, and thus also of Z 3,(EC3e—modules.

Theorem 7.4 Suppose that
1 1 1c
TECPS L TRTEp g
is any p—orientation of E, 1. Then the image of , / Sv,® in, €, 1 maps

surjectively onto the degree 2p 2 component of .E, 1/=.p;m /.2

Remark 7.5 The map ,82 1 | ,tmf2/ of Theorem 7.3 is a map of rank 2 free

Z 3)~modules. Thus, it is an isomorphism if and only if its mod 3 reduction is, which
is a map of rank 2 vector spaces over F3.

Similarly, the degree 2p 2 component .E, 1/=.p;m?/isarank p 1 vector space

zpe 252 o 2p 2-Ep 1=-p;m2//

of Theorem 7.4 factors through the mod p reduction of its domain, after which it
becomes a map of rank p 1 vector spaces over Fp.

Both Theorems 7.3 and 7.4 thus reduce to a question of whether maps of rank p 1 vector
spaces over F, are isomorphisms. These maps are furthermore equivariant, or maps of
Fo (EG, »—modules, with the actions of C,, given by reduced regular representations. We
will therefore find Lemma 7.7 below particularly useful. First, we recall some basic
facts from representation theory.

Recollection 7.6 Given two F,(EC,e—modules V and W, the space Home.V;W/
inherits the structure of a C;—module via conjugation, where 2 C, sendsF W | W to
I F 1 1. Then there is an identification

Home, .V; W /% D Homg gc,..V; W /;
so that the transfer determines a linear map

TWHomg, .V; w/! Homg, gc,..V; W /:
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Lemma 7.7 Let x denote the F,(EC,*—module corresponding to the reduced regular
representation of C,. Then a homomorphism

2 Homg, @c,e-X; X/
is an isomorphism if and only if CTr. /is for any transferred homomorphism Tr. /.

More precisely, Homeg cc,« % x/ is a local F,(EG,*—algebra, with maximal ideal the
ideal of transferred homomorphisms.

Proof Note that x is a uniserial F,EG,*—module, ie its submodules are totally ordered
by inclusion. Since the endomorphism ring of a uniserial module over a Noetherian
ring is local [24, Proposition 20.20], the ring Homg, c,..X; ¥/ is local.

There is an identification xX°» D 1, so we obtain a ring homomorphism
Homg cc,e-%; X/ ! HomeCEcp..xCp; x /D Homg,@c,+-1;1/D Fp:

Since this homomorphism is clearly surjective, we learn that its kernel must be equal
to the maximal ideal of Homg, c,..x; X/.
On the other hand, for any x 2 x¢» and 2 Home, .x; x/, we have
X 1 B( 1
Tr. /.x/D L '%/D ' x/D Tr. .x//DO0;
iDO iDO
where the last equality follows from the fact that the transfer is zero on x. It follows
that Tr. / lies in the maximal ideal of Homg ¢, «-% X/.

Finally, the equivalence
Home, .x;x/ S 1fid,g " free
shows that the maximal ideal is equal to the image of Tr for dimension reasons. O

Proof of Theorem 7.3 Recall that ,tn§f.2/ is a free Z 3,)~module with basis ;and .

3

In light of Remark 7.5, it suffices to analyze the image of v, * in its mod 3 reduction,

which is a free F3—-module generated by the reductions of ; and 5. By combining
Lemma 7.7 with Theorem 6.21, it suffices to show that a basis for this rank 2

Fs—module is given by the mod 3 reduction of classes

%.vl 2vi/; 3%/1 vi/ 2 ®tmf2/:

Here, vq 2 3tmf.2/ refers to the class of Notation 6.18, which depends on the chosen
3—orientation. By combining Remark 6.22 and Proposition 5.7, we may as well
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setvy tobe 1 5. Using the formulas of [38, Lemma 7.3] (cf Remark 5.8), we
calculate

ivi %vi/ 2 mod3 and 3.vi vi/ 1 mod3:

These clearly generate all of ,tnf.2/ modulo 3, as desired. O

Proof of Theorem 7.4 By arguments analogous to those in the previous proof, it
suffices to check that

vi P 1V1‘V1 Vi ..., : 2V1 i 3V1') E.®©

P~ p p 2P

reduce to generators of the degree 2p 2 component of .E, 1/=.p;m?/. By
Remark 6.22, we may assume that .vy vi/=p in ,P 5 E% 1 is the element v defined
in Section 5.1. Under this assumption, the p 1 classes of interest become v
and its translates under the C,—action on 20 2 Ep 1. As noted in Remark 5.4, these

span , ¢ LEp 1=.p;m A 0
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