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ABSTRACT: A series of N-aroyloxyquinuclidinium salts were
prepared and used as reagents to perform efficient three-
component Ritter—Mumm-type oxidative C—H imidation of
donors of 1° and 2° benzylic C—H bonds used as limiting reagents
with nitriles as a source of imide nitrogen under photocatalytic
conditions; these reagents also exhibit somewhat lower reactivity
toward cycloalkanes.

C arboxylic acid imides, in general,] and N-alkylimides,
specifically,”~ "% constitute an important group of organic
compounds occurring as natural products, used as bioactive
substances,' " specialty plastics,’ and employed in organic
synthesis.” '’ In particular, N-benzyl-N-acylacetamides were
used in the preparation of ketene aminal esters and a
subsequent C—C cross-coupling of the latter,® whereas N-
aroyl-N-alkyl-acetamides served as efficient donors of aroyl
groups in Pd-catalyzed Suzuki—Miyaura C—C cross-coupling
with arylboronic acids leading to diarylketones.” The tradi-
tional methods of preparation of N-alkylcarboximides are
limited to acylation of amines or carboxamides,'’~'* and
alkylation of metal carboximides.'” The more attractive atom-
economical methods employ oxidation of C—H bond donors,
such as N-alkyl-N-benzylacetamides'® and oxidative C—N
coupling of carboxamides or carboximides with benzylic or
alkanes C—H bond donors.'”~>" Examples of intermolecular
reactions from the latter group include CuCl-catalyzed
C(sp®’)—H imidation of toluene and cyclohexane with
phthalimide' 7' and succinimide'” using ‘Bu,0, as an oxidant
(Scheme 1a) and I,-promoted C—N coupling of carboxamides
and methylarenes with ‘BuOOH as an oxidizing agent (Scheme
1b)."® Interestingly, carboxylic acid amides fully outcompete
carboximides in direct oxidative N—H alkylation with
alkanes.”” Some of the most versatile methods for the
preparation of N-alkylimides*® employing C—H functionaliza-
tion are based on Ugi—Mumm-type multicomponent oxidative
C—C coupling of C—H bond donors, isonitriles, and carboxylic
acids.”*™*’ An example of this chemistry is given in Scheme 1c
where benzoyl peroxide serves as an oxidant and a source of
carboxylate.”* Considering preparation of N-alkylimides via
C(sp®’)—H functionalization, only a limited number of
examples of oxidative C—N coupling of alkanes have been
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reported, and no methods for multicomponent oxidative

C(sp®)—H imidation have been developed.

In this work, we present a synthetic protocol for a modular
multicomponent Ritter—Mumm-type”®*’ oxidative imidation
of donors of benzylic (2) and cycloalkane (3) C(sp®)—H
bonds using nitriles 4 as an imide nitrogen atom source and N-
aroyloxyquinuclidinium tetrafluoroborates 1 as the third
reaction component (Scheme 1d). The latter serve as oxidants
and a source of one of the acyl fragments of the resulting N-
benzyl imides 6 or their N-alkyl analogues 7. The reaction
works under blue LED light (435 nm) in the presence of a
photoredox catalyst, such as [Ir(ppy),(‘Bu,bpy)](PF), 5a, and
allows for a moderate- to high-yielding, up to 94%, preparation
of 6 using alkylarenes 2 as limiting reagents, as well as a low-
yielding, 22—26%, formation of 7 using 3 equiv of cycloalkanes
3. Similar to oxidative benzylic C—H trifluoroacetoxylation
employing N-trifluoroacetoxyquinuclidinium salts in DCM
solutions,” the reaction in Scheme 1d may involve
quinuclidine cation radicals, Qe resulting from the one-
electron reduction of 1, along with corresponding carboxylate
anions, with Q®* acting as a hydrogen atom abstractor with
respect to C(sp*)—H bond donors 2—3. Overall in this work,
we explore the synthetic applications of novel N-acyloxyqui-
nuclidinium salts serving as stoichiometric reagents for
C(sp®)—H bond functionalization, thereby complementing
studies by other groups employing Q®" as a catalyst in
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Scheme 1. Synthesis of N-Alkylimides via Oxidative
Functionalization of C—H Bond Donors
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electg;)cgemical?'l and photoredox C—H bond functionaliza-
tion.”™™

We started our work with the preparation of a readily
accessible®™ N-benzoyloxyquinuclidinium tetrafluoroborate
(1a) (Scheme 1d). Excitingly, in the presence of 1.5 mol %
of catalyst Sa, we were able to engage la (1.5 equiv) in C—H
functionalization of toluene used as a limiting reactant with
MeCN solvent as the third reaction component to produce the
imide 6aaa in 22% yield (Scheme 2.2). The more electron-
poor analogues 1d—1g performed better than la in the
imidation reaction; therefore, N-(3,5-bis(trifluoromethyl)-
benzoyloxy)quinuclidinium tetrafluoroborate 1f, which is
easy to track by NMR spectroscopy, was used for reaction
optimization (Table 1).

With toluene as a substrate, 1.5 equiv of 1f, and 1.5 mol % of
Sa, the derived N-benzylimide 6faa was produced in 74%
NMR vyield after 18 h of reaction. A potential byproduct,
benzyl 3,5-bis(trifluoromethyl)benzoate ester, was not de-
tected, but a product of overoxidation of 6faa, the aminal
derivative 9faa, formed in 1:8.0 molar ratio to 6faa (entry 1). A
slightly higher 2:1 1f/ toluene ratio did not noticeably affect
the reaction outcome (entry 2). In turn, when a 3-fold excess
of toluene was employed, the formation of 9faa was completely
suppressed, but the yield of 6faa dropped to 63% (entry 3).
The use of 1. 5 mol % of Ir(ppy);, Sb, which is a less oxidizing
photocatalyst,* instead of Sa, led to an even lower yield of
6faa of 44% (entry 4). Similarly, the less reducing photoredox

Scheme 2. Reaction Scope in Hydrocarbon R'—H and Aroyl
Group ArCO and Product Yields”
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“Formation of 10 (>5%) was only observed for diphenylmethane and
1sopropylbenzene, NMR and isolated yields (in parentheses) are
reported. ®The reaction was performed using 500 mM substrate. “The
reaction was performed on a 1.00 mmol scale; isolated yield.

“Ir(ppy); (1.0 mM) was used. “Oxidant was used at 50 mM, and the
substrate at 32.5 mM for solubility reasons.
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Table 1. Optimization of the Reaction Conditions
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Ar
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1f s 6faa 9faa
Ar = 3,5-(CF3),CgHg )

entry deviation from the conditions above yield” of 6faa, % 6faa/9faa

1 none 74% 8.0:1
2 50 mM toluene 76% 7.6:1
3 300 mM toluene 63% 1:0°
4 1 mM Ir(ppy); (5b) 44% 1:0°
5 1 mM Ru(bpy);(PF), (5¢) 33% 1:0°
6 0.5 equiv of Zn(OTf), 69% 23:1
7 no light or no catalyst 0% n/a

“NMR ylelds were calculated by using 1,4-dioxane as an internal
standard. “Compound 9faa was not detected.

catalyst, Ru(bpy);(PFy),, 5¢,°° was also less effective with a
33% yield of 6faa (entry S). Remarkably, when 0.5 equiv of
Zn(OTf), was used as a Lewis acid additive, the 6faa/9faa
molar ratio increased to 23:1, but the yield of the target
compound 6faa dropped to 69% (entry 6). A series of control
experiments showed that no reaction occurred after 18 h when
either photocatalyst § or the LED’s light was absent (entry 7).
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Using the optimized reaction conditions (Table 1), we
proceeded to the evaluation of the reaction scope in C—H
bond donors, the aroyl group donors 1 (Scheme 2), and
nitriles 4 (Scheme 3). All reaction products in Schemes 2 and
3 were isolated as pure compounds and characterized by 'H,
3C, and "°F (when appropriate) NMR spectroscopy and high-
resolution ESI-MS(+).

Scheme 3. Reaction Scope in Nitrile with 1f and Toluene or
Ethylbenzene as Other Reaction Components”
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v) DCM/MeCN mixture was used.

A series of para-R-substituted toluene derivatives with R
ranging from electron-donating methyl to electron-accepting
methoxycarbonyl reacted with 1f and MeCN to produce the
derived N-benzylimides 6faa—6fga in 55—69% NMR yields.
The most electron-deficient 4-nitrotoluene was unreactive. 1-
Methylnaphthaline, benzyltrimethylsilane, and mesitylene
afforded the derived N-benzylimides 6fja, 6fka, and 6fka,
respectively, in good 51—60% yields, whereas the reaction of o-
methoxytoluene was less efficient with 35% yield of 6fia. To
avoid the formation of polyfunctionalized products of p-xylene,
mesitylene, and indane, which have several reaction sites, a 5:1
substrate/1f ratio was used, which resulted in the formation of
imides 6fba, 6fla, and 6fna in 52—71% yields. Besides indane,
other donors of 2° benzylic C—H bonds, ethylbenzene and
diphenylmethane, afforded the derived imides 6fma and 6foa
in good to excellent 52—90% yields. Notably, among all these
substrates, the formation of benzylic ester byproducts 10 was
only detectable (>5% by NMR) for diphenylmethane where
the benzhydryl ester 10fo formed in 23% NMR yield.

The imidation of ethylbenzene was also carried out on a 1.00
mmol scale and resulted in a 78% isolated yield of 6fma.
Notably, in contrast to the 1° and 2° C—H bond donors above,
a 3° C—H bond donor, isopropylbenzene, gave mostly the
derived ester 10fp (73% yield). Finally, methylheteroarenes 2-
methylfuran, 2-methylthiophene, and 4-methylpyridine did not
afford the corresponding imides.”® In turn, cyclohexane and
cyclopentane used in a 3:1 ratio to 1f produced the expected
N-alkylimides 7faa and 7fba, in 21% and 26% yield,
respectively.

Having explored the scope of C—H bond donors, we next
probed the reactivity of other N-acyloxyquinuclidinium salts 1
using toluene and ethylbenzene as representative 1° and 2°
benzylic C—H bond donors (Scheme 2, bottom). The reaction
of N-benzoyloxy derivative 1a with toluene and MeCN to give
the corresponding imide 6aaa was more efficient in the
presence of a more reducmg catalyst Sb (35% yield of 6aaa
with Sb vs 22% with 5a). Similarly, 1c, toluene, and MeCN
produced imide 6caa in a better 46% yield in the presence of
Sb compared with 25% vyield in the presence of Sa. Other

oxidants, including 1b and more electron-poor 1d, le, and 1g,
all reacted with toluene under the optimized reaction
conditions (Table 1) to afford the derived imides in increasing
yields of 41%, 50%, 70%, and 86%, respectively. The reactions
involving ethylbenzene instead of toluene were more efficient
under otherwise identical conditions, with the yields of the
derived imides ranging from 76% to 94%. Notably, an
attempted reaction of N-acetyloxyquinuclidinium tetrafluor-
oborate 1h with p-xylene failed to produce any imide.*

To find out how the nature of nitrile 4 affects the imidation
reaction, two more nitriles were tested and employed as
solvents: pivalonitrile 4b and benzonitrile 4c. In these
experiments, we used 1f as the oxidant and toluene and
ethylbenzene as C—H bond donors (Scheme 3). The more
sterically encumbered and less polar pivalonitrile produced the
derived imides in lower yields than MeCN for both
hydrocarbons; the difference was more significant for toluene
with 26% yield of pivalonitrile-derived 6fab versus 74% for
acetonitrile-derived 6faa and less so for ethylbenzene with 66%
yield of pivalonitrile-derived 6fmb versus 90% of acetonitrile-
derived 6fma. Benzonitrile performed slightly better than
pivalonitrile with 37% yield of toluene derivative 6fac and 68%
yield of ethylbenzene-derived 6fmc. Interestingly, when MeCN
solvent was replaced with a 39:1 DCM/MeCN mixture in the
reaction of 1f and ethylbenzene, the target imide 6fma was
produced in a respectable 55% yield in spite of a much lower
7.4:1 molar ratio of MeCN/hydrocarbon.*

To characterize the substrate selectivity of 1f with respect to
2° (ethylbenzene) and 1° (toluene) benzylic C—H bonds in
MeCN-d; solutions, we measured the initial rates of formation
of the corresponding imides 6fma-d; and 6faa-d; under
pseudo-first-order reaction conditions. Using competition
experiments, ethylbenzene was found to be 8.4 + 0.4 times
more reactive than toluene (Scheme 4a). The deuterium
kinetic isotope effect was estimated similarly by employing 1:1
mixtures of toluene and toluene-dg with the resulting ky/kp =
2.7 + 0.1 (Scheme 4b). These observations are consistent with
the reaction mechanism involving a product-determining

Scheme 4. Mechanistic Tests
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hydrogen atom transfer from a hydrocarbon benzylic C—H
bond to Q®, similar to the oxidative benzylic C—H
trifluoroacetoxylation using N-trifluoroacetoxyquinuclidinium
salts.”® Benzylic radicals resulting from a hydrogen atom
transfer (HAT) reaction with toluene were trapped using 4-
tert-butylpyridinium triflate 11 in a form of a product 12 of
Minisci-type oxidative coupling’” that was detected using ESI-
MS(+) technique (Scheme 4c). Altogether, on the basis of our
observations, we propose a mechanism of the imidation
reaction shown in Scheme 5 with toluene as a representative
substrate.

Scheme 5. Proposed Mechanism for Oxidative Imidation of
C(sp®)—H Bond Donors Using N-Aroyloxyquinuclidinium
Salts and Nitriles under Photoredox Catalysis with Sa
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An electron-transfer (step SET1) from a photocatalyst-
excited state 35a to N-aroyloxyquinuclidinium salt 1 produces
a quinuclidine cation radical Q®*, along with an oxidized form
of the photocatalyst, 5a*, and an arenecarboxylate ArCO,™.**
Subsequent hydrogen atom transfer (step HAT)*® from Bn-H
to Q® leads to a benzylic radical Bn®, which is oxidized by
S5a* to form a carbocation Bn* (step SET2).*” A Ritter addition
of the latter to a nitrile RCN produces nitrilium cation 13. This
step may be endergonic for more stabilized and/or bulky
carbocations, such as benzhydryl and cumyl. In such a case,
quenching of Bn* with arenecarboxylate ArCO,” becomes
more competitive and leads to the formation of the
corresponding carboxylates 10. A higher reactivity of cyclo-
alkane-derived radicals and/or carbocations may lead to their
engagement in some fast side reactions, thereby resulting in
lower yields of the derived N-alkylcarboximides 7. Next,
nitrilium cation 13 can be quenched with ArCO,~ to form an
iminoanhydride 14 that undergoes a Mumm rearrangement*’
to N-alkylcarboximide 6. Finally, N-benzylimides 6 (Scheme
5), which have benzylic C—H bonds, can undergo another C—
H functionalization via a-nitrogen-stabilized carbocations that,
similar to benzhydryl and cumyl cations, form esters 9.

In summary, in this work we introduce a series of novel N-
aroyloxyquinuclidinium salts that serve as efficient reagents in
multicomponent Ritter—Mumm-type oxidative C—H imida-
tion of 1° and 2° benzylic C—H bond donors with carbonitriles

as a source of the imide nitrogen atom; these reagents exhibit
somewhat lower reactivity toward cycloalkanes.
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