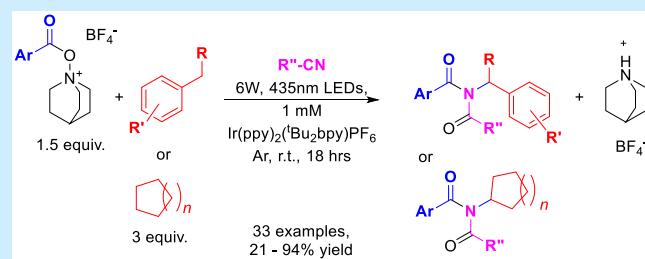


Oxidative Imidation of Benzylic and Cycloalkane C(sp³)–H Bond Donors Using N-Aroyloxyquinuclidinium Salts and Nitriles under Photoredox Catalysis

Michael Hitt, Andrew Norris, and Andrei N. Vedernikov*

Cite This: <https://doi.org/10.1021/acs.orglett.3c01966>

Read Online


ACCESS |

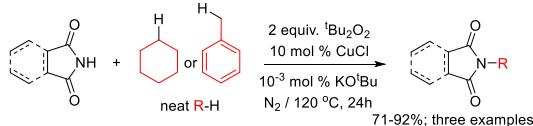
Metrics & More

Article Recommendations

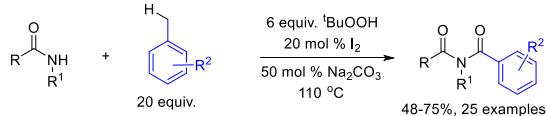
Supporting Information

ABSTRACT: A series of *N*-aryloxyquinuclidinium salts were prepared and used as reagents to perform efficient three-component Ritter–Mumm-type oxidative C–H imidation of donors of 1° and 2° benzylic C–H bonds used as limiting reagents with nitriles as a source of imide nitrogen under photocatalytic conditions; these reagents also exhibit somewhat lower reactivity toward cycloalkanes.

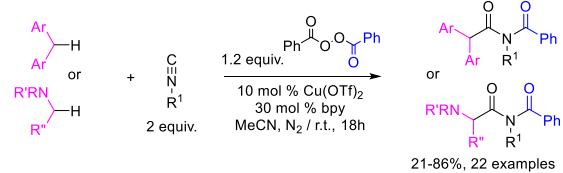
Carboxylic acid imides, in general,¹ and *N*-alkylimides, specifically,^{2–10} constitute an important group of organic compounds occurring as natural products, used as bioactive substances,^{1–7} specialty plastics,¹ and employed in organic synthesis.^{8–10} In particular, *N*-benzyl-*N*-acylacetamides were used in the preparation of ketene aminal esters and a subsequent C–C cross-coupling of the latter,⁸ whereas *N*-aryl-*N*-alkyl-acetamides served as efficient donors of aryl groups in Pd-catalyzed Suzuki–Miyaura C–C cross-coupling with arylboronic acids leading to diarylketones.⁹ The traditional methods of preparation of *N*-alkylcarboximides are limited to acylation of amines or carboxamides,^{10–14} and alkylation of metal carboximides.¹⁵ The more attractive atom-economical methods employ oxidation of C–H bond donors, such as *N*-alkyl-*N*-benzylacetamides¹⁶ and oxidative C–N coupling of carboxamides or carboximides with benzylic or alkanes C–H bond donors.^{17–21} Examples of intermolecular reactions from the latter group include CuCl-catalyzed C(sp³)–H imidation of toluene and cyclohexane with phthalimide^{17,21} and succinimide¹⁷ using ³Bu₂O₂ as an oxidant (Scheme 1a) and I₂-promoted C–N coupling of carboxamides and methylarenes with ³BuOOH as an oxidizing agent (Scheme 1b).¹⁸ Interestingly, carboxylic acid amides fully outcompete carboximides in direct oxidative N–H alkylation with alkanes.²² Some of the most versatile methods for the preparation of *N*-alkylimides²³ employing C–H functionalization are based on Ugi–Mumm-type multicomponent oxidative C–C coupling of C–H bond donors, isonitriles, and carboxylic acids.^{24–27} An example of this chemistry is given in Scheme 1c where benzoyl peroxide serves as an oxidant and a source of carboxylate.²⁴ Considering preparation of *N*-alkylimides via C(sp³)–H functionalization, only a limited number of examples of oxidative C–N coupling of alkanes have been

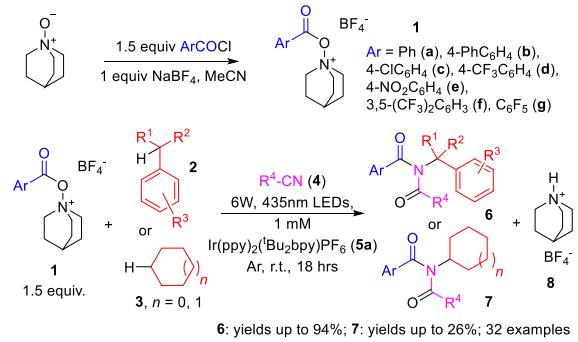

reported,^{17,21} and no methods for multicomponent oxidative C(sp³)–H imidation have been developed.

In this work, we present a synthetic protocol for a modular multicomponent Ritter–Mumm-type^{28,29} oxidative imidation of donors of benzylic (2) and cycloalkane (3) C(sp³)–H bonds using nitriles 4 as an imide nitrogen atom source and *N*-aryloxyquinuclidinium tetrafluoroborates 1 as the third reaction component (Scheme 1d). The latter serve as oxidants and a source of one of the acyl fragments of the resulting *N*-benzyl imides 6 or their *N*-alkyl analogues 7. The reaction works under blue LED light (435 nm) in the presence of a photoredox catalyst, such as [Ir(ppy)₂(³Bu₂bpy)][PF₆], 5a, and allows for a moderate- to high-yielding, up to 94%, preparation of 6 using alkylarenes 2 as *limiting reagents*, as well as a low-yielding, 22–26%, formation of 7 using 3 equiv of cycloalkanes 3. Similar to oxidative benzylic C–H trifluoroacetoxylation employing *N*-trifluoroacetoxyquinuclidinium salts in DCM solutions,³⁰ the reaction in Scheme 1d may involve quinuclidine cation radicals, Q^{•+}, resulting from the one-electron reduction of 1, along with corresponding carboxylate anions, with Q^{•+} acting as a hydrogen atom abstractor with respect to C(sp³)–H bond donors 2–3. Overall in this work, we explore the synthetic applications of novel *N*-acyloxyquinuclidinium salts serving as stoichiometric reagents for C(sp³)–H bond functionalization, thereby complementing studies by other groups employing Q^{•+} as a catalyst in


Received: June 14, 2023

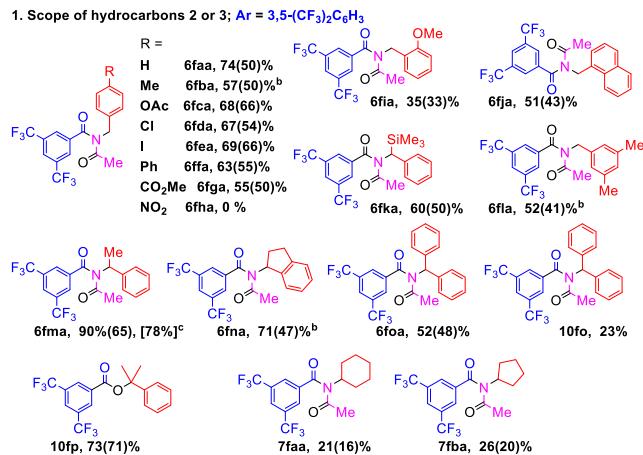
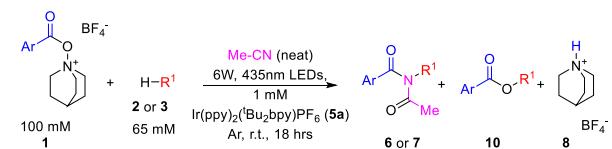
Scheme 1. Synthesis of *N*-Alkylimides via Oxidative Functionalization of C–H Bond Donors


a. Cu-catalyzed oxidative C–H imidation (ref. 17)

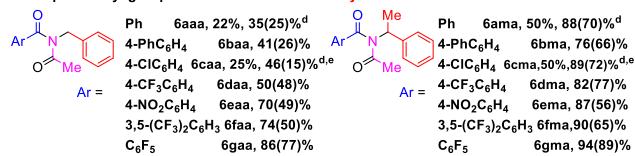

b. I2-catalyzed C–H oxidative coupling of amides (ref. 18)

c. Ugi-Mumm type C–H oxidative coupling of isonitriles (ref. 24)

d. This work: Ritter-Mumm type oxidative C–H imidation

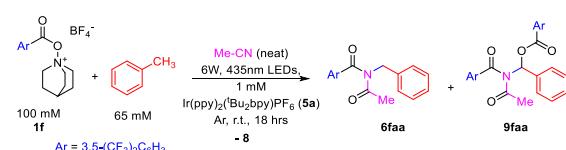



electrochemical³¹ and photoredox C–H bond functionalization.^{32–34}


We started our work with the preparation of a readily accessible³⁵ *N*-benzoyloxyquinuclidinium tetrafluoroborate (**1a**) (Scheme 2d). Excitingly, in the presence of 1.5 mol % of catalyst **5a**, we were able to engage **1a** (1.5 equiv) in C–H functionalization of toluene used as a limiting reactant with MeCN solvent as the third reaction component to produce the imide **6aaa** in 22% yield (Scheme 2.2). The more electron-poor analogues **1d–1g** performed better than **1a** in the imidation reaction; therefore, *N*-(3,5-bis(trifluoromethyl)-benzoyloxy)quinuclidinium tetrafluoroborate **1f**, which is easy to track by NMR spectroscopy, was used for reaction optimization (Table 1).

With toluene as a substrate, 1.5 equiv of **1f**, and 1.5 mol % of **5a**, the derived *N*-benzylimide **6faa** was produced in 74% NMR yield after 18 h of reaction. A potential byproduct, benzyl 3,5-bis(trifluoromethyl)benzoate ester, was not detected, but a product of overoxidation of **6faa**, the aminal derivative **9faa**, formed in 1:8.0 molar ratio to **6faa** (entry 1). A slightly higher 2:1 **1f**/toluene ratio did not noticeably affect the reaction outcome (entry 2). In turn, when a 3-fold excess of toluene was employed, the formation of **9faa** was completely suppressed, but the yield of **6faa** dropped to 63% (entry 3). The use of 1.5 mol % of Ir(ppy)₃, **5b**, which is a less oxidizing photocatalyst,³⁶ instead of **5a**, led to an even lower yield of **6faa** of 44% (entry 4). Similarly, the less reducing photoredox

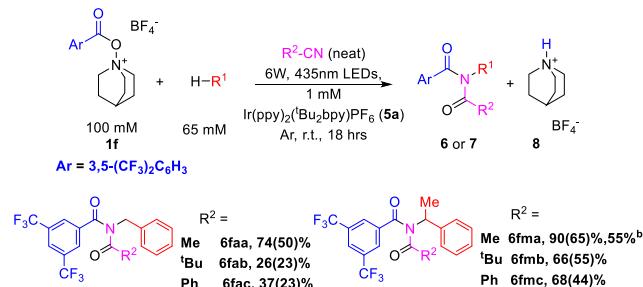
Scheme 2. Reaction Scope in Hydrocarbon R¹–H and Aroyl Group ArCO and Product Yields^a



2. Scope of aryl group ArCO with toluene and ethylbenzene substrates

^aFormation of **10** (>5%) was only observed for diphenylmethane and isopropylbenzene; NMR and isolated yields (in parentheses) are reported. ^bThe reaction was performed using 500 mM substrate. ^cThe reaction was performed on a 1.00 mmol scale; isolated yield. ^dIr(ppy)₃ (1.0 mM) was used. ^eOxidant was used at 50 mM, and the substrate at 32.5 mM for solubility reasons.

Table 1. Optimization of the Reaction Conditions


entry	deviation from the conditions above	yield ^a of 6faa , %	6faa / 9faa
1	none	74%	8.0:1
2	50 mM toluene	76%	7.6:1
3	300 mM toluene	63%	1:0 ^b
4	1 mM Ir(ppy) ₃ (5b)	44%	1:0 ^b
5	1 mM Ru(bpy) ₃ (PF ₆) ₂ (5c)	33%	1:0 ^b
6	0.5 equiv of Zn(OTf) ₂	69%	23:1
7	no light or no catalyst	0%	n/a

^aNMR yields were calculated by using 1,4-dioxane as an internal standard. ^bCompound **9faa** was not detected.

catalyst, Ru(bpy)₃(PF₆)₂, **5c**,³⁶ was also less effective with a 33% yield of **6faa** (entry 5). Remarkably, when 0.5 equiv of Zn(OTf)₂ was used as a Lewis acid additive, the **6faa**/**9faa** molar ratio increased to 23:1, but the yield of the target compound **6faa** dropped to 69% (entry 6). A series of control experiments showed that no reaction occurred after 18 h when either photocatalyst **5** or the LED's light was absent (entry 7).

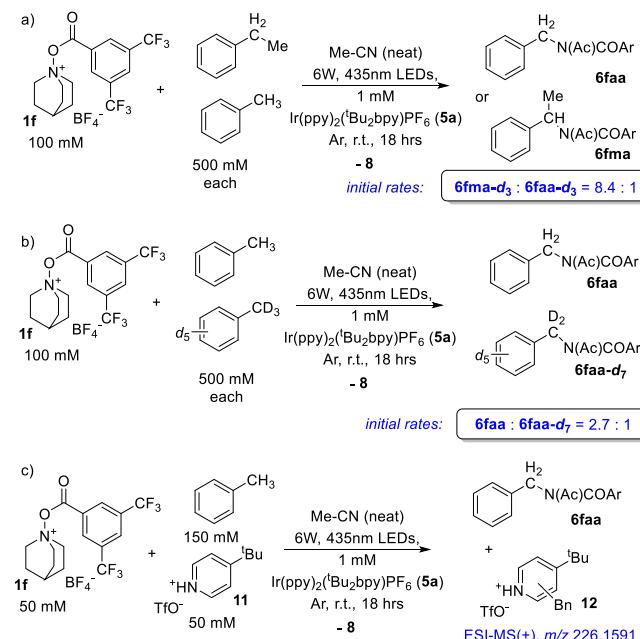
Using the optimized reaction conditions (Table 1), we proceeded to the evaluation of the reaction scope in C–H bond donors, the aroyl group donors 1 (Scheme 2), and nitriles 4 (Scheme 3). All reaction products in Schemes 2 and 3 were isolated as pure compounds and characterized by ¹H, ¹³C, and ¹⁹F (when appropriate) NMR spectroscopy and high-resolution ESI-MS(+) .

Scheme 3. Reaction Scope in Nitrile with 1f and Toluene or Ethylbenzene as Other Reaction Components^a

^aNMR and isolated yields (in parentheses) are reported. ^bA 39:1 (v/v) DCM/MeCN mixture was used.

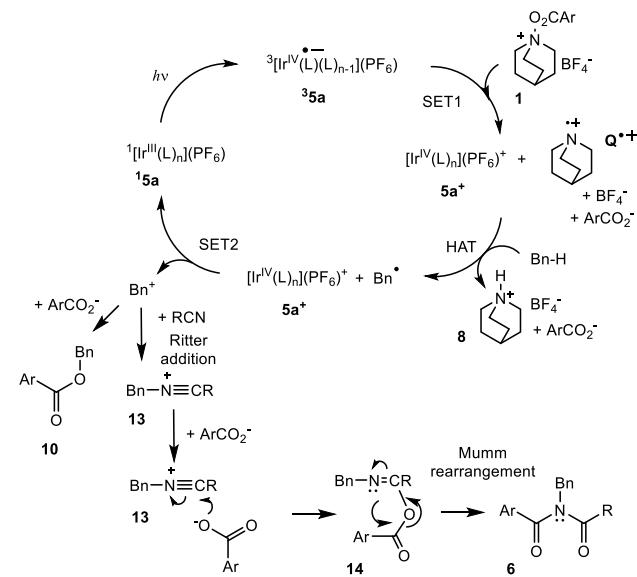
A series of *para*-R-substituted toluene derivatives with R ranging from electron-donating methyl to electron-accepting methoxycarbonyl reacted with 1f and MeCN to produce the derived *N*-benzylimides 6faa–6fga in 55–69% NMR yields. The most electron-deficient 4-nitrotoluene was unreactive. 1-Methylnaphthalene, benzyltrimethylsilane, and mesitylene afforded the derived *N*-benzylimides 6fja, 6fka, and 6fka, respectively, in good 51–60% yields, whereas the reaction of *o*-methoxytoluene was less efficient with 35% yield of 6fia. To avoid the formation of polyfunctionalized products of *p*-xylene, mesitylene, and indane, which have several reaction sites, a 5:1 substrate/1f ratio was used, which resulted in the formation of imides 6fba, 6fla, and 6fna in 52–71% yields. Besides indane, other donors of 2° benzylic C–H bonds, ethylbenzene and diphenylmethane, afforded the derived imides 6fma and 6foa in good to excellent 52–90% yields. Notably, among all these substrates, the formation of benzylic ester byproducts 10 was only detectable (>5% by NMR) for diphenylmethane where the benzhydryl ester 10fo formed in 23% NMR yield.

The imidation of ethylbenzene was also carried out on a 1.00 mmol scale and resulted in a 78% isolated yield of 6fma. Notably, in contrast to the 1° and 2° C–H bond donors above, a 3° C–H bond donor, isopropylbenzene, gave mostly the derived ester 10fp (73% yield). Finally, methylheteroarenes 2-methylfuran, 2-methylthiophene, and 4-methylpyridine did not afford the corresponding imides.³⁶ In turn, cyclohexane and cyclopentane used in a 3:1 ratio to 1f produced the expected *N*-alkylimides 7faa and 7fba, in 21% and 26% yield, respectively.


Having explored the scope of C–H bond donors, we next probed the reactivity of other *N*-acyloxyquinuclidinium salts 1 using toluene and ethylbenzene as representative 1° and 2° benzylic C–H bond donors (Scheme 2, bottom). The reaction of *N*-benzoyloxy derivative 1a with toluene and MeCN to give the corresponding imide 6aaa was more efficient in the presence of a more reducing³⁶ catalyst 5b (35% yield of 6aaa with 5b vs 22% with 5a). Similarly, 1c, toluene, and MeCN produced imide 6caa in a better 46% yield in the presence of 5b compared with 25% yield in the presence of 5a. Other

oxidants, including 1b and more electron-poor 1d, 1e, and 1g, all reacted with toluene under the optimized reaction conditions (Table 1) to afford the derived imides in increasing yields of 41%, 50%, 70%, and 86%, respectively. The reactions involving ethylbenzene instead of toluene were more efficient under otherwise identical conditions, with the yields of the derived imides ranging from 76% to 94%. Notably, an attempted reaction of *N*-acetoxyquinuclidinium tetrafluoroborate 1h with *p*-xylene failed to produce any imide.³⁶

To find out how the nature of nitrile 4 affects the imidation reaction, two more nitriles were tested and employed as solvents: pivalonitrile 4b and benzonitrile 4c. In these experiments, we used 1f as the oxidant and toluene and ethylbenzene as C–H bond donors (Scheme 3). The more sterically encumbered and less polar pivalonitrile produced the derived imides in lower yields than MeCN for both hydrocarbons; the difference was more significant for toluene with 26% yield of pivalonitrile-derived 6fab versus 74% for acetonitrile-derived 6faa and less so for ethylbenzene with 66% yield of pivalonitrile-derived 6fmb versus 90% of acetonitrile-derived 6fma. Benzonitrile performed slightly better than pivalonitrile with 37% yield of toluene derivative 6fac and 68% yield of ethylbenzene-derived 6fmc. Interestingly, when MeCN solvent was replaced with a 39:1 DCM/MeCN mixture in the reaction of 1f and ethylbenzene, the target imide 6fma was produced in a respectable 55% yield in spite of a much lower 7.4:1 molar ratio of MeCN/hydrocarbon.³⁶


To characterize the substrate selectivity of 1f with respect to 2° (ethylbenzene) and 1° (toluene) benzylic C–H bonds in MeCN-*d*₃ solutions, we measured the initial rates of formation of the corresponding imides 6fma-*d*₃ and 6faa-*d*₃ under pseudo-first-order reaction conditions. Using competition experiments, ethylbenzene was found to be 8.4 ± 0.4 times more reactive than toluene (Scheme 4a). The deuterium kinetic isotope effect was estimated similarly by employing 1:1 mixtures of toluene and toluene-*d*₈ with the resulting *k*_H/*k*_D = 2.7 ± 0.1 (Scheme 4b). These observations are consistent with the reaction mechanism involving a product-determining

Scheme 4. Mechanistic Tests

hydrogen atom transfer from a hydrocarbon benzylic C–H bond to $\text{Q}^{\bullet+}$, similar to the oxidative benzylic C–H trifluoroacetoxylation using *N*-trifluoroacetoxyquinuclidinium salts.³⁰ Benzylic radicals resulting from a hydrogen atom transfer (HAT) reaction with toluene were trapped using 4-*tert*-butylpyridinium triflate **11** in a form of a product **12** of Minisci-type oxidative coupling³⁷ that was detected using ESI-MS(+) technique (Scheme 4c). Altogether, on the basis of our observations, we propose a mechanism of the imidation reaction shown in Scheme 5 with toluene as a representative substrate.

Scheme 5. Proposed Mechanism for Oxidative Imidation of C(sp³)–H Bond Donors Using *N*-Aroyloxyquinuclidinium Salts and Nitriles under Photoredox Catalysis with **5a**

An electron-transfer (step SET1) from a photocatalyst-excited state **35a** to *N*-aryloxyquinuclidinium salt **1** produces a quinuclidine cation radical $\text{Q}^{\bullet+}$, along with an oxidized form of the photocatalyst, **5a⁺**, and an arene carboxylate ArCO_2^- . Subsequent hydrogen atom transfer (step HAT)³⁸ from Bn-H to $\text{Q}^{\bullet+}$ leads to a benzylic radical Bn^{\bullet} , which is oxidized by **5a⁺** to form a carbocation Bn^+ (step SET2).³⁹ A Ritter addition of the latter to a nitrile RCN produces nitrilium cation **13**. This step may be endergonic for more stabilized and/or bulky carbocations, such as benzhydryl and cumyl. In such a case, quenching of Bn^+ with arene carboxylate ArCO_2^- becomes more competitive and leads to the formation of the corresponding carboxylates **10**. A higher reactivity of cycloalkane-derived radicals and/or carbocations may lead to their engagement in some fast side reactions, thereby resulting in lower yields of the derived *N*-alkylcarboximides **7**. Next, nitrilium cation **13** can be quenched with ArCO_2^- to form an iminoanhydride **14** that undergoes a Mumm rearrangement⁴⁰ to *N*-alkylcarboximide **6**. Finally, *N*-benzylimides **6** (Scheme 5), which have benzylic C–H bonds, can undergo another C–H functionalization via α -nitrogen-stabilized carbocations that, similar to benzhydryl and cumyl cations, form esters **9**.

In summary, in this work we introduce a series of novel *N*-aryloxyquinuclidinium salts that serve as efficient reagents in multicomponent Ritter–Mumm-type oxidative C–H imidation of 1° and 2° benzylic C–H bond donors with carbonitriles

as a source of the imide nitrogen atom; these reagents exhibit somewhat lower reactivity toward cycloalkanes.

■ ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.orglett.3c01966>.

Description of all experimental procedures, DFT calculations and NMR spectra (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Andrei N. Vedernikov – Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; orcid.org/0000-0002-7371-793X; Email: avederni@umd.edu

Authors

Michael Hitt – Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

Andrew Norris – Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.orglett.3c01966>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (CHE-1800089). M.H. thanks DoD for SMART Scholarship funded by OUSD/R&E (The Under Secretary of Defense–Research and Engineering), National Defense Education Program (NDEP)/BA-1, Basic Research. We thank Prof. Sang Bok Lee and Dr. Yang Wang for help with carrying out electrochemical characterization of **1**. We thank Ms. Natalie Winik for help with preparation of some of the reagents **1**.

■ REFERENCES

- (a) Kavitha, K.; Praveena, K. S. S.; Ramarao, E. V. V. S.; Murthy, N. Y. S.; Pal, S. Chemistry of Cyclic Imides: An Overview on the Past, Present and Future. *Curr. Org. Chem.* **2016**, *20*, 1955–2001. (b) Luzzio, F.; Imides, A. Medicinal, Agricultural, Synthetic Applications and Natural Products Chemistry. In *Developments in Organic Chemistry*; Smith, M. B., Ed.; Elsevier: Amsterdam, 2019.
- Prudhomme, M. *Rebeccamycin* analogues as anti-cancer agents. *Eur. J. Med. Chem.* **2003**, *38*, 123–140.
- Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. Structurally diverse new alkaloids from Palauan collections of the apratoxin-producing marine cyanobacterium *Lyngbya* sp. *Tetrahedron* **2002**, *58*, 7959–7966.
- Pacher, T.; Raninger, A.; Lorbeer, E.; Brecker, L.; But, P. P.-H.; Greger, H. Alcoholysis of Naturally Occurring Imides: Misleading Interpretation of Antifungal Activities. *J. Nat. Prod.* **2010**, *73*, 1389–1393.
- Hugon, B.; Anizon, F.; Bailly, C.; Golsteyn, R. M.; Pierré, A.; Léonce, S.; Hickman, J.; Pfeiffer, B.; Prudhomme, M. Synthesis and

biological activities of isogranulatimide analogues. *Bioorg. Med. Chem.* **2007**, *15*, 5965–5980.

(6) Takeuchi, Y.; Shiragami, T.; Kimura, K.; Suzuki, E.; Shibata, N. (R)- and (S)-3-Fluorothalidomides: Isosteric Analogues of Thalidomide. *Org. Lett.* **1999**, *1*, 1571–1573.

(7) Nakamura, K. Aniracetam: Its Novel Therapeutic Potential in Cerebral Dysfunctional Disorders Based on Recent Pharmacological Discoveries. *CNS Drug Rev.* **2002**, *8*, 70–89.

(8) Simas, A. B. C.; de Sales, D. L.; Pais, K. C. Acyclic ketene aminal phosphates derived from N,N-diprotected acetamides: stability and cross-couplings. *Tetrahedron Lett.* **2009**, *50*, 6977–6980.

(9) Liu, C.; Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. Acyl and Decarbonylative Suzuki Coupling of N-Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. *ACS Catal.* **2018**, *8*, 9131–9139.

(10) (a) Pourvali, A.; Cochrane, J. R.; Hutton, C. A. A new method for peptide synthesis in the N-C direction: amide assembly through silver-promoted reaction of thioamides. *Chem. Commun.* **2014**, *50*, 15963–15966. (b) Shang, J.; Pourvali, A.; Cochrane, J. R.; Hutton, C. A. Steric and Electronic Effects in the Synthesis and Regioselective Hydrolysis of Unsymmetrical Imides. *Aust. J. Chem.* **2015**, *68*, 1854–1858.

(11) Baburao, K.; Costello, A. M.; Petterson, R. C.; Sander, G. E. J. Acyclic Imides. A General Method of N-Acylation of Amides. *J. Chem. Soc. C* **1968**, 2779–2781.

(12) Knittel, D. Kathodische Reduktion von α -Azidostyrolen. Elektrolytische Untersuchungen an Vinylaziden. 1. Mitt. *Monatsh. Chem.* **1984**, *115*, 523–531.

(13) Mukaiyama, T.; Ichikawa, J.; Asami, M. Facile Method for the Acylation of Alcohols and Amides by the Use of 1,1'-Dimethylstannocene and Acyl Chlorides. *Chem. Lett.* **1983**, *12*, 293–296.

(14) Sanagawa, A.; Nagashima, H. Hydrosilane Reduction of Nitriles to Primary Amines by Cobalt–Isocyanide Catalysts. *Org. Lett.* **2019**, *21*, 287–291.

(15) Gibson, M. S.; Bradshaw, R. W. The Gabriel Synthesis of Primary Amines. *Angew. Chem., Int. Ed. Engl.* **1968**, *7*, 919–930.

(16) Tada, N.; Ban, K.; Yoshida, M.; Hirashima, S.; Miura, T.; Itoh, A. Aerobic photooxidation of benzylamide under visible light irradiation with a combination of 48% aq HBr and $\text{Ca}(\text{OH})_2$. *Tetrahedron Lett.* **2010**, *51*, 6098–6100.

(17) Zeng, H.-T.; Huang, J.-M. Copper-Catalyzed Ligand-Free Amidation of Benzylidene Hydrocarbons and Inactive Aliphatic Alkanes. *Org. Lett.* **2015**, *17*, 4276–4279.

(18) Aruri, H.; Singh, U.; Kumar, S.; Kushwaha, M.; Gupta, A. P.; Vishwakarma, R. A.; Singh, P. P. I_2 /Aqueous TBHP-Catalyzed Coupling of Amides with Methylarenes/Aldehydes/Alcohols: Metal-Free Synthesis of Imides. *Org. Lett.* **2016**, *18*, 3638–3641.

(19) Liu, X.; Zhang, Y.; Wang, L.; Fu, H.; Jiang, Y.; Zhao, Y. General and Efficient Copper-Catalyzed Amidation of Saturated C–H Bonds Using N-Halosuccinimides as the Oxidants. *J. Org. Chem.* **2008**, *73*, 6207–6212.

(20) Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C. Metal-free, highly efficient organocatalytic amination of benzylidene C–H bonds. *Chem. Commun.* **2013**, *49*, 3700–3702.

(21) Tran, B. L.; Li, B.; Driess, M.; Hartwig, J. F. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes. *J. Am. Chem. Soc.* **2014**, *136*, 2555–2563.

(22) Zheng, Y.-W.; Narobe, E.; Donabauer, K.; Yakubov, S.; König, B. Copper(II)-Photocatalyzed N–H Alkylation with Alkanes. *ACS Catal.* **2020**, *10*, 8582–8589.

(23) Some recent examples of efficient multicomponent reactions leading to *N*-alkylimides that do not exploit oxidative C–H bond functionalization: (a) Zeng, L.; Jin, J.; He, J.; Cui, S. Photo-induced synthesis of β -sulfonyl imides from carboxylic acids. *Chem. Commun.* **2021**, *57*, 6792–6795. (b) Yang, S.; Liu, C.; Shangguan, X.; Li, Y.; Zhang, Q. A copper-catalyzed four-component reaction of arylcyclopropanes, nitriles, carboxylic acids and N-fluorobenzenesulfonimide: facile synthesis of imide derivatives. *Chem. Sci.* **2022**, *13*, 13117–13121.

(24) Brandhofer, T.; Gini, A.; Stockerl, S.; Piekarski, D. G.; Mancheño, O. G. Direct C–H Bond Imidation with Benzoyl Peroxide as a Mild Oxidant and a Reagent. *J. Org. Chem.* **2019**, *84*, 12992–13002.

(25) Wang, J.; Sun, Y.; Wang, G.; Zhen, L. DEAD-Promoted Oxidative Ugi-Type Reaction Including an Unprecedented Ugi Amidation Assisted by Dicarboxylic Acids. *Eur. J. Org. Chem.* **2017**, *2017*, 6338–6348.

(26) Ye, X.; Xie, C.; Pan, Y.; Han, L.; Xie, T. Copper-Catalyzed Synthesis of α -Amino Imides from Tertiary Amines: Ugi-Type Three-Component Assemblies Involving Direct Functionalization of sp^3 C–Hs Adjacent to Nitrogen Atoms. *Org. Lett.* **2010**, *12*, 4240–4243.

(27) Chen, Y.; Feng, G. Visible Light Mediated sp^3 C–H Bond Functionalization of N-Aryl-1,2,3,4-Tetrahydroisoquinolines via Ugi-Type Three-Component Reaction. *Org. Biomol. Chem.* **2015**, *13*, 4260–4265.

(28) (a) Darbeau, R. W.; White, E. H.; Nunez, N.; Coit, B.; Daigle, M. Reaction of Essentially Free Benzyl Cations with Acetonitrile; Synthesis of Ethanimidic Carboxylic Anhydrides and Unsymmetrical Diacylamines. *J. Org. Chem.* **2000**, *65*, 1115–1120. (b) Yang, S.; Liu, C.; Shangguan, X.; Li, Y.; Zhang, Q. A Copper-Catalyzed Four-Component Reaction of Arylcyclopropanes, Nitriles, Carboxylic Acids and N-Fluorobenzenesulfonimide: Facile Synthesis of Imide Derivatives. *Chem. Sci.* **2022**, *13*, 13117–13121. (c) Zhang, X.; Cui, T.; Zhao, X.; Liu, P.; Sun, P. Electrochemical Difunctionalization of Alkenes by a Four-Component Reaction Cascade Mumm Rearrangement: Rapid Access to Functionalized Imides. *Angew. Chem.* **2020**, *132*, 3493–3497.

(29) Mumm, O. Conversion of Acid Imide Chlorides with Salts of Organic Acids and with Cyan Potassium. *Berichte Deut. Chem. Gesels.* **1910**, *43*, 886–893.

(30) Hitt, M.; Vedernikov, A. N. Oxidative Trifluoroacetoxylation of 1° , 2° and 3° Benzylidene $\text{C}(\text{sp}^3)\text{-H}$ Bond Donors Using N-Trifluoroacetoxyquinuclidinium Salts under Photoredox Catalysis. *Org. Lett.* **2022**, *24*, 7737–7741.

(31) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J. T.; Baran, P. S. Scalable, Electrochemical Oxidation of Unactivated C–H Bonds. *J. Am. Chem. Soc.* **2017**, *139*, 7448–7451.

(32) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. O–H Hydrogen Bonding Promotes H-atom Transfer from α C–H Bonds for C-Alkylation of Alcohols. *Science* **2015**, *349*, 1532–1536.

(33) Ashley, M. A.; Yamauchi, C.; Chu, J. C.; Otsuka, S.; Yorimitsu, H.; Rovis, T. Photoredox-Catalyzed Site-Selective α -C(sp^3)-H Alkylation of Primary Amine Derivatives. *Angew. Chem., Int. Ed.* **2019**, *58*, 4002–4006.

(34) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. Native Functionality in Triple Catalytic Cross-coupling: sp^3 C–H Bonds as Latent Nucleophiles. *Science* **2016**, *352*, 1304–1308.

(35) An analogue of **1a**, *N*-benzoyloxyquinuclidinium chloride, was reported earlier: Huisgen, R.; Kolbeck, W. *N*-Acyloxy-Ammonium-Salze. *Tetrahedron Lett.* **1965**, *6*, 783–787.

(36) See the *Supporting Information*.

(37) Proctor, R. S. J.; Phipps, R. J. Recent Advances in Minisci-Type Reactions. *Angew. Chem., Int. Ed.* **2019**, *58*, 13666–13699.

(38) The least electron-poor aryl derivatives, such as **1a**, may produce competitively ArCO_2^\bullet /free quinuclidine pair, with the subsequent HAT step involving the ArCO_2^\bullet radicals, as it was shown using our DFT calculations (see the *Supporting Information*). The more efficient C–H imidation is associated with the involvement at the HAT step of the less reactive and highly selective $\text{Q}^\bullet+$, whereas ArCO_2^\bullet radicals are more reactive and less selective.

(39) Rollick, K. L.; Kochi, J. K. Oxidation-Reduction Mechanisms. Inner-Sphere and Outer-Sphere Electron Transfer in the Reduction of Iron(III), Ruthenium(III), and Osmium(III) Complexes by Alkyl Radicals. *J. Am. Chem. Soc.* **1982**, *104*, 1319–1330.

(40) Brady, K.; Hegarty, A. F. The Isoimide–Imide Rearrangement. *J. Chem. Soc., Perkin Trans. 1* **1980**, *II*, 121–126.